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ABSTRACT

To simultaneously achieve high performance and low latency, the paradigm of
edge-cloud model collaboration, where Large Language Models (LLMs) are
deployed on the powerful cloud and Small Language Models (SLMs) on the
resource-limited edge devices, has garnered great attention recently. However, a
key limitation of current edge-cloud architecture is its static nature, which hinders
the dynamic integration of new knowledge. More specifically, existing methods
typically update the system by directly retraining the cloud-based LLM with edge-
side newly collected data, which not only increases communication overhead but
also neglects available computing power and data accessibility on edge devices.
To tackle this challenge, we propose a novel mutual Evolution framework for
edge-cloud model Collaboration called CoEvo that enables both cloud-side LLM
and edge-side SLMs to update with new knowledge continuously. The cloud-
based LLM can enhance edge-side SLMs through credible Chain-of-Thought
(CoT) based knowledge distillation to improve its general understanding capa-
bilities. Once the edge-side SLMs collect new domain-specific knowledge and
optimize themselves locally, they will specifically enhance the cloud-based LLM
via a credible probability matrix predicted on a few samples without uploading
all raw data. Through this mutual evolution, the system can achieve continual
optimization of the cloud and edge-side models and promote real-world deploy-
ments. Experimental results demonstrate a considerable performance gain of our
edge-side SLMs against existing methods on the target dataset, with the cloud-side
LLM also achieving a notable improvement over the base model.

1 INTRODUCTION

Large language models (LLMs) such as the GPT series (Achiam et al., 2024) and DeepSeek R1
(Guo et al., 2025) have been extensively adopted across diverse domains, substantially improving
operational efficiency and fostering innovation in a wide range of industries (Saha et al., 2025). To
support the practical deployment of these models, the edge–cloud collaborative architecture (Wang
et al., 2024b) has emerged as a critical paradigm. This architecture capitalizes on the abundant com-
putational resources of cloud servers to maintain large-scale LLMs, while simultaneously deploying
lightweight small language models (SLMs) on resource-constrained edge devices (Tian et al., 2024).
By integrating the powerful inference capabilities of LLMs with the lightweight and efficient deploy-
ment of SLMs (Zhao et al., 2024), the edge–cloud architecture achieves an effective balance between
performance and efficiency. In particular, techniques such as LLM-guided inference enable SLMs
(Liu et al., 2024) to inherit knowledge and enhance their reasoning abilities, all while sustaining
low latency and minimizing computational overhead. This collaborative paradigm thus provides a
promising pathway for scaling LLM applications to real-world environments.

In recent years, researchers have made notable progress in improving the inference performance
of edge-cloud architectures. By leveraging maintained external knowledge bases, language models
enhance overall performance on both edge and cloud sides through retrieval-augmented generation
(RAG) (Lewis et al., 2020; Liu et al., 2025; Qin et al., 2025). To avoid substantial external storage
and query overhead during the inference stage, some studies have utilized external tools (Zhuang
et al., 2023; Yuan et al., 2024a) such as search engines and compilers to assist language models in
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solving practical problems. (Chen et al., 2024a) utilizes detection algorithms to filter data, retaining
routine data processing on the edge side while uploading only critical data to the cloud, thereby
maintaining the inference performance of the framework and reducing redundant transmission. The
authors in (Yao et al., 2024) maintain a database built on the edge side that stores historical requests
and responses from cloud-based LLMs, effectively enhancing the knowledge richness of SLMs and
improving the response quality for similar requests.

Although these works have achieved great progress in the edge-cloud model collaboration, they all
operate in a static mode (Qin et al., 2024), lacking the ability to dynamically acquire and learn new
information, severely restricting their adaptability and real-time learning potential. Some existing
methods leverage edge devices to collect new data and upload it to the cloud, achieving dynamic
knowledge integration through periodic updates of the cloud-based LLM (Fan et al., 2023; Kuang
et al., 2024). However, such an update scheme is overly simple and exposes the entire architecture
to several critical challenges: (1) directly uploading raw data to the cloud for updating LLMs incurs
substantial communication overhead; (1) edge devices must wait for data transmission and cloud-
side model updates, which leads to latency in user experience; (2) since new data are collected on
edge devices, uploading them to the cloud for centralized updates essentially neglects the computa-
tional capacity of edge devices, reducing resource utilization; and (3) in some cases, the data may
involve sensitive information, making it unsuitable for direct uploading to the cloud for training.

Offloading some computational tasks to edge devices presents a highly attractive alternative. Edge
devices, such as the NVIDIA Jetson series, embedded systems with discrete GPUs or onboard in-
telligent computing platforms, are typically equipped with powerful CPUs, GPUs, or dedicated AI
accelerators, possessing sufficient computing power to support lightweight fine-tuning of models
with billions of parameters. This capability is further enhanced by Parameter-Efficient Fine-Tuning
(PEFT) techniques, which significantly reduce the computational overhead required for fine-tuning
with minimal impact on model performance. We compare the data transfer overhead between edge-
based and cloud-based update strategy, as detailed in Table 1. The cloud-based update strategy
requires two data transmissions between the edge and cloud to achieve a collaborative update (even
with local storage), while the edge-based approach only needs one edge-to-cloud transmission.

Table 1: Comparison of data transfer overhead between edge-based
and cloud-based update strategy.

Method Commonsense Math Natural Language
CQA GSM8K WinoGrande

Cloud-based update strategy
w/o Local data storage 2.0× 1.6× 1.8×
Local data storage 1.3× 1.2× 1.2×

Edge-based update strategy 1.0× 1.0× 1.0×

To address these chal-
lenges, we propose an
enhanced edge–cloud
architecture that is empow-
ered with the capability
to efficiently and securely
integrate newly collected
knowledge. This improve-
ment not only enables
continuous adaptation of
deployed models to evolving data distributions but also ensures that knowledge updates can be
incorporated with minimal latency and without compromising the privacy of user data. In a standard
edge-cloud system that serves users, cloud-based LLMs typically play an assisting and guiding role,
while SLMs deployed on edge devices interact directly with users. During this process, edge device
SLMs can directly access and learn from newly generated real-time data samples, thereby achieving
more accurate modeling of the local data characteristics, which facilitates self-updates with minimal
overhead. Driven by this intuition, we propose a novel mutual Evolution framework for edge-cloud
model Collaboration called CoEvo that enables both cloud-side LLM and edge-side SLMs to
continuously update with new knowledge. More specifically, it consists of two independent stages
to update the cloud-side and edge-side models. In the cloud-to-edge stage, CoEvo incorporates
confidence (Xiong et al., 2024) scores into the Chain-of-Thought (CoT) , teaching the edge-side
SLMs to generate high-confidence responses that emulate the cloud-based LLM. While in the
edge-to-cloud stage, the edge-side SLMs continuously acquire new domain-specific data and
update themselves. CoEvo then performs credibility-based filtering on the SLMs’ newly learned
representations, allowing only highly reliable domain knowledge to be uploaded and used to
enhance specialized inference capabilities of the cloud-side LLM. The major contributions of this
paper are summarized as follows:
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• We are the first to explore mutual evolution in edge-cloud model collaboration, breaking
the static paradigm of traditional edge-cloud architectures and enabling an efficient and
secure continual learning of new knowledge.

• We propose CoEvo, an enhanced edge-cloud architecture that enables perception and learn-
ing from raw data through local updates on the edge side. It also facilitates bidirectional
knowledge transfer between the edge and the cloud via a credible chain-of-thought and
credible probability matrices.

• We conduct extensive experiments across multiple datasets spanning various domains. Ex-
perimental results demonstrate that our method achieves performance improvements on
both the edge and cloud sides compared to state-of-the-art approaches.

We employ Llama3 (Dubey et al., 2024) 8B as the edge-side SLMs and Llama3 70B as the cloud-
side LLM in the edge-cloud architecture, evaluating performance across general domains (MMLU
(Hendrycks et al., 2021)), commonsense reasoning tasks (CommonsenseQA(CQA) (Talmor et al.,
2019)), math tasks (GSM8K (Cobbe et al., 2021)), and co-reference resolution tasks (WinoGrande
(Sakaguchi et al., 2020)). In the cloud-to-edge process, CoEvo improves by 1% to 2% compared to
existing baseline methods; In the edge-to-cloud process, CoEvo enables a 1% to 1.3% increase in
the inference accuracy of the optimized cloud-side LLM.

2 RELATED WORK

Knowledge Transfer from Cloud LLMs to Edge SLMs: Based on edge-cloud architecture, (Xu
et al., 2024; Peng et al., 2024) use cloud-based LLMs to enhance the performance of edge-side
SLMs. This is achieved by building a local data store from historical interactions with the cloud
LLM and dynamically integrating it with the predictions of the SLM on the device during inference
(Ding et al., 2024). (Chen et al., 2024b) focuses on improving edge-side SLMs through knowledge
distillation (Wang et al., 2022) while offloading all gradient-related operations to the cloud, thereby
reducing the computational burden on the edge-side. (Hao et al., 2024; NING et al., 2025) leverage
LLMs to provide token-level inference guidance for edge-side SLMs, integrating the LLM’s seman-
tic understanding into the actual inference process of the SLM. However, it is constrained by the
upper limit of the cloud-side model’s inference capabilities, and the lack of ground truth labels and
chain of thought(CoT) (Wei et al., 2022b) data for given tasks (Yuan et al., 2024b) undermines its
applicability. Our approach focuses on the potential of edge devices to acquire new data and aims to
achieve continual learning in an edge-cloud framework by leveraging domain-specific data.

Advanced Inference Techniques in Language Model: The CoT-related (Wang et al., 2023b;
Wan et al., 2025; Zhang et al., 2025a) technique guides language models to generate coherent
thought chains and answers during inference, requiring the model to engage in one or more in-
termediate reasoning steps before producing the final answer (Kojima et al., 2022; Fu et al., 2023).
Other studies have further enhanced the inference capabilities of language models by extending the
CoT paradigm, such as integrating internal generation processes with external actions (Wang et al.,
2024a) (e.g., leveraging RAG, invoking search engines, calculators, or code interpreters). They en-
hance the model’s comprehensive inference capabilities by leveraging external knowledge, although
constructing a well-structured external knowledge base or designing effective task flows is by no
means an extra overhead (Cheetirala et al., 2025). The issue with inference technology is that lan-
guage models themselves are constrained (Bian et al., 2024; Wang et al., 2025) by the scope of
training data, delays in knowledge updates, and potential factual biases. Relying solely on inference
optimization often struggles to break through the model’s inherent cognitive boundaries.

Fine-Tuning Techniques for Language Model Optimization: Direct Preference Optimization
(DPO) (Rafailov et al., 2023) eliminates the need for reward models typically required in reinforce-
ment learning and RLHF (Reinforcement Learning from Human Feedback) (Ouyang et al., 2022)
by directly incorporating preference data into the training objective. This approach reduces com-
putational overhead while ensuring the model focuses on preferred outputs (Shankar et al., 2024).
Distill-step-by-step (Hsieh et al., 2023) enhances student models’ inference capabilities by aligning
their outputs (both answers and rationales) with those generated by teacher models (Beyer et al.,
2022). This dual alignment improves both the accuracy of problem solving and the generation of
CoT. Chain of Preference Optimization (CPO) (Zhang et al., 2025b) extends DPO by incorporating
multistep thought chains, where the model generates and evaluates multiple inference paths while
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Figure 1: The overall architecture of CoEvo. In the cloud-to-edge phase, the cloud LLM performs
instruction-guided inference to generate answers, rationales, and confidence scores. These outputs
provide the basis for knowledge distillation, where confidence scores dynamically weight the knowl-
edge to optimize edge SLMs. In the edge-to-cloud phase, the edge-side SLMs are optimized with
new data and generate responses from historical interactions. CoEvo then applies multiple-sample
voting, probability scaling, and filtering to extract high-quality domain knowledge, which is up-
loaded back to the cloud to further refine the cloud-side LLM.

explicitly considering dispreferred chains. A potential issue with these methods is the lack of consid-
eration for knowledge quality, which leads to suboptimal results being incorporated into the training
process. Our approach filters the data used to avoid interference from low-quality content, thereby
enhancing the effectiveness of fine-tuning.

3 COEVO: A MUTUAL EVOLUTION FRAMEWORK FOR EDGE–CLOUD
MODEL COLLABORATION

3.1 OVERVIEW

CoEvo leverages the unique advantage of edge devices being accessible to users and extends the
static edge–cloud collaboration framework into a dynamic knowledge learning paradigm, supporting
the mutual evolution of models on both the edge and cloud sides. Figure 1 illustrates the details
of CoEvo. In the cloud-to-edge phase, the cloud-based LLM generates rationales and labels on
a general-domain dataset D. These outputs are distilled into a base edge-side SLM M0, where
confidence scores are used to weight the knowledge and mitigate the impact of suboptimal outputs,
resulting in an enhanced SLM M1 with improved semantic comprehension. M1 is then deployed
on edge devices for domain-specific inference. In the edge-to-cloud phase, the edge-side SLMs
continuously interact with the local environment and user context, serving as natural collectors of
domain-specific data and enabling efficient local updates. Through this process, M1 is further
optimized into a domain expert model M2. The superior domain knowledge extracted from M2,
specifically knowledge that surpasses the cloud LLM’s existing domain understanding, is selectively
distilled back into the cloud-side LLM Mt, yielding an improved model MT with stronger domain
inference capabilities. Through this bidirectional synergy, both edge-side and cloud-side models can
co-evolve by continuously learning new knowledge and improving domain-specific performance.
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3.2 CLOUD-TO-EDGE: CREDIBLE COT KNOWLEDGE DISTILLATION

In the cloud-to-edge stage of CoEvo, the cloud-based LLM transfers its inference capability to the
edge-side SLM through knowledge distillation. Conventional methods typically rely on labels as
the primary form of knowledge. However, labels alone are insufficient to enhance the semantic
understanding of SLMs, limiting their ability to achieve strong domain-specific inference even after
optimization. Motivated by works such as CoT distillation (Wang et al., 2023a), we instead use
both labels and rationales as knowledge, thereby expanding the informational scope and enabling
SLMs to learn not only outcomes but also the underlying inference processes. A critical challenge
lies in the assumption that cloud-based LLMs can consistently generate labels and rationales of
consistently high quality. In practice, even LLMs, despite their strong inference capabilities, may
produce ambiguous or erroneous outputs, which can degrade performance. To address this issue,
CoEvo introduces mechanisms that allow SLMs to emphasize high-quality knowledge while filtering
out noisy or unreliable inferences, thereby maximizing the effectiveness of the distillation process.

MMLUCQA GSM8KWinoGrande
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Figure 2: Comparison of average confidence
scores for correct vs. incorrect answers across
different groups.

Confidence is commonly used to reflect the de-
gree of self-assurance that large models have
in their outputs, which may correlate with the
correctness of the inference results. We an-
alyze the confidence generated by LLM infer-
ence across multiple datasets from different do-
mains, as shown in Figure 2. Two key observa-
tions emerge: (1) LLMs generally exhibit high
confidence in their responses (consistently above
0.67), regardless of correctness, which aligns
with findings in prior studies; and (2) despite
this overall tendency toward high confidence, cor-
rect answers are still associated with significantly
higher confidence than incorrect ones. These ob-
servations suggest a potential correlation between
confidence levels and the quality of the responses.
In particular, the validity of the inference process
(i.e., the generated CoT) is strongly tied to the correctness of the final answer: a coherent ratio-
nale typically leads to a correct result. Thus, confidence can serve as a useful indicator of both
rationale quality and answer reliability. Nonetheless, we also observe cases where LLMs produce
correct answers with low confidence, reflecting a lack of self-assurance. In such cases, multiple
sampling often increases the likelihood of generating incorrect responses. Therefore, it is advisable
to assign lower weights to these low-confidence samples during training, even if their answers are
occasionally correct, to prevent the student model from inheriting similar confusion.

We let the cloud-based LLM Mt execute inference tasks on a problem set D. Mt generates corre-
sponding rationale (Q → R), answers (Q → A), and confidence (Q → C) for each instruction. We
perform knowledge distillation on the SLM. Given the preceding sequence (1, . . . , i− 1), Mt gen-
erates a prediction for the ith token. Based on the answers and rationales obtained, the fundamental
objectives are formulated as follows:

LA = − log p([Ai | PQ→A;Q;A<i];Mt). (1)

LR = − log p([Ri | PQ→R;Q;R<i];Mt). (2)

where p represents probability, Ai and Ri depict the ith token in the answer and rationale, < i
refers to the sequence of tokens preceding the ith token, [; ] denotes the operation that formats the
LLM input by assembling question, answer, and rationale into the prompt Pt. We scale the training
objectives in (1) and (2) using the confidence:

L = Sconf · [(1− α)LR + αLA] . (3)

where α is hyperparameter, Sconf represents the confidence score in the model inference. By mod-
eling knowledge distillation as the process above, we improve SLM M0 to obtain M1. M1 is
deployed on an edge device to perform practical tasks. Not only does M1 surpass M0 in inference
ability, but it also possesses stronger cognitive understanding abilities. This makes it possible for
M1 to evolve into a domain-specific expert after being exposed to domain-specific data.
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3.3 EDGE TO CLOUD: CREDIBLE PROBABILITY MATRIX KNOWLEDGE DISTILLATION

CoEvo primarily leverages edge-side SLMs to acquire new data. By learning from evolving data
distributions and performing local self-updates, the SLMs dynamically adapt to new knowledge.
These locally acquired updates are then fed back to the cloud, where they further enhance the per-
formance of the LLM. We first leverage the newly acquired data to optimize SLM M1 on the edge
device, resulting in a domain-specific expert M2. While inheriting M1’s strong inference abilities,
M2 also possesses richer domain-specific knowledge. We select a portion of the instructions used
during the self-updating process and combine them with M2’s responses to these instructions as
knowledge to be uploaded to the cloud. To obtain superior responses, for each instruction, CoEvo
samples multiple inference results y and selects the one with the highest consistency as the inter-
action record y∗ by majority voting. Through inference sampling, CoEvo aims to obtain responses
that approach the upper limit of M2’s inference capability.

y∗ = argmax
y∈Y

N∑
i=1

I(yi = y). (4)

We selectively extract interaction records in order to identify and upload the knowledge where M2

produced relatively high-quality responses to the cloud while minimizing the impact of transmitting
raw responses on original data privacy. For each response of M2, we obtain the probability matrix
P of its response component:

P =


p11 p12 · · · p1m
p21 p22 · · · p2m

...
...

. . .
...

pn1 pn2 · · · pnm

 , pij =
ezij∑m
k=1 e

zik
. (5)

where m is the length of the response sequence, z represents the logits corresponding to the ith

token in the response sequence, and n is the size of the vocabulary. Due to the large value of n(often
tens or hundreds of thousands), computing and transmitting the probability matrix for the entire se-
quence becomes computationally expensive. To address this, CoEvo therefore applies a compression
process. Through statistical analysis across the multiple datasets used in our experiments, we find
that the probability distribution is highly concentrated in the top-k elements. We select the top 10
elements, which significantly reduces the raw transmission cost while striving to preserve the uncer-
tainty information inherent in the model’s predictions. To obtain superior responses, we reconsider
the relationship between confidence and inference outcomes. Confidence in a language model’s re-
sponse is directly reflected in the magnitude of its larger output logits. This same principle applies
to evaluating the reliability of a probability matrix. For a given interaction record with a probability
matrix, CoEvo calculates: (1) the sum of the top-k probabilities and (2) the maximum probability in
the top-k probabilities.

pt1 =

{
1, if

∑k
i=1 Pij > p1 ∀j ∈ {1, . . . ,m},

0, otherwise.
, pt2 =

{
1, if P1j > p2 ∀j ∈ {1, . . . ,m},
0, otherwise.

.

(6)
If pt1=1 and pt2=1, the interaction record is considered high quality:

pfinal =

{
1, if pt1 = 1 ∧ pt2 = 1,

0, otherwise.
(7)

We upload records with pfinal=1 to the cloud, feeding high-quality domain knowledge back to the
cloud-side LLM. Through credible probability matrix knowledge distillation, we optimize the LLM
Mt to obtain MT . MT breaks through the original performance ceiling of the cloud-side LLM
by achieving dynamic updates based on edge-side new knowledge and serves as the foundational
cloud-side LLM for the next iteration of CoEvo.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We evaluate CoEvo on four datasets from diverse domains: (1) Multi-task understanding:
MMLU (Hendrycks et al., 2021); (2) Commonsense inference: CQA (Talmor et al., 2019); (3)

6
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Table 2: Performance comparison between CoEvo and baselines in the cloud-to-edge stage

Method Multi-task Commonsense Math Natural Language
MMLU CQA GSM8K WinoGrande

Meta Llama3 8B 57.26 59.38 52.15 62.46

Efficient inference based on CoT
Chain of Thought 59.48 63.68 59.22 62.77
Self-Consistency CoT 61.17 65.00 60.09 62.98
Tree of Thought 59.95 64.64 58.73 62.48

Fine-tuning-based optimization
DPO 63.90 64.06 61.66 67.10
Distill step by step 64.38 65.44 59.31 68.20
SPIN 63.85 63.19 62.08 66.62

CoEvo (Ours) 65.91 66.26 62.44 70.40

Math problems: GSM8K (Cobbe et al., 2021); (4) Natural Language Inference: WinoGrande
(Sakaguchi et al., 2020). Details of the datasets can be found in Appendix A.

Baseline. We separately evaluate the cloud-to-edge and edge-to-cloud processes to validate the
performance improvements of both the edge-side SLM and cloud-side LLM. For the cloud-to-edge
process, we compare two types of approaches. (1) Efficient inference methods based on CoT: Chain
of Thought (Wei et al., 2022b), Self-Consistency CoT (Wang et al., 2023b), and Tree of Thought
(Yao et al., 2023); (2) Fine-tuning-based optimization methods: DPO (Rafailov et al., 2023), Distill
Step-by-Step (Hsieh et al., 2023), and SPIN (Chen et al., 2024c). For the edge-to-cloud process,
we compare the results with both the base LLM and the LLM after Supervised Fine-Tuning (SFT)
(Wei et al., 2022a). Details of the baselines can be found in Appendix B.

Implementation Details. We use Llama3-8B (Dubey et al., 2024) as the edge-side SLM and
Llama3-70B as the cloud-side LLM in our experiments. On the edge side, we limit our experiments
to 1 A100 80GB GPU(under 42 GB VRAM used in total) to simulate limited computational re-
sources; On the cloud side, we employ a batch size of 32 or 64 using 16 A100 80GB GPUs. The
training phase employs the AdamW optimizer with cosine annealing and 20 warmup steps. We
employ machine learning libraries such as Deepspeed (Rajbhandari et al., 2020) to facilitate model
training and utilize the LoRA technique to reduce the resource overhead required for edge-based
training. Details of configurations can be found in Appendix C.

4.2 PERFORMANCE OVERVIEW

Table 3: Performance comparison in edge-to-cloud stage.

Method Commonsense Math Natural Language
CQA GSM8K WinoGrande

Meta Llama3 70B 78.09 80.20 82.42
SFT 79.09 81.74 83.97

CoEvo(Ours) 79.26 81.18 83.79

Table 2 presents a comparison be-
tween CoEvo and baseline methods
in cloud-to-edge stage. CoEvo con-
sistently outperforms most baseline
methods across the four task do-
mains. On MMLU, CoEvo achieves a
gain of 1.5% over the strongest base-
line, demonstrating its effectiveness
in cross-domain tasks. On CQA, it improves by 0.8% compared to the best baseline, achieving
a marginal gain. Our analysis reveals that the answers generated by cloud-side LLM in cloud-to-
edge stage were actually suboptimal, since the use of CoT-based inference on CQA reduced the
accuracy of the inference. This may be attributed to the commonsense nature of CQA, for which
the CoT method is less suitable. On WinoGrande, CoEvo outperforms the best baseline by ap-
proximately 2%, demonstrating the effectiveness of our method in enhancing the SLM’s semantic
understanding ability. On GSM8K, CoEvo exhibits slightly higherlower performance compared to
the best baseline. A potential explanation is the fact that in the mathematical domain, the evaluation
of CoT quality is not fixed. For example, multiple solution approaches can lead to correct results,
and this characteristic may have interfered with CoEvo’s confidence-based evaluation process. Fur-
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Table 4: Performance analysis of different design choices.

Ablation Confidence Inference Response Commonsense Math Natural Language
ID Evaluation Sampling Filtering CQA GSM8K WinoGrande

1 Yes No No 78.64 79.19 81.13
2 No Yes No 78.71 79.41 81.34
3 No No Yes 78.02 79.01 81.47
4 Yes Yes No 78.71 80.76 83.72
5 Yes No Yes 78.84 80.44 83.50

CoEvo Yes Yes Yes 79.26 81.18 83.79

thermore, while CoT-based baseline methods lead to a multiplicative increase in inference latency,
CoEvo requires only single step inference to generate responses, thereby preserving the low-latency
requirement of the edge-side SLM in edge-cloud architecture. In contrast to methods like DPO
that require the parallel training of both a base and a policy model, CoEvo’s single-model training
mode in cloud-to-edge stage significantly reduces computational overhead and simplifies the train-
ing pipeline. More discussions and results on model performance and communication efficiency are
available in Appendix D.

Table 3 compares the performance of CoEvo in the edge-to-cloud stage with the base model and
the SFT-tuned LLM. CoEvo achieves a gain of 1.1% to 1.3% over the base model on CQA and
WinoGrande, demonstrating its effectiveness in leveraging SLM to inversely optimize the LLM
within the edge-to-cloud framework. On GSM8K, CoEvo improves by nearly 1% compared to
the original model, indicating that CoEvo remains effective for mathematical tasks. Moreover, the
performance of CoEvo is comparable to that of the LLM optimized with SFT on all datasets. This
demonstrates the robust adaptability of the self-updating SLM at the edge to novel data distributions
and the high quality of the knowledge uploaded to the cloud. CoEvo enables edge-to-cloud model
feedback optimization in most domains and exhibits promising potential for continual learning.

4.3 ABLATION STUDY

We analyze the effectiveness of each subdesign in CoEvo in different stages, as shown in Table 4.
We evaluate the following three settings: (1) Whether to use confidence in cloud-to-edge stage; (2)
Whether to perform multiple sampling during response generation in edge-to-cloud stage; and (3)
Whether to filter candidate responses in edge-to-cloud stage. The results indicate that incorporating
confidence consistently outperforms using only label and rationale data. Furthermore, performing
multiple sampling during response generation in the edge-to-cloud stage can enhance the diversity
and quality of output. Meanwhile, filtering candidate responses generally leads to better perfor-
mance than using all responses. These findings suggest that every component of CoEvo is indis-
pensable and effective, collectively contributing to its robust performance across diverse scenarios.

Furthermore, we conduct a detailed evaluation of each component of CoEvo to explore potential
optimal configurations. Specifically, we examine: (1) the impact of different confidence weight co-
efficients on the optimization of edge-side SLMs; (2) the effect of varying sampling counts on the
feedback performance of the cloud-side LLM; and (3) the influence of different filtering strategies
on the cloud feedback process. The results are presented in Figure 3. We observe that reducing the
confidence weight degrades performance, confirming the effectiveness of CoEvo confidence acquisi-
tion and scaling strategy. Increasing the sampling count generally improves inference performance,
though with diminishing marginal returns, which highlights the need to balance computational cost
against performance gains. Finally, applying pt1 or pt2 individually for data filtering yields consis-
tently inferior results compared to their joint use. This validates CoEvo’s dual-threshold filtering
strategy, which considers both the highest and relatively high confidence values, thereby enhancing
robustness beyond what a single-threshold approach can achieve.

As mentioned in Section 3.3, during the edge-to-cloud phase, CoEvo utilizes a credible probability
matrix as the primary knowledge to optimize the LLM, which differs from the commonly used
label-based fine-tuning strategies. We analyze the impact of CoEvo, conventional methods, and
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Table 5: Evaluation between SFT-based Model and CoEvo in the edge-to-cloud stage.

Methods MMLU CQA GSM8K WinoGrande
Meta Llama3 70B 73.24 78.09 80.20 82.42

SFT-based
M−mmlu 75.29 78.02 80.18 83.39
M−cqa 72.08 79.09 80.22 83.43
M−GSM8K 73.47 77.97 81.74 81.32
M−wino 72.44 78.08 79.48 83.97

CoEvo
MT−cqa 73.18 79.26 80.33 83.09
MT−GSM8K 74.15 78.00 81.18 82.11
MT−wino 72.89 78.14 79.80 83.79

their combinations on the LLM’s inference performance. Specific results are shown in Figure 4. We
observe that using labels, or even a combination of labels and matrices, yields almost comparable
or even slightly inferior optimization results for the cloud-based LLM compared to using matrices
only. CoEvo, in contrast, utilizes credible probability matrices as knowledge to optimize the cloud-
based LLM. This approach excludes the interference from suboptimal outcomes, thereby ensuring
both the effectiveness and efficiency of the LLM update process.

4.4 WHY NOT UPLOAD DOMAIN-SPECIFIC DATA DIRECTLY TO CLOUD?

As mentioned in Section 3.3, edge devices can upload new data directly to the cloud to improve
LLM. However, the issue is that directly uploading raw data contradicts the sensitivity to data pri-
vacy inherent in the edge-cloud distributed architecture. CoEvo uses response content based on a
probability matrix, which partially obscures data details. Furthermore, directly fine-tuning the LLM
with in-domain data may compromise its original ”generalist” nature. As a continually learning
edge-cloud architecture, CoEvo must ensure that the general performance of the cloud-side LLM
remains consistently high. By using cleaned and filtered probability matrices as fine-tuning data,
CoEvo indirectly provides high-quality domain new data while mitigating catastrophic forgetting
and minimizing the impact on the LLM’s fundamental inference capabilities. We evaluate the infer-
ence performance of the optimized LLM obtained by different methods in other domains.

As shown in Table 5, although the domain-specific inference capabilities of the LLM fine-tuned via
SFT on MMLU remain largely unaffected (M−mmlu), LLMs fine-tuned on other domain-specific
datasets exhibit varying degrees of degradation in cross-domain inference performance. Leveraging
the knowledge matrix from the feedback of SLM instead of hard labels, CoEvo reduces the interfer-
ence caused by single domain data on the overall inference ability of the LLM while ensuring stable
performance improvement in the target domain.
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Table 6: Comparison of computational overhead between CoEvo and simpler strategy.

Method Local
optimization

Multiple-
sample voting

Probability
matrices filtering

Total

transmitting data only 0 0 0 0
update + transmitting data 3.9h 5mins 0 3.98h

CoEvo 3.9h 26mins 1s 4.32h

Another factor is the combined cost of computational resources and data transmission in the edge-
cloud paradigm. Compared to directly uploading data to the cloud, the local optimization and major-
ity voting mechanisms performed on the edge side in CoEvo introduce a certain amount of compu-
tational overhead. We analyze the computational overhead of CoEvo in comparison to both directly
uploading data to the cloud (transmitting data only) and the method of transmitting data after local
updates (update + transmitting data). The specific results are shown in Table 6.

”Update + transmitting data” corresponds to the sample with Ablation ID 1 in Table 4. As can
be seen, it not only fails to significantly reduce the computational overhead on the edge side but
also considerably degrades the performance of cloud-side optimization. Regarding ”transmitting
data only”, this essentially represents the traditional cloud-based update approach, which means
it necessitates the additional transmission of the cloud-based LLM’s response data to update the
edge-side SLM. Detailed results are shown in Table 1.

We compare the data transfer overhead between CoEvo and cloud-based update strategy, as detailed
in Table 1. The cloud-based update strategy requires two data transmissions between the edge and
cloud to achieve a collaborative update. Even with local storage of new data, it still necessitates the
additional transmission of the cloud-based LLM’s response data to update the edge-side SLM. In
contrast, CoEvo completes the SLM update directly on the edge side. It only needs to transmit a
portion of the new data and its own responses to the cloud to complete the update of models on both
sides, thereby saving the additional overhead of data transmission.

5 CONCLUSION

We present CoEvo, a trainable framework designed to break static mode of edge-cloud architecture
and enhance the performance of language models by applying credible CoT knowledge distillation
and credible probability matrix knowledge distillation. CoEvo demonstrates the characteristic of
proximity to edge devices and users, leveraging the ability to access new domain-specific data dur-
ing interaction to enable dynamic knowledge flow in the edge-cloud architecture. Through cloud-to-
edge model optimization, CoEvo produces a strengthened SLM with robust inference capabilities;
through edge-to-cloud feedback, it yields an LLM with improved performance in specific domains.
Furthermore, CoEvo achieves continual evolution through multiple self-iterations, extending its ben-
efits across more domains.
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APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we have used Large Language Models (LLMs) exclusively for the purposes
of translation and language polishing. The content, arguments, and conclusions presented herein
are entirely my own, and the use of LLMs did not contribute to the generation of original ideas or
substantive content.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. No human subjects, personally identifiable data,
or sensitive datasets were involved. The use of Large Language Models (LLMs) was strictly limited
to translation and language polishing; they did not contribute to the generation of original ideas,
methodology, results, or conclusions.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our work. The experimental setup, includ-
ing datasets, preprocessing steps, and hyperparameters, is detailed in Section 4 and the Appendix.
Source code and instructions for reproducing our results are available if needed.

A DATASETS

MMLU: A large-scale, widely used multi-task dataset that covers 57 distinct subjects, designed to
evaluate a model’s breadth of knowledge and inference abilities across various disciplinary domains.
It consists of a development set, a validation set, and a test set, comprising approximately 14,000
questions in total.

CommonsenseQA(CQA): A dataset designed to evaluate models’ commonsense inference capa-
bilities. After partitioning, it contains 9,741 training instances and 1,221 test instances.

GSM8K: A dataset specifically designed to evaluate models’ mathematical inference capabilities,
consisting of grade-school math word problems that require multiple logical steps to solve. It in-
cludes a training set of 7,473 samples and a test set of 1,319 samples.

WinoGrande: A large-scale natural language inference dataset, primarily used to evaluate the abil-
ity to resolve coreference resolution tasks. It consists of a training set with 40,398 samples, a vali-
dation set with 1,267 samples, and a test set with 1,767 samples.

Table 7 in the Appendix shows sample examples from each dataset.

B BASELINES

Efficient inference based on CoT:

• CoT: It is an algorithm that guides LLMs to decompose ”question-answer” into ”question-
thinking-answer” through ”think step by step” prompting. It has been widely adopted in
the field of LLM research.

• self-consistency CoT: It is an algorithm that extends CoT. This method enhances the ro-
bustness and accuracy of CoT by generating multiple distinct inference paths and selecting
the most consistent answer from these paths through a majority voting mechanism.

• ToT: This is an algorithm that integrates tree search concepts into the inference process
of large language models. It transforms the traditional single-path expansion into a tree-
structured exploration framework, with the key idea being that the language model can
evaluate multiple intermediate steps during inference through methods such as voting or
scoring. These intermediate steps correspond to nodes in the tree, and the inference path is
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Table 7: Sample examples from different datasets belonging to diverse task domains.

Dataset Instructions and GT Answers for Each Dataset used to evaluate CoEvo

MMLU
Question: Which statement best explains the purpose of Hart’s distinction
between ’being obliged’ and ’having an obligation’?
Answer: It illuminates the concept of a rule.

CQA
Question: A John is a bum. Much like the stereotype, he lives near this sort
of transportation infrastructure. Where does he live?
Answer: bridge.

GSM8K
Question: The ratio representing the age of Halima, Beckham, and Michelle
is 4:3:7, respectively. If the total age for the three siblings is 126, calculate the
age difference between Halima and Beckham.
Answer: 9.

WinoGrande
Question: The ring that I bought my girlfriend was worse than the bracelet
that I bought her because the was more expensive.
Answer: bracelet.

Table 8: Experiment Setup. Dataset configurations and parameter settings.

Attributes cloud-to-edge stage edge-to-cloud stage
MMLU CQA GSM8K WinoGrande CQA GSM8K WinoGrande

Task size 6MB 3.7MB 4.9MB 8.2MB 3.7MB 4.9MB 8.2MB
Instruction number 13985 10962 8792 43432 10962 8792 43432
Task Scenario Multi-task Commonsense Math Natural Language Commonsense Math Natural Language
Batch Size s = 64 s = 32 s =32 32 s = 32 s = 32 s = 32
Learning Rate l = 1e-5 l = 1e-5 l = 1e-5 l = 2e-5 l = 1e-5 l = 1e-5 l = 2e-5
Local training epoch E = 5 E = 5 E = 3 E = 3 E = 5 E = 3 E = 3

dynamically optimized through backtracking or heuristic search methods (such as breadth-
first search or depth-first search).

Fine-tuning-based optimization methods:

• DPO: It is an algorithm that fine-tunes language models by directly optimizing human pref-
erence data. It bypasses the complex reward model training steps of traditional RLHF by re-
formulating the preference learning problem as a policy-based loss function, which directly
maximizes the logarithmic probability difference between preferred and non-preferred re-
sponses through a simple binary cross-entropy objective.

• Distill step by step: This algorithm first trains a small model to generate intermediate
inference steps (rationales), then jointly optimizes them with the final answer prediction.
This approach enables the model to learn and acquire the logical inference capabilities of
larger models while maintaining its lightweight nature.

• SPIN: This algorithm builds upon DPO and enables continual optimization of large models
through a self-play mechanism, without relying on additional human preference data or
reinforcement learning frameworks. The key lies in modeling the fine-tuning process as a
”two-player game” task: the main model (current version) and a historical model (previous
version) generate responses to questions, and a contrastive learning objective (similar to
DPO) drives the main model to progressively surpass the inference performance of the
historical model.

C CONFIGURATIONS

We document the specific settings and implementation details of all experiments mentioned in the
main text to ensure the reproducibility of the research. When replicating various baseline methods,
we strictly adhere to the design principles outlined in their original papers and implement them
based on publicly available code repositories.
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Table 9: Performance of CoEvo and baseline methods on other heterogeneous model pairs.

Methods cloud-to-edge stage edge-to-cloud stage
MMLU CQA

Qwen3 1.7B 56.97 –
Qwen3 14B – 81.80

Distill step by step 62.90 –
SPIN 63.12 –

CoEvo 64.72 83.04

For efficient inference methods based on CoT: (1) CoT: Standard chain-of-thought inference is trig-
gered using a few-shot prompting. (2) Self-Consistency CoT: For each question, balancing inference
overhead and sampling diversity, the model generates five inference paths and selects the most con-
sistent answer through a ”majority voting” mechanism. (3) ToT: At each inference step, the model
generates three candidate inference paths. Depending on the specific task, the depth of the inference
tree (i.e., the maximum number of inference steps) is set between two and three. At each step, three
evaluations are performed to filter the optimal inference path.

For fine-tuning-based optimization methods: (1) DPO: We use the responses generated by cloud-side
LLM as preferred data and randomly select one from the remaining answer options as non-preferred
data. (2) Distill Step by Step: The original settings are followed. (3) SPIN: We use the responses
generated by cloud-side LLM as the initial SFT data.

More experimental details can be found in Table 8 in the Appendix.

D ADDITIONAL RESULTS

D.1 EXPERIMENTAL VALIDATION ON OTHER HETEROGENEOUS MODEL PAIRS

The effectiveness of the CoEvo method is validated on heterogeneous model pairs (Qwen1.7B/14B),
with specific results shown in Table 9. Our new experimental results consistently demonstrate that
our framework remains effective on the datasets evaluated using the Qwen model pair. This positive
outcome strongly supports the universality of our method across different model architectures and
scale ratios.

D.2 COMPARATIVE ANALYSIS OF TEXT PERPLEXITY

Perplexity (PPL) is a fundamental metric for evaluating the performance of language models by
measuring their uncertainty in predicting text sequences. Given a sequence of tokens W =
(w1, w2, . . . , wN ), perplexity is computed as:

PPL(W ) = exp

(
− 1

N

N∑
i=1

logP (wi|w1, . . . , wi−1)

)
. (8)

where:

• N : Total number of tokens in the evaluation sequence
• wi: The i-th token in the sequence
• P (wi|w1, . . . , wi−1): Conditional probability of token wi given preceding context
• log: Natural logarithm (base e)

Lower perplexity values indicate better model performance, with a theoretical minimum of 1 (perfect
prediction) and a baseline value equal to the vocabulary size for random guessing. This metric
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Table 10: Text perplexity comparison of proposed and baseline methods.

Methods cloud-to-edge stage edge-to-cloud stage
MMLU CQA GSM8K WinoGrande CQA GSM8K WinoGrande

Meta Llama3 8B 4.49 10.26 6.77 3.47 – – –
Meta Llama3 70B – – – – 7.91 8.43 2.27

Efficient inference based on CoT
Chain of Thought 4.08 9.44 6.56 3.29 – – –
Self-Consistency CoT 4.08 9.44 6.56 3.29 – – –
Tree of Thought 3.40 8.08 5.94 3.01 – – –

Fine-tuning-based optimization
DPO 3.37 7.43 5.67 2.87 – – –
Distill step by step 3.25 6.82 5.98 3.06 – – –
SPIN 3.28 7.52 5.91 3.03 – – –

CoEvo 2.90 6.51 5.60 2.59 7.65 7.99 2.22

reflects how ”surprised” the model is when encountering the test data, with well-calibrated models
achieving lower perplexity on in-distribution text.

Following the experimental setup outlined in Sections 4.1 and 4.2, we evaluate the perplexity of
responses generated by CoEvo and baseline approaches across multiple datasets. The test results are
summarized in Table 10 in the Appendix.

During cloud-to-edge and edge-to-cloud phase, the perplexity achieved by CoEvo outperforms ex-
isting baseline methods on most datasets. Although superior perplexity does not directly equate to
correct inference, it reflects the model’s clarity in understanding problems and has become one of
the widely adopted evaluation metrics in the field of LLMs.

D.3 THE IMPACT OF DIFFERENT OPTIMIZATION OBJECTIVES ON FINE-TUNING OUTCOMES

As mentioned in Section 3.3, we design a joint optimization objective based on three key metrics:
answer, rationale, and confidence. Then facilitate the distillation of knowledge from the LLM on
the cloud to the SLM on the edge. In this section, we elaborate on the exploration of specific
formulations for this joint optimization objective during the experimental phase. We designed three
variants of the objective function:

L = conf · (1− α)LR + αLA. (9)

where α is a hyperparameter. The design intuition is to use the original confidence score to adjust
the final answer. When the confidence is low, the weight of the final answer in the training objective
is reduced, guiding the model to focus more on learning the inference process.

L = (1− conf)LR + conf · LA. (10)

The idea here is to dynamically balance the contributions of LR and LA using the confidence score.
When confidence is high, the training objective shifts emphasis toward the rationale.

L = exp(conf) · [(1− α)LR + αLA] . (11)

where α is a hyperparameter. This formulation uses the exponentially scaled confidence score to
dynamically adjust the weighted sum of LR and LA.

We evaluate the performance of the optimized SLM with these three variants in various datasets.
We denote the SLM obtained by applying Eq. 9 as M1−A, the SLM obtained by applying Eq.
10 as M1−B , and the SLM obtained by applying Eq. 11 as M1−C . We selected distill step by

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Performance of SLM Variants Optimized with Different Objective Functions.

Methods MMLU CQA GSM8K WinoGrande
Meta Llama3 8B 57.26 59.38 52.15 62.46

Distill step by step 64.38 65.44 59.31 68.82

M1−A 65.91 66.26 60.77 68.71
M1−B 64.28 64.79 59.20 67.88
M1−C 63.60 63.25 57.11 70.40

0.8 0.9 0.95 1.0
77

78

79

80

78.27
78.49

79.26

78.71

Pt1

Pe
rf

or
m

an
ce

(%
)

CQA

(a)

0.8 0.9 0.95 1.0
80

80.5

81

81.5

80.71

81.18

80.66
80.76

Pt1

GSM8K

(b)

0.8 0.9 0.95 1.0
82.5

83

83.5

84
83.79

83.69

83.04

83.72

Pt1

WinoGrande

(c)

Figure 5: Performance comparison under different Pt1 thresholds on three datasets. Given the
presentation requirements, Pt1=1 here actually represents using the complete dataset.

step—which also employs a composite optimization objective utilizing both labels and rationales,
but does not incorporate confidence—as the baseline for comparison. The results are shown in Table
11.

M1−A achieved the best performance on the three datasets: MMLU, CQA and GSM8K, while
M1−C performed optimally on WinoGrande. This indicates that it is meaningful to analyze and
construct different forms of optimization objectives tailored to tasks across various domains. It
should also be noted that the construction method M1−B doesn’t achieve satisfactory results on
any of the test datasets, indicating that improper utilization of the confidence metric may disrupt its
intrinsic relationship with labels and rationales, thereby leading to suboptimal outcomes.

D.4 THE EFFECT OF DATA FILTERING THRESHOLDS ON CLOUD FEEDBACK PERFORMANCE

In this section, we supplement the exploration of a key sub-technique in edge-to-cloud stage of Co-
Evo: response filtering. The objective of response filtering is to obtain high quality knowledge from
M2 - the ’domain-specific expert’ enhanced in cloud-to-edge stage and enhancement of domain-
specific data. Specifically, for responses generated by M2 based on historical interactions, CoEvo
filters qualified high-quality answers according to the design described in Section 3.3, and uploads
these to the cloud as raw knowledge for feedback optimization of the cloud-side LLM. We explored
the effect of Pt1—that is, the ratio of the maximum probability to Pt1—under different thresholds
on the optimization of the cloud-side LLM. Experimental results are shown in Figure 5 in the Ap-
pendix.
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We sequentially set Pt1 to 0.8, 0.9, 0.95, and 1.0. It should be noted that, for ease of presentation,
Pt1=1.0 actually represents using the complete dataset without any filtering. The setting of Pt1 ex-
hibited varying impacts on the optimization of the cloud-side LLM across different domain datasets.
For CQA, the optimal Pt1 was 0.95, while for GSM8K, this value changed to 0.9. For WinoGrande,
the optimal value was 0.8. We attribute this to the LLM’s differing levels of confidence when ad-
dressing problems from various domains, which aligns with the observations we obtained in Figure
2.

D.5 DESIGN OF TASK-SPECIFIC PROMPT TEMPLATES

As discussed in Section 3.2, in cloud-to-edge stage, the primary objective of the cloud-side LLM
is to provide high-quality composite knowledge to the base SLM M0, specifically including labels,
rationales, and confidence. The templates used for prompting the generation of each component are
as follows:

1. Generating Label (Q→A):

”Please complete the specified task according to the requirements in the following task flow.

Task Flow: Read the question below, each of which contains multiple options. Analyze the question
and directly provide the correct answer. Do not include any content beyond the answer.

Question: [Question]. Your response: {response}”

2. Generating Rationale (Q→R):

”Please complete the specified task according to the requirements in the following task flow.

Task Flow: Read the question below, each of which contains multiple options. Analyze the question
and provide the inference/thought process for solving this problem. You need to think step by step
to arrive at the final answer. Do not include any content beyond the inference/thought process.

Question: [Question]. Your response: {response}”

3. Generating Confidence (Q→C):

”Please complete the specified task according to the requirements in the following task flow.

Task Flow: Read the question below, each of which contains multiple options. Analyze the question
and provide the correct answer along with your confidence level in this answer. The confidence level
ranges from 1 to 10, representing low to high confidence. Do not include any content beyond the
correct answer and the confidence level.

Question: [Question]. Your response: {response}”

The [Question] in the prompt templates above refers to the original instruction, the {response}
represents the response content generated by M0.

As discussed in Section 3.3, in edge to cloud stage, the edge-side SLM M2 generates preliminary
response content based on historical interaction records. Subsequently, CoEvo filters these contents
to obtain a confidence probability matrix for the feedback to the cloud. The prompt templates used
for the generation are as follows:

Generating response:

”Please complete the specified task according to the requirements in the following task flow.

Task Flow: Read the question below, each of which contains multiple options. Analyze the question,
provide the inference/thought process for solving this problem and finally provide the correct answer.
Please do not provide any content unrelated to the question.

Question: [Question]. Your response: {response}”
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Table 12: Qualitative Comparison of Responses Between CoEvo and Best Baseline

Dataset Instructions and GT Answers for Each Dataset used to evaluate CoEvo

MMLU

Question: Statement 1— The F1 score can be especially useful for datasets with class high im-
balance. Statement 2— The area under the ROC curve is one of the main metrics used to assess
anomaly detectors.
Base: The F1 score can be especially useful for datasets with class high imbalance because it takes
into account both precision and recall. The area under the ROC curve is one of the main metrics used
to assess anomaly detectors, but it does not take into account class imbalance. Therefore, Statement
1 is true and Statement 2 is false. Answer: True, False. ✗
Best Baseline: The F1 score is a measure of accuracy that takes into account both precision and
recall. It is often used for datasets with class high imbalance, where there are many more examples
of one class than another. The area under the ROC curve is a measure of the performance of an
anomaly detector. It is not specifically designed for datasets with class high imbalance. Therefore,
statement 1 is true, while statement 2 is false. ✗

CoEvo: Both statements are true. The F1 score is often used to evaluate the performance of binary
classifiers, while the area under the ROC curve is commonly used to assess the performance of
anomaly detectors. Both metrics can be particularly helpful when dealing with imbalanced datasets,
as they provide a more comprehensive view of the model’s performance than accuracy alone. ✓

CQA

Question: A John is a bum. Much like the stereotype, he lives near this sort of transportation
infrastructure. Where does he live?
Base: The question tests the ability to recognize a stereotype (John as a bum). - Key clues: ”stereo-
type”, ”transportation infrastructure”(industrial context) - Best fit: (C)train station (connotes a low-
income area) - Why not others: (A)/(B)/(D)/(E) are plausible but don’t match the bum stereotype. ✗
Best Baseline: The key is to recognize a transportation hub. - Key clues: ”bum”, ”transportation
infrastructure” (context of travel) - Best fit: (C)train station (central hub) - Why not others: (A)bus
depot is plausible but secondary (focus is on trains) (B)beach is contextually irrelevant (D)/(E) are
incorrect due to incorrect spelling. ✗

CoEvo: The context implies a homeless person, suggesting proximity to urban services. - Key
clues: ”bum”, ”near this sort of transportation infrastructure” (impoverished, city-based) - Best fit:
(D)bridge (a common location for homeless encampments) - Why not others: (B)beach is unlikely
due to remoteness (A)/(C) are plausible but less specific (E)bridge is a red herring (a bridge is a
bridge). ✓

GSM8K

Question: The ratio representing the age of Halima, Beckham, and Michelle is 4:3:7, respectively. If
the total age for the three siblings is 126, calculate the age difference between Halima and Beckham.
Base: 4x+3x+7x=126. 14x=126. x=126/14. x=9. Age difference between Halima and Beckham=7-
3. Age difference between Halima and Beckham=4. ✗
Best Baseline: Let x be the age of Halima. Then, the age of Beckham is 3x, and the age of Michelle
is 7x. The sum of the three ages is 126. So, x + 3x + 7x = 126 11x = 126 x = 126 / 11 = 11.5 The
age of Halima is 11.5 years old. The age of Beckham is 3x = 3 * 11.5 = 34.5 years old. Therefore,
the age difference between Halima and Beckham is 34.5 - 11.5 = 23 years. ✗

CoEvo: The sum of the three numbers in the ratio is 4 + 3 + 7 = 14. Halima’s age is 4/14 of the
total age, or (4/14) x 126 = 36 years old. Beckham’s age is 3/14 of the total age, or (3/14) x 126 =
27 years old. The age difference between Halima and Beckham is 36 - 27 = 9 years. ✓

WinoGrande

Question: William liked wearing high heels when going out with Lawrence, because loved the
feeling of heels.
Base: The sentence states that William liked wearing heels when going out with Lawrence. It also
states that Lawrence loved the feeling of heels. This implies that William wears heels for Lawrence’s
sake. Therefore, the blank should refer to Lawrence. ✗
Best Baseline: William liked wearing high heels with Lawrence. William’s reason for wearing heels
was that Lawrence loved the feeling of heels. Therefore, the blank should refer to Lawrence. ✗

CoEvo: The sentence states that William likes wearing high heels when going out with Lawrence,
because someone loves the feeling of heels. Since liking the feeling of heels would lead to wearing
high heels, the blank should refer to William. ✓

D.6 QUALITATIVE DIFFERENCES IN GENERATED INFERENCE PATHS

Table 12 in the Appendix presents a comparison of the response quality generated by CoEvo and the
best baseline method across different domain datasets in the cloud-to-edge stage. By leveraging its
credible CoT construction approach, CoEvo achieves higher-quality responses than best baseline .
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