
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CALM: CRITIC AUTOMATION WITH LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the world through models is a fundamental goal of scientific re-
search. While large language model (LLM) based approaches show promise in
automating scientific discovery, they often overlook the importance of criticizing
scientific models. Criticizing models deepens scientific understanding and drives
the development of more accurate models. Moreover, criticism can improve the
reliability of LLM-based scientist systems by acting as a safeguard against hallu-
cinations. Automating model criticism is difficult because it traditionally requires
a human expert to define how to compare a model with data and evaluate if the
discrepancies are significant–both rely heavily on understanding the modeling as-
sumptions and domain. Although LLM-based critic approaches are appealing,
they introduce new challenges: LLMs might hallucinate the critiques themselves.
Motivated by this, we introduce CALM (Critic Automation with Language Mod-
els). CALM uses LLMs to generate summary statistics that highlight discrepan-
cies between model predictions and data, and applies hypothesis tests to evaluate
their significance. We can view CALM as a verifier that validates models and
critiques by embedding them in a hypothesis testing framework. In experiments,
we evaluate CALM across key quantitative and qualitative dimensions. In set-
tings where we synthesize discrepancies between models and datasets, CALM
reliably generates correct critiques without hallucinating incorrect ones. We show
that both human and LLM judges consistently prefer CALM’s critiques over al-
ternative approaches in terms of transparency and actionability. Finally, we show
that CALM’s critiques enable an LLM scientist to improve upon human-designed
models on real-world datasets.

1 INTRODUCTION

A longstanding goal of artificial intelligence research is to automate the discovery of scientific mod-
els (Langley et al., 1987; Waltz & Buchanan, 2009). The rapid development of LLMs with remark-
able reasoning capabilities and general knowledge has created exciting new opportunities within this
domain. Recent work has shown that LLM based scientific agents can propose novel research ideas
(Si et al., 2024), discover scientific models (Li et al., 2024), and implement experiments (Lu et al.,
2024; Huang et al., 2024). These results highlight the promise of using LLMs to automate many im-
portant aspects of scientific discovery. However, they overlook the crucial role that model criticism
plays in driving scientific progress. Understanding the limitations of existing models deepens our
understanding and often motivates new models. Furthermore, automated methods for criticism can
improve the reliability of LLM-based scientific discovery systems, as LLMs are prone to systematic
hallucinations (Lu et al., 2024; Xu et al., 2024) that could undermine the broader goal of automating
scientific discovery.

Model criticism is hard to automate because it is inherently dependent on the model and problem
domain. In particular, it involves (1) determining which aspects to compare between the model and
data and (2) evaluating the significance of any differences. Each of these tasks typically requires
substantial human expertise (Gelman & Shalizi, 2012). While leveraging LLMs is an initially ap-
pealing approach to automation, it introduces new challenges: LLMs might also hallucinate the
critiques themselves, undermining the effectiveness of automated model criticism.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Motivated by these challenges, we introduce CALM (Critic Automation with Language Models),
which integrates LLMs within a principled model criticism framework. Specifically, given a pro-
posed scientific model and dataset metadata, CALM uses an LLM to generate summary statistics
that capture properties of the data that might violate the modeling assumptions. Importantly, these
summary statistics are tailored to the model and dataset. CALM implements these summary statis-
tics as Python functions, which can be easily executed and inspected by a human or LLM scientist.
This brings transparency to the critique process.

While these summary statistics can highlight potential discrepancies, we need a method to determine
whether these discrepancies are meaningful. To address this, we show how we can automatically
convert the summary statistics produced by CALM into hypothesis tests, for many commonly-used
scientific models. Specifically, if we can sample from the scientific model (Gelman et al., 2013;
Cranmer et al., 2019), we can form a null distribution for a summary statistic and compute an em-
pirical p-value. Thus, we can transform each summary statistic into a quantitative check, providing
a rigorous way to assess both the significance of the discrepancies and the validity of the model.
In doing so, we reduce the complex task of automatically validating proposed models and critiques
to the well-understood problem of hypothesis testing. We can view these quantitative checks as
(loosely) serving a role analogous to how formal verification systems validate proofs in LLM-based
theorem proving systems like AlphaProof (DeepMind, 2024).

In experiments (Section 4), we evaluate CALM along key qualitative and quantitative properties cru-
cial for an automated critic system. In settings where we synthetically control discrepancies between
models and datasets, CALM consistently identifies true discrepancies and avoids hallucinating false
ones. We also assess important qualitative aspects of CALM’s critiques (e.g., transparency), and find
that both LLM and human judges prefer CALM’s critiques over alternatives. Finally, we demon-
strate the practical impact of CALM’s critiques on the downstream task of guiding an LLM-based
scientific model discovery system. On real-world datasets, CALM’s critiques enable an LLM-based
automated model discovery system (Li et al., 2024) to significantly improve upon initial human-
designed models.

2 BACKGROUND

In this section, we describe model criticism techniques, from different domains, that are commonly
used to find discrepancies. Crucially, we can often formalize finding discrepancies as identifying
suitable test statistics, using those statistics to compute discrepancies between model predictions
and data, and validating their significance using domain knowledge.

Regression analysis In regression analysis, we begin with a datasetD = {X ,Y} of input features
X and targets Y; our goal is to predict Y from X . Given model predictions Y pred, we perform model
diagnostics that target the standard assumptions of linear regression (e.g., linearity, homoscedastic-
ity, uncorrelated errors). For example, to evaluate whether homoscedasticity holds, we can plot the
residuals against the input features. We can then either informally assess whether the pattern in the
residuals indicates a significant departure from homoscedasticity or perform statistical tests.

Computational models Computational models often make simplifying assumptions that can lead
to systematic errors, even after the parameters of these models are calibrated. This might be due to
imperfect physical knowledge or systematic measurement errors; these systematic errors are often
known as model inadequacies. Bayarri & Berger (2000) introduce a framework for understanding
these inadequacies that involves defining domain-specific evaluation criteria or performing sensitiv-
ity analyses and checking whether these accord with scientific intuition. Another very influential
approach is to cast this as a statistical modeling problem and directly build a statistical model of the
discrepancy (Kennedy & O’Hagan, 2001). Building on this work, Joseph & Yan (2015) show how
to study this discrepancy through an analysis of variance decomposition.

Bayesian statistical models In statistical modeling, we model the data as a probability distribu-
tion. More formally, a statistical model defines a joint probability distribution p(Y, θ|X ,H) over
observed variables Y and latent variables θ; we use H to indicate a specific class of statistical mod-
els and the datasetD = {X ,Y} can include both observations Y that we model as random variables
and additional quantities X that we treat as fixed. By marginalizing out the latent variables, we

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Evaluate discrepancies via hypothesis testsGenerate summary statistics

Time

B
lo

o
d

G
lu

co
se

Data

Predictions

Exercise

Time

B
lo

o
d

G
lu

co
se

Data

Predictions

Sleep

Figure 1: Criticizing scientific models with CALM. First, an LLM generates summary statistics
that capture potential discrepancies that are tailored to the model and dataset; the LLM conditions
on dataset metadata and a symbolic representation of a scientific model. We use these summary
statistics to perform hypothesis tests to evaluate the significance of each discrepancy.

obtain the posterior predictive distribution

p(Y ppred | D,H) =
∫

p(Y ppred|θ,H)p(θ|D,H)dθ (1)

A common technique for evaluating such a model is a posterior predictive check (PPC) (Box, 1980;
Gelman et al., 1996; Meng, 1994; Rubin, 1984). In brief, PPCs ask if the posterior predictive
distribution captures important properties of the data. Concretely, to perform a PPC, we first draw
samples from the posterior predictive distribution, {Y ppred

i }mi=1 ∼ p(Y ppred | D,H). We then choose
a test statistic T (X , Y ppred) that can reveal some property of the data that is not well-captured by
the model samples. To compare the posterior predictive samples against the dataset, we compute
the test statistic over both samples (forming a null distribution) and data. For a PPC to be useful,
the test statistic must be chosen in a model-dependent way and choosing an appropriate test statistic
is an important step in many applied modeling settings (van Dyk & Kang, 2004; Belin & Rubin,
1995; Gelman et al., 2005). For example, when criticizing a Poisson model, one might check for
over-dispersion by computing the variance-to-mean ratio. Crucially, posterior predictive checks
do not require human intervention, since they automatically generate a quantitative measure of the
significance of any discrepancy via the posterior predictive p-value; we discuss this in more detail
in Section 3.1.

3 METHOD: CALM

In this section, we describe CALM, our system for finding systematic discrepancies between a sci-
entific model and dataset. We provide a brief overview here; for a schematic overview, see Figure 1.
CALM takes as input: dataset metadata, a symbolic representation of a model (e.g., program) and
model samples. Given these, CALM produces significant discrepancies. Each discrepancy is rep-
resented as a test statistic implemented as a Python function, an executable artifact that program-
matically expresses the discrepancy, and a natural language criticism.

3.1 AUTOMATICALLY PROPOSING AND EVALUATING DISCREPANCIES

Proposing discrepancies via test statistics As we saw in Section 2, we can often formalize find-
ing discrepancies between model predictions and data as identifying suitable test statistics. Design-
ing test statistics that capture systematic discrepancies between a model and dataset requires mod-
eling expertise, domain knowlege, and strong programming capabilities. We use LLMs to automate
this process. To propose test statistics, the LLM conditions on dataset metadata, C (e.g., descrip-
tion of the dataset, column names) and a symbolic representation of a model H; for examples of
these inputs, see Figure 9. To implement these test statistics, LLMs write Python functions that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1: Producing test statistics and empirical p-values

Input: dataset D, metadata C, modelH, model samples {Y pred
i }mi=1, number proposals n

{Tk}nk=1 ∼ pLM(·|C,H)
{pk}nk=1 ← get-empirical-pval(D, {Y pred

i }mi=1, {Tk}nk=1) via Equation 2
{p̃k}nk=1 = multiple-test-adjustment({pk}mk=1)

Output: test statistics {Tk}mk=1, adjusted empirical p-values {p̃k}mk=1

take a pandas dataframe as input; the dataframe contains X and either the data Y or a model
sample Y pred

i of the same dimension. By design, these Python functions can be easily executed
and inspected by a human or LLM scientist and, as we will experimentally validate, help improve
transparency. For examples of the functions produced by CALM, see Sections A.5 and A.6. For our
test statistic proposer, we use gpt-4-turbo-2024-04-09. See Figure 7 for the prompt.

Evaluating significance of discrepancies via hypothesis tests We now describe how CALM uses
the test statistics to identify significant discrepancies. In brief, we use model samples to approximate
a null distribution over the test statistic and then compute an empirical p-value. We assume the user
can simulate data from the model {Y pred

i }mi=1. This is not restrictive requirement and how the user
generates the model samples is a design choice; for example, we can do this for any model that
describes a generative process for the data.

We describe how to estimate an empirical p-value pk given Tk and {Y pred
i }mi=1 below.

1. We approximate the null distribution of the test statistic by computing the test statistic over
the model samples {T (X , Y pred

i)}mi=1.

2. We locate the test statistic of the observed data T (X ,Y) within this null distribution to
obtain an empirical p-value. That is, we compute

P (T (X , Y pred) ≥ T (X ,Y)|D,H) ≈ 1

m

m∑
i=1

1{T (X ,Y pred
i)≥T (X ,Y)} (2)

We visualize the computation of the p-values in the Appendix (Figure 10). To capture different
discrepancies, we compute multiple test statistics in parallel for a model-dataset pair. However, this
can inflate the effective false positive rate: for large enough m, we expect mink pk ≤ α even if the
model and dataset have no discrepancy. We thus apply a Bonferroni correction to obtain adjusted
p-values {p̃k}mk=1. We regard all Tk such that p̃k ≤ α as significant.

Instantiating the framework for Bayesian models In our experiments, we focus our evaluation
on Bayesian models because they are widely used in scientific settings (Gelman et al., 2013; Cran-
mer et al., 2019). In our context, Bayesian models are also appealing because they can be expressed
symbolically as probabilistic programs (van de Meent et al., 2021; Goodman, 2013) and we can
choose the model samples to be posterior predictive samples {Y ppred

i }mi=1 (Equation 1). The corre-
sponding posterior predictive p-value has an intuitive interpretation: how atypical is Y under the
posterior distribution p(Y ppred|D,H) with respect to the discrepancy measure defined by Tk?

3.2 INTERFACING WITH LLM SCIENCE AGENTS VIA NATURAL LANGUAGE CRITICISM

In many situations, we might want to integrate CALM within a broader scientific discovery system,
involving either human or LLM scientists. Therefore, CALM also produces natural language crit-
icism. This design choice is motivated by several considerations. By offering critiques in natural
language, which is flexible and generic, the system provides an additional medium for users to inter-
pret results, which can be useful in fields where training in formal modeling is less common. Second,
this design choice is natural given recent advances in LLM based agents for scientific discovery and
modeling (Huang et al., 2024; Li et al., 2024).

We prompt an LLM to produce natural language criticism hk that summarizes the discrepancy
implied by test statistic Tk and its p-value p̃k. Specifically, we ask the LLM to synthesize the test

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

statistic in a way that’s informative to a colleague revising some initial model. For examples of the
natural language critiques produced, see Section A.4 and for the prompt see Figure 8.

We can easily integrate these three artifacts within an LLM based scientific discovery system.
Specifically, we provide the system with (1) a Python implementation of the test statistic Tk,
(2) the natural language hk, and (3) the initial model; in our experiments these models will be prob-
abilistic programs in pymc or stan (Carpenter et al., 2017; Abril-Pla et al., 2023). We use the
LLM-based system for generating probabilistic programs introduced by Li et al. (2024).

In general, these hypothesis tests are cheap relative to the cost of model fitting. For example, poste-
rior inference is the dominating cost for Bayesian models and performing posterior predictive checks
are cheap given posterior samples. Thus, CALM will generally introduce minimal overhead to the
overall cost of an AI scientist system.

4 EXPERIMENTS

In this section, we present experimental results that evaluate key quantitative and qualitative prop-
erties of our system. We begin by illustrating the pitfalls of a naive LLM in a synthetic regression
setting. We then systematically study CALM’s ability to avoid hallucinations and discover true
discrepancies by analyzing its true and false positive rates in a setting where we synthesize discrep-
ancies between models and datasets. We then evaluate the transparency and interpretability of our
system in human user and LLM evaluations and the actionability of the natural language criticism
in helping an LLM-based system to revise models.

4.1 EXPERIMENT 1: NAIVE LLM-BASED CRITIC HALLUCINATES IN SYNTHETIC
REGRESSION TASK

Dataset with spurious features Initial model is missing floor feature

CALM uses summary stats to provide targeted revision

Naïve methods often hallucinate revisions

…additional rows…

Figure 2: Illustrating how CALM avoids hallucinated revisions. CALM hypothesizes discrep-
ancies via summary statistics and makes targeted changes to the initial model, which is missing the
feature floor. In contrast, the naive method hallucinates (see explanation for details) and introduce
spurious features (e.g., county, soil) to the initial model. We highlight spurious features in red
and correct features in green in code.

In an initial case study, we show that a naive LLM critic consistently hallucinates but CALM does
not, in a synthetic regression setting. Specifically, we characterize the model revision changes in-
duced by the critiques produced by CALM and the naive approach, in a setting where we adversari-
ally introduce spurious “distractor” features into a dataset. For an overview, see Figure 2.

Generating a regression dataset with spurious features We generate a synthetic dataset inspired
by the radon dataset, a commonly used dataset in regression analysis. We generate the target,
radon as a a linear function of floor (basement or first floor) and uppm (e.g., uranium), corrupted

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Model Revision Attempts

county

floor

uppm

soil

F
ea

tu
re

s
U

se
dCALM tries fewer, targeted revisions

Model Revision Attempts

county

floor

uppm

soil

F
ea

tu
re

s
U

se
d Naive criticism leads to hallucinatory revisions

Correct Features

Spurious Features

Figure 3: CALM attempts more fewer, more targeted revisions. The critiques produced by
the naive approach drive greedy model revisions that indiscriminately add both spurious (red) and
correct (green) features; we indicate features used in revised models as dark-colored squares. In
contrast, CALM leads to fewer revisions because it filters discrepancies by significance. Further-
more, those revisions generally target the correct missing feature (floor).

with additive Gaussian noise. In addition to these two features, we add two additional spurious,
distractor features to the dataframe, county and soil, with semantically plausible names.

Naive LLM critic baseline We implement a naive approach to model criticism that receives (1)
an initial statistical model represented as a pymc program (2) a dataframe of the posterior predic-
tive mean radon predictions along with the corresponding variances of those predictions and a (3)
dataframe of the dataset. Given this information, we ask the LLM critic to identify discrepancies
between the predictions and data.

Evaluating critiques in driving model revision We generate twenty critiques from both CALM
and the naive baseline; the initial model regresses radon against only uppm, omitting floor which
is used in the ground truth. CALM filters the critiques to five significant ones (p < 0.01); four
correctly identify that radon varies by floor, and the other correctly notes that model fails to capture
the range of radon values but does not identify that the missing floor feature is the culprit. In
contrast, the naive approach recommends generic model expansions; for an example see the text in
the bottom of Figure 2. We evaluate the critiques by feeding them into an LLM-based model revision
system (Li et al., 2024) as described in Section 3.2. Figure 3 shows the features added per revision
attempt, with spurious features indicated in red and correct features in green. Rows correspond to
features and columns correspond to model revision attempts; we indicate that a feature was added
using dark-colored squares. The naive approach often adds all possible features indiscriminately.
In contrast, the majority of CALM’s critiques lead to targeted revisions. The main exception is
the critique about the discrepancy in the range of values; this critique captures a true deficiency in
the initial model, but isn’t actionable (i.e., suggest a concrete strategy for revising) which leads the
revision LLM to be greedy; we will evaluate this notion of actionability in additional experiments.

4.2 EXPERIMENT 2: STATISTICAL ANALYSIS OF HALLUCINATIONS AND TRUE DISCOVERIES

A reliable critic system should avoid hallucinations (i.e., generating false positives) and discover
true discrepancies when they exist. In this section, we study this through a statistical lens and char-
acterize CALM’s false and true positive rates. We ask: does CALM reliably discover discrepancies
when there are actual discrepancies? And, conversely, does CALM hallucinate when there are no
discrepancies? To study this, we synthetically generate discrepancies between models and datasets
which enables us to empirically characterize the true and false positive rates.

Generating no-discovery and discovery datasets We synthetically generate model-dataset pairs
where each pair is either a no-discovery pair or discovery pair.

To construct a no-discovery pair, we first sample a dataset Y from a ground truth data distribution
Y ∼ p(Y|H). We then draw m posterior predictive samples from the ground truth data distribution

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5

False positive rate

0.4

0.6

0.8

1.0

Tr
ue

po
si

tiv
e

ra
te

ROC

Pre-specified
CALM

0.00 0.02 0.04 0.06 0.08 0.10

significance threshold α

0.00

0.02

0.04

0.06

0.08

0.10

Fa
ls

e
po

si
tiv

e
ra

te

FPR calibration

Figure 4: Statistical analysis of CALM’s ability to discover discrepancies and avoid hallucina-
tions. (left) True positive rate (TPR) vs. false positive rate (FPR) at different significance thresholds.
(right) FPR against significance threshold. CALM correctly identifies more discrepancies than the
pre-specified method, at the same FPR level. The FPR is calibrated with the significance threshold,
showing that CALM systematically avoids hallucinations.

conditioned on the data: i.e., {Y ppred
i }mi=1 ∼ p(Y ppred|Y,H). No-discovery pairs serve as a negative

control to ensure that CALM does not systematically hallucinate and produce false discoveries.

To generate discovery pairs, we sample a dataset Y from a dataset distribution p. However, we
pair Y with samples from a lesioned model q, where we choose q so that it fails to capture an
important aspect of the data generating distribution q. For example, we can take p to be a Student’s
t distribution and q to be a Gaussian distribution; even after conditioning on data q(Y |Y) will fail to
capture the tails. These discovery pairs serve as a positive control and allow us to understand how
reliably CALM identifies discoveries (i.e., true positive rate).

We generate six model-dataset pairs. The data-generating models are: Student’s t, negative binomial,
and a generalized linear model. The lesioned models are: Gaussian, Poisson, and logistic growth.
To account for randomness in data generation, we generate twenty copies of each model-data pair
corresponding to twenty random fresh datasets.

Calculating true positive and false positive rate For each model-dataset pair, we run CALM
with 24 proposals and at a temperature 0.7. Our system decides if there is a discrepancy by checking
whether the minimum p-value is less than the significance threshold; that is, whether mink p̃k ≤
α. By construction, we have the “correct” decision for each pair. To compute the true positive
rate, we compute the proportion of discovery pairs in which CALM correctly decided there was a
discrepancy. To compute the false positive rate, we compute the proportion of no-discovery pairs in
which CALM incorrectly decided there was a discrepancy.

Quantitative Results In Figure 4, we show the true and false positive rates of CALM. As a base-
line, we compare CALM against a standard set of pre-specified test statistics: mean and variance.
From the ROC curve, we see that CALM exhibits a favorable trade-off between the true positive
rate (power) and false positive rate (type I error), and significantly outperforms the baseline method,
achieving a higher true positive rate at all false positive rate levels. As the false positive rate (FPR)
calibration plot shows, the false positive rate closely tracks the significance threshold α, showing
that our system does not systematically identify spurious discrepancies. These analyses illustrate
that CALM has favorable statistical properties in a controlled setting. In the appendix (Section A.5),
we show examples of CALM’s proposed test statistics that account for its favorable statistical prop-
erties. These statistics are tailored to the statistical model. For example, CALM proposes kurtosis
for the Student’s t setting, to assess the tails of the distribution.

4.3 EXPERIMENT 3: ANALYZING KEY QUALITATIVE PROPERTIES OF TEST STATISTICS FOR
REAL-WORLD MODEL-DATASET PAIRS

In the previous sections, we evaluated CALM’s statistical properties. However, users interacting
with an LLM-based critic system may care just as much about key qualitative properties such

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

as transparency (i.e., how clear is the reasoning used to generate the critique) and actionability
(i.e., how useful is the criticism to a scientist revising the model).

To study this, we first apply CALM to real world datasets and expert written models covering a
range of scientific domains (see Section A.3). We quantitatively assess CALM-generated critiques
in both human and automated LLM-based evaluation. We then qualitatively characterize CALM’s
critiques, which illustrate the conceptual advantages of using CALM’s tailored test statistics.

Experimental Setup The Stan PosteriorDB database (Magnusson et al., 2023) consists of
real-world datasets and probabilistic models implemented in Stan; these models are open-source
contributions from the Stan developer community that cover a broad range of modeling motifs
ranging from hierarchical modeling to regression. We chose 36 model-dataset pairs based on ones
used in several recent papers (Modi et al., 2023; Li et al., 2024; Wu & Goodman, 2022). For
each StanDB model-dataset pair, the LLM proposes twenty-four test statistics {Tk}24k=1; we run this
proposal step at a temperature 1.0. Then, for each Tk, we generate natural language criticism hk by
running the natural language criticism step at a temperature 0.0.

Transparent Actionable Tailored
Criteria

0.0

0.2

0.4

0.6

0.8

1.0

C
AL

M
 w

in
 r

at
e

(v
s.

 N
ai

ve
)

Win Rate Comparison for Qualitative Criteria

GPT-4o
Claude 3.5 Sonnet

Figure 5: CALM criticisms have higher win rates versus naively generated criticisms.
Critiques are rated on three qualitative criteria by LLM-based judges (GPT-4o and Claude 3.5 Son-
net). LLM-based judges are aligned with human evaluators: GPT-4o and Claude 3.5 Sonnet have
100% alignment for transparent and tailored preferences, and are 80% and 90% aligned for action-
able preferences, respectively. Error bars represent 95% confidence intervals (Wilson score).

Systematic evaluation of qualitative properties of critiques We conducted a human evaluation
study with three Ph.D. students (non-authors) with expertise in statistics, who were blind to the
critic methods. We randomly selected ten model-dataset pairs. For each pair, both CALM and a
naive LLM critic generated critiques. The evaluators chose which critique was better along three
criteria that we describe and motivate below.

1. Transparency: can a user of the system understand how the critique was produced? Trans-
parency is important for building trust with users and can also help them evaluate if the
system is hallucinating.

2. Actionable: can the critique help a scientist revise the model? A critique is more useful if it
provides insights into how to revise the model. For example, knowing that a model has high
error is less useful than knowing that a model has high error on a specific sub-population.

3. Tailored: is the critique targeted for the specific model and dataset? We do not expect
generic critiques to provide much insight.

To scale this analysis, we employed state-of-the-art LLM-based judges (gpt-4o-2024-08-06
and claude-3-5-sonnet-20240620) following highly specific guidelines; for details, see the
Appendix A.8. In Figure 5, we show the win-rates (higher is better) across two LLM judges and the
three criteria. CALM is classified as significantly more transparent (∼ 97%), actionable (∼ 76%),
and tailored (∼ 98%). Both LLM-based judges are aligned with human preferences, having 100%
alignment for transparent and tailored preferences, and GPT-4o and Claude 3.5 Sonnet having 80%
and 90% alignment for actionable preferences, respectively. The domain experts gave qualitative
feedback in support of CALM’s approach, particularly in terms of transparency. Experts noted the
benefit of immediately executable code for quick assessment (see Appendix A.7 for quotes).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Basement Floor 1 Agg

V
ar

ia
nc

e

Variance by floor

Low IQ High IQ Agg

M
ea

n

Kid IQ by mom IQ

0 1 2 3 4 5 6 Agg

V
ar

ia
nc

e

Variance by ideology

Data Test Stat Value

Figure 6: CALM proposes test statistics that slice model predictions based on input. Each violin
is a test statistic distribution of model samples on a slice (e.g., variance of model predictions for first
floor measurements). The horizontal lines indicate test statistics computed on data. We indicate the
test statistic type on the y-axis and slice category on the x-axis; the “agg” slices indicates aggrega-
tion across all slices. Blue violins correspond to sliced test statistics and red violins correspond to
aggregated ones. The dashed line passes through red violin centers but not the blue ones, showing
that CALM’s choice to slice test statistics reveals discrepancies that pre-specified ones cannot.

Qualitative examples: sliced test statistics One specific kind of test statistic that meets the above
three criteria are sliced test statistics. CALM often proposes test statistics that slice the model
prediction Y pred

i based on the input features X . For example

1 # Filter to get basement and non-basement samples
2 basement_samples = df[df[’floor_measure’] == 0][’y_rep’]
3 non_basement_samples = df[df[’floor_measure’] == 1][’y_rep’]
4

5 # Compute standard deviations for both subsets
6 std_basement = np.std(basement_samples)
7 std_non_basement = np.std(non_basement_samples)
8

9 # Compute the difference in standard deviations as the test statistic
10 test_statistic_value = std_basement - std_non_basement

In Figure 6, we illustrate the benefits of CALM’s sliced test statistics over pre-specified, aggregate
test statistics. We compare test statistic distributions computed from model samples against the data,
sliced by the input values (e.g., variance of model predictions for radon measurements in basement
vs first floor). Sliced test statistics reveal discrepancies that the aggregated ones cannot. We provide
additional randomly-sampled test statistics in the Appendix (Section A.6).

4.4 EXPERIMENT 4: CALM GENERATED CRITICISM DRIVES MODEL IMPROVEMENTS

Method Wins > 1 SE Wins > 1.5 SE Wins > 2.0 SE
CALM 0.94 0.94 0.82

Initial Model 0.06 0.06 0.06

Table 1: CALM consistently improves over the initial model. CALM achieves significantly
higher win rates compared to the initial model at various standard error (SE) thresholds. We say
a win is significant at a given SE threshold if the difference in scores is larger than the SE margin.

Method Wins > 1 SE Wins > 1.5 SE Wins > 2.0 SE
CALM 0.59 0.59 0.53

Data-blind 0.29 0.29 0.29

Table 2: CALM outperforms data-blind method. CALM demonstrates higher win rates across
all standard error (SE) margins compared to data-blind method that conditions only on the symbolic
representation of the model.

Model criticism should ideally be actionable and aid a user (either LLM or human) in model revi-
sion. In our final experiment, we use the model criticism generated by CALM in the previous section

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(4.3) to aid an LLM-based agent in revising an initial model. We show that CALM’s critiques lead
to significant improvements over the initial model.

Experimental Setup We integrate CALM into the model discovery system introduced by Li et al.
(2024) by giving a revision-LLM three components: the initial model H implemented as a proba-
bilistic program, the test statistic Tk, and natural language criticism hk; the criticism was produced
in the previous section by running CALM on the (fitted) initial model. We fit the models proposed
by the revision LLM using pymc (Abril-Pla et al., 2023); we repeat each proposal three times at
a temperature 0.0 since we noticed non-determinism. We allow the LLM to revise based on a fil-
tered set of significant test statistics. For details, see Section A.9. We report the best model across
proposals and test statistics.

Ablation We consider a data-blind LLM critic that receives only the statistical model, imple-
mented as a probabilistic program; we run this at a temperature 0.0. This approach can be effective
since modeling assumptions are enumerated in the initial probabilistic program.

Quantitative Results In Tables 1 and 2, we evaluate CALM’s ability to produce critiques that
improve upon an initial statistical model and outperform the data-blind method. To do this, we first
compute the expected log predictive density (ELPD LOO) score for both initial and revised models
(Vehtari et al., 2017). Next, we calculate the score difference between the initial and revised model
and determine the margin of victory by dividing the score difference by the standard errors (SE) of
the score difference. For a given dataset, a method is considered to “win” over another at a specific
SE margin if the score difference is larger than the margin. For example, if the score difference is
2 and the SE margin is 1, we count it as a significant win. Finally, we compute aggregated win
rates at various SE margins (1, 1.5, 2). The win rate is the percentage of datasets where one method
outperformed another at a given SE margin.

CALM’s critiques help a revision LLM significantly improve upon the initial model over 80% of
the time, which shows that CALM reliably produces actionable critiques. CALM’s successes are
often related to sliced statistics discussed in Section 4.3 (e.g., the revision-LLM introduces floor-
dependent variance terms). Furthermore, in Table 2, we show that CALM also outperforms the
data-blind critic. Next, we discuss CALM’s limitations.

Limitation 1: Suboptimal transformations of data CALM does not see the model predictions
or data. As a consequence, CALM sometimes does not provide good critiques on transforming
data. This happens most prominently in the mesquite setting where the model predictions can be
negative even though the data is non-negative.

Limitation 2: Correct criticism but imperfect implementation In some cases, CALM identifies
a legitimate discrepancy that the revision LLM incorrectly implements; the revision LLM correctly
uses a Categorical likelihood but does not transpose the logits correctly.

5 CONCLUSION

We introduced CALM, a framework for automated model criticism that leverages LLMs to identify
discrepancies between a model and dataset and then applies hypothesis tests to assess the signif-
icance of discrepancies. CALM serves as a lightweight verifier, validating both scientific models
and critiques within a hypothesis testing framework. Our experiments demonstrate that CALM reli-
ably identifies true discrepancies without hallucinating false critiques. Futhermore, both human and
LLM judges preferred CALM’s critiques over alternative approaches. CALM critiques enabled an
LLM-based system to substantially improve upon expert designed models. By automating model
criticism, CALM represents a step toward more reliable automatic scientific discovery systems.

While our evaluation was limited to Bayesian models, which are commonly used in scientific do-
mains, CALM’s design is versatile: the only requirements are the ability to simulate data from the
model and a symbolic representation of the model. An exploration of other common classes of
scientific models (Cranmer et al., 2019) is an exciting direction for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Oriol Abril-Pla, Virgile Andreani, Colin Carroll, Larry Dong, Christopher J. Fonnesbeck, Maxim
Kochurov, Ravin Kumar, Junpeng Lao, Christian C. Luhmann, Osvaldo A. Martin, Michael Os-
thege, Ricardo Vieira, Thomas Wiecki, and Robert Zinkov. PyMC: a modern, and comprehensive
probabilistic programming framework in python. PeerJ Computer Science, 9, 2023.

M. J. Bayarri and James O. Berger. P values for composite null models. Journal of the Ameri-
can Statistical Association, 95(452):1127–1142, 2000. ISSN 01621459. URL http://www.
jstor.org/stable/2669749.

Thomas R. Belin and Donald B. Rubin. The analysis of repeated-measures data on schizophrenic
reaction times using mixture models. Statistics in medicine, 14 8:747–68, 1995.

George E. P. Box. Sampling and Bayes’ Inference in Scientific Modelling and Robustness. Journal
of the Royal Statistical Society. Series A (General), 143(4):383–430, 1980. ISSN 00359238.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betan-
court, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic program-
ming language. Journal of statistical software, 76(1), 2017.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117:30055 – 30062, 2019.

DeepMind. Ai achieves silver-medal standard solving international mathematical olympiad
problems, July 2024. URL https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/.

Andrew Gelman and Cosma Rohilla Shalizi. Philosophy and the practice of Bayesian statistics
in the Social Sciences. August 2012. doi: 10.1093/oxfordhb/9780195392753.013.0011. URL
https://doi.org/10.1093/oxfordhb/9780195392753.013.0011.

Andrew Gelman, Xiao-Li Meng, and Hal Stern. Posterior predictive assessment of model fitness via
realized discrepancies. Statistica Sinica, 6(4):733–760, 1996. ISSN 10170405, 19968507.

Andrew Gelman, Iven Mechelen, Geert Verbeke, Daniel Heitjan, and Michel Meulders. Multiple
Imputation for Model Checking: Completed-Data Plots with Missing and Latent Data. Biomet-
rics, 61:74–85, 04 2005.

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin.
Bayesian data analysis, third edition. 2013.

Noah D. Goodman. The principles and practice of probabilistic programming. In Proceedings of
the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, pp. 399–402, New York, NY, USA, 2013. Association for Computing Machinery.
ISBN 9781450318327. doi: 10.1145/2429069.2429117.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentbench: Evaluating language
agents on machine learning experimentation. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=1Fs1LvjYQW.

V. Roshan Joseph and Huan Yan. Engineering-driven statistical adjustment and calibration. Techno-
metrics, 57(2):257–267, 2015. doi: 10.1080/00401706.2014.902773.

Marc C. Kennedy and Anthony O’Hagan. Bayesian calibration of computer models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 63, 2001.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
Rewardbench: Evaluating reward models for language modeling, 2024.

Pat Langley, Herbert A. Simon, Gary L. Bradshaw, and Jan M. Zytkow. Scientific discovery: com-
putational explorations of the creative processes. January 1987. URL http://ci.nii.ac.
jp/ncid/BA00758345.

11

http://www.jstor.org/stable/2669749
http://www.jstor.org/stable/2669749
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://doi.org/10.1093/oxfordhb/9780195392753.013.0011
https://openreview.net/forum?id=1Fs1LvjYQW
http://ci.nii.ac.jp/ncid/BA00758345
http://ci.nii.ac.jp/ncid/BA00758345

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael Y Li, Emily B Fox, and Noah D Goodman. Automated Statistical Model Discovery with
Language Models. In International Conference on Machine Learning (ICML), 2024.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery, 2024. URL https://arxiv.org/
abs/2408.06292.

Måns Magnusson, Paul Bürkner, and Aki Vehtari. posteriordb: a set of posteriors for Bayesian
inference and probabilistic programming, October 2023.

Xiao-Li Meng. Posterior Predictive p-Values. The Annals of Statistics, 22(3):1142 – 1160, 1994.
doi: 10.1214/aos/1176325622.

Chirag Modi, Robert M. Gower, Charles Margossian, Yuling Yao, David Blei, and Lawrence K.
Saul. Variational Inference with Gaussian Score Matching. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Donald B. Rubin. Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statis-
tician. The Annals of Statistics, 12(4):1151 – 1172, 1984.

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a
large-scale human study with 100+ nlp researchers, 2024. URL https://arxiv.org/abs/
2409.04109.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An Introduction to
Probabilistic Programming, 2021.

David A. van Dyk and Hosung Kang. Highly Structured Models for Spectral Analysis in High-
Energy Astrophysics. Statistical Science, 19(2):275 – 293, 2004.

Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC. Statistics and Computing, 27(5):1413–1432, sep 2017. ISSN
0960-3174. doi: 10.1007/s11222-016-9696-4.

David Waltz and Bruce G. Buchanan. Automating science. Science, 324(5923):43–44, 2009.
doi: 10.1126/science.1172781. URL https://www.science.org/doi/abs/10.1126/
science.1172781.

Mike Wu and Noah Goodman. Foundation Posteriors for Approximate Probabilistic Inference. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022.

Ziwei Xu, Sanjay Jain, and Mohan S. Kankanhalli. Hallucination is inevitable: An innate lim-
itation of large language models. ArXiv, abs/2401.11817, 2024. URL https://api.
semanticscholar.org/CorpusID:267069207.

12

https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2409.04109
https://www.science.org/doi/abs/10.1126/science.1172781
https://www.science.org/doi/abs/10.1126/science.1172781
https://api.semanticscholar.org/CorpusID:267069207
https://api.semanticscholar.org/CorpusID:267069207

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROMPTS/INPUTS FOR TEST STATISTIC PROPOSER STEP

Critic function prompt

You are a brilliant statistician specializing in critiquing models! Your equally
brilliant colleague has come up with a probabilistic program in Stan that proposes a
generative/statistical model for the data.
Your job is to critique the models and provide hypotheses for discrepancies between
the model and the data. To do this, you should write a "test statistic function"
in Python. This is motivated by posterior predictive checks in Bayesian statistics.
This test function should take as input a dataframe where one of the columns contains
the posterior predictive sample. It should return a scalar-valued test statistic.
To quantify discrepancies, I will compute this test statistic for each posterior
predictive sample and compare it to observed data. Therefore, choose test statistics
that you think will reveal discrepancies between the model and the data.

Figure 7: System prompt for proposing test statistics Prompt used for proposing test statistic
step in Section 3.1. We also provide some additional instructions on formatting the response and
describing the format of the input dataframe which we omit from the prompt above.

Natural language criticism prompt

Your equally brilliant colleague has come up with a discrepancy functions that identify
possible weaknesses of generative models for data. I will give you the test statistics
and the result of computing those test statistics. Your job is to interpret the
results of running those test statistics and synthesize the discrepancies. Your
synthesis should be as helpful as possible for your colleague who will use this
synthesis to improve the model. You will be given one million dollars if you do
this well. Focus on being as informative with your synthesis (do not say generic
things) to help your colleague understand the test statistic. You should provide a
natural language summary of the discrepancy function. Reference specifically the test
statistic type and the discrepancy it reveals about specific modeling assumptions. I
provide the test statistic Python function and posterior-predictive pval.

Posterior predictive p-val:
Test statistic function:

Figure 8: Prompt for natural language criticism step See Section 3.2.

A.2 COMPUTING P-VALUES

A.3 STAN POSTERIORDB DATASETS

We list the model-dataset pairs criticized in Section 4.3.

• radon mn-radon variable slope noncentered

• radon mn-radon variable intercept slope centered

• radon mn-radon partially pooled noncentered

• radon mn-radon county intercept

• radon mn-radon pooled

• radon mn-radon variable intercept centered

• radon mn-radon variable intercept slope noncentered

• radon mn-radon variable intercept noncentered

• radon mn-radon partially pooled centered

• radon mn-radon variable slope centered

• kidiq-kidscore momhs

• kidiq-kidscore momiq

• kidiq with mom work-kidscore interaction z

• kidiq with mom work-kidscore interaction c

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Inputs to test statistic proposer

1 Description: Cognitive test scores of three and four-year-old
children

2

3 Column Description:
4

5 - kid_score: cognitive test scores of three and four-year-old
children

6

7 - mom_hs : did mother complete high school? 1: Yes, 0: No
8

9 - mom_iq : mother IQ score
10

11 data {
12 int<lower=0> N;
13 vector<lower=0, upper=200>[N] kid_score;
14 vector<lower=0, upper=1>[N] mom_hs;
15 }
16 parameters {
17 vector[2] beta;
18 real<lower=0> sigma;
19 }
20 model {
21 sigma ˜ cauchy(0, 2.5);
22 kid_score ˜ normal(beta[1] + beta[2] * mom_hs, sigma);
23 }

Figure 9: Examples inputs to test statistic proposal step. Contextual information provided to
test statistic proposer in Section 3.1. Programs are implemented in Stan. Dataset metadata was
available with the dataset.

• kidiq with mom work-kidscore mom work

• kidiq with mom work-kidscore interaction c2

• GLM Poisson Data-GLM Poisson model

• dugongs data-dugongs model

• eight schools-eight schools centered

• surgical data-surgical model

• nes1972-nes

• gp pois regr-gp pois regr

• earnings-logearn height male

• earnings-log10earn height

• earnings-earn height

• earnings-logearn interaction

• earnings-logearn interaction z

• earnings-logearn height

• mesquite-mesquite

• mesquite-logmesquite logvolume

• mesquite-logmesquite logvash

• mesquite-logmesquite logvas

• mesquite-logmesquite

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

p = 0.057

Test statistic null distribution

Observed test stat T (Y)

p = 0.732

Test statistic null distribution

Observed test stat T (Y)

Figure 10: Computing empirical p-values from test statistics. We illustrate how to use test statis-
tics to obtain p-values. In short, we compute the test statistic over the model samples to form a null
distribution over the test statistic; we do this for two different test statistics above. We then compute
the test statistic on the data (observed test stat in the plots) which appear as vertical dashed lines
in the figure. We then compute an empirical value by comparing the observed test statistic value
against the null distribution.

• low dim gauss mix-low dim gauss mix

• low dim gauss mix collapse-low dim gauss mix collapse

• arK-arK

A.4 EXAMPLES OF NATURAL LANGUAGE CRITIQUES

1 """
2 The posterior predictive p-value of 0.0 suggests a significant

discrepancy between the observed data and the model predictions
regarding the distribution of children’s cognitive test scores. The
test statistic used here measures the skewness of the predicted
scores, indicating that the model’s assumption of normally
distributed scores may not be appropriate.

3

4 The very low posterior predictive p-value of 0.0019 suggests that the
model does not adequately capture the variability of radon levels
across different floor measurements. This discrepancy indicates that
the assumption of a homogeneous linear interaction between floor
level and radon level across all counties may be too simplistic.

5 """
6

7 """
8 The model fails to capture the difference in radon levels between

measurements taken in the basement versus the first floor. This is
indicated by a posterior predictive p-value of 0.0, suggesting that
the model does not adequately represent the known higher radon levels
typically found in basements compared to the first floor.

9 """
10

11 """
12 The model’s use of a normal distribution to predict the inherently

discrete variable ’partyid7’ (ranging from 1 to 7) results in a
significant proportion of predicted values falling outside this
permissible range.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

13 """

A.5 EXAMPLE TEST STATISTICS FOR EXPERIMENT 2

1 def test_statistic():
2 kurtosis = (fourth_moment / squared_var) - 3 # excess kurtosis
3

4 def test_statistic():
5 # Calculating the first derivative (approximated by finite

differences)
6 derivatives = population_diff / year_diff
7 positive_slope_count = np.sum(derivatives > 0)
8

9 def test_statistic():
10 dispersion_ratio = y_rep_variance/y_rep_mean if y_rep_mean != 0 else

float(’inf’)

A.6 FURTHER TEST STATISTICS FOR EXPERIMENT 3

1 def test_statistic(df):
2 quantile_edges = df[’log_uppm’].quantile([0.33, 0.66]).tolist()
3 def categorize_by_uranium(uppm):
4 if uppm <= quantile_edges[0]:
5 return ’Low uranium’
6 elif uppm <= quantile_edges[1]:
7 return ’Medium uranium’
8 else:
9 return ’High uranium’

10 df[’uranium_category’] = df[’log_uppm’].apply(categorize_by_uranium)
11 df[’residuals’] = df[’y_rep’] - df[’y_rep’].mean()
12 grouped_std_devs = df.groupby(’uranium_category’)[’residuals’].std()
13 range_of_std_devs = grouped_std_devs.max() - grouped_std_devs.min()
14

15 def test_statistic(df):
16 grouped_variances = df.groupby(’county_idx’)[’y_rep’].var()
17 test_statistic_value = np.std(grouped_variances)
18

19 def test_statistic(df):
20 group_0 = df[df[’group’] == 0][’y_rep’]
21 group_1 = df[df[’group’] == 1][’y_rep’]
22

23 std_dev_group_0 = np.std(group_0)
24 std_dev_group_1 = np.std(group_1)
25

26 diff_std_dev = abs(std_dev_group_0 - std_dev_group_1)
27

28 def test_statistic(df):
29 range_per_county = df.groupby(’county_idx’)[’y_rep’].apply(lambda x:

x.max() - x.min())
30 average_range = range_per_county.mean()
31

32 def test_statistic(df):
33 iq_bins = pd.cut(df[’mom_iq’], bins=[0, 90, 100, 110, 120, 130, np.

inf], right=False, labels=False)
34 variances_by_iq_range = df.groupby(iq_bins)[’y_rep’].var()
35 coefficient_of_variation = variances_by_iq_range.std() /

variances_by_iq_range.mean()
36

37 def test_statistic(df):
38 test_statistic_value = np.var(df[’y_rep’])
39 return result
40

41 def test_statistic(df):

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

42 males_log_earn_rep = df[df[’male’] == 1][’y_rep’]
43 females_log_earn_rep = df[df[’male’] == 0][’y_rep’]
44

45 std_dev_male = np.std(males_log_earn_rep)
46 std_dev_female = np.std(females_log_earn_rep)
47

48 test_statistic_value = abs(std_dev_male - std_dev_female)
49

50 def test_statistic(df):
51 range_per_county = df.groupby(’county_idx’)[’y_rep’].apply(lambda x:

x.max() - x.min())
52 average_range = range_per_county.mean()

A.7 EXAMPLE QUALITATIVE FEEDBACK FROM DOMAIN EXPERTS

We collected feedback from statistics experts regarding the model criticisms produced by CALM.
Here are two representative quotes:

“I liked seeing code I could immediately run and check, it allowed me to take fast
action to assess the situation.”

“I liked when I had code that immediately applied to the model.”

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.8 PROMPT USED FOR QUALITATIVE CRITERIA LLM JUDGES

LLM Judge Prompt for Qualitative Criteria

1 You are an expert in statistical modeling and data science. Your
task is to determine which model criticism is more transparent.

2

3 Context:
4 Dataset Description: ...
5

6 Data Sample: ...
7

8 Column Description: ...
9

10 Model being criticized:
11 ‘‘‘
12 ...
13 ‘‘‘
14

15 Criticism A:
16 <Criticism A>
17 {criticism_a}
18 </Criticism A>
19

20 Criticism B:
21 <Criticism B>
22 {criticism_b}
23 </Criticism B>
24

25 Please evaluate the transparency of the criticisms based on the
following criteria, assuming the intended evaluator is a data
scientist or statistician:

26 - How clear is the methodology used to generate the criticism?
27 - How explicitly are the relevant parts of the dataset identified

in the criticism?
28 - How unambiguous is the process of determining the criticism’s

conclusions?
29

30 First, provide a detailed analysis of how each criticism meets the
criteria and compare Criticism A and Criticism B. Second, state
"A" or "B" to indicate which criticism is more transparent.

31

32 Important:
33 - Avoid any position biases and ensure that the order in which

the criticisms were presented does not influence your decision.
34 - Do not allow the length of the responses to influence your

evaluation.
35 - Do not favor certain names of the criticisms.
36 - Be as objective as possible.
37

38 Provide your response in the following format:
39 Comparison: <Detailed reasoning and comparison to determine

prefered criticism>
40 Final Response: <"A" or "B">

Figure 11: LLM judge prompt for determining which model criticism is more transparent.
The same prompt structure, with corresponding judging criteria descriptions, is used for actionable
and tailored judge prompts. The order of criticisms (CALM being Criticism A vs. Criticism B) is
randomized to avoid position bias, and impartiality instructions are adapted from the RewardBench
(Lambert et al., 2024) judge prompts.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.9 DETAILS ON EXPERIMENT 4

We ran the revision process for a single round, at a temperature of 0.0, using 3 proposals in total;
we run multiple proposals because temperature 0.0 was not deterministic. We choose the top five
test statistics Tk, ranked by p-value, where the Bonferonni-adjusted p-value < 0.15. We choose top
five to limit the number of models fit since the fitting procedure is computationally-intensive. We
choose the cutoff value by examining the spread of the Bonferonni-adjusted p-values; there were
18 significant discrepancies. We note that, while this threshold is larger than a typical p-value,
discrepancies that do not meet the traditional significance levels may nevertheless be valuable in the
context of a closed-loop model discovery process. A less stringent threshold allows us to evaluate
lower-significance discrepancies that still may improve model performance.

19

	Introduction
	Background
	Method: CALM
	Automatically proposing and evaluating discrepancies
	Interfacing with LLM science agents via natural language criticism

	Experiments
	Experiment 1: Naive LLM-based critic hallucinates in synthetic regression task
	Experiment 2: Statistical analysis of hallucinations and true discoveries
	Experiment 3: Analyzing key qualitative properties of test statistics for real-world model-dataset pairs
	Experiment 4: CALM generated criticism drives model improvements

	Conclusion
	Appendix
	Prompts/inputs for test statistic proposer step
	Computing p-values
	Stan PosteriorDB datasets
	Examples of natural language critiques
	Example test statistics for Experiment 2
	Further test statistics for Experiment 3
	Example Qualitative Feedback from Domain Experts
	Prompt used for Qualitative Criteria LLM Judges
	Details on Experiment 4

