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Figure 1: Visualization of patch matching by our visual word tokenizer (T 100
inter model). Patches that are

matched with one another are indicated by identical colors. Higher patch matching is exhibited by the
background rather than foreground across datasets. Patch matching serves as a rudimentary form of image
segmentation by grouping similar non-adjacent visual concepts.

Abstract

The cost of deploying vision transformers increasingly represents a barrier to wider industrial
adoption. Existing compression techniques require additional end-to-end fine-tuning or incur
a significant drawback to runtime, making them ill-suited for online (real-time) inference,
where a prediction is made on any new input as it comes in. We introduce the Visual
Word Tokenizer (VWT), a training-free method for reducing energy costs while retaining
performance and runtime. The VWT groups visual subwords (image patches) that are
frequently used into visual words while infrequent ones remain intact. To do so, intra-
image or inter-image statistics are leveraged to identify similar visual concepts for sequence
compression. Experimentally, we demonstrate a reduction in wattage of up to 25% with
only a 20% increase in runtime at most. Comparative approaches of 8-bit quantization and
token merging achieve a lower or similar energy efficiency but exact a higher toll on runtime
(up to 100% or more). Our results indicate that VWTs are well-suited for efficient online
inference with a marginal compromise on performance.

1 Introduction

In recent years, deep learning has seen continuous integration into a variety of systems worldwide. From
coding to gaming, neural networks are increasingly deployed in online scenarios where asynchronous requests
are processed in real-time. However, due to the size and complexity of modern architectures, such models are
costly to run in practice. To address this, various methods have been proposed to improve model efficiency
such as Knowledge Distillation (Hinton et al., 2015), Pruning (Han et al., 2015; Michel et al., 2019), and
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Quantization (Dettmers et al., 2022). However, many of these methods either require end-to-end fine-tuning
to recover performance or significantly reduce runtime. In the field of Natural Language Processing (NLP),
there is a growing trend towards improving efficiency via tokenization (Gee et al., 2022; 2023a; Dagan et al.,
2024; Yamaguchi et al., 2024; Minixhofer et al., 2024). Newer large language models (LLMs) (Team et al.,
2024; Dubey et al., 2024) exhibit a noticeably larger vocabulary than their earlier counterparts (Devlin, 2018;
Radford et al., 2019), thereby producing shorter sequences across various distributions. For computer vision,
increasing interest is placed on reducing the cost of deploying the vision transformer (ViT) (Dosovitskiy
et al., 2020). As image encoders in larger vision-language systems, ViTs are used to process images as fixed
sets of tokens. Similar to downsampling in convolutional neural networks, most research (Kong et al., 2022;
Liang et al., 2022; Rao et al., 2021; Marin et al., 2021; Bolya et al., 2022; Bian et al., 2023; Kim et al., 2024)
has focused on merging and/or pruning tokens in the intermediate layers to reduce computational overhead.
Given the analogous architecture of the transformer across image and text modalities, our work looks instead
at the idea of tokenization for efficiency by splitting an image into variable sets of tokens.

To introduce variability, we draw inspiration from subword tokenization algorithms (Gage, 1994; Sennrich
et al., 2016) used in NLP which follow the principle that common words should remain intact while infrequent
ones are broken down into meaningful subword units. Instead of a top-down approach – splitting words into
subwords, our work for image data takes a bottom-up approach by grouping visual subwords (image patches)
into visual words. We also twist the underlying principle: frequently used patches should be grouped as they
are more likely to describe common features while infrequent ones remain intact as they might carry task-
relevant information. We propose two procedures to capture this principle. The first is an intra-image
approach where patches with the lowest pixel variance within each image are grouped as they typically
represent uniform areas (e.g. backgrounds). The second is an inter-image approach where basic features
across multiple images such as colors or edges are discovered as visual words. Image patches are then grouped
based on the similarity of these basic characteristics. Crucially, patches that have distinct characteristics
(i.e. high dissimilarity with any visual word) remain intact and form separate visual subwords.

2 Related Work

Efficient ViTs. Most works for improving the efficiency of ViTs have focused on reducing tokens in the
intermediate layers by leveraging importance scores. In Liang et al. (2022); Xu et al. (2022); Kong et al.
(2022); Bian et al. (2023), redundancy is addressed by fusing tokens. Both Rao et al. (2021) and Tang et al.
(2022) opt to prune such tokens instead. Recent efforts (Cao et al., 2023; Chen et al., 2023; Bonnaerens &
Dambre, 2023; Kim et al., 2024) attempt to combine the benefits of merging and pruning. In Tran et al.
(2024), an additional metric termed the energy score is used to better identify redundancy. Uniquely, Fayyaz
et al. (2022) use inverse transform sampling to select important tokens. Most relevant to our work are Marin
et al. (2021) and Bolya et al. (2022). The former assigns tokens to centroids via clustering, while the latter
progressively merges tokens layer-by-layer in a training-free manner1.

Specialized Tokenizers. Our method also takes inspiration from efficient inference in NLP. Increasingly,
the tokenizer’s vocabulary is specialized to reduce the input token length. In Gee et al. (2022), domain
adaptation of the tokenizer ensures fewer subword or character tokens are produced. Gee et al. (2023a)
followed up by introducing n-grams for tokenization beyond the word-level boundary. In Dagan et al.
(2024), tokenizer specialization is also shown to accelerate the task of code generation with modern LLMs.
Meanwhile, Yamaguchi et al. (2024) analyzed the effectiveness of various vocabulary adaptation techniques
for efficient cross-lingual inference. Recently, Minixhofer et al. (2024) leveraged hypernetworks for zero-shot
tokenizer transfer of newly domain-adapted vocabularies.

Vector Quantization. The idea of discretizing continuous distributions has been explored in many works,
most recently for image generation. Yang et al. (2007) leveraged clustering for learning a codebook that maps
keypoint descriptors to discrete visual words. In Wu et al. (2020) and Bao et al. (2021), discretization is
applied as part of the modelling for ViTs. Van Den Oord et al. (2017) learned discrete image representations
by introducing the Vector Quantised-Variational Autoencoder (VQ-VAE) approach. Esser et al. (2021) and

1Unlike Bolya et al. (2022), we do not include Marin et al. (2021) as one of our baselines due to a lack of code release.
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Figure 2: Overview of the Visual Word Tokenizer. An intra-image approach. In the forward pass, the pixel
variance of the patches is computed with the top-k lowest values being masked (deploy). The grouped
tokens are dropped after positional information is added. Note that V = 1 as only a single pixel variance
feature is used. An inter-image approach. A Bag-of-Visual Words is formed by clustering patches in the
pixel space (pre-process). In the forward pass, the minimum pairwise cosine distance between the patches
and visual words is computed with values above the threshold being masked (deploy). The grouped tokens
are averaged after positional information is added.

Yu et al. (2021) further improved upon the VQ-VAE by combining the expressiveness of transformers with an
adversarial framework. Increasingly, vision-language models paired with codebooks conduct image synthesis
autoregressively (Ramesh et al., 2021; Yu et al., 2022; Lu et al., 2022; 2024; Team et al., 2023; Team,
2024; Sun et al., 2024). Lastly, Yang et al. (2022) tackled disentangled representation learning and scene
decomposition by tokenizing images into separate visual concepts.

3 Visual Word Tokenizer

In ViTs, tokenization is a process that splits an image into patches (tokens) which are then projected into a
series of embeddings. The number of patches is typically fixed (e.g. 197) based on the choice of architecture.
We seek to split an image into variable length inputs instead (i.e. certain images will use 80 tokens, while
others a 100). This variability is induced by conventional text tokenizers (Gage, 1994; Sennrich et al., 2016;
Wu et al., 2016; Kudo & Richardson, 2018) for model efficiency. We propose to achieve this via visual words
that group patches (visual subwords) based on some commonality in the pixel space. These visual words
capture frequently used patches while retaining infrequent ones as is. A simple yet effective grouping can be
done using either a criterion that looks at statistics of only one image (an intra-image approach) or across
many images (an inter-image approach). Figure 2 summarizes the Visual Word Tokenizer (VWT).

3.1 An intra-image approach

The pixel variance of the image patches is the simplest criterion that can be used for grouping. In Figure 2,
this approach only utilizes the deploy step by grouping the top-k patches with the lowest pixel variance
while leaving the rest intact. To compress the grouped tokens, we opt to drop them as they tend to
exhibit excessive homogeneity. We do not include the [CLS] token for dropping. This approach is inspired
by Minderer et al. (2024) which aimed to reduce the training cost of OWLv2, an open-vocabulary object
detector. Dropping patches with the lowest pixel variance removes padding areas and uniform backgrounds
from the input mosaics of raw images, thereby increasing training efficiency.

3.2 An inter-image approach

Inspired by text tokenizers and codebooks, we propose a variable-length approach that statistically discovers
visual words across many images. The tokenizer consists of two steps: Pre-Process and Deploy

Pre-Process. The Bag-of-Visual Words (BoVW) is a popular method for modeling images via discrete
representations. In Yang et al. (2007), k-means clustering is applied to keypoint descriptors from SIFT (Lowe,

3



Under review as submission to TMLR

Dataset Model Base T 0.5
intra

T 100
inter T 1000

inter T 10000
inter

In-Domain ImageNet In-Domain ImageNet In-Domain ImageNet
Waterbirds

CLIP 197 99

125 124 144 144 165 169
CelebA 89 88 130 119 163 155

MetaShift 112 109 136 135 162 164
OpenImages (Com.) - 114 - 136 - 162
OpenImages (Rare) - 110 - 133 - 160

COCO BLIP 577 289 267 264 317 312 408 405
NoCaps - 257 - 307 - 403

Table 1: Token length per sample (including [CLS]). T V
inter of varying pre-processing data and vocabulary

sizes are shown. Unlike text tokenizers, domain specialization (i.e. In-Domain) does not result in greater
compression. Smaller vocabularies produce shorter sequences whereas larger vocabularies result in patches
being increasingly matched to separate visual words.

Dataset Model Base Q8 ToME T 0.5
intra T 100

inter T 1000
inter T 10000

inter

Waterbirds

CLIP

123.99 73.89 91.64 110.93 102.65 107.93 117.36
CelebA 126.53 74.47 93.07 114.37 96.31 102.12 115.46

MetaShift 123.30 74.02 90.96 113.84 98.98 105.78 114.70
OpenImages (Com.) 135.05 74.80 94.63 114.62 106.33 112.67 123.95
OpenImages (Rare) 135.66 75.27 94.04 115.78 104.73 110.75 123.05

COCO BLIP 191.74 81.68 147.23 169.77 144.71 156.25 171.84
NoCaps 185.12 81.89 149.26 175.06 141.20 155.11 170.38

(a) Wattage (watt) ↓

Dataset Model Base Q8 ToME T 0.5
intra T 100

inter T 1000
inter T 10000

inter

Waterbirds

CLIP

8.48 88.55 17.04 5.84 9.88 9.73 9.91
CelebA 8.33 89.41 17.25 5.86 9.45 9.54 9.99

MetaShift 8.21 89.48 17.23 6.01 9.99 9.87 9.75
OpenImages (Com.) 8.83 92.23 17.44 5.97 9.64 9.69 10.23
OpenImages (Rare) 8.60 86.00 17.04 6.19 9.69 10.02 9.67

COCO BLIP 12.45 57.11 15.06 8.10 8.73 9.10 10.31
NoCaps 12.44 57.61 15.08 8.04 9.49 9.28 10.51

(b) Runtime (millisecond) ↓

Table 2: Wattage and runtime per sample. Compared to Base, VWTs reduce wattages by up to 25%
with T 100

inter. Although Q8 and ToME display lower wattages than VWTs, they induce significantly longer
runtimes, especially the former. T 0.5

intra is consistently faster than Base, while T 10000
inter may increase runtimes

by up to 20% at most (except on COCO and NoCaps).

2004) to learn a fixed set of centroids. These centroids represent the vocabulary to which multiple descriptors
are mapped in a process termed Vector Quantization (VQ). In our method, we adopt a variation of this
framework by building the BoVW using patches within the pixel space. Our design choice is motivated by two
main factors. First, we find keypoint descriptors to be costly for inference. In each forward pass, computing
keypoints for each image would significantly increase runtime. Second, in our early experimentation, we
observed that patches in the embedding space have little similarity to one another. Such issues were also
described by Bolya et al. (2022), thus leading to their use of attention scores instead. Further justification
for leveraging the pixel space is provided in Section 4.6.
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Model Waterbirds CelebA MetaShift OpenImages
Average ↑ Worst ↑ Average ↑ Worst ↑ Average ↑ Worst ↑ Common ↑ Rare ↑

Base 79.06 21.86 89.61 47.21 95.31 87.69 70.48 63.36
Q8 79.94 24.25 89.73 48.19 95.23 88.21 70.48 63.19

ToME 79.80 27.05 89.25 28.52 94.24 87.37 65.69 60.05
T 0.5

intra 75.56 31.00 89.27 50.93 92.94 86.15 65.52 59.73

T 100
inter 78.41 26.01 90.04 53.15 90.24 84.28 62.90 58.10

T 1000
inter 79.19 23.83 90.79 47.96 93.94 86.67 66.15 60.56

T 10000
inter 79.68 22.90 90.12 46.85 94.81 86.15 69.03 62.50

(a) CLIP (image classification and subgroup robustness)

Model
COCO NoCaps

Karpathy ↑ In-Domain ↑ Near-Domain ↑ Out-of-Domain ↑ Overall ↑
BLEU@4 CIDEr CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

Base 34.00 107.35 103.57 14.60 98.87 14.11 92.96 13.30 98.34 14.02
Q8 33.85 106.87 103.86 14.53 100.07 14.18 92.72 13.49 99.12 14.10

ToME 30.02 94.40 97.35 14.42 90.74 13.39 84.22 12.69 90.37 13.40
T 0.5

intra 32.80 104.37 99.86 14.20 94.21 13.73 89.52 13.12 94.07 13.68

T 100
inter 31.10 97.70 95.58 13.78 89.62 13.11 82.42 12.44 89.02 13.08

T 1000
inter 32.12 101.79 98.19 13.95 93.85 13.49 86.03 12.67 92.89 13.39

T 10000
inter 33.18 105.08 102.84 14.59 98.03 13.95 91.52 13.14 97.40 13.88

(b) BLIP (image captioning)

Table 3: Zero-shot (training-free) image classification (CLIP), subgroup robustness (CLIP) and captioning
(BLIP). VWTs maintain average accuracy relative to Base while improving robustness on Waterbirds. On
COCO and NoCaps, VWTs retain a higher performance than ToME.

Given a dataset, we first patchify the images using the same patch size as the image encoder (e.g. 16 for
ViT-B/16). We then cluster the patches via k-means to form the BoVW of a given vocabulary size, where
each centroid represents a visual word. Patchification is done via basic tensor operations and not the pre-
trained convolutional layer of the ViT to avoid projection into embeddings. We also execute this process in
batches using the MiniBatchKMeans2 algorithm due to memory constraints. Note that MiniBatchKMeans
uses the Euclidean distance by design. Since clustering is done in the pixel space, the BoVW may be reused
by other ViTs with the same patch size regardless of model type.

Deploy. Once the BoVW is formed, we turn towards the process of sequence compression. One way of
leveraging the BoVW would be to merge similar patches in the pixel space before projecting them into
embeddings. However, such a naive approach will significantly degrade performance as the initialization
of a new linear layer for projection is required. To avoid this, we begin by patchifying and computing
the pairwise cosine distance between the patches and BoVW. For each patch, we retain only the minimum
distance. Unlike text, we are unable to obtain exact matches with images. As such, distances higher than
a given threshold are masked out to ensure dissimilar patches are not merged. At this point, we have
determined the groupings of similar patches via their connections to the same visual words. We then apply
the pre-trained convolutional layer of the ViT on the original image to patchify and project it into a series
of embeddings. Before merging, we ensure that positional information is added to the embeddings as we

2from sklearn.cluster import MiniBatchKMeans
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Figure 3: Visualization of patch dropping by our visual word tokenizer (T 0.5
intra model). Patches with the

lowest pixel variance that are dropped are indicated in black. In most cases, the dropped patches correspond
to the background object on average which is typically uninformative.

found it to work better than adding them later. Lastly, we average the embeddings element-wise based on
the earlier defined groupings. We do not include the [CLS] token for merging.

For the inter-image approach, if batching instead of online inference is desired, the uniform requirement of
tensors becomes a challenge. To maintain parallelism, any reduction has to be equal across samples. Due to
the non-uniformity of tokenization, sequences have to be sequentially compressed before padding to the same
length. We opt to append additional [PAD] tokens until the longest length within the batch is achieved.
Similar to text transformers (Vaswani et al., 2017), the attention scores are set to negative infinity before
the softmax to nullify the influence of padding. We do not add positional information to the [PAD] tokens
as extrapolating such information to non-uniform sequences will significantly worsen model efficiency.

4 Experiments

Consider a pre-trained image encoder f ∈ F with parameters θ ∈ Θ that transforms inputs x ∈ X ⊆ Rd

to encodings x̂ ∈ X̂ ⊆ Rd̂. The encodings can then be mapped to labels y ∈ Y for some given task, be it
classification or generation. More specifically, the ViT first transforms inputs x to tokens t1, . . . , tN before
further processing by the attention layers. The number of tokens N is a constant defined by ( I

P )2, where
I and P are the image and patch sizes, respectively. Let T be the VWT associated with a vocabulary
v ∈ V, where v is a visual word learned from some dataset D. The tokenizer transforms the input x into
tokens t1, . . . , tM , where M ≪ N . In our experiments, we seek to analyze the effect of T on online inference
efficiency. We focus on the zero-shot setting by eschewing any form of end-to-end fine-tuning for f .

4.1 Datasets and Settings

We conduct our analysis through the lens of (i) classification performance of visual recognition, (ii) subgroup
robustness, and (iii) generative performance of visual captioning. For (i) and (ii), we utilize three publicly
available datasets (Waterbirds (Wah et al., 2011), CelebA (Liu et al., 2015), MetaShift (Liang & Zou, 2022))
that are typical benchmarks in robustness and fairness research (Sagawa et al., 2019; Liu et al., 2021; Yang
et al., 2023). To perform (zero-shot) classification, we compute the cosine similarity between an image
embedding and the following encoded text labels3 for Waterbirds, CelebA, and MetaShift, respectively:
{’landbird’, ’waterbird’}, {’non-blond’, ’blond’}, {’dog’, ’cat’}. Further details on the defined subgroups are
provided in Appendix A.1. For (i), we also conduct a large-scale evaluation on the OpenImages v6 dataset
(Kuznetsova et al., 2020). Following Huang et al. (2023), the test split is divided into common and rare
subsets that consist of 57 224 and 21 991 images, respectively. The former has 214 classes, while the latter has
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Figure 4: Visualization of the vocabulary of T 100
inter. Patches from ImageNet-1K are matched to the closest

visual word using the Euclidean distance. Visual words are shown to depict basic features such as colors or
edges. Each visual word is an average representation of patches that belong to the matched cluster.

200. To perform (zero-shot) classification, we compute the cosine similarity between an image embedding and
the encoded text label3. For (iii), we utilize the Karpathy test split of COCO dataset (Lin et al., 2014) and
a validation set of NoCaps dataset (Agrawal et al., 2019) following the setting in previous work (Li et al.,
2022). Finally, to study inference efficiency, we utilize all datasets for the visual tasks (i)-(iii) described
above. We compute the efficiency per sample and average across all samples. For the wattage calculation,
we call "pynvml.nvmlDeviceGetPowerUsage(handle)/1000" as done by Weights and Biases, which leverages
the NVIDIA Management Library for monitoring and managing the NVIDIA GPUs. The experiments are
also conducted in an isolated environment, thus ensuring the efficiency measurements are as accurate as
possible. Note that we do not include the Pre-Process step of the inter-image approach into our efficiency
calculations as this process is only done once and may be reused multiple times.

4.2 Implementation Details

For image classification, we load the pre-trained CLIP (Radford et al., 2021) model from HuggingFace4. An
image size of 224 × 224 is used with bilinear interpolation for CLIP. For image captioning, we load the pre-
trained BLIP (Li et al., 2022) model from HuggingFace5. To perform zero-shot captioning, we use a beam
size of 3 along with maximum and minimum lengths of 20 and 5, respectively. An image size of 384 × 384
is used with bicubic interpolation. Both CLIP and BLIP utilize the ViT-B/16 image encoder unless stated
otherwise. Aside from the pre-trained model which we denote as Base, we also consider 8-bit quantization
(Dettmers et al., 2022) and token merging (Bolya et al., 2022) as additional baselines. We denote the former
as Q8 and the latter as ToME. Following Bolya et al. (2022), we utilize a reduction per layer for ToME
of 13 with CLIP and 23 with BLIP due to their respective input image sizes. For the VWTs, we set the
top-k of the intra-image approach to 50% of the total number of patches which we denote as T 0.5

intra. For the
inter-image approach, we set the threshold to 0.1 unless stated otherwise and denote it as T V

inter, where V is
the size of the vocabulary. Lastly, our experiments are conducted using a single NVIDIA A100 GPU. Since
our focus is on the online setting (real-time), we set the batch size to 1 unless stated otherwise.

4.3 VWTs and Inference Efficiency

First we analyze the effects of VWTs on token length. We seek to understand how the choice of pre-processing
data and vocabulary size affects the degree of compression. Table 1 shows the token length per sample

3The prefix "a photo of a " is also added to encode each text label.
4https://huggingface.co/openai/clip-vit-base-patch16
5https://huggingface.co/Salesforce/blip-image-captioning-base
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Base: a man riding a motorcycle down
a dirt road

Q8: a man riding a motorcycle down a
dirt road with a mountain in the
background

ToME: a man riding a motorcycle down
a dirt road with a mountain in the
background

Tintra
0.5: a man riding a motorcycle

down a dirt road

Tinter
100: a man riding a motorcycle

down a dirt road with a mountain in the
background

Tinter
1000: a man riding a motorcycle

down a dirt road with a mountain in the
background

Tinter
10000: a man riding a motorcycle

down a dirt road with a mountain in the
background

Base: the sky is clear and blue with no
clouds in sight

Q8: a large military plane sitting on top
of an airport runway

ToME: a large group of people standing
in front of a large plane on a runway at
an air field with a plane on the ground in
front of a large group of other planes
and a large group of

Tintra
0.5: a group of people standing

around a large plane on a runway with a
blue sky in the background and a plane
is on the ground and people are walking
around the plane is on the ground

Tinter
100: a large military plane sitting

on top of a grass covered field next to a
crowd of people walking around it

Tinter
1000: a large military plane on

display at an airs airs airs airs airs airs
airs airs airs airs airs airs airs airs airs
airs airs airs airs airs

Tinter
10000: a large military plane on a

runway at an airs airs airs airs airs airs
airs airs airs airs airs airs airs airs airs
airs airs airs airs

Base: two slices of pizza sitting on a
wooden cutting board on a table with a
glass of beer in the pizza is on a
wooden cutting board

Q8: two slices of pizza sitting on a
wooden cutting board on a wooden
table

ToME: two slices of pizza sitting on a
wooden cutting board on a wooden
table with a glass of beer in the pizza is
on a wooden cutting board

Tintra
0.5: a pizza on a wooden cutting

board with a slice taken out of it and a
glass of beer on the side of the plate in
the background

Tinter
100: the pizza is on a cutting

board on a wooden table with a glass of
beer in the background and a slice of
pizza is on a wooden

Tinter
1000: a wooden cutting board with

a pizza cut in half on top of a wooden
cutting board with a glass of beer in the
back of the plate

Tinter
1000: a wooden cutting board with

two slices of pizza sitting on top of a
wooden table with a glass of beer on
the side of the pizza is

Base: a stop sign on a pole with a
sticker attached to the stop sign on a
pole with a sticker attached to the stop
sign and a sticker on the pole with a
sticker

Q8: a stop sign on a pole with a street
sign in the middle of the picture and a
stop sign in the middle of the pole is red
and white with a stop sign in the middle
of the

ToME: a stop sign on a pole with a stop
sign attached to the pole and a 3 way
sign on a pole with a stop sign on it and
a 3 way sign on a 3 way sign on

Tintra
0.5: a red stop sign on a pole with

a street sign in the middle of the sign
and a stop sign in the middle of the sign

Tinter
100: a stop sign on a metal pole

with graffiti written on the side of it

Tinter
1000: a stop sign on a pole with a

street sign in the middle of the pole and
a stop sign in the middle of the pole is
red and white on the pole is a stop sign
with a

Tinter
10000: a stop sign on a pole on

the side of the road

Figure 5: Visualization of long-form captioning on COCO. Longer captions are generated via a length
penalty of 2.0 and a maximum length of 40. Interestingly, the smaller vocabulary of T 100

inter possesses higher
descriptiveness and coherence than T 0.5

intra, T 1000
inter, or T 10000

inter despite its lesser compression.

(including [CLS]) on different datasets. Unlike T 0.5
intra, the sequence lengths induced by T V

inter are not equal.
First, we compare T V

inter pre-processed on the in-domain dataset and ImageNet-1K (Deng et al., 2009). The
in-domain dataset is represented by the training split if available. On text data, in-domain tokenizers (Gee
et al., 2022; 2023a; Dagan et al., 2024; Yamaguchi et al., 2024; Minixhofer et al., 2024) have been shown to
produce shorter sequences by specializing the vocabulary on the given distribution. Interestingly, we observe
no such effect with image data as seen by the similar lengths between In-Domain and ImageNet-1K. Only
on CelebA, do we see a slightly greater reduction with T 1000

inter and T 10000
inter pre-processed on ImageNet-1K.

Second, unlike text tokenizers, decreasing compression is seen as vocabulary size increases. With text, larger
vocabularies ensure that more tokens are kept as words rather than subwords. We posit that an increasing
number of patches are matched to separate visual words, thus lowering the overall compression.

Having analyzed the effects on token length, we turn to the practical metrics of wattage and runtime. For
online inference, savings in wattage should not incur a significant cost to runtime. In Table 2, we compare the
efficiency of VWTs to Base, Q8, and ToME. Note that we compute both metrics using the image encoder
of CLIP or BLIP only. First, we find the wattage of VWTs to be lower than Base across the datasets. On
COCO, this reduction is up to 25% with T 100

inter. Naturally, efficiency decreases as vocabulary size increases
due to smaller compression. Although Q8 and ToME result in a lower wattage than VWTs, we note the
drawbacks in runtime. In particular, Q8 results in a significantly longer runtime for Base as tensors need
to be repeatedly quantized and dequantized. Meanwhile, ToME can increase runtime by up to 100% on
Waterbirds, CelebA, MetaShift, and OpenImages. We observe increases of up to 20% at most with T 10000

inter

on the aforementioned datasets. T 0.5
intra displays lower runtimes than Base across the datasets while T 100

inter,
T 1000

inter, and T 10000
inter do so on COCO and NoCaps. We have shown how VWTs are more suitable for online

inference by striking a good balance between savings in wattage and costs to runtime.
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Dataset Model T 100
inter T 1000

inter T 10000
inter

In-Domain ImageNet In-Domain ImageNet In-Domain ImageNet
Waterbirds

CLIP

180 179 179 179 182 182
CelebA 153 154 157 154 170 165

MetaShift 176 173 175 174 180 180
OpenImages (Com.) - 171 - 171 - 176
OpenImages (Rare) - 169 - 169 - 174

COCO BLIP 405 406 409 408 442 440
NoCaps - 394 - 396 - 431

Table 4: Token length per sample (including [CLS]). T V
inter of varying pre-processing data and vocabulary

sizes are shown. Visual words are formed from patches after the pre-trained convolution layer of CLIP or
BLIP. Unlike Table 1, poor compression is seen due to dissimilarity between patches and new visual words.

4.4 VWTs and Visual Performance

Another important factor in compression is the effect on model performance. In Table 3, we tabulate the
performance of image classification and captioning using CLIP and BLIP, respectively. For visual recognition
and subgroup robustness, we analyze performance from an average and worst-group perspective as done by
Sagawa et al. (2019) and Romiti et al. (2022). First, we find the degradation in average accuracy to be small
for the VWTs. The largest drop of up to 2% only is shown by T 0.5

intra on MetaShift. Likewise, both Q8 and
ToME retain a high average accuracy across the datasets. Second, we observe possible improvements in
subgroup robustness with VWTs. On Waterbirds and CelebA, the worst-group accuracy (WGA) with T 0.5

intra

increases by up to 29% and 8%, respectively. Only on MetaShift do we observe a lower WGA than Q8 or
ToME relative to Base. Like Gee et al. (2023b), we find compression to not always be harmful to subgroup
robustness by improving the WGA at a negligible cost to overall performance.

To further validate performance, we conduct additional evaluations on the large-scale OpenImages v6 dataset
for zero-shot classification. We report mean Average Precision (mAP) as done by Huang et al. (2023).
Likewise, from Tables 2 and 3, we find the VWTs to be more suitable for online inference than Q8 or ToME
in the large-scale setting while retaining comparable performance to Base.

For image captioning with BLIP, we evaluate our models following the setting in Li et al. (2022) by using
the BLEU, CIDEr, and SPICE metrics w.r.t. the ground truth captions. On COCO, the VWTs display a
higher performance than ToME and are competitive with Q8. On NoCaps, we see the largest degradation
on the out-of-domain samples with T 100

inter. However, overall performance of T 0.5
intra, T 1000

inter, and T 10000
inter are still

higher than ToME. Only Q8 displays a slight improvement over Base. Like ToME, the VWTs are shown
to not require additional end-to-end fine-tuning for performance retention.

The generated captions by BLIP (Li et al., 2022) can be used as priors for further training of other models.
As such, longer descriptive captions may be more desirable than the typical short captions associated with
Internet data. In Figure 5, we visualize the long-form captions on COCO. To enable longer generations,
we set the length penalty to 2.0 and double the maximum length to 40. All other generation settings are
kept the same. With longer captions, the generation may degenerate into unnecessary repetitions on certain
samples. Interestingly, descriptiveness and coherence improves more with T 100

inter than T 0.5
intra, T 1000

inter, or T 10000
inter

inspite of its higher sequence compression as seen on COCO in Table 1.

4.5 Visualization of the Visual Words

To better understand the VWT, we visualize the patch matching of T 0.5
intra and T 100

inter in Figures 3 and 1,
respectively. For the latter, we highlight in identical colors patches that are matched with one another.
With T 0.5

intra, the patches with the lowest pixel variance typically correspond to uninformative backgrounds.
In most cases, the dropping of such patches continues to preserve the foreground object.

With T 100
inter, we find that patches representing the background are more frequently grouped than those of

the foreground. On Waterbirds, the merging of background patches may explain the improved robustness
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Dataset Model T 100
inter T 1000

inter T 10000
inter

Waterbirds

CLIP 88 179 195
CelebA

MetaShift
OpenImages (Com.)
OpenImages (Rare)

COCO BLIP 104 439 561NoCaps

(a) Length

Model Waterbirds CelebA MetaShift Overall ↑
Average ↑ Worst ↑ Average ↑ Worst ↑ Average ↑ Worst ↑ Common ↑ Rare ↑

T 100
inter 66.60 9.61 90.24 56.48 76.16 61.43 41.06 39.84

T 1000
inter 78.10 22.74 90.25 47.96 94.20 87.18 70.29 63.48

T 10000
inter 78.98 21.96 89.61 47.46 95.27 87.18 70.52 63.40

(b) CLIP (image classification and subgroup robustness)

Model
COCO NoCaps

Karpathy ↑ In-Domain ↑ Near-Domain ↑ Out-of-Domain ↑ Overall ↑
BLEU@4 CIDEr CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

T 100
inter 9.92 19.18 15.81 7.20 10.95 6.25 10.55 6.63 11.57 6.47

T 1000
inter 32.06 100.52 96.87 14.04 91.83 13.47 89.52 12.96 92.09 13.45

T 10000
inter 34.04 107.35 103.55 14.49 98.22 14.00 94.08 13.48 98.15 13.97

(c) BLIP (image captioning)

Table 5: Token length (including [CLS]) and performance of the inter-image approach with random merging.
The pairwise cosine distance is initialized by sampling from a uniform distribution of [0, 2]. Average and
worst-group accuracies degrade noticeably with T 100

inter except for CelebA. Performance does not change much
for T 1000

inter and T 10000
inter from Base since barely any compression occurs.

in Table 3 by mitigating the spurious correlation with the background. On CelebA, T 100
inter tends to avoid

matching the eyes or mouths of the individuals. We also observe that patch matching is capable of grouping
similar but non-adjacent visual concepts. In certain examples of MetaShift and NoCaps, multiple cats and
foods are seemingly matched together, respectively. Our analysis shows that patch matching serves as a
rudimentary form of image segmentation by identifying similar visual concepts.

In Figure 4, we visualize the vocabulary of T 100
inter to analyze the formation of the visual words. We show

patches from ImageNet-1K (i.e. pre-processing data) that are matched to each visual word using the Eu-
clidean distance. Since visual words are centroids, patches that are matched to the same visual word belong
to the same cluster. We observe that visual words depict basic features such as colors or edges. These fea-
tures are also formed as an average representation of the patches that belong to each cluster. By representing
basic features, visual words serve as effective anchor points to which patches can be matched to.

4.6 Ineffectiveness of the Embedding Space

In Table 4, we analyze the sequence compression using visual words formed in the embedding space. Instead
of initializing the vocabulary by clustering patches in the pixel space, we do so with patches after the pre-
trained convolution layer of CLIP or BLIP. During inference, we match the patches after the pre-trained
convolution layer with these new visual words. Compared to Table 1, we observe a notable reduction in the
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Dataset Thresh Length Average ↑ Worst ↑

Waterbirds

0.2 97 76.71 24.09
0.3 79 74.85 21.13
0.4 66 73.35 16.30
0.5 58 72.81 13.14

CelebA

0.2 66 89.44 56.48
0.3 55 88.85 58.70
0.4 50 88.31 57.04
0.5 48 88.21 55.74

MetaShift

0.2 84 86.16 77.46
0.3 69 81.16 67.77
0.4 60 77.73 60.65
0.5 55 74.75 56.08

Table 6: Token length (including [CLS]) and performance using T 100
inter with varying similarity thresholds.

Higher thresholds can reduce sequences to 48 tokens on CelebA. Greater compression results in higher
degradation in performance, particularly in subgroup robustness.

compression irrespective of pre-processing data and vocabulary size. In Tang et al. (2022), embeddings are
shown to become progressively more similar to one another due to self-attention. As such, it is unsurprising
that matching patches and visual words in the initial embedding space is found to be ineffective.

4.7 Random Merging of Tokens

In Table 5, we study the effects of randomly merging the tokens. We initialize the pairwise cosine distance
by sampling from a uniform distribution of [0, 2]. First, we find the token length (including [CLS]) to differ
noticeably from Table 1. For T 100

inter, sequences are further reduced across the datasets. Conversely, T 1000
inter

and T 10000
inter display little compression. Second, performance is shown to change from Table 3. We observe

a significant degradation in average and worst-group accuracies with T 100
inter on Waterbirds and MetaShift.

For T 1000
inter and T 10000

inter , performance does not shift much from Base as barely any compression occurs. With
random merging, the captions are shown to deviate completely from those of Base in Figure 6, thus further
demonstrating that visual words are an effective criterion for grouping patches as shown in Figure 1.

4.8 Ablation of the Similarity Threshold

We have shown how the inter-image approach can improve the efficiency of online inference. To better
understand their limitations, we ablate the threshold of T 100

inter by setting it to values of {0.2, 0.3, 0.4, 0.5}
in Table 6. We seek to determine if exploiting higher thresholds for increased compression is a viable
strategy. Naturally, we observe a reduction in performance as increasingly dissimilar patches are merged.
For Waterbirds and MetaShift, the WGA degrades more significantly than the average, especially with the
former. Interestingly, average accuracy remains relatively unchanged while WGA improves significantly on
CelebA irrespective of similarity threshold. We posit that at higher thresholds, the merging of core features
represented by the foreground object results in the reduced performance of Waterbirds and MetaShift.

4.9 When to use the intra-image or inter-image approach?

Concerning the choice between the intra-image or inter-image approach, we posit that when global infor-
mation is required, dropping tokens may be more advantageous by removing unnecessary noise from the
visual input. On the other hand, when the task necessitates local information (e.g. long-form captioning),
merging tokens may better preserve the visual concepts. For example, the image on the first row of Figure 7
of Appendix A.2 shows that T 0.5

intra removes the mountainous background, thus leading to the absence of

11



Under review as submission to TMLR

Tinter100
thresh = 0.1

Tinter1000
thresh = 0.1

Tinter10000
thresh = 0.1

Tinter100
thresh = 0.5

Tinter100
random

a man riding a motorcycle
down a dirt road

a wooden cutting board

a red stop sign

a man riding a motorcycle
down a dirt road

a man riding a motorcycle
down a dirt road

a man riding a bike down
a dirt road

a picture of a building with
a clock on it's side

a blurry image of a person
on a skateboard

a picture of a building with
a clock on it's side

a stop sign on the side of
a roada stop sign on a polea stop sign on a pole

a wooden cutting board
a wooden cutting board

with two slices of pizza on
it

a close up of a plate of
food on a table

a large military plane a baseball game being
played on a baseball field

a group of people
standing in front of a planea large military planea large military plane

Figure 6: Visualization of image captions on COCO by the inter-image approach. The generated captions
are shown to deviate more when increasing the similarity threshold than when reducing the vocabulary size.
With random matching, the model begins to completely misunderstand the image.

"mountain" in the long-form caption of Figure 5. Potentially, combining both approaches may maximize
compression while preserving information by merging the mountains and dropping the bushes.

5 Conclusion

In this work, we set out to define a training-free tokenization for ViTs that lowers wattage while balancing
costs to runtime and performance. In online scenarios, we have shown empirically that our intra-image and
inter-image approaches are stronger than 8-bit quantization and token merging for image classification and
captioning. Analysis on large-scale classification further validates the viability of our method while long-form
captioning shows its potential for improving descriptiveness and coherence. Qualitatively, we observe how
the criterion of the intra-image approach typically corresponds to the background while that of the inter-
image approach groups analogous visual concepts based on visual words that represent basic features. As a
future work, additional research could explore combining both the intra-image and inter-image approaches,
potentially improving further the performance and efficiency of the VWT.
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A Further Details

A.1 Datasets

Here, we detail the task of each dataset for subgroup robustness. In Table 7, we also tabulate the labels and
attributes that define each subgroup along with their sample sizes.

Waterbirds. Given an image of a bird, the task is to predict whether it is a waterbird or landbird (Wah
et al., 2011). Following Sagawa et al. (2019), the attribute is the background that the bird is on. We use
the same dataset splits as Liu et al. (2021).

CelebA. Given an image of a person, the task is to predict whether their hair color is blond or not (Liu
et al., 2015). Following Sagawa et al. (2019), the attribute is the binary gender of the person. We use the
same dataset splits as Liu et al. (2021).

MetaShift. Given an image of an animal, the task is to predict whether it is a dog or cat (Liang & Zou,
2022). Following Liang & Zou (2022), the attribute is the environment that the dog or cat is in. We use the
same dataset splits as Yang et al. (2023).

A.2 Dropping Ratios

We tabulate the results with additional dropping ratios ({0.25, 0.33, 0.7}) used by Minderer et al. (2024) in
Table 8. We observe a natural degradation as the ratio increases with performance dropping steeply at 0.7.

A.3 Code Implementation

We provide our code as part of the supplementary materials. Code for the VWT can be found in utils/vwt.py.
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B Supplementary Experiments

B.1 Random Dropping of Tokens

In Table 9, we provide further analysis on the intra-image approach by randomly dropping tokens. This is
somewhat similar to Simoulin et al. (2024) with the exclusion of any fine-tuning. First, unlike CelebA, we
observe a noticeably degradation in worst-group accuracies on Waterbirds and MetaShift. We hypothesize
that this stems from the target label being spuriously correlated with the background (Waterbirds, MetaShift)
and not gender (CelebA), which is distinctly separable from the foreground object as shown in Figure 3 and
Table 7. Hence, random dropping is beneficial to the subgroup robustness of CelebA by reducing the gender
features of the individuals. Second, we find performance (except T 0.7

intra) to be slightly lower or equivalent
on OpenImages and the remaining datasets, respectively. We attribute this to cases where the intra-image
approach misidentifies the foreground object as irrelevant information as shown in Figure 3 with the removal
of the “airplane” (top image) and “building” (bottom image). However, in general, the variance of the
individual patches is an effective heuristic for robustly compressing redundant information within the image.

B.2 VWTs with Quantization

We designed the VWT to be a training-free approach to efficient online inference. As such, we exclude any
form of fine-tuning (Lin et al., 2024; Hao et al., 2024; Simoulin et al., 2024) (e.g. knowledge distillation
(Tian et al., 2019; Han et al., 2024; Son et al., 2021)) for performance recovery. However, should it be
desired, our method may be used alongside network compression (Tian et al., 2019; Han et al., 2024; Son
et al., 2021) (i.e. minimizing the Kullback–Leibler divergence between the softened outputs of the larger
teacher and smaller student), memory-efficient fine-tuning (Hao et al., 2024; Simoulin et al., 2024), and
other compression techniques (e.g. quantization) as the VWT only influences the initial input sequence
to the vision transformer. In Table 10, we provide additional scores when VWTs are combined with 8-bit
quantization. We find the performance to be similar to those in Table 3, thereby showing that VWTs are
highly compatible with other compression approaches as mentioned above.

B.3 Fairness of the Tokenization

Text tokenizers are known to induce unfairness between languages that raises compute costs, particularly
for minority languages (Petrov et al., 2024; Ali et al., 2023). We seek to analyze if similar effects exist with
VWTs. In Table 11, we show the breakdown in token length (including [CLS]) and accuracy (w.r.t Base)
by subgroup. First, we observe a notable difference in compression between the subgroups of Waterbirds.
With T 100

inter, sequences might differ by up to 39 tokens as seen with subgroups 0 and 3. Smaller discrepancies
are displayed on CelebA and MetaShift except for T 100

inter on the former. Second, we find compression to not
affect all subgroups equally. Accuracy improves on certain subgroups and degrades on others. A stronger
sequence compression does not correlate with a larger change in performance.

B.4 Sparsity of the Vocabulary

To better understand the utilization of the visual words, we plot the probability distribution of the matches
in Figure 8. Regardless of the dataset, we find that certain visual words are matched more frequently
than others, thus leading to a large skew in the distributions. Greater sparsity is also displayed by larger
vocabularies as many visual words remain unused across datasets. As such, the pruning of unmatched visual
words may be applied to achieve a more efficient vocabulary size after the Pre-Process step.

B.5 Ablation of the Batch Size

In Figure 9, we seek to better understand the effectiveness of VWTs for offline inference where batch sizes
are greater than 1. Using batches of {4, 8, 16, 32}, we compare T 0.5

intra and T 1000
inter to Base and ToME. First,

we find that as batch size increases, the wattage gap with Base decreases. Both VWTs and ToME show
little energy savings at larger batches (i.e. 16 and 32), particularly with T 1000

inter. Second, we observe different
runtime trends between VWTs and ToME. As batches grow, T 1000

inter continues to show similar runtimes to
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Base. Meanwhile, T 0.5
intra and ToME display lower runtimes with the exception of batch size 4 for the latter.

Hence, the inter-image approach does not confer the same degree of efficiency during batching.

Dataset Subgroup Label Attribute Training Validation Test

Waterbirds

0 0 (landbird) 0 (on land) 3498 467 2255
1 0 (landbird) 1 (on water) 184 466 2255
2 1 (waterbird) 0 (on land) 56 133 642
3 1 (waterbird) 1 (on water) 1057 133 642

CelebA

0 0 (non-blond) 0 (woman) 71629 8535 9767
1 0 (non-blond) 1 (man) 66874 8276 7535
2 1 (blond) 0 (woman) 22880 2874 2480
3 1 (blond) 1 (man) 1387 182 180

MetaShift

0 0 (dog) 0 (outdoor) 784 127 273
1 0 (dog) 1 (indoor) 507 75 191
2 1 (cat) 0 (outdoor) 196 33 65
3 1 (cat) 1 (indoor) 789 114 345

Table 7: Defined subgroups in Waterbirds, CelebA, and MetaShift.

Dataset Model T 0.25
intra T 0.33

intra T 0.7
intra

Waterbirds

CLIP 148 132 59
CelebA

MetaShift
OpenImages (Com.)
OpenImages (Rare)

COCO BLIP 433 386 173NoCaps

(a) Length

Model Waterbirds CelebA MetaShift OpenImages
Average ↑ Worst ↑ Average ↑ Worst ↑ Average ↑ Worst ↑ Common ↑ Rare ↑

T 0.25
intra 78.31 26.69 89.46 48.47 94.70 87.69 69.79 63.37

T 0.33
intra 77.72 27.78 89.31 48.83 94.62 87.18 69.11 62.75

T 0.7
intra 73.27 18.80 89.19 45.37 82.61 63.59 46.83 42.68

(b) CLIP (image classification and subgroup robustness)

Model
COCO NoCaps

Karpathy ↑ In-Domain ↑ Near-Domain ↑ Out-of-Domain ↑ Overall ↑
BLEU@4 CIDEr CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

T 0.25
intra 33.92 107.47 103.59 14.65 98.39 14.07 94.47 13.59 98.34 14.06

T 0.33
intra 33.59 106.25 103.19 14.65 97.40 13.95 92.66 13.41 97.27 13.95

T 0.7
intra 29.64 93.20 89.89 13.53 85.04 12.82 80.81 12.31 84.88 12.82

(c) BLIP (image captioning)

Table 8: Token length (including [CLS]) and performance of the intra-image approach with varying dropping
ratios. Performance degrades naturally as the ratio increases before falling steeply at 0.7.
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Base Tintra0.25 Tintra0.33 Tintra0.5 Tintra0.7

a man riding a motorcycle
down a dirt road

two slices of pizza on a
wooden cutting board

a stop sign on a pole

a man riding a motorcycle
down a dirt road

a man riding a motorcycle
down a dirt road

a man riding a motorcycle
down a dirt road

two people riding a
motorcycle down a dirt

road

a wooden cutting board

a red stop signa red stop signa red stop signa red stop sign

two slices of pizza on a
wooden cutting board a wooden cutting board a wooden cutting board

the sky is clear and blue
a group of people

standing in front of an
airplane

the sky is cleara group of people walking
around a military planethe sky is clear

Figure 7: Visualization of image captions on COCO by the intra-image approach. The generated captions
to not deviate significantly from those of Base with dropping ratios of up to 0.5.
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Model Waterbirds CelebA MetaShift OpenImages
Average ↑ Worst ↑ Average ↑ Worst ↑ Average ↑ Worst ↑ Common ↑ Rare ↑

T 0.25
intra 76.90 21.50 89.88 48.75 94.39 85.13 70.00 63.38

T 0.33
intra 75.72 20.51 90.10 48.89 93.44 84.62 69.66 63.06

T 0.5
intra 72.38 19.52 90.56 51.85 91.61 81.93 67.59 61.61

T 0.7
intra 66.78 11.58 90.24 61.48 84.29 69.73 52.72 49.86

(a) CLIP (image classification and subgroup robustness)

Model
COCO NoCaps

Karpathy ↑ In-Domain ↑ Near-Domain ↑ Out-of-Domain ↑ Overall ↑
BLEU@4 CIDEr CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

T 0.25
intra 33.89 106.59 103.70 14.39 98.02 14.01 93.79 13.24 97.98 13.92

T 0.33
intra 33.78 106.57 102.44 14.35 98.15 13.98 93.04 13.21 97.73 13.88

T 0.5
intra 33.32 104.65 100.70 14.06 95.11 13.72 92.25 13.22 95.33 13.67

T 0.7
intra 31.15 97.18 95.02 13.57 86.83 13.01 86.43 12.52 87.93 13.00

(b) BLIP (image captioning)

Table 9: Token length (including [CLS]) and performance of the intra-image approach with random dropping.
Unlike CelebA, the subgroup robustness degrades noticeably on Waterbirds and MetaShift. Performance is
slightly lower on OpenImages or equivalent on the remaining datasets except for T 0.7

intra.

Model Waterbirds CelebA MetaShift OpenImages
Average ↑ Worst ↑ Average ↑ Worst ↑ Average ↑ Worst ↑ Common ↑ Rare ↑

T 0.5
intra + Q8 76.31 33.65 89.43 52.41 93.14 87.78 65.29 59.27

T 100
inter + Q8 78.88 27.57 90.17 54.44 90.58 83.72 62.75 57.99

T 1000
inter + Q8 80.01 25.60 91.05 50.93 93.67 86.67 66.15 60.48

T 10000
inter + Q8 80.28 25.29 90.26 47.96 94.58 86.67 69.07 62.37

(a) CLIP (image classification and subgroup robustness)

Model
COCO NoCaps

Karpathy ↑ In-Domain ↑ Near-Domain ↑ Out-of-Domain ↑ Overall ↑
BLEU@4 CIDEr CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

T 0.5
intra + Q8 32.45 103.18 101.98 14.46 94.93 13.74 87.13 12.78 94.36 13.66

T 100
inter + Q8 30.88 97.48 95.97 13.94 90.27 13.26 80.02 12.39 89.01 13.19

T 1000
inter + Q8 31.72 100.23 99.69 14.02 94.35 13.49 85.69 12.57 93.36 13.39

T 10000
inter + Q8 32.98 104.15 101.77 14.34 98.75 14.02 91.55 13.21 97.72 13.91

(b) BLIP (image captioning)

Table 10: Zero-shot (training-free) image classification (CLIP), subgroup robustness (CLIP) and captioning
(BLIP). The VWTs are applied jointly with 8-bit quantization. Performance is shown to be similar to those
with VWTs only, thereby displaying the mutual compatibility of VWTs with other compression techniques.
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Model Subgroup Waterbirds CelebA MetaShift
Length ∆ Accuracy Length ∆ Accuracy Length ∆ Accuracy

Base

0

197

98.89

197

95.63

197

98.54
1 82.45 96.23 93.19
2 21.86 48.67 87.69
3 54.73 50.00 95.36

T 100
inter

0 144 -0.67 85 -3.25 118 -0.74
1 106 -3.82 88 -0.13 110 -6.18
2 140 19.00 98 32.62 119 -2.92
3 105 6.17 99 6.30 100 -9.02

T 1000
inter

0 160 -0.40 119 -0.46 138 -0.25
1 129 -0.22 117 0.74 138 -2.06
2 160 9.03 124 18.92 143 -1.17
3 129 2.18 124 -4.07 131 -2.13

T 10000
inter

0 180 -0.09 158 0.25 163 -0.37
1 156 1.34 151 0.66 167 0.19
2 181 4.75 158 2.96 169 -1.75
3 158 1.71 156 -6.30 163 -0.81

Table 11: Distribution of token length (including [CLS]) and accuracy (w.r.t. Base) by subgroup. T V
inter of

varying vocabulary sizes are shown. Like text tokenizers, VWTs may induce unequal token lengths as seen
with T 100

inter on Waterbirds. Performance is also affected unequally as a stronger sequence compression does
not correlate with a greater improvement or degradation in accuracy.
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(a) Waterbirds

(b) CelebA

(c) MetaShift

Figure 8: Probability distribution of the matched visual words. T V
inter of varying vocabulary sizes are shown.

The probability distribution exhibits a large skew irrespective of the dataset as certain visual words are
matched more frequently than others. Larger vocabularies display greater sparsity as the many visual words
that remain unmatched may be pruned for a more efficient vocabulary size.
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Figure 9: Wattage and runtime with varying batch sizes. T 0.5
intra (△) and T 1000

inter (▽) are compared to Base
(⃝) and ToME (□). Both VWTs and ToME show little energy savings relative to Base as the batch size
grows, particularly with T 1000

inter. Runtime also increases more for T 1000
inter except with smaller batches.
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