
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRACTICAL HYBRID QUANTUM LANGUAGE MODELS
WITH OBSERVABLE READOUT ON REAL HARDWARE

Anonymous authors
Paper under double-blind review

ABSTRACT

Hybrid quantum-classical models are emerging as a key approach for leverag-
ing near-term quantum devices. We present quantum recurrent neural networks
(QRNNs) and quantum convolutional neural networks (QCNNs) as hybrid quantum
language models, and demonstrate for the first time generative language modeling
trained and evaluated on real quantum hardware. Our models combine parametric
quantum circuits with a lightweight classical projection layer, using hardware-
friendly multi-sample SPSA to train the quantum parameters efficiently, and stan-
dard gradient-based updates for the classical weights. To support evaluation, we
construct and release a synthetic dataset for next-word prediction. Experiments
on both sentence classification and language modeling tasks show that QRNNs
and QCNNs can be trained end-to-end on NISQ devices and achieve competitive
performance in low-resource regimes. These results establish quantum sequence
models as a promising foundation for quantum natural language processing.

1 INTRODUCTION

Natural language processing (NLP) has seen remarkable advances in recent years, largely driven by
deep learning architectures such as recurrent neural networks (RNNs) (Elman, 1990; Hochreiter &
Schmidhuber, 1997), convolutional neural networks (CNNs) (Kim, 2014), and Transformers (Vaswani
et al., 2017). These models have enabled impressive performance across a range of tasks, including
language modeling, machine translation, and text generation. However, scaling these architectures to
handle large vocabularies, long sequences, or limited data regimes can be computationally expensive
and data-hungry, motivating the exploration of alternative computational paradigms.

Quantum computing has recently emerged as a promising candidate to enhance machine learning
algorithms by leveraging the principles of superposition, entanglement, and interference (Nielsen &
Chuang, 2010; Schuld et al., 2015). In particular, hybrid quantum-classical models, where parametric
quantum circuits are combined with classical post-processing layers, have attracted significant
attention due to their compatibility with noisy intermediate-scale quantum (NISQ) devices (Preskill,
2018; Benedetti et al., 2019). These models offer the potential for richer function representation and
novel inductive biases while remaining trainable using classical optimization strategies.

While a variety of quantum approaches to NLP have been proposed, most works remain largely
theoretical and validate their methods only on simulators. The DisCoCat framework (Coecke et al.,
2010) pioneered a categorical connection between compositional semantics and quantum circuits,
inspiring several follow-up studies on quantum natural language processing (Meichanetzidis et al.,
2020; Blacoe et al., 2013). However, these efforts typically emphasize conceptual formalisms
or small-scale simulation results. A notable exception is the work of Lorenz et al. (2023), who
demonstrated sentence classification using the DisCoCat framework on real quantum hardware,
establishing the first experimental evidence that QNLP can be made practical. Despite these advances,
systematic investigations of quantum sequence models—such as quantum recurrent and convolutional
architectures—remain scarce, particularly for generative tasks like language modeling.

Our work addresses this gap by developing QRNNs and QCNNs that can be trained and evaluated
end-to-end on NISQ devices, moving beyond proof-of-principle demonstrations toward more general-
purpose quantum NLP models. Our hybrid quantum language models (HQLMs) combine parametric
quantum circuits with a lightweight classical projection layer, using hardware-friendly multi-sample
SPSA to train quantum parameters and gradient-based updates for classical weights. We evaluate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0

RNN

Block

Tk1

Emb

RNN

Block

Tk2

Emb

RNN

Block

Pred

Head

0

1

CNN

First

Layer

CNN

First

Layer

0

1

CNN

Second

Layer

Tk0

Emb

Tk1

Emb

Tk2

Emb

Tk3

Emb

0

1

| 0

| 1

| 2

| 3

| 4

| 5

Quantum RNN Quantum CNN

c
1 0

CNN

First

Layer 2
Pred

Head

Tk4

Emb

Tk5

Emb

0

1

Classical

Linear

Projection

Observables

Estimation

|

|

c
1

Tk0

Emb

Quantum Circuit

Architecture

 Classification Prediction

Next

Token

Softmax

T
h
e
 q

u
a
n
t
u
m

 f
o
x
 t

u
n
n
e
ls

 t
h
r
o
u
g
h
 t

h
e
 l
a
z
y
 .

..

d
o
g

Quantum
Circuit

Language
Model

0

1

2

3

4

0

1

2

3

4

|

|

|

|

|

|

|

|

|

|

0

1

2

3

4

|

|

|

|

|

0 1 2

0

1

2

0

1

2

0

1

2

3

| 1

| 1

| 1

| 5

| 5

| 5

| 3

| 3

| 3

c

| 0

| 0

| 0

| 1

| 1

| 1

0

1

2

0

1

2

Figure 1: Overview of our hybrid quantum language models (HQLMs). Tokens are embedded into
quantum states, processed by QRNN or QCNN layers, and mapped to predictions via a classical
projection head, trained end-to-end with multi-sample SPSA and gradient-based updates.

these architectures on both simulated environments and real quantum hardware, demonstrating
feasibility in practice and competitive performance on both synthetic and natural language datasets,
including next-word prediction and classification tasks.

Contributions Our work makes the following contributions:

1. We propose hybrid quantum language models based on QRNNs and QCNNs, designed for
sequence modeling tasks in NLP.

2. We introduce a scalable training framework using multi-sample SPSA for quantum parameters
and gradient-based updates for classical layers, enabling end-to-end training on NISQ devices.

3. We analyze the role of quantum embeddings, Z and ZZ observable-based feature extraction, and
architectural trade-offs, including circuit depth, number of qubits, and shot noise.

4. We provide an empirical evaluation on synthetic natural language datasets, showing competitive
performance with classical baselines in low-resource regimes and robustness to quantum noise.

5. We report the first set of experiments training these hybrid language models on real quantum
hardware for generative language modeling, establishing practical feasibility.

Our results suggest that hybrid quantum architectures are a viable direction for enhancing NLP
pipelines, offering new avenues for efficient and expressive sequence modeling in the NISQ era.

2 BACKGROUND AND NOTATION

We briefly introduce the concepts underlying our hybrid quantum language models (HQLMs).
Notation details are provided in App. B.

2.1 LANGUAGE MODELING

Language modeling estimates the probability distribution of token sequences. Given a sequence of
tokens (x1, . . . , xT), a model learns to predict the probability

P (x1, . . . , xT) =

T∏
t=1

P (xt | x<t), (1)

typically in an autoregressive fashion. The objective is to capture syntactic and semantic dependencies
so that the model can predict the next token from context. Evaluation metrics such as cross-entropy
loss or perplexity measure alignment with observed sequences.

2.2 CLASSICAL NEURAL ARCHITECTURES

Classical neural language models map token embeddings to next-token probabilities using architec-
tures that model sequential structure. Recurrent networks (RNNs, LSTMs, GRUs) process tokens
step-by-step via hidden states. Convolutional networks (CNNs) apply 1D convolutions to capture
local n-gram patterns, extended with dilations for longer contexts. Transformers replace recurrence
with attention, modeling pairwise dependencies across the sequence.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

q0

q1

H

Z

X

Y

[0]
RY

[0]
RZ

Figure 2: Examples of elementary quantum
gates, the building blocks of quantum circuits:
single-qubit gates (H , X , Y , Z), two-qubit
entangling gates (CNOT, CZ), and single-
qubit parametric gates (RY (θ), RZ(ϕ)).

Figure 3: Schematic of a Variational Quantum Algo-
rithm (VQA) workflow from Macaluso et al. (2020):
a parametric quantum circuit (PQC) is optimized by a
classical iterative algorithm.

2.3 QUANTUM COMPUTING BASICS

Quantum computation is based on qubits, which can exist in superpositions such as

|ψ⟩ = α |0⟩+ β |1⟩ , |α|2 + |β|2 = 1. (2)
Multiple qubits form states in tensor-product spaces, enabling entanglement, i.e., correlations without
classical analogues. Quantum gates are unitary operators; standard examples include the Hadamard
(H), Pauli-X , and the entangling CNOT. Figure 2 shows the elementary building blocks, including
parametrized single-qubit rotations RY (θ) and RZ(ϕ).

2.4 PARAMETERIZED QUANTUM CIRCUITS (PQCS)

Parameterized quantum circuits (PQCs), also known as variational circuits, are the quantum analogue
of neural networks. They consist of input encodings, layers of parametrized gates U(θ), and
measurement. Given a classical input x, the circuit produces expectation values

fθ(x) = ⟨ϕ(x)|U†(θ)OU(θ) |ϕ(x)⟩ , (3)

where O is an observable (e.g., Z or ZZ operators). The parameters θ are trained in a hybrid loop
with a classical optimizer. An overview of this framework is illustrated in Figure 3.

2.5 READOUT ON NISQ DEVICES

Noisy intermediate-scale quantum (NISQ) devices are limited by circuit depth and gate errors, making
PQC design a trade-off between expressivity and noise resilience. A key choice is how to extract
classical features from the quantum state.

The sampling approach measures computational basis states directly, interpreting outcomes as token
probabilities. While intuitive, it often complicates optimization, since probability mass must align
with discrete encodings.

The alternative, used here, is estimator-based readout: computing expectation values of observables
to obtain continuous feature vectors. These features are then mapped by a classical linear layer
into token logits: ℓ = Wf + b, with W ∈ Rd×V . This hybrid readout smooths optimization and
integrates naturally with classical training while remaining feasible on real hardware.

3 RELATED WORK

3.1 QUANTUM MACHINE LEARNING (QML)

Quantum machine learning studies how quantum circuits can augment or replace elements of classical
learning algorithms (Biamonte et al., 2017; Schuld et al., 2015). A central paradigm is the use of
variational quantum circuits (VQCs), where parametrized gates define expressive models trained
with classical optimization (McClean et al., 2016; Schuld et al., 2020; Benedetti et al., 2019). These
hybrid quantum-classical approaches are well-suited for noisy intermediate-scale quantum (NISQ)
devices (Preskill, 2018), as they exploit quantum superposition and entanglement while relying on
lightweight classical layers for readout and stability.

VQCs face distinctive challenges, including barren plateaus (McClean et al., 2018), which motivate
research into circuit expressibility and entangling capacity (Sim et al., 2019), as well as mitigation

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

strategies such as architectural constraints or residual connections (Kashif & Al-Kuwari, 2024).
Beyond classification and regression, quantum circuits have been extended to recurrent models
(Bausch, 2020; Macaluso et al., 2020), convolutional designs (Cong et al., 2019), and natural
language tasks (Coecke et al., 2010; Meichanetzidis et al., 2020; Lorenz et al., 2023). Surveys provide
broader overviews of algorithms and applications (Jerbi et al., 2023; Chen et al., 2024; Nausheen
et al., 2025). Nevertheless, most work remains simulator-based or limited to small-scale proofs of
concept, leaving open the question of whether hybrid quantum models can be trained end-to-end on
real hardware.

3.2 QUANTUM NATURAL LANGUAGE PROCESSING (QNLP)

Quantum NLP builds on the compositional distributional (DisCoCat) framework (Coecke et al.,
2010), which maps grammatical structure to tensor networks and, in turn, quantum circuits. Early
works explored variational circuits for question answering and entailment (Lorenz et al., 2023;
Meichanetzidis et al., 2020), quantum embeddings for token representations (Panahi et al., 2019;
Chen et al., 2021), and bag-of-words style models (Lorenz et al., 2023). While these approaches
demonstrate feasibility, they are typically limited to shallow circuits, small-scale tasks, or simulators,
and do not address full sequence modeling.

In parallel, recent studies investigate quantum adaptations of Transformer architectures, including
residual designs and attention mechanisms (Khatri et al., 2024; Liao & Ferrie, 2024; Amire, 2025;
Tomal et al., 2025). Although promising, these models often require deeper circuits and more qubits,
making them challenging to deploy on current NISQ devices. In contrast, we focus on QRNNs and
QCNNs, which provide a more hardware-efficient approach to sequential quantum processing. Our
work complements prior efforts by presenting the first end-to-end training and evaluation of hybrid
quantum sequence models for generative language modeling on real quantum hardware.

3.3 QUANTUM RECURRENT NEURAL NETWORKS (QRNNS)

QRNNs implement sequential processing through repeated application of parametrized unitaries
acting on two registers: a short-lived embedding register (encoding the current token) and a longer-
lived hidden register carrying memory across time steps (Bausch, 2020; Meichanetzidis et al., 2020).
Each step prepares an embedding state, entangles it with the hidden register via a recurrent block, and
updates the hidden state for the next step. Optimization typically combines gradient-free methods or
parameter-shift rules with classical output layers (Schuld et al., 2020; Jerbi et al., 2023). Challenges
include residual entanglement between registers, accumulation of hardware noise in long unrollings,
and choices of readout observables (Widdows et al., 2024b). Despite these limitations, QRNNs
provide a natural choice for sequence models and remain a key candidate for quantum NLP.

3.4 QUANTUM CONVOLUTIONAL NEURAL NETWORKS (QCNNS)

QCNNs generalize classical convolutional and pooling operations to quantum circuits, using local
entangling unitaries and qubit reduction to extract hierarchical features (Cong et al., 2019; Hur
et al., 2022). While most prior applications focus on classical data classification, QCNNs have also
been adapted for token-level NLP tasks (Meichanetzidis et al., 2020; Widdows et al., 2024b). Their
parallel structure reduces circuit depth compared to QRNNs, making them a practical choice for
NISQ devices, though trade-offs remain between expressivity and hardware feasibility.

4 METHOD

We introduce hybrid quantum language models (HQLMs) that adapt recurrent and convolutional
neural architectures to parameterized quantum circuits (PQCs).

4.1 TOKEN EMBEDDINGS

We adopt Ry angle embeddings as our input encoding. Each token t ∈ V has a trainable vector
θt ∈ Rd, mapped to a separable quantum state

|ψt⟩ =
d⊗

j=1

Ry(θt,j) |0⟩ . (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This scheme is shallow, noise-robust, and hardware-friendly, as it avoids entangling gates and allows
virtual qubits to be distributed across non-adjacent physical qubits. While richer encodings (e.g.
amplitude or entangled maps (Havlíček et al., 2019; Schuld & Killoran, 2019; Pérez-Salinas et al.,
2020; Lloyd et al., 2020)) exist, they incur greater circuit depth and complexity, leading to increased
noise and decoherence. We leave exploration of such embeddings to future work.

4.2 PQC LAYERS AS NEURAL BLOCKS

Figure 4: Basic PQC ansatz

Following prior QML and QNLP work (Sim et al., 2019; Schuld
et al., 2020; Bausch, 2020; Meichanetzidis et al., 2020), we use shal-
low PQCs as quantum analogues of neural layers. Each layer applies
parameterized rotations on each qubit (Ry, Rz) interleaved with an
entangling layer of pairwise CNOTs. This balances expressivity
and noise resilience (Sim et al., 2019; Schuld & Petruccione, 2021),
crucial for NISQ devices where deep entangling networks quickly
decohere (Preskill, 2018). For more expressivity and entangling
power, we can stack multiple layers. We use these PQCs as recurrent
blocks in QRNNs, convolutional units in QCNNs and prediction
heads in both architectures.

4.3 FEATURE EXTRACTION

To map quantum states into features, we consider two strategies:

(i) Sampling. Projective measurement yields bitstrings {0, 1}n, which can be interpreted as token
samples. While conceptually aligned with generative modeling, this method is difficult to train:
optimization landscapes become noisy and semantically related tokens may map to distant bitstrings.

(ii) Observable estimation. Measuring expectation values of Z and ZZ operators on hidden registers
produces continuous features for a classical linear projection. This yields smoother gradients, better
robustness to shot noise, and greater semantic flexibility.

Although both methods rely on finite sampling in practice, we found observable-based features to be
consistently more stable. We therefore use this approach throughout our experiments: we measure Z
on all output qubits and ZZ on all pairs, yielding a feature vector of size d+ d(d− 1)/2 for d qubits.

4.4 QUANTUM RECURRENT NEURAL NETWORK (QRNN)

Our QRNN architecture is built around two registers: an embedding register E and a hidden register
H. Each token is encoded into E with Ry rotations, then transferred to H through a layer of CNOTs
that establish correlations between the new input and the hidden state. The recurrent block Urec
applies parameterized Ry , Rz rotations and entangling gates on H, thereby updating the state across
timesteps. The final hidden state is further processed by a separate PQC Upred applied on H, and then
mapped into Z and ZZ expectation values for the classical projection layer.

|

|

1c

Tk0
Emb

RNN
Block

Tk1
Emb

RNN
Block

Tk2
Emb

RNN
Block

Pred
Head

0

Figure 5: QRNN: tokens are embedded into E , transferred to hidden register H by CNOTs, updated by
recurrent PQC Urec, and passed through prediction PQC Upred for observable-based feature extraction.

While inspired by prior work on quantum recurrent models (Bausch, 2020; Widdows et al., 2024a),
our design was adapted specifically to the low-connectivity heavy-hex topology of IBM’s Eagle and
Heron processors. The placement of CNOT gates and grouping of rotations were chosen to minimize
SWAP operations and circuit depth, ensuring better fidelity on real devices. Detailed circuit diagrams,
including qubit layouts and hardware mappings, are provided in App. C.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

| 0

| 1

| 2

| 3

| 4

| 5

1c

Tk0
Emb

Tk1
Emb

Tk2
Emb

Tk3
Emb

Tk4
Emb

Tk5
Emb

0

1

CNN
First

Layer

0

1

CNN
First

Layer

0

1

CNN
First

Layer

0

1

2

CNN
Second
Layer

Pred
Head

0

Figure 6: QCNN: tokens are embedded into registers E0...E5, processed by convolutional blocks
Uconv, and aggregated via prediction PQC Upred.

4.5 QUANTUM CONVOLUTIONAL NEURAL NETWORK (QCNN)

The QCNN variant follows the principle of local convolutions and pooling (Cong et al., 2019;
Hur et al., 2022), but adapted to token-level sequence modeling. Tokens are embedded into parallel
registers E0, ..., Ed, which are grouped into overlapping neighborhoods and processed by convolutional
blocks Uconv. Each block processes 2 or 3 adjacent registers and consists of a 2-layered PQC as
described in §4.2 to ensure better information flow. Pooling is implemented by only taking 1 register
to the next layer, reducing the effective qubit count and yielding hierarchical feature representations.
A prediction block Upred processes the remaining register, whose state is finally mapped into Z and
ZZ observables for classification by the projection head.

Compared to the sequential QRNN, the QCNN offers shallower depth and greater parallelism, making
it attractive for NISQ devices. Our circuit designs were explicitly optimized for IBM hardware by
aligning convolutional registers to heavy-hex connectivity and minimizing routing overhead. Full
layer diagrams and hardware mapping strategies can be found in App. C.3.

4.6 OPTIMIZATION STRATEGY

Quantum parameters are trained with multi-sample Simultaneous Perturbation Stochastic Approxi-
mation (SPSA) (Spall, 1998), which estimates gradients by evaluating losses at pairs of symmetric
points along random perturbation directions:

∇̂θL ≈ 1

P

P∑
p=1

L(θ + ϵδp)− L(θ − ϵδp)

2ϵ
δ−1
p . (5)

This reduces circuit evaluations compared to parameter-shift or full finite differences while remaining
hardware-friendly. The classical projection layer is trained with exact gradients via backpropagation.

5 EXPERIMENTS

We evaluate our proposed hybrid quantum language models on both synthetic datasets and established
benchmarks from the quantum natural language processing (QNLP) literature.

5.1 DATASETS

Literature benchmarks. To enable comparison with prior work, we also evaluate on established
QNLP classification datasets (Lorenz et al., 2023):

• MC (Meaning Classification): Binary classification with 70 train and 30 test 4-word sentences in
two classes: programming and cooking. We also derive a language modeling version (MC-LM)
using the same sentences.

• RP (Relative Pronoun resolution): Binary classification with 74 train and 31 test 4-word sentences,
grouped by sentence structure: X that did Y vs. X that Y did.

Synthetic language modeling dataset. To evaluate the ability of our models to cap-
ture compositional structure in natural language, we also generate a small-scale Toy Sen-
tence Language Modeling (TS-LM) dataset. The vocabulary contains 24 unique words,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

grouped into categories such as subjects, verbs, adjectives, objects, prepositions, and loca-
tions. Sentences are sampled from a context-free grammar ensuring basic syntactic consistency:
subject-verb-[adjective]-object-[preposition-location]. For example, a sentence may look
like: “man sees small dog on table”. The dataset consists of 200 training and 50 test sentences,
with sentence lengths between 3 and 6 words. This controlled setup balances variability with
tractability for small-scale quantum models. The dataset and generation code are available in the
supplementary material.

5.2 EXPERIMENTAL SETUP

Models and Baselines. We evaluate:

• Hybrid QLMs (ours): QRNN and QCNN architectures (§4), trained end-to-end with SPSA for
quantum parameters and backpropagation for the classical projection head.

• Classical baselines: FFNN, RNN, LSTM, CNN, and Transformer models with comparable
parameter counts.

Training Setup. All models are trained with Adam. Gradients for the quantum parameters are
estimated using multi-sample SPSA, while the classical projection head is trained with exact gradients.
Most experiments are performed on simulators; for QRNN and QCNN, we additionally evaluate
trained models on real IBM hardware (Eagle/Heron processors). For MC and TS-LM, we also train
directly on hardware. Embedding registers use emb_size=3 qubits. We tune learning rate, batch
size, and epochs per task. SPSA uses population size p = 8 and perturbation scale σ = 0.05. Full
hyperparameters are given in App. C.1. Detailed information about circuit complexity, number of
trainable parameters, and per-epoch training costs for each architecture is provided in App. C.2.

Evaluation Protocol. For language modeling tasks, we report train/test perplexity (Tr PPL / Ts
PPL) and the average probability assigned to the correct next token in the test set (Acc.). For binary
classification tasks, we report test accuracy.

5.3 MAIN RESULTS

Table 1 summarizes the performance of classical and quantum models. Classical baselines achieve
strong results across tasks, with RNNs, LSTMs, and Transformers performing best overall.

For quantum models, both QRNN and QCNN achieve accuracies and perplexities comparable to their
classical counterparts in simulation. On MC-LM and TS-LM, quantum models reach test perplexities
in the same range as classical networks, showing that relatively shallow PQC-based architectures can
capture sequential patterns in small-scale language modeling. On the MC classification task, QRNN
and QCNN match the perfect accuracy of classical models, while on RP they achieve slightly lower
but still competitive accuracies (80.6% and 83.9% vs. 90.3% for RNN). Note however that the RP
test set of 31 samples contains 20 words not seen during training, and 4 of the 31 samples cannot
be inferred by any model from the train set alone due to inherent ambiguity. Thus, the maximum
theoretical accuracy without taking into acount random guesses is 87.1%, and the QRNN and QCNN
achieve scores close to this limit.

Hardware runs highlight the gap between ideal simulation and current devices. Models trained on
simulators but evaluated on hardware (Real Hardware Eval) show moderate accuracy/perplexity
degradation due to noise which decreases with more circuit samples and better hardware: for example
the 5.83 test perplexity of QCNN on MC-LM was obtained with 10k shots on a IBM Heron processor,
while lowering the shot count or running on previous generation Eagle processors yields significantly
higher perplexities. Fully hardware-trained models (Real Hardware Train + Eval) perform worse
still, reflecting harder optimization due to noisy sampling. Notably, QRNNs are somewhat more
robust than QCNNs on hardware, likely due to their lower qubit counts and fewer parameters.

Overall, these results indicate that (i) Hybrid quantum language models can match the performance
of small classical models on toy NLP benchmarks in simulation. (ii) Noise remains the primary
bottleneck for real devices, and (iii) With the development of larger quantum devices, we can move
beyond very simple QNLP models such as DisCoCat, which were limited to just a handful of qubits.
Our results show that more expressive architectures like QRNNs and QCNNs can be successfully

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance of classical and quantum language models across multiple tasks. Columns
MC and RP report binary classification accuracy (%), while MC-LM and TS-LM denote two next-
token prediction tasks with training/test perplexity and average next token prediction accuracy. For
QRNN and QCNN, we report: (i) Simulator results with noiseless statevector simulation; (ii) Real
Hardware Eval, where the simulator-trained parameters are executed on quantum processors; and
(iii) Real Hardware Train + Eval, where both training and evaluation are carried out directly on
quantum hardware.

Training
Setup Model

Test Acc. [%] MC-LM TS-LM

MC RP Tr PPL Ts PPL Acc. [%] Tr PPL Ts PPL Acc. [%]

C
la

ss
ic

al

Autograd
Backprop

FFNN 100 93.5 3.79 6.30 20.0 3.38 3.51 31.0
RNN 100 90.3 4.12 5.44 20.0 3.52 3.75 28.7
LSTM 100 96.8 4.01 5.79 19.0 3.82 3.89 27.4
CNN 100 80.6 3.80 5.07 22.0 3.73 3.65 30.8
Transf 100 83.9 3.81 4.81 23.0 3.39 3.47 32.0

Q
ua

nt
um

Simulator
QRNN 100 80.6 4.64 4.84 22.6 3.66 3.47 31.6
QCNN 100 83.9 5.10 5.69 19.0 3.96 3.76 28.9
DisCoCat 79.8 72.3 / / / / / /

Real Hardware
Eval

QRNN 100 74.2 / 4.86 22.4 / 3.86 28.4
QCNN 100 77.4 / 5.83 18.4 / 4.43 25.0

Real Hardware
Train + Eval

QRNN 100 / / / / 4.60 4.82 24.8
QCNN 100 / / / / 8.82 8.65 12.4
DisCoCat 83.3 67.7 / / / / / /

trained on today’s hardware. However, careful adaptation of circuit design to the hardware topology
(§4) remains crucial to achieve robust performance.

5.4 ABLATION STUDIES

Table 2: Effect of training randomness. We report
the mean and standard deviation of test perplexity
or accuracy over 5 independent runs with different
random seeds for each of the considered tasks on
both QRNN and QCNN architectures.

Task Model Avg Score Stdev

MC (Acc) QRNN 100 0.0
QCNN* 85.3 19.1

RP (Acc) QRNN 69.6 7.1
QCNN 78.7 3.7

MC-LM (PPL) QRNN 5.00 0.19
QCNN** 6.28 0.62

TS-LM (PPL) QRNN 4.12 0.62
QCNN 4.28 0.62

* 3 of 5 runs have scores of 100%, others fail to learn
** 1 of 5 runs had a PPL of 13.3 so we consider it an outlier

Training Randomness In Table 2, we study
the effect of training randomness by reporting
the mean and standard deviation of test perplex-
ity or accuracy over 5 independent runs with dif-
ferent random seeds for each of the considered
tasks on both QRNN and QCNN architectures.
We observe that both models exhibit rather high
variance across runs, indicating sensitivity to ini-
tialization and stochasticity in the training pro-
cess. The effect is more pronounced for QCNN,
which has higher qubit and quantum parameter
counts, leading to a higher dimensionality of
the optimization landscape and therefore more
challenges in finding optimal solutions, includ-
ing very weak gradient signal in barren plateaus.
This suggests that further work is needed to im-
prove training stability, potentially through bet-
ter initialization schemes, regularization tech-
niques, or more robust optimization methods.

Number of shots In Figure 7a, we show how the number of shots used for expectation estimation
affects QRNN training. Increasing shots generally speeds up training by providing more accurate
loss estimates, with diminishing returns beyond 4096 shots. Even 256 shots allow effective learning,
demonstrating robustness to shot noise. Training on real hardware with 256 shots yields compa-
rable performance to simulations, highlighting that near-term devices can provide useful gradient
information despite noise.

Embedding Size In Figure 7b, we illustrate the effect of embedding size (number of qubits
per embedding register) on QRNN training. Larger embeddings reduce training loss by enabling
more expressive representations, but gains saturate beyond a certain point, indicating an optimal

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 10 20 30
Epoch

1.5

2.0

2.5

3.0

Train Loss

RH 256

Sim 256

Sim 512

Sim 1024

Sim 2048

Sim 4096

Exact Sim

(a) Train Loss evolution for different shot counts used
for estimation in both Simulator and Real Hardware.

0 10 20 30
Epoch

1.5

2.0

2.5

3.0

Train Loss

2 emb qubits

3 emb qubits

4 emb qubits

5 emb qubits

(b) Train Loss evolution for different embedding sizes
(number of qubits).

Figure 7: Train Loss evolution for different hyperparameters when training QRNN models on TS-LM.

qubit count. Note that the total qubit count includes both embedding and hidden registers: for
example, 2 embedding qubits → 4 total, 5 → 12 total, and 8 → 19 total. While larger embeddings
improve expressivity, they also increase the number of quantum parameters and the complexity of the
optimization landscape, making training more challenging. On simulators, larger embeddings increase
computational cost exponentially (20 s/epoch, 65 s/epoch, 1150 s/epoch for the three examples),
whereas on real hardware timing remains roughly constant (≈1000 s/epoch) due to communication
overheads. This highlights the trade-off between expressivity, trainability, and practical efficiency
when choosing embedding size.

6 LIMITATIONS

Training and evaluation on real quantum hardware highlight several limitations. First, noise and
finite-shot effects degrade performance, with a noticeable gap between simulator and hardware results.
QRNNs tend to be more robust than QCNNs on hardware, likely due to lower qubit counts and fewer
variational parameters. Second, models are sensitive to initialization and stochasticity, especially
QCNNs with larger circuits, which exhibit higher variance across runs (Table 2). Third, scaling the
embedding size improves expressivity but comes at the cost of exponentially higher simulation time
and increased circuit complexity; careful selection of the number of qubits is therefore critical. Finally,
while our circuits outperform simple models such as DisCoCat, achieving better results requires
both increased hardware resources and careful adaptation of circuit design to the low-connectivity,
heavy-hex lattice of modern IBM devices (§4).

These limitations emphasize that, although current HQLMs are promising for near-term quantum NLP,
practical deployment on larger and more realistic datasets will require improvements in hardware
noise mitigation, circuit optimization, and training stability.

7 CONCLUSIONS

We introduced hybrid quantum language models for sequence modeling, combining PQC-based
QRNN and QCNN architectures with classical projection heads. Our results show that these models
can match small classical networks in simulation and demonstrate the feasibility of training and
evaluating quantum sequence models on current NISQ devices.

Key insights include: (i) estimator-based feature extraction provides smoother gradients and stabilizes
training, (ii) model performance scales with embedding size up to an optimal qubit count, balancing
expressivity and computational cost, and (iii) careful circuit design adapted to hardware topology is
essential for robustness on real devices.

Our work establishes a foundation for more expressive quantum NLP models and highlights the
trade-offs between model complexity, hardware constraints, and training stability. Future directions
include scaling to larger datasets, incorporating noise-resilient circuit designs, and exploring hybrid
optimization strategies to improve training robustness on real quantum hardware.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We release the complete code used for our experiments at [ANONYMISED FOR REVIEW] -
available in Supplementary Materials. A detailed description of the experimental setup and hyperpa-
rameters is provided in App. C.

REFERENCES

Ramazan Amire. Quantumgptmini: A hybrid quantum-classical transformer for enhanced nlp.
Authorea Preprints, 2025.

Johannes Bausch. Recurrent quantum neural networks. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1368–1379. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_

files/paper/2020/file/0ec96be397dd6d3cf2fecb4a2d627c1c-Paper.pdf.

Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum circuits
as machine learning models. Quantum science and technology, 4(4):043001, 2019.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, 2017.

William Blacoe, Elham Kashefi, and Mirella Lapata. A quantum-theoretic approach to distributional
semantics. In Proceedings of the 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 847–857, 2013.

I-Chi Chen, Harshdeep Singh, VL Anukruti, Brian Quanz, and Kavitha Yogaraj. A survey of classical
and quantum sequence models. In 2024 16th International Conference on COMmunication Systems
& NETworkS (COMSNETS), pp. 1006–1011. IEEE, 2024.

Yiwei Chen, Yu Pan, and Daoyi Dong. Quantum language model with entanglement embedding for
question answering. IEEE Transactions on Cybernetics, 53(6):3467–3478, 2021.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foundations for a composi-
tional distributional model of meaning. arXiv preprint arXiv:1003.4394, 2010.

Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. Nature
Physics, 15(12):1273–1278, 2019.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Vojtěch Havlíček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M
Chow, and Jay M Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature,
567(7747):209–212, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Tak Hur, Leeseok Kim, and Daniel K Park. Quantum convolutional neural network for classical data
classification. Quantum Machine Intelligence, 4(1):3, 2022.

Sofiene Jerbi, Lukas J Fiderer, Hendrik Poulsen Nautrup, Jonas M Kübler, Hans J Briegel, and Vedran
Dunjko. Quantum machine learning beyond kernel methods. Nature Communications, 14(1):517,
2023.

Muhammad Kashif and Saif Al-Kuwari. Resqnets: a residual approach for mitigating barren plateaus
in quantum neural networks. EPJ Quantum Technology, 11(1):1–28, 2024.

Nikhil Khatri, Gabriel Matos, Luuk Coopmans, and Stephen Clark. Quixer: A quantum transformer
model. arXiv preprint arXiv:2406.04305, 2024.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882,
2014.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/0ec96be397dd6d3cf2fecb4a2d627c1c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0ec96be397dd6d3cf2fecb4a2d627c1c-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yidong Liao and Chris Ferrie. Gpt on a quantum computer. arXiv preprint arXiv:2403.09418, 2024.

Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran. Quantum embeddings for
machine learning. arXiv preprint arXiv:2001.03622, 2020.

Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri Kartsaklis, and Bob Coecke.
Qnlp in practice: Running compositional models of meaning on a quantum computer. Journal of
Artificial Intelligence Research, 76:1305–1342, 2023.

Antonio Macaluso, Luca Clissa, Stefano Lodi, and Claudio Sartori. A variational algorithm for
quantum neural networks. In International conference on computational science, pp. 591–604.
Springer, 2020.

Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of
variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, 2016.

Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren
plateaus in quantum neural network training landscapes. Nature communications, 9(1):4812, 2018.

Konstantinos Meichanetzidis, Stefano Gogioso, Giovanni De Felice, Nicolò Chiappori, Alexis Toumi,
and Bob Coecke. Quantum natural language processing on near-term quantum computers. arXiv
preprint arXiv:2005.04147, 2020.

Farha Nausheen, Khandakar Ahmed, and M Imad Khan. Quantum natural language processing: A
comprehensive review of models, methods, and applications. arXiv preprint arXiv:2504.09909,
2025.

Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cam-
bridge University Press, Cambridge ; New York, 10th anniversary ed edition, 2010. ISBN
978-1-107-00217-3.

Aliakbar Panahi, Seyran Saeedi, and Tom Arodz. word2ket: Space-efficient word embeddings
inspired by quantum entanglement. arXiv preprint arXiv:1911.04975, 2019.

Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I Latorre. Data re-uploading
for a universal quantum classifier. Quantum, 4:226, 2020.

John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert spaces. Physical
review letters, 122(4):040504, 2019.

Maria Schuld and Francesco Petruccione. Machine learning with quantum computers, volume 676.
Springer, 2021.

Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction to quantum machine
learning. Contemporary Physics, 56(2):172–185, 2015.

Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe. Circuit-centric quantum classifiers.
Physical Review A, 101(3):032308, 2020.

Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and entangling capability of
parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum
Technologies, 2(12):1900070, 2019.

James C Spall. An overview of the simultaneous perturbation method for efficient optimization.
Johns Hopkins apl technical digest, 19(4):482–492, 1998.

SM Tomal, Abdullah Al Shafin, Debojit Bhattacharjee, MD Amin, and Rafiad Sadat Shahir. Quantum-
enhanced attention mechanism in nlp: A hybrid classical-quantum approach. arXiv preprint
arXiv:2501.15630, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Dominic Widdows, Willie Aboumrad, Dohun Kim, Sayonee Ray, and Jonathan Mei. Quantum natural
language processing. KI-Künstliche Intelligenz, 38(4):293–310, 2024a.

Dominic Widdows, Aaranya Alexander, Daiwei Zhu, Chase Zimmerman, and Arunava Majumder.
Near-term advances in quantum natural language processing. Annals of Mathematics and Artificial
Intelligence, 92(5):1249–1272, 2024b.

12

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLAIMER

This paper was prepared using the following Large Language Models (LLMs): GPT 4.1 and GPT-5
(OpenAI). The authors have reviewed and edited the content produced by these models, and take full
responsibility for the final content of the publication. The LLMs were used to assist with drafting
and editing text, improving grammar and style, and suggesting rephrasings. No scientific claims
or results were generated by the LLMs; all technical content, experiments, and conclusions are the
original work of the authors. The use of LLMs was limited to non-technical writing tasks to enhance
clarity and readability. Additionally, the LLMs were used for searching literature for relevant papers
and resources. The authors acknowledge the potential limitations and biases of LLMs, and have
carefully verified all information in the final manuscript. Any errors or inaccuracies are solely the
responsibility of the authors.

B NOTATION

B.1 QUANTUM REGISTERS AND PARAMETER NOTATION

In our hybrid quantum language models, we explicitly distinguish between different quantum registers,
each with its own purpose and number of qubits. Specifically, we consider:

• Embedding register E with de qubits, which encodes the input token embeddings.

• Hidden register H with dh qubits, which stores recurrent or latent states.

• Output or prediction register O with do qubits, optionally used for feature extraction or
measurement.

Each register has its own Hilbert space, and the total system is represented as

Htotal = HE ⊗HH ⊗HO ∼= C2de+dh+do
. (6)

Individual qubits within a register are indexed by lowercase letters, e.g., qj ∈ E or hk ∈ H. A
tensor-product quantum state can be written as

|ψin⟩ =
de⊗
j=1

Ry(θj) |0⟩qj ⊗
dh⊗
k=1

|0⟩hk
. (7)

To simplify notation, we often write the all-zero state of d qubits as |0d⟩, or simply |0⟩ when the
dimension is clear from context.

Parameter vectors. Token embeddings are represented by trainable vectors θv ∈ Rde for each
token v ∈ V , which are mapped to the embedding register via Ry rotations. Hidden registers and
entangling layers are parametrized separately, e.g., ϕ ∈ Rnh . For convenience, all trainable quantum
parameters can be concatenated into a master vector Θ = [θ,ϕ] when describing gradient updates or
optimization procedures.

Observables and measurements. When measuring quantum states, we explicitly specify the
register of interest. For example, the Z observable over the hidden register is denoted

ẐH =
∑
j∈H

Zj , (8)

which is used to extract features for the classical output layer. This notation clarifies which registers
contribute to the model output, particularly in hybrid architectures with multiple quantum sub-
registers.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 QUANTUM GATES AND CIRCUIT OPERATIONS

Quantum circuits manipulate qubits via unitary gates. Single-qubit rotations, particularly Ry gates,
are used to encode token embeddings:

Ry(θj) |0⟩qj = cos(θj/2) |0⟩qj + sin(θj/2) |1⟩qj , qj ∈ E . (9)

Multi-qubit interactions are introduced through entangling gates, such as controlled-NOT (CNOT)
operations:

CNOTc,t |qcqt⟩ =
{
|qcqt ⊕ 1⟩ , if qc = 1,

|qcqt⟩ , otherwise,
(10)

where c and t denote control and target qubits, respectively. Entangling gates are primarily applied
between embedding and hidden registers, or within the hidden register, to capture correlations across
tokens.

We denote the full parametrized circuit acting on registers E and H as

U(Θ) =

L∏
l=1

Ul(Θl), (11)

where each layer Ul can contain both single-qubit rotations and entangling operations, and Θl ⊂ Θ
represents the parameters in that layer. The resulting quantum state is then

|ψ(Θ)⟩ = U(Θ) |0⟩ , (12)

with |0⟩ the all-zero state of the entire system, as defined previously.

Observables. Measurement operators are associated with specific registers to extract features for
the classical output layer. For example, for the hidden register H, Z and ZZ operators are used to
compute expectation values:

f(Θ) = ⟨ψ(Θ)|ÔH|ψ(Θ)⟩, (13)

where ÔH denotes the collection of observables applied to H. These expectation values serve as
inputs to classical layers, providing a hybrid quantum-classical representation.

C EXPERIMENTAL DETAILS

C.1 HYPERPARAMETERS AND TRAINING DETAILS

Detailed hyperparameters for all experiments are summarized in Table 3. We tune learning rate,
batch size, and number of epochs per task. SPSA uses population size p = 8 and perturbation scale
σ = 0.05.

Table 3: Hyperparameters for all experiments.

Task Model Seq Len CNN kernels Learning Rate Batch Size Epochs

MC QRNN 4 / 0.1 10 20
MC QCNN 6 3,3 0.1 10 20
RP QRNN 4 / 0.1 10 40
RP QCNN 4 2,2 0.1 10 40
MC-LM QRNN 4 / 0.1 16 40
MC-LM QCNN 6 3,3 0.1 16 40
TS-LM QRNN 6 / 0.1 32 30
TS-LM QCNN 6 3,3 0.1 32 30

C.2 TRAINING DETAILS

Detailed information about circuit complexity, number of trainable parameters, and per-epoch training
costs for each architecture is provided in Table 4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Model and training details for all architectures on the TS-LM task. Time per epoch is
measured on an AMD Ryzen AI 9HX with 32GB RAM for classical models and simulators, and
IBM Eagle/Heron processor for quantum models (in parentheses, the actual quantum processing
time excluding overhead). For quantum models, we report two embedding sizes (E=3,10 for QRNN,
E=3,6 for QCNN). For QRNN E=10 we have 17 hidden qubits, but we limit the ZZ observables to
pairs of adjacent qubits only, reducing the final feature size to 19.

Type Model Params
Total (Q+C)

Quantum Circ Time per epoch
clock time (Q usage)Qubits Total gates 2Q gates 2Q depth

Classical

FFNN 316 (0+316) <1s
RNN 256 (0+256) <1s
LSTM 376 (0+376) <1s
CNN 304 (0+304) <1s
Transf 384 (0+384) <1s

Quantum
Simulator

QRNN (E=3) 258 (90+168) 6 106 34 22 20s
QCNN (E=3) 316 (148+168) 19 181 48 12 110s
QRNN (E=10) 1158 (342+816) 27 1966 188 22 >2h
QCNN (E=6) 1044 (340+704) 37 1213 102 12 OOM

Quantum
Hardware

QRNN (E=3) 258 (90+168) 6 370 34 22 16min (7min)
QCNN (E=3) 316 (148+168) 19 577 48 12 35min (7min)
QRNN (E=10) 1158 (342+816) 27 1966 188 22 40min (8min)
QCNN (E=6) 1044 (340+704) 37 1213 102 12 80min (8min)

C.3 CIRCUIT DETAILS

Figure 8 and Figure 10 show detailed circuit diagrams for QRNN and QCNN architectures, respec-
tively. Example qubit layouts on IBM Heron processor for different embedding sizes are shown in
Figure 9 and Figure 11.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

|

|

c
1 0

Tk0

Emb

RNN

Block

Tk1

Emb

RNN

Block

Tk2

Emb

RNN

Block

Pred

Head

0

1

2

3

4

pred[0]

RZ

pred[5] pred[14]

RZ

pred[15]

RY RY

pred[13]

RY

pred[19]

RZ

pred[18]

RZ

pred[17]

RZ

pred[16]

RZ

pred[12]

RY

pred[11]

RY

pred[10]

RY

pred[6]

RZ

pred[7]

RZ

pred[8]

RZ

pred[9]

RZ

pred[1]

RY

pred[2]

RY

pred[3]

RY

pred[4]

RY

|

|

|

|

|

0

1

2

3

4

0

1

2

3

4

RZ

R_0[5]

|

|

|

|

|

|

|

|

|

|

R_0[6]

RZ

R_0[7]

RZ

R_0[8]

RZ

R_0[9]

RZ

R_0[1]

RY

R_0[2]

RY

R_0[3]

RY

R_0[4]

RY

R_0[0]

RY

E_T0[1]

RY

E_T0[2]

RY

E_T0[3]

RY

E_T0[4]

RY

E_T0[0]

RY

Figure 8: QRNN: tokens are embedded intoE, transferred to hidden registerH by CNOTs, updated by
recurrent PQC Urec, and passed through prediction PQC Upred for observable-based feature extraction.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

116 117 118 119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

136 137 138 139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

Quantum RNN Layout for Backend ibm_kingston
Embedding Qubits Hidden State Qubits

0.02

0.04

0.06

0.08

0.10

Er
ro

r R
at

es

(a) 3 embedding + 3 hidden qubits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

116 117 118 119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

136 137 138 139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

Quantum RNN Layout for Backend ibm_kingston
Embedding Qubits Hidden State Qubits

0.02

0.04

0.06

0.08

0.10

Er
ro

r R
at

es

(b) 10 embedding + 17 hidden qubits

Figure 9: Example qubit layout on IBM Heron processor for QRNN with (a) 3-qubit embedding and
(b) 10-qubit embedding. The heavy-hex connectivity is highlighted, along with error rates for single
and 2 qubit gates. Green qubits are used for embedding register E and are not connected. Blue qubits
are used for hidden register H and need to be connected. Some of the hidden qubits are auxiliary and
do not correspond to embedding qubits in order to respect the hardware connectivity.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 1 2

CNN L2[0]

RY

CNN L2[1]

RY

CNN L2[2]

RY

CNN L2[3]

RY

CNN L2[4]

RY

CNN L2[5]

RY

CNN L2[6]

RY

CNN L2[7]

RY

CNN L2[8]

RZ

CNN L2[9] CNN L2[18]

CNN L2[19]

RY

CNN L2[20]

RY

CNN L2[21]

RY

CNN L2[22]

RY

CNN L2[23]

RY

CNN L2[24]

RY

CNN L2[25]

RY

CNN L2[26]

RZ

CNN L2[27]

Pred[0]

RY

Pred[1]

RY

Pred[2]

RZ

Pred[3] Pred[6]

RZ

Pred[4]

RZ

Pred[5]

Pred[7]

RY

Pred[8]

RZ

Pred[9]

Pred[10]

RZ

Pred[11]

RY RY

RY

RY RY

RY RZ

CNN L2[28]

RZ

RZ

RZ

RZ

CNN L2[29]

CNN L2[30]

CNN L2[31]

CNN L2[32]

RZ

RZ

RZ

RZ

CNN L2[33]

CNN L2[34]

CNN L2[35]

CNN L2[10]

RZ

RZ

RZ

RZ

CNN L2[11]

CNN L2[12]

CNN L2[13]

CNN L2[14]

RZ

RZ

RZ

RZ

CNN L2[15]

CNN L2[16]

CNN L2[17]

0

1

2

0

1

2

0

1

2

3

| 1

| 1

| 1

| 5

| 5

| 5

| 3

| 3

| 3

c

| 0

| 0

| 0

| 1

| 1

| 1

0

1

2

0

1

2

Tk0 E[0]

RY

Tk0 E[1]

RY

Tk0 E[2]

RY

Tk1 E[0]

RY

Tk1 E[1]

RY

Tk1 E[2]

CNN L1[0]

RY

CNN L1[1]

RY

CNN L1[2]

RY

CNN L1[3]

RY

CNN L1[4]

RY

CNN L1[5]

RZ

CNN L1[6]

RZ

CNN L1[11]

CNN L1[12]

RZ

CNN L1[7]

RZ

CNN L1[8]

RZ

CNN L1[9]

RZ

CNN L1[10]

RY

CNN L1[17]

CNN L1[13]

RY

CNN L1[14]

RY

CNN L1[15]

RY

CNN L1[16]

RZ

CNN L1[18]

RZ

CNN L1[23]

RY RY RY

RY RZ

RZ

RZ

CNN L1[19]

CNN L1[20]

CNN L1[21]

CNN L1[22]

RZ

c
1 0

0

1

CNN

First

Layer

CNN

First

Layer

CNN

First

Layer

0

1

2

CNN

Second

Layer

Pred

Head

Tk0

Emb

Tk1

Emb

Tk2

Emb

Tk3

Emb

Tk4

Emb

Tk5

Emb

0

1

0

1

| 0

| 1

| 2

| 3

| 4

| 5

Figure 10: QCNN: tokens are embedded into registers E0...E5 then processed by convolutional blocks
Uconv1 and Uconv2, and prediction PQC Upred.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

116 117 118 119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

136 137 138 139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

Quantum CNN Layout for Backend ibm_kingston
Tk0
Tk1

Tk2
Tk3

Tk4
Tk5

0.02

0.04

0.06

0.08

0.10

Er
ro

r R
at

es

(a) 6× 3 embedding qubits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

116 117 118 119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

136 137 138 139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

Quantum CNN Layout for Backend ibm_kingston
Tk0
Tk1

Tk2
Tk3

Tk4
Tk5

0.02

0.04

0.06

0.08

0.10

Er
ro

r R
at

es

(b) 6× 6 embedding qubits

Figure 11: Example qubit layout on IBM Heron processor for QCNN with (a) 6× 3 embedding and
(b) 6× 6 embedding. The heavy-hex connectivity is highlighted, along with error rates for single and
2 qubit gates. Each color represents one embedding register Ei, where qubits need to be connected.
The two shades of each color represent the connections made by the first convolutional block. The
darker shade of each color represents the qubits used in the second convolutional block. Dark Purple
qubits are used for measurements as prediction register O.

17

	Introduction
	Background and Notation
	Language Modeling
	Classical Neural Architectures
	Quantum Computing Basics
	Parameterized Quantum Circuits (PQCs)
	Readout on NISQ Devices

	Related Work
	Quantum Machine Learning (QML)
	Quantum Natural Language Processing (QNLP)
	Quantum Recurrent Neural Networks (QRNNs)
	Quantum Convolutional Neural Networks (QCNNs)

	Method
	Token Embeddings
	PQC Layers as Neural Blocks
	Feature Extraction
	Quantum Recurrent Neural Network (QRNN)
	Quantum Convolutional Neural Network (QCNN)
	Optimization Strategy

	Experiments
	Datasets
	Experimental Setup
	Main Results
	Ablation Studies

	Limitations
	Conclusions
	LLM usage disclaimer
	Notation
	Quantum Registers and Parameter Notation
	Quantum Gates and Circuit Operations

	Experimental Details
	Hyperparameters and Training Details
	Training Details
	Circuit Details

