Breaking Static Paradigms: A Mutual Evolution Framework for Edge-Cloud Model Collaboration

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

024

025

026

027

028

029

031

032 033 034

035

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

To simultaneously achieve high performance and low latency, the paradigm of edge-cloud model collaboration, where Large Language Models (LLMs) are deployed on the powerful cloud and Small Language Models (SLMs) on the resource-limited edge devices, has garnered great attention recently. However, a key limitation of current edge-cloud architecture is its static nature, which hinders the dynamic integration of new knowledge. More specifically, existing methods typically update the system by directly retraining the cloud-based LLM with edgeside newly collected data, which not only increases communication overhead but also neglects available computing power and data accessibility on edge devices. To tackle this challenge, we propose a novel mutual Evolution framework for edge-cloud model Collaboration called CoEvo that enables both cloud-side LLM and edge-side SLMs to update with new knowledge continuously. The cloudbased LLM can enhance edge-side SLMs through credible Chain-of-Thought (CoT) based knowledge distillation to improve its general understanding capabilities. Once the edge-side SLMs collect new domain-specific knowledge and optimize themselves locally, they will specifically enhance the cloud-based LLM via a credible probability matrix predicted on a few samples without uploading all raw data. Through this mutual evolution, the system can achieve continual optimization of the cloud and edge-side models and promote real-world deployments. Experimental results demonstrate a considerable performance gain of our edge-side SLMs against existing methods on the target dataset, with the cloud-side LLM also achieving a notable improvement over the base model.

1 Introduction

Large language models (LLMs) such as the GPT series (Achiam et al., 2024) and DeepSeek R1 (Guo et al., 2025) have been extensively adopted across diverse domains, substantially improving operational efficiency and fostering innovation in a wide range of industries (Saha et al., 2025). To support the practical deployment of these models, the edge—cloud collaborative architecture (Wang et al., 2024b) has emerged as a critical paradigm. This architecture capitalizes on the abundant computational resources of cloud servers to maintain large-scale LLMs, while simultaneously deploying lightweight small language models (SLMs) on resource-constrained edge devices (Tian et al., 2024). By integrating the powerful inference capabilities of LLMs with the lightweight and efficient deployment of SLMs (Zhao et al., 2024), the edge—cloud architecture achieves an effective balance between performance and efficiency. In particular, techniques such as LLM-guided inference enable SLMs (Liu et al., 2024) to inherit knowledge and enhance their reasoning abilities, all while sustaining low latency and minimizing computational overhead. This collaborative paradigm thus provides a promising pathway for scaling LLM applications to real-world environments.

In recent years, researchers have made notable progress in improving the inference performance of edge-cloud architectures. By leveraging maintained external knowledge bases, language models enhance overall performance on both edge and cloud sides through retrieval-augmented generation (RAG) (Lewis et al., 2020; Liu et al., 2025; Qin et al., 2025). To avoid substantial external storage and query overhead during the inference stage, some studies have utilized external tools (Zhuang et al., 2023; Yuan et al., 2024a) such as search engines and compilers to assist language models in

solving practical problems. (Chen et al., 2024a) utilizes detection algorithms to filter data, retaining routine data processing on the edge side while uploading only critical data to the cloud, thereby maintaining the inference performance of the framework and reducing redundant transmission. The authors in (Yao et al., 2024) maintain a database built on the edge side that stores historical requests and responses from cloud-based LLMs, effectively enhancing the knowledge richness of SLMs and improving the response quality for similar requests.

Although these works have achieved great progress in the edge-cloud model collaboration, they all operate in a static mode (Qin et al., 2024), lacking the ability to dynamically acquire and learn new information, severely restricting their adaptability and real-time learning potential. Some existing methods leverage edge devices to collect new data and upload it to the cloud, achieving dynamic knowledge integration through periodic updates of the cloud-based LLM (Fan et al., 2023; Kuang et al., 2024). However, such an update scheme is overly simple and exposes the entire architecture to several critical challenges: (1) directly uploading raw data to the cloud for updating LLMs incurs substantial communication overhead; (2) edge devices must wait for data transmission and cloud-side model updates, which leads to latency in user experience; (3) since new data are collected on edge devices, uploading them to the cloud for centralized updates essentially neglects the computational capacity of edge devices, reducing resource utilization.; and (4) in some cases, the data may involve sensitive information, making it unsuitable for direct uploading to the cloud for training.

To address these challenges, we propose an enhanced edge-cloud architecture that is empowered with the capability to efficiently and securely integrate newly collected knowledge. This improvement not only enables continuous adaptation of deployed models to evolving data distributions but also ensures that knowledge updates can be incorporated with minimal latency and without compromising the privacy of user data. In a standard edge-cloud system that serves users, cloud-based LLMs typically play an assisting and guiding role, while SLMs deployed on edge devices interact directly with users. During this process, edge device SLMs can directly access and learn from newly generated real-time data samples, thereby achieving more accurate modeling of the local data characteristics, which facilitates self-updates with minimal overhead. Driven by this intuition, we propose a novel mutual Evolution framework for edge-cloud model Collaboration called CoEvo that enables both cloud-side LLM and edge-side SLMs to continuously update with new knowledge. More specifically, it consists of two independent stages to update the cloud-side and edge-side models. In the cloud-to-edge stage, CoEvo incorporates confidence (Xiong et al., 2024) scores into the Chain-of-Thought (CoT), teaching the edge-side SLMs to generate high-confidence responses that emulate the cloud-based LLM. While in the edge-to-cloud stage, the edge-side SLMs continuously acquire new domain-specific data and update themselves. CoEvo then performs credibility-based filtering on the SLMs' newly learned representations, allowing only highly reliable domain knowledge to be uploaded and used to enhance specialized inference capabilities of the cloud-side LLM. The major contributions of this paper are summarized as follows:

- We are the first to explore mutual evolution in edge-cloud model collaboration, breaking the static paradigm of traditional edge-cloud architectures and enabling an efficient and secure continual learning of new knowledge.
- We propose CoEvo, an enhanced edge-cloud architecture that enables perception and learning from raw data through local updates on the edge side. It also facilitates bidirectional knowledge transfer between the edge and the cloud via a credible chain-of-thought and credible probability matrices.
- We conducted extensive experiments across multiple datasets spanning various domains.
 Experimental results demonstrate that our method achieves performance improvements on both the edge and cloud sides compared to state-of-the-art approaches.

We employ Llama3 (Dubey et al., 2024) 8B as the edge-side SLMs and Llama3 70B as the cloud-side LLM in the edge-cloud architecture, evaluating performance across general domains (MMLU (Hendrycks et al., 2021)), commonsense reasoning tasks (CommonsenseQA(CQA) (Talmor et al., 2019)), math tasks (GSM8K (Cobbe et al., 2021)), and co-reference resolution tasks (WinoGrande (Sakaguchi et al., 2020)). In the cloud-to-edge process, CoEvo improves by 1% to 2% compared to existing baseline methods; In the edge-to-cloud process, CoEvo enables a 1% to 1.3% increase in the inference accuracy of the optimized cloud-side LLM.

2 RELATED WORK

Knowledge Transfer from Cloud LLMs to Edge SLMs: Based on edge-cloud architecture, (Xu et al., 2024; Peng et al., 2024) use cloud-based LLMs to enhance the performance of edge-side SLMs. This is achieved by building a local data store from historical interactions with the cloud LLM and dynamically integrating it with the predictions of the SLM on the device during inference (Ding et al., 2024). (Chen et al., 2024b) focuses on improving edge-side SLMs through knowledge distillation (Wang et al., 2022) while offloading all gradient-related operations to the cloud, thereby reducing the computational burden on the edge-side. (Hao et al., 2024; NING et al., 2025) leverage LLMs to provide token-level inference guidance for edge-side SLMs, integrating the LLM's semantic understanding into the actual inference process of the SLM. However, it is constrained by the upper limit of the cloud-side model's inference capabilities, and the lack of ground truth labels and chain of thought(CoT) (Wei et al., 2022b) data for given tasks (Yuan et al., 2024b) undermines its applicability. Our approach focuses on the potential of edge devices to acquire new data and aims to achieve continual learning in an edge-cloud framework by leveraging domain-specific data.

Advanced Inference Techniques in Language Model: The CoT-related (Wang et al., 2023b; Wan et al., 2025; Zhang et al., 2025a) technique guides language models to generate coherent thought chains and answers during inference, requiring the model to engage in one or more intermediate reasoning steps before producing the final answer (Kojima et al., 2022; Fu et al., 2023). Other studies have further enhanced the inference capabilities of language models by extending the CoT paradigm, such as integrating internal generation processes with external actions (Wang et al., 2024a) (e.g., leveraging RAG, invoking search engines, calculators, or code interpreters). They enhance the model's comprehensive inference capabilities by leveraging external knowledge, although constructing a well-structured external knowledge base or designing effective task flows is by no means an extra overhead (Cheetirala et al., 2025). The issue with inference technology is that language models themselves are constrained (Bian et al., 2024; Wang et al., 2025) by the scope of training data, delays in knowledge updates, and potential factual biases. Relying solely on inference optimization often struggles to break through the model's inherent cognitive boundaries.

Fine-Tuning Techniques for Language Model Optimization: Direct Preference Optimization (DPO) (Rafailov et al., 2023) eliminates the need for reward models typically required in reinforcement learning and RLHF (Reinforcement Learning from Human Feedback) (Ouyang et al., 2022) by directly incorporating preference data into the training objective. This approach reduces computational overhead while ensuring the model focuses on preferred outputs (Shankar et al., 2024). Distill-step-by-step (Hsieh et al., 2023) enhances student models' inference capabilities by aligning their outputs (both answers and rationales) with those generated by teacher models (Beyer et al., 2022). This dual alignment improves both the accuracy of problem solving and the generation of CoT. Chain of Preference Optimization (CPO) (Zhang et al., 2025b) extends DPO by incorporating multistep thought chains, where the model generates and evaluates multiple inference paths while explicitly considering dispreferred chains. A potential issue with these methods is the lack of consideration for knowledge quality, which leads to suboptimal results being incorporated into the training process. Our approach filters the data used to avoid interference from low-quality content, thereby enhancing the effectiveness of fine-tuning.

3 CoEvo: A Mutual Evolution Framework for Edge-Cloud Model Collaboration

3.1 Overview

CoEvo leverages the unique advantage of edge devices being accessible to users and extends the static edge–cloud collaboration framework into a dynamic knowledge learning paradigm, supporting the mutual evolution of models on both the edge and cloud sides. Figure 1 illustrates the details of CoEvo. In the cloud-to-edge phase, the cloud-based LLM generates rationales and labels on a general-domain dataset D. These outputs are distilled into a base edge-side SLM \mathcal{M}_0 , where confidence scores are used to weight the knowledge and mitigate the impact of suboptimal outputs, resulting in an enhanced SLM \mathcal{M}_1 with improved semantic comprehension. \mathcal{M}_1 is then deployed on edge devices for domain-specific inference. In the edge-to-cloud phase, the edge-side SLMs continuously interact with the local environment and user context, serving as natural collectors of

Figure 1: The overall architecture of CoEvo. In the cloud-to-edge phase, the cloud LLM performs instruction-guided inference to generate answers, rationales, and confidence scores. These outputs provide the basis for knowledge distillation, where confidence scores dynamically weight the knowledge to optimize edge SLMs. In the edge-to-cloud phase, the edge-side SLMs are optimized with new data and generate responses from historical interactions. CoEvo then applies multiple-sample voting, probability scaling, and filtering to extract high-quality domain knowledge, which is uploaded back to the cloud to further refine the cloud-side LLM.

domain-specific data and enabling efficient local updates. Through this process, \mathcal{M}_1 is further optimized into a domain expert model \mathcal{M}_2 . The superior domain knowledge extracted from \mathcal{M}_2 , specifically knowledge that surpasses the cloud LLM's existing domain understanding, is selectively distilled back into the cloud-side LLM \mathcal{M}_t , yielding an improved model \mathcal{M}_T with stronger domain inference capabilities. Through this bidirectional synergy, both edge-side and cloud-side models can co-evolve by continuously learning new knowledge and improving domain-specific performance.

3.2 CLOUD-TO-EDGE: CREDIBLE COT KNOWLEDGE DISTILLATION

In the cloud-to-edge stage of CoEvo, the cloud-based LLM transfers its inference capability to the edge-side SLM through knowledge distillation. Conventional methods typically rely on labels as the primary form of knowledge. However, labels alone are insufficient to enhance the semantic understanding of SLMs, limiting their ability to achieve strong domain-specific inference even after optimization. Motivated by works such as CoT distillation (Wang et al., 2023a), we instead use both labels and rationales as knowledge, thereby expanding the informational scope and enabling SLMs to learn not only outcomes but also the underlying inference processes. A critical challenge lies in the assumption that cloud-based LLMs can consistently generate labels and rationales of consistently high quality. In practice, even large LLMs, despite their strong inference capabilities, may produce ambiguous or erroneous outputs, which can degrade performance. To address this issue, CoEvo introduces mechanisms that allow SLMs to emphasize high-quality knowledge while filtering out noisy or unreliable inferences, thereby maximizing the effectiveness of the distillation process.

Confidence is commonly used to reflect the degree of self-assurance that large models have in their outputs, which may correlate with the correctness of the inference results. We analyze the confidence generated by LLM inference across multiple datasets from different domains, as shown in Figure 2. Two key observations emerge: (1) LLMs generally exhibit high confidence in their responses

(consistently above 0.64), regardless of correctness, which aligns with findings in prior studies; and (2) despite this overall tendency toward high confidence, correct answers are still associated with significantly higher confidence than incorrect ones. These observations suggest a potential correlation between confidence levels and the quality of the responses. In particular, the validity of the inference process (i.e., the generated CoT) is strongly tied to the correctness of the final answer: a coherent rationale typically leads to a correct result. Thus, confidence can serve as a useful indicator of both rationale quality and answer reliability. Nonetheless, we also observe cases where LLMs produce correct answers with low confidence, reflecting a lack of self-assurance. In such cases, multiple sampling often increases the likelihood of generating incorrect responses. Therefore, it is advisable to assign lower weights to these low-confidence samples during training, even if their answers are occasionally correct, to prevent the student model from inheriting similar confusion.

We let the cloud-based LLM \mathcal{M}_t execute inference tasks on a problem set \mathcal{D} . \mathcal{M}_t generates corresponding rationale $(\mathcal{Q} \to \mathcal{R})$, answers $(\mathcal{Q} \to \mathcal{A})$, and confidence $(\mathcal{Q} \to \mathcal{C})$ for each instruction. We perform knowledge distillation on the SLM. Given the preceding sequence $(1,\ldots,i-1)$, \mathcal{M}_t generates a prediction for the i^{th} token. Based on the answers and rationales obtained, the fundamental objectives are formulated as follows:

$$\mathcal{L}_{\mathcal{A}} = -\log p([\mathcal{A}_i \mid \mathcal{P}_{Q \to A}; Q; A_{< i}]; \mathcal{M}_t). \tag{1}$$

$$\mathcal{L}_{\mathcal{R}} = -\log p([\mathcal{R}_i \mid \mathcal{P}_{Q \to R}; Q; R_{< i}]; \mathcal{M}_t). \tag{2}$$

where p represents probability, A_i and \mathcal{R}_i depict the i^{th} token in the answer and rationale, < i refers to the sequence of tokens preceding the i^{th}

Figure 2: Comparison of average confidence scores for correct vs. incorrect answers across different groups.

refers to the sequence of tokens preceding the i^{th} token, [;] denotes the operation that formats the LLM input by assembling question, answer, and rationale into the prompt \mathcal{P}_t . We scale the training objectives in (1) and (2) using the confidence:

$$\mathcal{L} = S_{conf} \cdot [(1 - \alpha)\mathcal{L}_R + \alpha \mathcal{L}_A]. \tag{3}$$

where α is hyperparameter, S_{conf} represents the confidence score in the model inference. By modeling knowledge distillation as the process above, we improve SLM \mathcal{M}_0 to obtain \mathcal{M}_1 . \mathcal{M}_1 is deployed on an edge device to perform practical tasks. Not only does \mathcal{M}_1 surpass \mathcal{M}_0 in inference ability, but it also possesses stronger cognitive understanding abilities. This makes it possible for \mathcal{M}_1 to evolve into a domain-specific expert after being exposed to domain-specific data.

3.3 EDGE TO CLOUD: CREDIBLE PROBABILITY MATRIX KNOWLEDGE DISTILLATION

CoEvo primarily leverages edge-side SLMs to acquire new data. By learning from evolving data distributions and performing local self-updates, the SLMs dynamically adapt to new knowledge. These locally acquired updates are then fed back to the cloud, where they further enhance the performance of the LLM. We first leverage the newly acquired data to optimize SLM \mathcal{M}_1 on the edge device, resulting in a domain-specific expert \mathcal{M}_2 . While inheriting \mathcal{M}_1 's strong inference abilities, \mathcal{M}_2 also possesses richer domain-specific knowledge. We select a portion of the instructions used during the self-updating process and combine them with \mathcal{M}_2 's responses to these instructions as knowledge to be uploaded to the cloud. To obtain superior responses, for each instruction, CoEvo samples multiple inference results y and selects the one with the highest consistency as the interaction record y^* by majority voting. Through inference sampling, CoEvo aims to obtain responses that approach the upper limit of \mathcal{M}_2 's inference capability.

$$y^* = \arg\max_{y \in \mathcal{Y}} \sum_{i=1}^N \mathbb{I}(y_i = y). \tag{4}$$

We selectively extract interaction records in order to identify and upload the knowledge where \mathcal{M}_2 produced relatively high-quality responses to the cloud, while minimizing the impact of transmitting raw responses on original data privacy. For each response of \mathcal{M}_2 , we obtain the probability matrix

P of its response component:

$$\mathbf{P} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1m} \\ p_{21} & p_{22} & \cdots & p_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nm} \end{pmatrix}, \quad p_{ij} = \frac{e^{z_{ij}}}{\sum_{k=1}^{m} e^{z_{ik}}}.$$
 (5)

where m is the length of the response sequence, z represents the logits corresponding to the i^{th} token in the response sequence, and n is the size of the vocabulary. To obtain superior responses, we reconsider the relationship between confidence and inference outcomes. Confidence in a language model's response is directly reflected in the magnitude of its larger output logits. This same principle applies to evaluating the reliability of a probability matrix. For a given interaction record with a probability matrix, CoEvo calculates: (1) the sum of the top-k probabilities and (2) the maximum probability in the top-k probabilities.

$$p_{t1} = \begin{cases} 1, & \text{if } \sum_{i=1}^{k} P_{ij} > p_1 \quad \forall j \in \{1, \dots, m\}, \\ 0, & \text{otherwise.} \end{cases}, p_{t2} = \begin{cases} 1, & \text{if } P_{1j} > p_2 \quad \forall j \in \{1, \dots, m\}, \\ 0, & \text{otherwise.} \end{cases}$$
(6)

If p_{t1} =1 and p_{t2} =1, the interaction record is considered high quality:

$$p_{final} = \begin{cases} 1, & \text{if } p_{t1} = 1 \land p_{t2} = 1, \\ 0, & \text{otherwise.} \end{cases}$$
 (7)

We upload records with p_{final} =1 to the cloud, feeding high-quality domain knowledge back to the cloud-side LLM. Through credible probability matrix knowledge distillation, we optimize the LLM \mathcal{M}_t to obtain \mathcal{M}_T . \mathcal{M}_T breaks through the original performance ceiling of the cloud-side LLM by achieving dynamic updates based on edge-side new knowledge and serves as the foundational cloud-side LLM for the next iteration of CoEvo.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We evaluate CoEvo on four datasets from diverse domains: (1) Multi-task understanding: **MMLU** (Hendrycks et al., 2021); (2) Commonsense inference: **CQA** (Talmor et al., 2019); (3) **Math problems**: GSM8K (Cobbe et al., 2021); (4) Natural Language Inference: **WinoGrande** (Sakaguchi et al., 2020). Details of the datasets can be found in Appendix A.

Baseline. We separately evaluate the cloud-to-edge and edge-to-cloud processes to validate the performance improvements of both the edge-side SLM and cloud-side LLM. For the cloud-to-edge process, we compare two types of approaches. (1) Efficient inference methods based on CoT: **Chain of Thought** (Wei et al., 2022b), **Self-Consistency CoT** (Wang et al., 2023b), and **Tree of Thought** (Yao et al., 2023); (2) Fine-tuning-based optimization methods: **DPO** (Rafailov et al., 2023), **Distill Step-by-Step** (Hsieh et al., 2023), and **SPIN** (Chen et al., 2024c). For the edge-to-cloud process, we compare the results with both the base LLM and the LLM after Supervised Fine-Tuning (SFT) (Wei et al., 2022a). Details of the baselines can be found in Appendix B.

Implementation Details. We use Llama3-8B (Dubey et al., 2024) as the edge-side SLM and Llama3-70B as the cloud-side LLM in our experiments. We employ a batch size of 32 or 64 on 16 A100 80GB GPUs. The training phase employs the AdamW optimizer with cosine annealing and 20 warmup steps. We employ machine learning libraries such as Deepspeed (Rajbhandari et al., 2020) to facilitate model training. Details of configurations can be found in Appendix C.

4.2 Performance Overview

Table 1 presents a comparison between CoEvo and baseline methods in cloud-to-edge stage. CoEvo consistently outperforms most baseline methods across the four task domains. On MMLU, CoEvo achieves a gain of 1.5% over the strongest baseline, demonstrating its effectiveness in cross-domain tasks. On CQA, it improves by 0.8% compared to the best baseline, achieving a marginal gain.

Table 1: Performance comparison between CoEvo and baselines in the cloud-to-edge stage

Method	Multi-task MMLU	Commonsense CQA	Math GSM8K	Natural Language WinoGrande	
Meta Llama3 8B	57.26	59.38	52.15	62.46	
Efficient inference based on CoT					
Chain of Thought	59.48	63.68	59.22	62.77	
Self-Consistency CoT	61.17	65.00	60.09	62.98	
Tree of Thought	59.95	64.64	58.73	62.48	
Fine-tuning-based optimization					
DPO	63.90	64.06	61.66	67.10	
Distill step by step	64.38	65.44	59.31	68.20	
SPIN	63.85	63.19	62.08	66.62	
CoEvo (Ours)	65.91	66.26	60.77	70.40	

Our analysis reveals that the answers generated by cloud-side LLM in cloud-to-edge stage were actually suboptimal, since the use of CoT-based inference on CQA reduced the accuracy of the inference. This may be attributed to the commonsense nature of CQA, for which the CoT method is less suitable. On WinoGrande, CoEvo outperforms the best baseline by approximately 2%, demonstrating the effectiveness of our method in enhancing the SLM's semantic understanding ability. On GSM8K, CoEvo exhibits slightly lower performance compared to the best baseline. A potential explanation is the fact that in the mathematical domain, the evaluation of CoT quality is not fixed. For example, multiple solution approaches can lead to correct results, and this characteristic may have interfered with CoEvo's confidence-based evaluation process. Furthermore, while CoT-based baseline methods lead to a multiplicative increase in inference latency, CoEvo requires only single step inference to generate responses, thereby preserving the low-latency requirement of the edge-side SLM in edge-cloud architecture. In contrast to methods like DPO that require the parallel training of both a base and a policy model, CoEvo's single-model training mode in cloud-to-edge stage significantly reduces computational overhead and simplifies the training pipeline. More discussions and results on model performance and communication efficiency are available in Appendix D.

Table 2 compares the performance of CoEvo in the edge-to-cloud stage with the base model and the SFT-tuned LLM. CoEvo achieves a gain of 1.1% to 1.3% over the base model on CQA and WinoGrande, demonstrating its effectiveness in leveraging SLM to inversely optimize the LLM

Table 2: Performance comparison in edge-to-cloud stage.

Method	Commonsense CQA	Math GSM8K	Natural Language WinoGrande	
Meta Llama3 70B	78.09	80.20	82.42	
SFT	79.09	81.74	83.97	
CoEvo(Ours)	79.26	81.18	83.79	

within the edge-to-cloud framework. On GSM8K, CoEvo improves by nearly 1% compared to the original model, indicating that CoEvo remains effective for mathematical tasks. Moreover, the performance of CoEvo is comparable to that of the LLM optimized with SFT on all datasets. This demonstrates the robust adaptability of the self-updating SLM at the edge to novel data distributions and the high quality of the knowledge uploaded to the cloud. CoEvo enables edge-to-cloud model feedback optimization in most domains and exhibits promising potential for continual learning.

4.3 ABLATION STUDY

We analyze the effectiveness of each subdesign in CoEvo in different stages, as shown in Table 3. We evaluate the following three settings: (1) Whether to use confidence in cloud-to-edge stage; (2) Whether to perform multiple sampling during response generation in edge-to-cloud stage; and (3) Whether to filter candidate responses in edge-to-cloud stage. The results indicate that incorporating confidence consistently outperforms using only label and rationale data. Furthermore, performing multiple sampling during response generation in the edge-to-cloud stage can enhance the diversity and quality of output. Meanwhile, filtering candidate responses generally leads to better perfor-

Table 3: Performance analysis of different design choices.

Ablation ID	Confidence Evaluation	Inference Sampling	Response Filtering	Commonsense CQA	Math GSM8K	Natural Language WinoGrande
1	Yes	No	No	78.64	79.19	81.13
2	No	Yes	No	78.71	79.41	81.34
3	No	No	Yes	78.02	79.01	81.47
4	Yes	Yes	No	78.71	80.76	83.72
5	Yes	No	Yes	78.84	80.44	83.50
CoEvo	Yes	Yes	Yes	79.26	81.18	83.79

Figure 3: Additional ablation studies on the confi-Figure 4: Performance comparison of optidence weight (cloud-to-edge stage), sampling count, mization variants (matrices, labels, and hyand filtering strategies (edge-to-cloud stage). brid) in edge-to-cloud stage.

mance than using all responses. These findings suggest that every component of CoEvo is indispensable and effective, collectively contributing to its robust performance across diverse scenarios.

Furthermore, we conducted a detailed evaluation of each component of CoEvo to explore potential optimal configurations. Specifically, we examined: (1) the impact of different confidence weight coefficients on the optimization of edge-side SLMs; (2) the effect of varying sampling counts on the feedback performance of the cloud-side LLM; and (3) the influence of different filtering strategies on the cloud feedback process. The results are presented in Figure 3. We observe that reducing the confidence weight degrades performance, confirming the effectiveness of CoEvo confidence acquisition and scaling strategy. Increasing the sampling count generally improves inference performance, though with diminishing marginal returns, which highlights the need to balance computational cost against performance gains. Finally, applying p_{t1} or p_{t2} individually for data filtering yields consistently inferior results compared to their joint use. This validates CoEvo's dual-threshold filtering strategy, which considers both the highest and relatively high confidence values, thereby enhancing robustness beyond what a single-threshold approach can achieve.

As mentioned in Section 3.3, during the edge-to-cloud phase, CoEvo utilizes a credible probability matrix as the primary knowledge to optimize the LLM, which differs from the commonly used label-based fine-tuning strategies. We analyze the impact of CoEvo, conventional methods, and their combinations on the LLM's inference performance. Specific results are shown in Figure 4. We observe that using labels, or even a combination of labels and matrices, yields almost comparable or even slightly inferior optimization results for the cloud-based LLM compared to using matrices only. CoEvo, in contrast, utilizes credible probability matrices as knowledge to optimize the cloud-based LLM. This approach excludes the interference from suboptimal outcomes, thereby ensuring both the effectiveness and efficiency of the LLM update process.

4.4 WHY NOT UPLOAD DOMAIN-SPECIFIC DATA DIRECTLY TO CLOUD?

As mentioned in Section 3.3, edge devices can upload new data directly to the cloud to improve LLM. However, the issue is that directly uploading raw data contradicts the sensitivity to data privacy inherent in the edge-cloud distributed architecture. CoEvo uses response content based on a

Table 4: Evaluation between SFT-based Model and CoEvo in the edge-to-cloud stage.

Methods	MMLU	CQA	GSM8K	WinoGrande
Meta Llama3 70B	73.24	78.09	80.20	82.42
SFT-based				
\mathcal{M}_{-mmlu}	75.29	78.02	80.18	83.39
\mathcal{M}_{-cqa}	72.08	79.09	80.22	83.43
\mathcal{M}_{-GSM8K}	73.47	77.97	81.74	81.32
\mathcal{M}_{-wino}	72.44	78.08	79.48	83.97
X-based				
\mathcal{M}_{T-cqa}	73.18	79.26	80.33	83.09
$\mathcal{M}_{T-GSM8K}$	74.15	78.00	81.18	82.11
\mathcal{M}_{T-wino}	72.89	78.14	79.80	83.79

probability matrix, which partially obscures data details. Furthermore, directly fine-tuning the LLM with in-domain data may compromise its original "generalist" nature. As a continually learning edge-cloud architecture, CoEvo must ensure that the general performance of the cloud-side LLM remains consistently high. By using cleaned and filtered probability matrices as fine-tuning data, CoEvo indirectly provides high-quality domain new data while mitigating catastrophic forgetting and minimizing the impact on the LLM's fundamental inference capabilities. We evaluate the inference performance of the optimized LLM obtained by different methods in other domains.

As shown in Table 4, although the domain-specific inference capabilities of the LLM fine-tuned via SFT on MMLU remain largely unaffected (\mathcal{M}_{-mmlu}) , LLMs fine-tuned on other domain-specific datasets exhibit varying degrees of degradation in cross-

As shown in Table 4, although the domain-specific cloud-based update strategy.

Method	Commonsense CQA	Math GSM8K	Natural Language WinoGrande	
Cloud-based update strategy				
w/o Local data storage	2.0×	1.6×	1.8×	
Local data storage	1.3×	1.2×	1.2×	
CoEvo	1.0×	1.0×	1.0×	

domain inference performance. Leveraging the knowledge matrix from the feedback of SLM instead of hard labels, CoEvo reduces the interference caused by single domain data on the overall inference ability of the LLM while ensuring stable performance improvement in the target domain.

Another factor is the combined cost of computational resources and data transmission in the edge-cloud paradigm. We compare the data transfer overhead between CoEvo and a cloud-based update strategy, as detailed in Table 5. The cloud-based update strategy requires two data transmissions between the edge and cloud to achieve a collaborative update. Even with local storage of new data, it still necessitates the additional transmission of the cloud-based LLM's response data to update the edge-side SLM. In contrast, CoEvo completes the SLM update directly on the edge side. It only needs to transmit a portion of the new data and its own responses to the cloud to complete the update of models on both sides, thereby saving the additional overhead of data transmission.

5 CONCLUSION

We present CoEvo, a trainable framework designed to break static mode of edge-cloud architecture and enhance the performance of language models by applying credible CoT knowledge distillation and credible probability matrix knowledge distillation. CoEvo demonstrates the characteristic of proximity to edge devices and users, leveraging the ability to access new domain-specific data during interaction to enable dynamic knowledge flow in the edge-cloud architecture. Through cloud-to-edge model optimization, CoEvo produces a strengthened SLM with robust inference capabilities; through edge-to-cloud feedback, it yields an LLM with improved performance in specific domains. Furthermore, CoEvo achieves continual evolution through multiple self-iterations, extending its benefits across more domains.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, and et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.
- Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander Kolesnikov. Knowledge distillation: A good teacher is patient and consistent. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10915–10924, 2022. doi: 10.1109/CVPR52688.2022.01065.
- Ning Bian, Xianpei Han, Le Sun, Hongyu Lin, Yaojie Lu, Ben He, Shanshan Jiang, and Bin Dong. Chatgpt is a knowledgeable but inexperienced solver: An investigation of commonsense problem in large language models. In *LREC/COLING*, pp. 3098–3110, 2024. URL https://aclanthology.org/2024.lrec-main.276.
- Satya Narayana Cheetirala, Ganesh Raut, Dhavalkumar Patel, Fabio Sanatana, Robert Freeman, Matthew A Levin, Girish N. Nadkarni, Omar Dawkins, Reba Miller, Randolph M. Steinhagen, Eyal Klang, and Prem Timsina. Less context, same performance: A rag framework for resource-efficient llm-based clinical nlp, 2025. URL https://arxiv.org/abs/2505.20320.
- Jiao Chen, Suyan Dai, Fangfang Chen, Zuohong Lv, Jianhua Tang, and Laiquan Han. Edge-cloud collaborative motion planning for autonomous driving with large language models. In *2024 IEEE 24th International Conference on Communication Technology (ICCT)*, pp. 185–190, 2024a. doi: 10.1109/ICCT62411.2024.10946488.
- Yaofo Chen, Shuaicheng Niu, Yaowei Wang, Shoukai Xu, Hengjie Song, and Mingkui Tan. Towards robust and efficient cloud-edge elastic model adaptation via selective entropy distillation. In *The Twelfth International Conference on Learning Representations*, 2024b. URL https://openreview.net/forum?id=vePdNU3u6n.
- Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning convertsweak language models to strong language models. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024c.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/abs/2110.14168.
- Yucheng Ding, Chaoyue Niu, Fan Wu, Shaojie Tang, Chengfei Lyu, and Guihai Chen. Enhancing on-device llm inference with historical cloud-based llm interactions. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '24, pp. 597–608, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671679. URL https://doi.org/10.1145/3637528.3671679.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, and et al. The llama 3 herd of models. *CoRR*, abs/2407.21783, 2024. URL https://doi.org/10.48550/arXiv.2407.21783.
- Tao Fan, Yan Kang, Guoqiang Ma, Weijing Chen, Wenbin Wei, Lixin Fan, and Qiang Yang. Fatellm: A industrial grade federated learning framework for large language models, 2023. URL https://arxiv.org/abs/2310.10049.
- Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting for multi-step reasoning. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=yflicZHC-19.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, and et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Zixu Hao, Huiqiang Jiang, Shiqi Jiang, Ju Ren, and Ting Cao. Hybrid slm and llm for edge-cloud collaborative inference. In *Proceedings of the Workshop on Edge and Mobile Foundation Models*, EdgeFM '24, pp. 36–41, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706639. doi: 10.1145/3662006.3662067. URL https://doi.org/10.1145/3662006.3662067.

- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.
- Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger language models with less training data and smaller model sizes. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics:* ACL 2023, pp. 8003–8017, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.507. URL https://aclanthology.org/2023.findings-acl.507/.
- Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
- Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie, Yaliang Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package for fine-tuning large language models in federated learning. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '24, pp. 5260–5271, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671573. URL https://doi.org/10.1145/3637528.3671573.
- Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 9459–9474. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780elbc26945df7481e5-Paper.pdf.
- Jingyu Liu, Linjiaen, and Yong Liu. How much can RAG help the reasoning of LLM?, 2025. URL https://openreview.net/forum?id=Q6M7bZIo9t.
- Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas Chandra. MobileLLM: Optimizing sub-billion parameter language models for on-device use cases. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=EIGbXbxcUQ.
- JIAHONG NING, Ce ZHENG, and Tingting Yang. DSSD: Efficient edge-device deployment and collaborative inference via distributed split speculative decoding. In *ICML* 2025 Workshop on Machine Learning for Wireless Communication and Networks (ML4Wireless), 2025. URL https://openreview.net/forum?id=5vkXfhUmnn.
- Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
- Dan Peng, Zhihui Fu, and Jun Wang. PocketLLM: Enabling on-device fine-tuning for personalized LLMs. In Ivan Habernal, Sepideh Ghanavati, Abhilasha Ravichander, Vijayanta Jain,

Patricia Thaine, Timour Igamberdiev, Niloofar Mireshghallah, and Oluwaseyi Feyisetan (eds.), *Proceedings of the Fifth Workshop on Privacy in Natural Language Processing*, pp. 91–96, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https://aclanthology.org/2024.privatenlp-1.10/.

- Ruiyang Qin, Zheyu Yan, Dewen Zeng, Zhenge Jia, Dancheng Liu, Jianbo Liu, Ahmed Abbasi, Zhi Zheng, Ningyuan Cao, Kai Ni, Jinjun Xiong, and Yiyu Shi. Robust implementation of retrieval-augmented generation on edge-based computing-in-memory architectures. In *Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided Design*, ICCAD '24, New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400710773. doi: 10.1145/3676536.3676674. URL https://doi.org/10.1145/3676536.3676674.
- Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou, Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng Ji, Guoliang Li, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models. *ACM Comput. Surv.*, 57(4), December 2024. ISSN 0360-0300. doi: 10.1145/3704435. URL https://doi.org/10.1145/3704435.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=HPuSIXJaa9.
- Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward training trillion parameter models. In *SC20: International Conference for High Performance Computing, Networking, Storage and Analysis*, pp. 1–16, 2020. doi: 10.1109/SC41405. 2020.00024.
- Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason E Weston, and Tianlu Wang. Learning to plan & reason for evaluation with thinking-LLM-as-a-judge. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=PNRznmmWP7.
- Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(05):8732–8740, Apr. 2020. doi: 10.1609/aaai.v34i05.6399. URL https://ojs.aaai.org/index.php/AAAI/article/view/6399.
- Shreya Shankar, J.D. Zamfirescu-Pereira, Bjoern Hartmann, Aditya Parameswaran, and Ian Arawjo. Who validates the validators? aligning llm-assisted evaluation of llm outputs with human preferences. In *Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology*, UIST '24, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706288. doi: 10.1145/3654777.3676450. URL https://doi.org/10.1145/3654777.3676450.
- Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421/.
- Yuqing Tian, Zhaoyang Zhang, Yuzhi Yang, Zirui Chen, Zhaohui Yang, Richeng Jin, Tony Q. S. Quek, and Kai-Kit Wong. An edge-cloud collaboration framework for generative ai service provision with synergetic big cloud model and small edge models. *IEEE Network*, 38(5):37–46, 2024. doi: 10.1109/MNET.2024.3420755.

- Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Reasoning aware self-consistency: Leveraging reasoning paths for efficient LLM sampling. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 3613–3635, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.184. URL https://aclanthology.org/2025.naacl-long.184/.
- Chaofei Wang, Qisen Yang, Rui Huang, Shiji Song, and Gao Huang. Efficient knowledge distillation from model checkpoints. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=0ltDq6SjrfW.
- Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, and Xiang Ren. Scott: Self-consistent chain-of-thought distillation. *CoRR*, abs/2305.01879, 2023a. URL https://doi.org/10.48550/arXiv.2305.01879.
- Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Executable code actions elicit better LLM agents. In *Forty-first International Conference on Machine Learning*, 2024a. URL https://openreview.net/forum?id=jJ9BoXAfFa.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations*, 2023b. URL https://openreview.net/forum?id=1PL1NIMMrw.
- Yingchao Wang, Chen Yang, Shulin Lan, Liehuang Zhu, and Yan Zhang. End-edge-cloud collaborative computing for deep learning: A comprehensive survey. *IEEE Communications Surveys Tutorials*, 26(4):2647–2683, 2024b. doi: 10.1109/COMST.2024.3393230.
- Zhengxiang Wang, Jordan Kodner, and Owen Rambow. Exploring limitations of LLM capabilities with multi-problem evaluation. In Aleksandr Drozd, João Sedoc, Shabnam Tafreshi, Arjun Akula, and Raphael Shu (eds.), *The Sixth Workshop on Insights from Negative Results in NLP*, pp. 121–140, Albuquerque, New Mexico, May 2025. Association for Computational Linguistics. ISBN 979-8-89176-240-4. doi: 10.18653/v1/2025.insights-1.12. URL https://aclanthology.org/2025.insights-1.12/.
- Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International Conference on Learning Representations*, 2022a. URL https://openreview.net/forum?id=gEZrGCozdqR.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, and et al. Chain-of-thought prompting elicits reasoning in large language models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 24824–24837. Curran Associates, Inc., 2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.
- Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu, Junxian He, and Bryan Hooi. Can LLMs express their uncertainty? an empirical evaluation of confidence elicitation in LLMs. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=gjeQKFxFpZ.
- Daliang Xu, Wangsong Yin, Hao Zhang, Xin Jin, Ying Zhang, Shiyun Wei, Mengwei Xu, and Xuanzhe Liu. Edgellm: Fast on-device llm inference with speculative decoding. *IEEE Transactions on Mobile Computing*, 24(4):3256–3273, December 2024. ISSN 1536-1233. doi: 10.1109/TMC.2024.3513457. URL https://doi.org/10.1109/TMC.2024.3513457.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in*

- Neural Information Processing Systems, volume 36, pp. 11809–11822. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf.
- Zhi Yao, Zhiqing Tang, Jiong Lou, Ping Shen, and Weijia Jia. Velo: A vector database-assisted cloud-edge collaborative llm qos optimization framework. In 2024 IEEE International Conference on Web Services (ICWS), pp. 865–876, 2024. doi: 10.1109/ICWS62655.2024.00105.
- Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Kan Ren, Dongsheng Li, and Deqing Yang. EASYTOOL: Enhancing LLM-based agents with concise tool instruction. In *ICLR 2024 Workshop on Large Language Model (LLM) Agents*, 2024a. URL https://openreview.net/forum?id=3TuG3S68bb.
- Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason Weston. Self-rewarding language models. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024b.
- Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang, Dongjie Wang, and Kunpeng Liu. Ratt: A thought structure for coherent and correct llm reasoning. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(25):26733–26741, Apr. 2025a. doi: 10.1609/aaai.v39i25.34876. URL https://ojs.aaai.org/index.php/AAAI/article/view/34876.
- Xuan Zhang, Chao Dut, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference optimization: improving chain-of-thought reasoning in llms. In *Proceedings of the 38th International Conference on Neural Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025b. Curran Associates Inc. ISBN 9798331314385.
- Wentao Zhao, Wenpeng Jing, Zhaoming Lu, and Xiangming Wen. Edge and terminal cooperation enabled llm deployment optimization in wireless network. In 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops), pp. 220–225, 2024. doi: 10.1109/ICCCWorkshops62562.2024.10693742.
- Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm question answering with external tools. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 50117-50143. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/9cb2a7495900f8b602cb10159246a016-Paper-Datasets_and_Benchmarks.pdf.

APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we have used Large Language Models (LLMs) exclusively for the purposes of translation and language polishing. The content, arguments, and conclusions presented herein are entirely my own, and the use of LLMs did not contribute to the generation of original ideas or substantive content.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. No human subjects, personally identifiable data, or sensitive datasets were involved. The use of Large Language Models (LLMs) was strictly limited to translation and language polishing; they did not contribute to the generation of original ideas, methodology, results, or conclusions.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our work. The experimental setup, including datasets, preprocessing steps, and hyperparameters, is detailed in Section 4 and the Appendix. Source code and instructions for reproducing our results are available if needed.

A DATASETS

MMLU: A large-scale, widely used multi-task dataset that covers 57 distinct subjects, designed to evaluate a model's breadth of knowledge and inference abilities across various disciplinary domains. It consists of a development set, a validation set, and a test set, comprising approximately 14,000 questions in total.

CommonsenseQA(CQA): A dataset designed to evaluate models' commonsense inference capabilities. After partitioning, it contains 9,741 training instances and 1,221 test instances.

GSM8K: A dataset specifically designed to evaluate models' mathematical inference capabilities, consisting of grade-school math word problems that require multiple logical steps to solve. It includes a training set of 7,473 samples and a test set of 1,319 samples.

WinoGrande: A large-scale natural language inference dataset, primarily used to evaluate the ability to resolve coreference resolution tasks. It consists of a training set with 40,398 samples, a validation set with 1,267 samples, and a test set with 1,767 samples.

Table 6 in the Appendix shows sample examples from each dataset.

B BASELINES

Efficient inference based on CoT:

- **CoT:** It is an algorithm that guides LLMs to decompose "question-answer" into "question-thinking-answer" through "think step by step" prompting. It has been widely adopted in the field of LLM research.
- **self-consistency CoT:** It is an algorithm that extends CoT. This method enhances the robustness and accuracy of CoT by generating multiple distinct inference paths and selecting the most consistent answer from these paths through a majority voting mechanism.
- ToT: This is an algorithm that integrates tree search concepts into the inference process of large language models. It transforms the traditional single-path expansion into a tree-structured exploration framework, with the key idea being that the language model can evaluate multiple intermediate steps during inference through methods such as voting or scoring. These intermediate steps correspond to nodes in the tree, and the inference path is

Table 6: Sample examples from different datasets belonging to diverse task domains.

Dataset	Instructions and GT Answers for Each Dataset used to evaluate CoEvo
	Question: Which statement best explains the purpose of Hart's distinction
MMLU	between 'being obliged' and 'having an obligation'?
	Answer: It illuminates the concept of a rule.
	Question: A John is a bum. Much like the stereotype, he lives near this sort
CQA	of transportation infrastructure. Where does he live?
	Answer: bridge.
	Question: The ratio representing the age of Halima, Beckham, and Michelle
GSM8K	is 4:3:7, respectively. If the total age for the three siblings is 126, calculate the
	age difference between Halima and Beckham.
	Answer: 9.
	Question: The ring that I bought my girlfriend was worse than the bracelet
WinoGrande	that I bought her because the was more expensive.
	Answer: bracelet.

Table 7: Experiment Setup. Dataset configurations and parameter settings.

Attributes		cloud-to-	edge stage	edge-to-cloud stage			
	MMLU	CQA	GSM8K	WinoGrande	CQA	GSM8K	WinoGrande
Task size	6MB	3.7MB	4.9MB	8.2MB	3.7MB	4.9MB	8.2MB
Instruction number	13985	10962	8792	43432	10962	8792	43432
Task Scenario	Multi-task	Commonsense	Math	Natural Language	Commonsense	Math	Natural Language
Batch Size	s = 64	s = 32	s =32	32	s = 32	s = 32	s = 32
Learning Rate	l = 1e-5	l = 1e-5	l = 1e-5	l = 2e-5	l = 1e-5	l = 1e-5	l = 2e-5
Local training epoch	E = 5	E = 5	E = 3	E = 3	E = 5	E = 3	E = 3

dynamically optimized through backtracking or heuristic search methods (such as breadth-first search or depth-first search).

Fine-tuning-based optimization methods:

- DPO: It is an algorithm that fine-tunes language models by directly optimizing human preference data. It bypasses the complex reward model training steps of traditional RLHF by reformulating the preference learning problem as a policy-based loss function, which directly maximizes the logarithmic probability difference between preferred and non-preferred responses through a simple binary cross-entropy objective.
- **Distill step by step:** This algorithm first trains a small model to generate intermediate inference steps (rationales), then jointly optimizes them with the final answer prediction. This approach enables the model to learn and acquire the logical inference capabilities of larger models while maintaining its lightweight nature.
- **SPIN:** This algorithm builds upon DPO and enables continual optimization of large models through a self-play mechanism, without relying on additional human preference data or reinforcement learning frameworks. The key lies in modeling the fine-tuning process as a "two-player game" task: the main model (current version) and a historical model (previous version) generate responses to questions, and a contrastive learning objective (similar to DPO) drives the main model to progressively surpass the inference performance of the historical model.

C CONFIGURATIONS

We document the specific settings and implementation details of all experiments mentioned in the main text to ensure the reproducibility of the research. When replicating various baseline methods, we strictly adhere to the design principles outlined in their original papers and implement them based on publicly available code repositories.

Table 8: Text perplexity comparison of proposed and baseline methods.

Methods	cloud-to-edge stage					edge-to-cloud stage		
	MMLU	CQA	GSM8K	WinoGrande	CQA	GSM8K	WinoGrande	
Meta Llama3 8B	4.49	10.26	6.77	3.47	_	_		
Meta Llama3 70B	_	_	_	_	7.91	8.43	2.27	
Efficient inference based on CoT								
Chain of Thought	4.08	9.44	6.56	3.29	_	_	_	
Self-Consistency CoT	4.08	9.44	6.56	3.29	_	_	_	
Tree of Thought	3.40	8.08	5.94	3.01	_	-	-	
Fine-tuning-based optimization								
DPO	3.37	7.43	5.67	2.87	_	_	_	
Distill step by step	3.25	6.82	5.98	3.06	_	_	_	
SPIN	3.28	7.52	5.91	3.03	_	-	-	
CoEvo	2.90	6.51	5.60	2.59	7.65	7.99	2,22	

For efficient inference methods based on CoT: (1) CoT: Standard chain-of-thought inference is triggered using a few-shot prompting. (2) Self-Consistency CoT: For each question, balancing inference overhead and sampling diversity, the model generates five inference paths and selects the most consistent answer through a "majority voting" mechanism. (3) ToT: At each inference step, the model generates three candidate inference paths. Depending on the specific task, the depth of the inference tree (i.e., the maximum number of inference steps) is set between two and three. At each step, three evaluations are performed to filter the optimal inference path.

For fine-tuning-based optimization methods: (1) DPO: We use the responses generated by cloud-side LLM as preferred data and randomly select one from the remaining answer options as non-preferred data. (2) Distill Step by Step: The original settings are followed. (3) SPIN: We use the responses generated by cloud-side LLM as the initial SFT data.

More experimental details can be found in Table 7 in the Appendix.

D ADDITIONAL RESULTS

D.1 COMPARATIVE ANALYSIS OF TEXT PERPLEXITY

Perplexity (PPL) is a fundamental metric for evaluating the performance of language models by measuring their uncertainty in predicting text sequences. Given a sequence of tokens $W = (w_1, w_2, \ldots, w_N)$, perplexity is computed as:

$$PPL(W) = \exp\left(-\frac{1}{N} \sum_{i=1}^{N} \log P(w_i|w_1, \dots, w_{i-1})\right).$$
 (8)

where:

- N: Total number of tokens in the evaluation sequence
- w_i : The *i*-th token in the sequence
- $P(w_i|w_1,\ldots,w_{i-1})$: Conditional probability of token w_i given preceding context
- \log : Natural logarithm (base e)

Lower perplexity values indicate better model performance, with a theoretical minimum of 1 (perfect prediction) and a baseline value equal to the vocabulary size for random guessing. This metric reflects how "surprised" the model is when encountering the test data, with well-calibrated models achieving lower perplexity on in-distribution text.

Table 9: Performance of SLM Variants Optimized with Different Objective Functions.

Methods	MMLU	CQA	GSM8K	WinoGrande
Meta Llama3 8B	57.26	59.38	52.15	62.46
Distill step by step	64.38	65.44	59.31	68.82
\mathcal{M}_{1-A}	65.91	66.26	60.77	68.71
\mathcal{M}_{1-B}	64.28	64.79	59.20	67.88
\mathcal{M}_{1-C}	63.60	63.25	57.11	70.40

Following the experimental setup outlined in Sections 4.1 and 4.2, we evaluate the perplexity of responses generated by CoEvo and baseline approaches across multiple datasets. The test results are summarized in Table 8 in the Appendix.

During cloud-to-edge and edge-to-cloud phase, the perplexity achieved by CoEvo outperforms existing baseline methods on most datasets. Although superior perplexity does not directly equate to correct inference, it reflects the model's clarity in understanding problems and has become one of the widely adopted evaluation metrics in the field of LLMs.

D.2 THE IMPACT OF DIFFERENT OPTIMIZATION OBJECTIVES ON FINE-TUNING OUTCOMES

As mentioned in Section 3.3, we designed a joint optimization objective based on three key metrics: answer, rationale, and confidence. Then facilitate the distillation of knowledge from the LLM on the cloud to the SLM on the edge. In this section, we elaborate on the exploration of specific formulations for this joint optimization objective during the experimental phase. We designed three variants of the objective function:

$$\mathcal{L} = conf \cdot (1 - \alpha)\mathcal{L}_{\mathcal{R}} + \alpha \mathcal{L}_{\mathcal{A}}. \tag{9}$$

where α is a hyperparameter. The design intuition is to use the original confidence score to adjust the final answer. When the confidence is low, the weight of the final answer in the training objective is reduced, guiding the model to focus more on learning the inference process.

$$\mathcal{L} = (1 - conf)\mathcal{L}_{\mathcal{R}} + conf \cdot \mathcal{L}_{\mathcal{A}}. \tag{10}$$

The idea here is to dynamically balance the contributions of \mathcal{L}_R and \mathcal{L}_A using the confidence score. When confidence is high, the training objective shifts emphasis toward the rationale.

$$\mathcal{L} = \exp(conf) \cdot [(1 - \alpha)\mathcal{L}_{\mathcal{R}} + \alpha\mathcal{L}_{\mathcal{A}}]. \tag{11}$$

where α is a hyperparameter. This formulation uses the exponentially scaled confidence score to dynamically adjust the weighted sum of \mathcal{L}_R and \mathcal{L}_A .

We evaluate the performance of the optimized SLM with these three variants in various datasets. We denote the SLM obtained by applying Eq. 9 as \mathcal{M}_{1-A} , the SLM obtained by applying Eq. 10 as \mathcal{M}_{1-B} , and the SLM obtained by applying Eq. 11 as \mathcal{M}_{1-C} . We selected distill step by step—which also employs a composite optimization objective utilizing both labels and rationales, but does not incorporate confidence—as the baseline for comparison. The results are shown in Table 9.

 \mathcal{M}_{1-A} achieved the best performance on the three datasets: MMLU, CQA and GSM8K, while \mathcal{M}_{1-C} performed optimally on WinoGrande. This indicates that it is meaningful to analyze and construct different forms of optimization objectives tailored to tasks across various domains. It should also be noted that the construction method \mathcal{M}_{1-B} doesn't achieve satisfactory results on any of the test datasets, indicating that improper utilization of the confidence metric may disrupt its intrinsic relationship with labels and rationales, thereby leading to suboptimal outcomes.

Figure 5: Performance comparison under different \mathcal{P}_{t1} thresholds on three datasets. Given the presentation requirements, \mathcal{P}_{t1} =1 here actually represents using the complete dataset.

D.3 THE EFFECT OF DATA FILTERING THRESHOLDS ON CLOUD FEEDBACK PERFORMANCE

In this section, we supplement the exploration of a key sub-technique in edge-to-cloud stage of Co-Evo: response filtering. The objective of response filtering is to obtain high quality knowledge from \mathcal{M}_2 - the 'domain-specific expert' enhanced in cloud-to-edge stage and enhancement of domain-specific data. Specifically, for responses generated by \mathcal{M}_2 based on historical interactions, CoEvo filters qualified high-quality answers according to the design described in Section 3.3, and uploads these to the cloud as raw knowledge for feedback optimization of the cloud-side LLM. We explored the effect of \mathcal{P}_{t1} —that is, the ratio of the maximum probability to \mathcal{P}_{t1} —under different thresholds on the optimization of the cloud-side LLM. Experimental results are shown in Figure 5 in the Appendix.

We sequentially set \mathcal{P}_{t1} to 0.8, 0.9, 0.95, and 1.0. It should be noted that, for ease of presentation, \mathcal{P}_{t1} =1.0 actually represents using the complete dataset without any filtering. The setting of \mathcal{P}_{t1} exhibited varying impacts on the optimization of the cloud-side LLM across different domain datasets. For CQA, the optimal \mathcal{P}_{t1} was 0.95, while for GSM8K, this value changed to 0.9. For WinoGrande, the optimal value was 0.8. We attribute this to the LLM's differing levels of confidence when addressing problems from various domains, which aligns with the observations we obtained in Figure 2.

D.4 DESIGN OF TASK-SPECIFIC PROMPT TEMPLATES

As discussed in Section 3.2, in cloud-to-edge stage, the primary objective of the cloud-side LLM is to provide high-quality composite knowledge to the base SLM \mathcal{M}_0 , specifically including labels, rationales, and confidence. The templates used for prompting the generation of each component are as follows:

1. Generating Label $(Q \rightarrow A)$:

"Please complete the specified task according to the requirements in the following task flow.

Task Flow: Read the question below, each of which contains multiple options. Analyze the question and directly provide the correct answer. Do not include any content beyond the answer.

Question: [Question]. Your response: {response}"

2. Generating Rationale $(Q \rightarrow R)$:

"Please complete the specified task according to the requirements in the following task flow.

- Task Flow: Read the question below, each of which contains multiple options. Analyze the question and provide the inference/thought process for solving this problem. You need to think step by step to arrive at the final answer. Do not include any content beyond the inference/thought process.
- 1030 Question: [Question]. Your response: {response}"
 - 3. Generating Confidence $(\mathcal{Q} \rightarrow \mathcal{C})$:

- "Please complete the specified task according to the requirements in the following task flow.
- Task Flow: Read the question below, each of which contains multiple options. Analyze the question and provide the correct answer along with your confidence level in this answer. The confidence level ranges from 1 to 10, representing low to high confidence. Do not include any content beyond the correct answer and the confidence level.
- 1038 Question: [Question]. Your response: {response}"
- The [Question] in the prompt templates above refers to the original instruction, the {response} represents the response content generated by \mathcal{M}_0 .
 - As discussed in Section 3.3, in edge to cloud stage, the edge-side SLM \mathcal{M}_2 generates preliminary response content based on historical interaction records. Subsequently, CoEvo filters these contents to obtain a confidence probability matrix for the feedback to the cloud. The prompt templates used for the generation are as follows:
- 1046 Generating response:
- "Please complete the specified task according to the requirements in the following task flow.
- Task Flow: Read the question below, each of which contains multiple options. Analyze the question, provide the inference/thought process for solving this problem and finally provide the correct answer. Please do not provide any content unrelated to the question.
 - Question: [Question]. Your response: {response}"

D.5 QUALITATIVE DIFFERENCES IN GENERATED INFERENCE PATHS

Table 10 in the Appendix presents a comparison of the response quality generated by CoEvo and the best baseline method across different domain datasets in the cloud-to-edge stage. By leveraging its credible CoT construction approach, CoEvo achieves higher-quality responses than distilling step by step .

Table 10: Qualitative Comparison of Responses Between CoEvo and Best Baseline

Dataset	Instructions and GT Answers for Each Dataset used to evaluate CoEv
MMLU	Question: Statement 1— The F1 score can be especially useful for datasets with class high balance. Statement 2— The area under the ROC curve is one of the main metrics used to as anomaly detectors. Base: The F1 score can be especially useful for datasets with class high imbalance because it t into account both precision and recall. The area under the ROC curve is one of the main metrics to assess anomaly detectors, but it does not take into account class imbalance. Therefore, Stater 1 is true and Statement 2 is false. Answer: True, False. Best Baseline: The F1 score is a measure of accuracy that takes into account both precision recall. It is often used for datasets with class high imbalance, where there are many more exam of one class than another. The area under the ROC curve is a measure of the performance of anomaly detector. It is not specifically designed for datasets with class high imbalance. Theref statement 1 is true, while statement 2 is false. CoEvo: Both statements are true. The F1 score is often used to evaluate the performance of bic classifiers, while the area under the ROC curve is commonly used to assess the performance anomaly detectors. Both metrics can be particularly helpful when dealing with imbalanced data
	as they provide a more comprehensive view of the model's performance than accuracy alone.
CQA	infrastructure. Where does he live? Base: The question tests the ability to recognize a stereotype (John as a bum) Key clues: "ste type", "transportation infrastructure" (industrial context) - Best fit: (C)train station (connotes a lincome area) - Why not others: (A)/(B)/(D)/(E) are plausible but don't match the bum stereotypest Baseline: The key is to recognize a transportation hub Key clues: "bum", "transportation frastructure" (context of travel) - Best fit: (C)train station (central hub) - Why not others: (A depot is plausible but secondary (focus is on trains) (B)beach is contextually irrelevant (D)/(E) incorrect due to incorrect spelling. ✗ CoEvo: The context implies a homeless person, suggesting proximity to urban services clues: "bum", "near this sort of transportation infrastructure" (impoverished, city-based) - Bes (D)bridge (a common location for homeless encampments) - Why not others: (B)beach is unli due to remoteness (A)/(C) are plausible but less specific (E)bridge is a red herring (a bridge bridge). ✓
GSM8K	Question: The ratio representing the age of Halima, Beckham, and Michelle is 4:3:7, respectivel the total age for the three siblings is 126, calculate the age difference between Halima and Becklase: 4x+3x+7x=126. 14x=126. x=126/14. x=9. Age difference between Halima and Beckham 3. Age difference between Halima and Beckham=4. ★ Best Baseline: Let x be the age of Halima. Then, the age of Beckham is 3x, and the age of Miclis 7x. The sum of the three ages is 126. So, x + 3x + 7x = 126 11x = 126 x = 126 / 11 = 11.5 age of Halima is 11.5 years old. The age of Beckham is 3x = 3 * 11.5 = 34.5 years old. There the age difference between Halima and Beckham is 34.5 - 11.5 = 23 years. ★ CoEvo: The sum of the three numbers in the ratio is 4 + 3 + 7 = 14. Halima's age is 4/14 or total age, or (4/14) x 126 = 36 years old. Beckham's age is 3/14 of the total age, or (3/14) x 127 years old. The age difference between Halima and Beckham is 36 - 27 = 9 years. ✓
WinoGrande	Question: William liked wearing high heels when going out with Lawrence, because loved feeling of heels. Base: The sentence states that William liked wearing heels when going out with Lawrence. It states that Lawrence loved the feeling of heels. This implies that William wears heels for Lawrence sake. Therefore, the blank should refer to Lawrence. X Best Baseline: William liked wearing high heels with Lawrence. William's reason for wearing has that Lawrence loved the feeling of heels. Therefore, the blank should refer to Lawrence. X CoEvo: The sentence states that William likes wearing high heels when going out with Lawre because someone loves the feeling of heels. Since liking the feeling of heels would lead to weahigh heels, the blank should refer to William.