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Abstract
Discourse analysis plays a crucial role in Natu-001
ral Language Processing, with discourse rela-002
tion prediction arguably being the most difficult003
task in discourse parsing. Previous studies have004
generally focused on explicit or implicit dis-005
course relation classification in monologues,006
leaving dialogue an under-explored domain.007
Facing the data scarcity issue, we propose to008
leverage self-training strategies based on Trans-009
former backbone. Moreover, we design the first010
semi-supervised full discourse parsing pipeline011
that sequentially conducts parsing tasks. Us-012
ing only 50 examples as gold training data, our013
relation prediction module achieves 58.4 in ac-014
curacy on the STAC corpus, close to supervised015
state-of-the-art. Full parsing results show no-016
table improvements compared to the supervised017
models both in-domain (gaming) and cross-018
domain (technical chat), with better stability.019

020

1 Introduction021

Discourse analysis aims at uncovering the inher-022

ent structure of documents and has demonstrated023

its usefulness in various downstream applications,024

from sentiment analysis or fake news detection025

(Bhatia et al., 2015; Karimi and Tang, 2019), to026

summarization or machine translation (Chen and027

Yang, 2021; Chen et al., 2020). Existing research028

efforts have focused on automatically extracting029

discourse structures through tasks such as discourse030

relation prediction (Shi and Demberg, 2019; Wu031

et al., 2022) and discourse parsing (Joty et al.,032

2015; Kobayashi et al., 2020). The latter is usually033

conducted within the Rhetorical Structure Theory034

(RST) (Mann and Thompson, 1987) or the Seg-035

mented Discourse Representation Theory (SDRT)036

(Asher et al., 2003) where discourse structures are037

presented as trees or graphs. Automatic discourse038

parsing consists of extracting such structures from039

documents, where spans of text – known as Ele-040

mentary Discourse Units (EDUs) – are linked by041

semantic-pragmatic relations such as Explanation, 042

Acknowledgment, Contrast, etc. 043

Current data-driven methods for discourse pars- 044

ing have predominantly been applied to mono- 045

logues, leading to limited availability and gener- 046

alizability of discourse parsers for dialogues. As 047

dialogue data soared in all kinds of forms, such 048

as online teaching and meetings, the need for au- 049

tomatic analysis systems has rapidly increased. 050

However, one of the main hurdles in developing 051

high-functioning parsing models is the scarcity of 052

annotated data, along with limitations of super- 053

vised approaches in cross-domain scenarios (Liu 054

and Chen, 2021). Strategic Conversations corpus 055

(STAC) (Asher et al., 2016) – the most commonly 056

used SDRT-annotated dialogue dataset – contains 057

merely 1000 short documents. The labeling ef- 058

fort being expensive in terms of time and labor 059

costs, it appears unlikely to create new large-scale 060

expert-annotated datasets. Semi-supervised strate- 061

gies are thus appealing. A few studies proposed 062

weak or distant supervision for naked tree building 063

(Badene et al., 2019; Li et al., 2023) while missing 064

the important relation information. Remarkably, 065

despite recent powerful Large Language Models 066

(LLMs) such as ChatGPT excel in many NLP tasks, 067

discourse parsing remains a significant challenge, 068

given their poor performance (Chan et al., 2023a). 069

In this paper, we extend the bootstrapping ap- 070

proach to dialogues with even less annotated data, 071

by relying on self-training (Yarowsky, 1995) where 072

a model is used to produce pseudo labels and in- 073

crease training data, a simple method shown as 074

effective (Rosenberg et al., 2005). Using the BERT 075

model (Devlin et al., 2019) as a base classifier and 076

applying self-training, we achieve competitive re- 077

sults on a 16-way classification on STAC using 078

only 50 dialogues for initial training. We also build 079

a pipeline upon Li et al. (2023)’s work to perform 080

full parsing, where we assign discourse relations 081

on established structures, giving important exten- 082
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sions on semi-supervised approaches for dialogues083

until now limited to naked structures. Our pipeline084

yields 38.6 micro-F1 score with gold EDUs and085

32.8 with predicted EDUs: representing strong086

baselines for discourse parsing in dialogues with087

minimal supervision. This pipeline, or structure-088

then-relation approach, allows for a flexible archi-089

tecture and greater generalizability. We further090

conduct cross-domain experiments by testing on a091

re-annotated subset of Molweni (Li et al., 2020) –092

a Ubuntu dataset. Despite the domain difference,093

our pipeline shows remarkable performances (link094

75.6, link and relation 31.2), outperforming super-095

vised SOTA models by a large margin1.096

To summarize our contributions in this work:097

we propose (1) a simple but effective method that098

requires minimal supervision for discourse rela-099

tion prediction; (2) a flexible discourse parsing100

pipeline that handles all tasks in sequence and ex-101

hibits strong generalizability; (3) a comprehensive102

comparison with supervised models and in-depth103

exploration across in-domain and cross-domain sce-104

narios; and (4) a small human-annotated discourse105

dataset in the technical chat domain which we will106

make public and support cross-domain evaluation.107

2 Related Work108

In recent years, there has been an increasing in-109

terest in discourse parsing in dialogues. Since the110

release of the STAC corpus, a range of discourse111

parsers has emerged, including classic statistical112

models (Afantenos et al., 2015; Perret et al., 2016)113

and neural architecture models (Shi and Huang,114

2019; Wang et al., 2021; Chi and Rudnicky, 2022),115

some of which are trained within multi-task learn-116

ing framework (Yang et al., 2021; Fan et al., 2022).117

Although these supervised models achieve good118

performance on STAC, they face limitations when119

applied to cross-domain scenarios (Liu and Chen,120

2021). To address the challenge of data scarcity, re-121

searchers turn to weakly and semi-supervised meth-122

ods, as done by Badene et al. (2019) and Li et al.123

(2023). For monologues, Nishida and Matsumoto124

(2022) show that co-training can considerably in-125

crease cross-domain performance, but they benefit126

from a larger amount of annotated data than we do127

for dialogues. Despite the revolutionary achieve-128

ments offered by LLMs (Ouyang et al., 2022; Tou-129

vron et al., 2023), they remain notably behind fully130

and semi-supervised benchmarks in discourse pars-131

1Our code will be made available at URL.

ing. Chan et al. (2023a) illustrate that ChatGPT 132

struggles on STAC with 50% F1 gap from super- 133

vised models. Fan and Jiang (2023) find that Chat- 134

GPT tends to establish discourse structures in a 135

linear fashion. While in-context learning methods 136

are helpful, their enhancement is limited. 137

On the other hand, discourse relation predic- 138

tion as an individual task receives rich attention, 139

mostly conducted on the Penn Discourse Treebank 140

(PDTB) (Webber et al., 2019). This line of re- 141

search can be categorized into explicit (Nie et al., 142

2019) and implicit relation identification (Ruther- 143

ford et al., 2017). Semi-supervised models have 144

been mostly limited to implicit ones either relying 145

on synthetic data (Xu et al., 2018) or translations 146

(Shi et al., 2019). These methods create pseudo- 147

labeled data by using expert-composed rules or 148

convenient linguistic resources: both in short in 149

our case. The more recent effort seeks supervision 150

from Pre-trained Language Models (PLMs) (Shi 151

and Demberg, 2019; Arslan et al., 2021) as they 152

show superior performance for many classification 153

tasks. In the context of semi- and weakly super- 154

vised learning, PLMs have been used as reliable 155

classifiers to produce pseudo labels (Meng et al., 156

2020; Yu et al., 2021). Through prompt adaptation, 157

Chan et al. (2023b) reveal that implicit relation pre- 158

diction is still a tricky task for ChatGPT, a finding 159

that aligns with the results in discourse parsing. 160

3 Discourse Parsing Pipeline 161

A standard full discourse parsing involves three 162

tasks: EDU segmentation, link attachment, and re- 163

lation prediction (Figure 1). Most previous work 164

applies a structure-then-relation approach (Afan- 165

tenos et al., 2015; Shi and Huang, 2019; Liu and 166

Chen, 2021). We follow the pipeline by providing 167

relations on the established discourse structures. 168

3.1 Preliminary 169

Our work is founded on Li et al. (2023) which en- 170

tails the extraction of discourse structures from the 171

attention matrices in PLMs. In that work, the origi- 172

nal BART model (Lewis et al., 2020) is fine-tuned 173

with dialogue-tailored Sentence Ordering task to 174

better encode dialogue structures. In each atten- 175

tion head, the attention values among EDUs can be 176

seen as edge weights. Thus, by using a Maximum 177

Spanning Tree algorithm, they obtain discourse 178

tree structures. That work proves that with just 50 179

examples, the optimal attention head can be consis- 180
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Figure 1: Semi-supervised discourse parsing pipeline proposition. s are utterances; e are EDUs; r are rhetorical
relations. DisCoDisCo model is proposed in Gessler et al. (2021). BART+SO-STAC is BART model fine-tuned on
Sentence Ordering task (Li et al., 2023). BERT-FT is BERT fine-tuned with self-training for relation prediction.

tently located. The extracted structures on STAC181

are found to be non-trivial, achieving 59.3 F1 score.182

Although most previous work begins with gold183

EDUs, we consider it crucial to evaluate in a de-184

ployed scenario where the parser performs EDU185

segmentation first. We thus integrate DisCoDisCo186

(Gessler et al., 2021), a straightforward sequence187

tagging model pre-trained on a random sample of188

50 STAC dialogues, into the complete pipeline.189

3.2 Relation Prediction Module190

Following the setup in DISRPT shared tasks2, we191

regard relation identification as multi-way classi-192

fication where we classify every pair of head and193

dependent EDUs individually. EDU pairs reflect194

local coherence. A model trained in this setting is195

easily applicable to other discourse frameworks.196

Self-Training: Our relation prediction module197

contains a classifier M, a small amount of labeled198

data L, and a large amount of unannotated data199

U . The training process is as follow: M is trained200

on L to provide predictions (pseudo labels) on U ;201

then, under pre-defined selection criteria, a subset202

S ⊂ U is sampled and merged with L for a new203

round of re-training. M can be re-trained for many204

rounds until a stopping criterion is met.205

Classifier M: Our classifier is an uncased206

BERT base model appended with a linear projec-207

tion and softmax layer to produce relation proba-208

bilities. BERT has shown superior performance in209

discourse-related tasks (Chen et al., 2019; Atwell210

et al., 2021) and is the language backbone of cur-211

rent SOTA model for relation on STAC (Gessler212

et al., 2021). We prepare the input relation pairs by213

2https://github.com/disrpt/sharedtask2023/.

following the Next Sentence Prediction pattern as 214

in Shi and Demberg (2019): a [CLS] token begins 215

the sequence, followed by the first EDU, [SEP], 216

and the second EDU. As additional feature, we 217

only add the speaker marker at the beginning of the 218

EDUs since it is the only feature we found decisive 219

among the ones used in Gessler et al. (2021).3 220

Sample Selection Criteria: At each round, M 221

gives pseudo labels on U . The key challenges are 222

how to measure the confidence of predictions and 223

how to select a reliable subset S . We loosely trans- 224

late the output probabilities in M as its predictive 225

confidence, enabling sorting predicted pairs. We 226

then define two selection criteria inspired by Steed- 227

man et al. (2003); Du et al. (2021), either focusing 228

on the confidence or combining it with class vari- 229

ety: (a) Top-k: select the top k pseudo-labeled data. 230

k starts at 800 and increments up 7800, with an in- 231

terval of 1000. This range corresponds to the top 232

N × k′ where k′ ∈ [0.0, 0.1] criterion in Nishida 233

and Matsumoto (2022); (b) Top-class-k: select the 234

most confident pseudo-labeled data in each class 235

and together results in k examples. The label ratio 236

is maintained between L and the augmented set S . 237

k has the same value as in Top-k. 238

4 Molweni Re-Annotation 239

To evaluate the cross-domain adaptability of our 240

parsing pipeline, we release a newly annotated 241

dataset, “Molweni-clean”, sourced from the Mol- 242

weni corpus (Li et al., 2020). Molweni con- 243

tains 10, 000 SDRT-annotated documents from the 244

Ubuntu Chat Corpus (Lowe et al., 2015). How- 245

ever, it presents heavily redundant documents and 246

3Our supervised model gives 64.9 versus feature-enhanced
DisCoDisCo 65.0 (Gessler et al., 2021).
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Avg branch Avg depth %leaf Arc length

Molweni 1.63 6.0 0.39 0.23
∼-clean 1.29 6.8 0.28 0.19

Table 1: Tree properties in original Molweni test set and
Molweni-clean. Arc length is normalized.

inconsistent annotations (Li et al., 2023), making247

the results less reliable. Therefore, we revised the248

annotation of a subset of Molweni to ensure a more249

robust evaluation (test only).250

4.1 Molweni-clean Construction251

Molweni test set comprises 500 documents that252

can be grouped into 105 clusters. Each cluster253

consists of highly similar dialogues, with only one254

or two differing utterances (Li et al., 2023). As the255

first step of our re-annotation process, we extract256

a single document from each cluster, ensuring that257

the selected subset contains no duplicates.258

The re-annotation is carried out by 3 Ph.D. stu-259

dents who are fluent in English, specialized in se-260

mantics and discourse and are familiar with SDRT.261

We pre-selected 105 documents from the test set262

with no duplicates as our annotation candidates. A263

set of 8 documents is used for training the annota-264

tors who then annotate 10 documents in common,265

and 20 more separately, leading to a final subset of266

50 dialogues4. The inter-annotator agreement (Co-267

hen’s Kappa) is strong (80.6%) for link attachment268

and moderate (57.0%) for full structure, similar269

to the scores in STAC (Asher et al., 2016), with270

details in Appendix B.1.271

4.2 Molweni-clean Statistics272

Structural Difference: More adjacent links are273

presented in Molweni-clean (76% vs. 68%). Intu-274

itively, these are simpler structures. The trees in275

Molweni-clean are “taller” and “thinner”, namely,276

with smaller branch sizes and larger tree depths. On277

average, Molweni-clean trees are one step deeper278

than the originally annotated ones, as shown in Ta-279

ble 1. Additionally, we find 3 documents in the280

original annotation that contain multiple roots, re-281

sulting in forest structures instead of trees.282

Relation Distribution: Although the class dis-283

tribution appears to be alike in the two annotations284

(details in Appendix B.2), the partition between285

the same (intra-) and different (inter-) speakers dif-286

fers greatly. In Molweni-clean, we observe a much287

4These annotations are publicly available at URL.

#Doc #Turn #Tok #Spk #Rel
Dataset train dev test /doc /doc /doc type

STAC 947 105 109 11.0 48.4 3.0 16
Molweni 9000 500 500 8.8 104.7 3.5 16
∼-clean - - 50 8.5 91.1 3.2 16

Table 2: STAC, Molweni, and Molweni-clean statistics:
number of documents, averaged speech turns, tokens,
and speakers per document (turn/doc, tok/doc, spk/doc).

higher percentage of intra-speaker relations (14.7% 288

vs. 3.8%). Certain relations, like Continuation and 289

Elaboration — which, according to the annotation 290

guideline, should typically occur more frequently 291

within the same speaker — show a contrasting dis- 292

tribution in the original annotation. We present a 293

case study in Appendix B.3. 294

5 Experimental Setup 295

Datasets: For the in-domain scenario (gaming), 296

we utilize STAC, a corpus comprising of online con- 297

versations that occur during the Settlers of Catan 298

game. It contains in total 12, 679 relation pairs in 299

1161 documents. We follow the split in Shi and 300

Huang (2019). We randomly select a small part 301

(700 pairs from 50 documents) of the train set as 302

labeled data L and the remaining examples as raw 303

data U . A subset from the development set (664 304

pairs from 50 documents) is used for validation. 305

All 1128 pairs (109 documents) in the test set are 306

reserved for testing. The relation distribution is 307

highly unbalanced, see Appendix A. For the cross- 308

domain scenario (gaming to technical chat), we use 309

documents from STAC as the labeled training data, 310

and the 50 Molweni-clean documents as testing 311

data. Table 2 shows the statistics. 312

Evaluation Metrics: For the relation prediction 313

module, we report accuracy. For the full parsing 314

pipeline, we employ the traditional evaluation met- 315

rics, namely, the micro-averaged F1 scores for un- 316

labeled attachment (link), relation prediction (rel), 317

and labeled attachment (full). 318

Full Parsing Baselines: We compare against the 319

state-of-art parsing model Structured-Joint (SJ) 320

(Chi and Rudnicky, 2022). Since we work with 321

small-data setup, we also compare with a simpler 322

graph-based Arc-Factored dependency parser (Mc- 323

Donald et al., 2005), by following the implemen- 324

tation in Nishida and Matsumoto (2022). Further- 325

more, to gain insights from the latest LLMs, we 326
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show results from ChatGPT5 (gpt-3.5-turbo model)327

using zero-shot and few-shot in-context learning328

(Chan et al., 2023a).329

Implementation Details: In the relation pre-330

diction module, we use the BERT model from331

Huggingface (Wolf et al., 2020) and fine-tune for332

10 epochs with batch of size 2, learning rate at333

2e − 5, AdamW optimizers with a weight decay334

at 0.01. For self-training, we give maximum 20335

epochs with early stopping at 5, based on the per-336

formance on the validation set. We choose 5 groups337

of labeled examples for initial training and report338

average accuracy with the standard deviation. The339

full pipeline is trained using 50 random documents340

from STAC training set and is executed 10 times.341

6 Relation Prediction Module342

6.1 Self-Training Results343

Results for relation prediction are presented in Ta-344

ble 3. As baselines, we report scores of majority345

class Question answer pair (QA pair), the original346

frozen BERT base model and the fine-tuned BERT,347

both trained with 700 gold pairs. Using this lat-348

ter model as a starting point, we present results for349

self-training (second part of Table 3) using two sam-350

ple selection criteria: top-k and top-class-k. Both351

selection strategies show improved performances352

with self-training. When k = 5800, both strate-353

gies achieve their best scores. This value echos the354

selection strategy rank-above-k′ with k′ = 0.6 in355

Nishida and Matsumoto (2022). For top-k selec-356

tion, when k is small (k < 2800), the number and357

variety of selected pseudo-labeled data are small,358

resulting in lower accuracy than BERT-ft. When359

k is relaxed, the coverage of different classes of360

data increases, and the performance hits the highest361

point at 58.1. The accuracy then decreases, proba-362

bly due to the noise of inaccurate pseudo-labeled363

data. In comparison, the top-class-k strategy con-364

sistently brings improvement over the initial BERT-365

ft model. It also exhibits an upward trend as k366

increases, reaching its peak at the optimal value of367

5800, followed by a slight decline.368

With a significant amount of unlabelled data,369

the self-training process can be repeated multiple370

times. However, limited by the data size in STAC,371

we can only test iterative learning with few values,372

k ∈ [800, 1800, 2800]. We define a stopping cri-373

terion at 3 and proceed with top-class-k selection374

5https://openai.com/blog/chatgpt.

Majority class 27.1
BERT (base 700) 40.10.8
BERT-ft (base 700) 56.61.0

Self-training Top-k Top-class-k
#Pair loop1 loop1 loop2 loop3

+ 800 54.13.0 57.71.1 55.91.1 58.11.2
+ 1800 53.63.6 57.31.6 58.41.0 57.42.1
+ 2800 55.71.9 57.60.3 57.51.5 58.12.2
+ 3800 56.62.1 57.61.6 - -
+ 4800 56.80.5 57.81.2 - -
+ 5800 58.10.8 58.00.7 - -
+ 6800 57.81.0 57.90.9 - -
+ 7800 57.80.7 57.02.3 - -

Table 3: Baselines and BERT-ft model self-training
results with Top-k and Top-class-k selection criteria.
Scores are avg accuracy over 5 runs with standard devia-
tion. Best score per row (resp. per column) is underlined
(resp. bold). - not applicable due to data limitation.

Figure 2: Accuracy of fully supervised model (solid
line) and semi-supervised model with {700, 1500, 2500,
5000, 7500} base training data (dashed lines). x-axis:
#relation pairs; y-axis: model accuracy on STAC.

strategy. We observe (two rightmost columns) ad- 375

ditional improvements compared to the first loop, 376

reaching 58.4 at best. We speculate that the model 377

is re-trained slowly (smaller amount of data), but 378

steadily (more reliable examples). We anticipate a 379

better performance with more in-domain raw data. 380

6.2 Analysis: Model Calibration 381

One key challenge in self-training is to select error- 382

free and high-coverage subsets from the pseudo- 383

labeled data. Top-class-k selection considers the 384

coverage aspect and less prone to overfitting. How- 385

ever, good coverage does not imply reliable predic- 386

tion. The model could fall short in some classes and 387

bring in noise. In this section, we study the corre- 388

lation between the model’s predicted probabilities 389

and the probabilities of correctness, also known as 390

5
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the calibration property (Brier, 1950; Jiang et al.,391

2021). We start by showing this property of base392

BERT-ft model (details in Appendix C.1): frequent393

relations (e.g. QA pair and Comment) present pos-394

itive correlation while infrequent ones (e.g. Alter-395

nation and Correction) do not and have lower con-396

fidence. This shows the advantage of top-class-k397

strategy by adding these less confident but reliable398

examples. However, it also implies that the base399

model is not well-calibrated. We investigate two400

factors that may influence the model’s calibration:401

enhancing the classifier’s accuracy by training on402

more base data and employing iterative training.403

Base Model Accuracy: We experimentally ob-404

serve that with more base training data, the model405

performance continuously increases (e.g.: from406

700 to 2500, accuracy increases by 7%). In particu-407

lar, we test different sizes of base data: {700, 1500,408

2500, 5000, 7500} of relation pairs and re-train the409

model using top-class-k (k = 1800) selection cri-410

terion. The results are displayed in Figure 2. With411

larger base volume, the gap between self-trained412

model and fully supervised model keeps decreasing.413

Interestingly, when the base data hits 5000, self-414

trained model achieves comparable performance as415

7500 fully supervised model (66.7%), indicating416

that 5000 relation pairs (≈ 350 documents) is a417

threshold where self-trained model surpasses its418

supervised counterpart.419

Iterative Training: The concept of multi-loop420

self-training aims to enhance the model’s perfor-421

mance by incorporating additional training exam-422

ples for the infrequent classes, thereby mitigating423

the under-fitting issue. We investigate the correla-424

tion evolution with three loops for the less-frequent425

labels (details in Appendix C.2). Tellingly, the con-426

fidence scores for less and non-frequent relations427

such as Alternation and Contrast increase from428

[0.2, 0.3] to [0.7, 1.0], coupled with higher predic-429

tion accuracy (+ 20% ∼ 40%), as displayed in the430

confusion matrix in Figure 9.431

7 Full Discourse Parsing432

7.1 In-Domain Evaluation and Analysis433

In-domain performance is evaluated on the STAC434

test set, with results in Table 4 (left part).435

Baselines: We replicate the SOTA supervised436

model Structured-Joint (SJ) (Chi and Rudnicky,437

2022) which uses RoBERTa-base model (Liu et al.,438

2019) as backbone and employs 3-dimension at- 439

tention to encode links and relations jointly. SJ 440

includes a dummy root in each document for train- 441

ing, but the link between this node and the first 442

EDU is counted in the evaluation which artificially 443

inflates the scores. We replicate SJ with 947 and 50 444

training data and evaluate with and without dummy 445

root, the latter matching our own fairer evaluation 446

setting. Table 4 shows our replicated scores without 447

dummy root (detailed comparison in Appendix D). 448

We also compare with a simpler dependency parser 449

Arc-Factored (AF) (McDonald et al., 2005). AF 450

parser finds the globally optimal dependency struc- 451

ture using dynamic programming which can be de- 452

coded using Maximum Spanning Tree algorithms 453

such as Eisner (Eisner, 1996). Lastly, we report the 454

performance of unsupervised LLM ChatGPT-3.5. 455

Parsing Results: Our pipeline consists of an 456

EDU segmenter (Gessler et al., 2021), a link attach- 457

ment module (Li et al., 2023) which we replicate 458

the experiments and obtain predicted links, and a 459

pre-trained relation prediction module outlined in 460

Section 3.2. We sample 50 annotated documents 461

for supervision along the pipeline. As expected, the 462

supervised SJ model with 947 training examples 463

gives the best scores. However, when the training 464

size drops to 50, our pipeline exhibits better perfor- 465

mance compared to SJ and AF in both link attach- 466

ment (59.3% vs. 55.1%) and relation prediction 467

(62.0% vs. 61.1%) tasks, bringing noteworthy im- 468

provement of resp. 5 and 14 points in full parsing, 469

coupled with greater stability. As for GPT-3.5, both 470

zero-shot and few-shot in-context learning perform 471

abysmally, suggesting that ChatGPT still suffers 472

from poor understanding of discourse structures 473

and that we can not simply depend on powerful 474

LLMs for this task (Chan et al., 2023a). Using pre- 475

dicted EDUs, our full parsing score drops nearly 6 476

points. A similar loss is also observed for end-to- 477

end RST-style parsing in Nguyen et al. (2021). 478

Pipeline Error Analysis: We examine the re- 479

lation composition in each task module: correct 480

(orange) and wrong relation prediction (blue), and 481

missing relations due to lack of link attachment 482

(green) and false EDU segmentation (gray), as dis- 483

played in Figure 3. The results show that errors 484

in link attachment account for 40.8%. Among the 485

correctly attached pairs, 61% are assigned proper 486

relations. Notably, relations such as QA pair, Elab- 487

oration, and Acknowledgement are accurately pre- 488

dicted, while less frequent relations such as Result, 489
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Train / Test Train STAC/STAC STAC/Molweni-clean STAC/Molweni

#Doc EDU Link Rel Full Link Rel Full Link Rel Full

SJ 947 - 70.70.5 77.31.2 54.60.7 61.53.4 59.54.3 36.63.8 49.83.6 57.52.9 28.92.8
SJ 50 - 55.13.5 61.12.1 33.62.2 51.16.4 33.69.5 17.25.3 42.95.6 35.210.1 15.35.3
AF 50 - 42.72.8 56.42.5 24.01.0 53.72.1 38.82.9 20.91.1 45.91.5 41.41.0 19.00.7
GPT3.5few shot 3 - 20.7 24.1 7.3 - - - - - -
GPT3.5zero shot - - 20.0 22.8 4.4 - - - - - -

Ours (gold EDU) 50 - 59.30.7 62.01.1 38.60.7 75.60.7 41.33.8 31.22.9 61.50.7 42.82.9 26.31.7
Ours (pred EDU) 50 94.8 52.20.4 61.21.6 32.80.9 ∼ ∼ ∼ ∼ ∼ ∼

Table 4: Left: in-domain parsing results (STAC/STAC) with supervised parsers Structured Joint (SJ) (2022) and
Arc-Factored (AF) (2022), unsupervised model ChatGPT (GPT-3.5) with few-shot (n = 3) in-context learning and
zero-shot (2023a), and our semi-supervised pipeline (with gold and predicted EDU). Right: cross-domain parsing
results on Molweni-clean (STAC/Molweni-clean) and original Molweni (STAC/Molweni). Scores are average
micro-F1 over 10 runs. In 50 train setup, best scores are in bold. “-” not applicable. “∼” same as previous row.

Figure 3: Full parsing result decomposition in relation
prediction (orange and blue), link attachment (green),
and EDU segmentation (grey). Numbers in Appendix E.

Explanation, and Correction require further im-490

provements. We notice that the missing links often491

involve relation types that are accurately predicted492

(QA pair and Acknowledgement). This suggests493

that there is a high likelihood of accurately deter-494

mining the discourse relations of connected pairs -495

a potential avenue for future improvement.496

7.2 Cross-Domain Evaluation and Analysis497

Cross-domain parsing is evaluated on the origi-498

nal Molweni test set and Molweni-clean, with SJ499

model and our pipeline trained on 50 STAC docu-500

ments. Results are shown in Table 4 (right part).501

Parsing Results: Our pipeline exhibits excel-502

lent performance on all tasks, outperforming the503

SJ model in terms of link (+24%), relation (+8%),504

and full parsing (+14%) on Molweni-clean dataset.505

Our pipeline for link attachment is particularly506

remarkable, surpassing even the fully trained SJ507

model (75.6 vs. 61.5). On relation prediction, 508

SJ considers the tree structure and relation jointly, 509

while our approach focuses on individual relation 510

pairs. As texts across various genres demonstrate 511

various structures, our approach, although more lo- 512

calized, is less influenced by the pre-existing struc- 513

tures, making it more suitable for general applica- 514

tion. Furthermore, our model shows greater stabil- 515

ity, whereas the SJ model is highly influenced by 516

a particular domain. We notice similar behaviour 517

on the original Molweni test set. Curiously, both 518

SJ model and our pipeline exhibit improved perfor- 519

mances on Molweni-clean, revealing the problem 520

of inconsistencies in the initial annotation. 521

Molweni Cross-domain Annotation: We ac- 522

knowledge that semi-supervised learning has an 523

affinity for domain transfer. Taking one step further, 524

we investigate automatic annotation on Molweni 525

using STAC-trained model. The inconsistency of 526

annotations in the original Molweni benefits this 527

setup. We first de-duplicate repetitive documents 528

in Molweni training and validation sets by taking 529

one document per cluster (Sec. 4.1), which results 530

in resp. 1865 and 107 documents. Trained on 531

50 STAC examples, our pipeline produces 1972 532

pseudo-labeled Molweni documents. These docu- 533

ments are used to train SJ in a supervised manner 534

with the proposed hyper-parameters. In compar- 535

ison, we also train the SJ model with Molweni’s 536

original annotation. Both models are evaluated on 537

Molweni-clean, with results given in Table 6. 538

SJ model trained on pseudo-labeled Molweni 539

gives better results on structure attachment (+9%) 540

but under-performs its counterpart on relation pre- 541

diction (-26%). Although the overall parsing score 542
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Train / Test Aug STAC/STAC STAC/Molweni-clean STAC/Molweni

#Doc Link Rel Full Link Rel Full Link Rel Full

SJ - 55.13.5 61.12.1 33.62.2 51.16.4 33.69.5 17.25.3 42.95.6 35.210.1 15.35.3
SJ +self-train 50 57.52.2 63.31.4 36.41.5 51.65.5 34.37.1 17.64.1 42.94.7 34.58.1 14.83.9
SJ +self-train 120 57.23.2 62.73.3 35.92.3 54.37.8 40.37.7 21.95.3 45.76.5 39.26.3 18.04.5
SJ +self-train 200 57.42.9 63.12.6 36.21.7 56.48.2 38.49.2 21.86.7 46.66.3 38.78.9 18.15.3

Ours 120 59.30.7 62.01.1 38.60.7 75.60.7 41.33.8 31.22.9 61.50.7 42.82.9 26.31.7

Table 5: Comparison between augmented SJ model (2022) (SJ +self-train) and ours in self-training setup across
in-domain and cross-domain scenarios. SJ model is re-trained with the combination of 50 gold-standard data and
{50, 120, 200} pseudo-labeled documents (Aug #doc). We show the best scores (average micro-F1) in 3 loops.

Train on #Doc Link Rel Full

Molweni-pseudo 1865 54.10.6 56.32.0 30.61.2
Molweni 1865 45.71.6 82.71.9 37.81.1

Table 6: SJ parsing results on Molweni-clean, trained on
auto-annotated and original Molweni (resp. Molweni-
pseudo, Molweni). Scores are average micro-F1.

is inferior, the naked discourse structures in auto-543

annotated Molweni (Molweni-pseudo) are of better544

quality. This is encouraging, especially in the diffi-545

cult cross-domain setup. As previous studies have546

shown, discourse structures alone are valuable fea-547

tures and can be employed in some downstream548

applications (Louis et al., 2010; Jia et al., 2020).549

7.3 Self-Training the SJ Model550

To understand the effectiveness of our relation pre-551

diction module, we conduct ablation studies by552

comparing our pipeline and SJ model with similar553

data volume, namely, we augment SJ model with554

self-training. Results are given in Table 5.555

For the data augmentation, we select the pseudo-556

labeled documents with the highest average confi-557

dence scores, i.e., the average of predictive prob-558

abilities over all link and relation decisions in a559

document. Previous analysis (Sec. 6.2) shows that560

iterative training is beneficial, so we re-train SJ in561

a total of 3 loops. We test different sizes of aug-562

mentation data: {50, 120, 200} documents which563

correspond to resp. {800, 1800, 2800} relation564

pairs in our case. Over 3 loops, the largest aug-565

mentation attains 600 documents (≈ 8000 relation566

pairs). It is important to note that although the SJ567

model jointly predicts structure and relation, our568

augmentation technique only focuses on relation569

prediction. Therefore, the augmentation would pro-570

vide the SJ model with more structured supervision.571

Furthermore, our approach operates on a narrower 572

scope, concentrating on relation pairs rather than 573

entire conversations. In contrast, the SJ model’s 574

data augmentation is done at the document level. 575

Hence, the comparison between our augmented 576

model and the augmented SJ model would only be 577

similar in terms of data volume, but not necessarily 578

in terms of identical examples. 579

Given extra training data, SJ surpasses its base 580

version in both in-domain (full +3%) and cross- 581

domain (full +4%) contexts, with similar improve- 582

ment in link attachment and relation prediction. 583

This emphasizes the advantages of our self-training 584

approach, apt for both basic and complex models. 585

However, with the same augmented data size, the 586

SJ model lags behind our pipeline, showcasing a 3 587

points difference in-domain and a sizable 10 points 588

gap cross-domain, further attesting to the effective- 589

ness of our simple approach. 590

8 Conclusion 591

In this study, we introduce a substantial extension 592

to semi-supervised discourse parsing in dialogues 593

by enhancing relation prediction via a self-training 594

approach based on simple yet effective sample se- 595

lection strategies. With a minimal training set of 596

50 examples, we produce highly competitive re- 597

sults that could be further improved with more in- 598

domain raw data. Importantly, the efficacy of our 599

discourse parsing pipeline is demonstrated across 600

in-domain and cross-domain settings. We also con- 601

tribute a small gold-standard discourse-enriched di- 602

alogue dataset, along with semi-supervised bench- 603

marks for subsequent comparisons. Future work 604

should explore the use of more out-of-domain raw 605

data and investigate bootstrapping methods for re- 606

lation prediction, while also improving on structure 607

prediction, possibly with the same strategies. 608
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Limitations609

Following DISRPT shared task, we focused on in-610

dividual EDU pair relation prediction for general611

application. This setting captures local coherence612

in dialogues and has shown great generalizability in613

cross-domain experiments. We based our work on614

a semi-supervised link attachment module and pre-615

dicted relations only for linked EDU pairs. Show-616

ing effective, there is potential for further improve-617

ment in attachment performance by considering618

(high confident) predicted relations for unattached619

EDU pairs. By extending the self-training strat-620

egy to include link attachment, we could enhance621

the overall parsing performance and achieve better622

results in full parsing.623

Facing the data sparsity issue, we utilized all624

relation pairs in STAC for self-training. However,625

we only tested small sizes of k in the iterative train-626

ing due to the limited size of STAC. With more627

data, we should explore the re-training outcomes628

with larger values of k. It is thus intriguing to629

expand the set of un-annotated relations by con-630

sidering out-of-domain data, obtained for instance631

from weak supervision (Sileo et al., 2019), or from632

monologues such as PDTB (Prasad et al., 2008).633

Ethics Statement634

We carefully selected the corpora to work with to635

mitigate any potential hateful and biased language.636

Before the re-annotation process, we provided in-637

structions to the annotators, emphasizing the impor-638

tance of being vigilant for any biased or insulting639

language in the data. In the event of encountering640

such language, they were instructed to immediately641

cease annotation and report the issue. Throughout642

the re-annotation of all 77 dialogues, no instances643

of inappropriate language were found. We have644

confidence that these dialogues are free from harm-645

ful content that may insult the annotators.646

All the annotators are PhD students. They did647

not receive any specific compensation for their648

work on annotation. We recorded the time taken649

for the re-annotation process, which consisted of650

an initial training period of 3 hours followed by an651

average of 1.5 hour for every 10 dialogues. All an-652

notation work was conducted during regular work-653

ing hours. The annotators are free to utilize the654

annotations and any discourse-related content in655

this project for their studies.656
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A Class Distribution in STAC Corpus994

See Table 7 for the relation distribution in train,995

development, and test sets in STAC.996

Labeled train Validation Test

Relation # % # % # %

QA pair 175 25.0 152 22.89 305 27.04
Comment 108 15.43 110 16.57 165 14.63
Ack 86 12.29 87 13.1 148 13.12
Continuation 65 9.29 69 10.39 113 10.02
Elaboration 64 9.14 52 7.83 101 8.95
Q-elab 36 5.14 30 4.52 72 6.38
Result 26 3.71 29 4.37 29 2.57
Contrast 32 4.57 29 4.37 44 3.9
Explanation 34 4.86 31 4.67 31 2.75
Clarif-Q 23 3.29 20 3.01 33 2.93
Parallel 10 1.43 14 2.11 15 1.33
Correction 12 1.71 11 1.66 21 1.86
Alternation 5 0.71 8 1.2 19 1.68
Narration 8 1.14 7 1.05 13 1.15
Conditional 12 1.71 10 1.51 18 1.6
Background 4 0.57 5 0.75 1 0.09

Total 700 100.0 664 100.0 1, 128 100.0

Table 7: Rhetorical relations and frequencies in train
subset, validation subset, and test sets in STAC. QA pair:
question answer pair; Ack: acknowledgement; Q-elab:
question elaboration; clarif-Q: clarification question.

B Molweni-clean Case Study997

B.1 Inter-Annotator Agreement Detail998

We calculate inter-annotator agreement scores on999

the 10 common documents using Cohen’s Kappa1000

metric from Scikit-learn library (Pedregosa et al.,1001

2011). The results are given in Table 8. Our final1002

subset contains 50 documents. Annotator 1 and1003

3 (R1 and R3) have the highest agreement scores,1004

so we include their individual annotations (a total1005

of 39 documents). We also take the 8 training1006

examples where all the annotators have aligned1007

annotations and 3 documents from annotator 2.1008

Link Link&Rel

R1-R2 79.3 51.8
R1-R3 80.6 57.0
R2-R3 76.6 54.3

Table 8: Cohen’s Kappa inter-annotator agreement
scores. R1, R2, R3 represent resp. annotator 1, 2, and 3.

B.2 Relation Distribution Comparison1009

See Table 9 for relation distribution in original Mol-1010

weni subset and Molweni-clean. We show the same1011

50 documents for a fair comparison. More pre- 1012

cisely, we decompose each relation into intra- and 1013

inter- speaker categories to refer the relation within 1014

the same and different speakers, respectively. Note 1015

that the difference in the total number of relations 1016

(370 vs 373) is due to the incomplete annotation in 1017

the original annotation of documents 7048, 8018, 1018

and 9042 where one document contains multiple 1019

roots, i.e., some nodes miss an incoming edge. 1020

Molweni test Molweni-clean

Relation # %intra %inter # % intra %inter

Comment 99 2.0 98.0 104 2.9 97.1
Clarif-Q 89 0 100 84 2.4 97.6
QA pair 86 0 100 91 1.1 98.9
Continuation 28 17.9 82.1 27 92.6 7.4
Q-elab 11 9.1 90.9 18 22.2 77.8
Result 11 0 100 10 20.0 80.0
Explanation 9 11.1 88.9 5 40.0 60.0
Ack 7 0 100 6 0 100
Elaboration 7 42.9 57.1 14 85.7 14.3
Narration 7 0 100 1 100 0
Conditional 5 20.0 80.0 2 0 100
Contrast 3 0 100 2 50.0 50.0
Correction 3 0 100 6 16.7 83.3
Background 3 0 100 2 0 100
Parallel 2 50.0 50.0 0 0 0
Alternation 0 0 0 1 100 0

Total 370 3.8 96.2 373 14.7 85.3

Table 9: Relations distribution in original Molweni test
subset and Molweni-clean.

B.3 Case Study 1021

We present a comparison of the original annota- 1022

tion and our revised version for document #1035, 1023

as shown in Figure 4 and 5, respectively. This di- 1024

alogue happens between two speakers: cr1mson 1025

(short in C) and APT-GET_INSTALL_ (short in 1026

A). C is asking A about the “apt” command. We 1027

show the number of speech turn after the speaker 1028

marker. Speech turns start from 0: 1029

C0: apt-get i doubt my apt thing is bad though , i 1030

just installed ubuntu today 1031

A1: wait ! i found a much easier way 1032

A2: well , i want you to read all of that 1033

A3: before you start mucking around in system 1034

files 1035

C4: there was only a couple lines in it 1036

C5: most of it was rem ’d out 1037

13



A6: you are going to learn what all of them all1038

from the url i just pasted1039

C7: i can always use more than one terminal1040

C8: okay , so i have to add or change a ‘reposi-1041

tory’1042

The main difference is in the annotation of1043

Complex Discourse Units (CDUs) – several EDUs1044

group together to form a common rhetorical func-1045

tion (Asher et al., 2016). In this example, the first1046

CDU consists of three speech turns (A1, A2, A3)1047

where A2 and A3 elaborate A1 by presenting a1048

“much easier way”. Between A2 and A3 it is a1049

continuation. We can write as Elaboration(A1,1050

Continuation(A2, A3)). This is a similar case with1051

the example (58) in STAC annotation manual6. The1052

original annotation, on the other hand, does not cap-1053

ture the accurate inner-CDU relations and roughly1054

attaches every EDU inside the CDU with the first1055

utterance C0.1056

Another CDU contains the speech turns C4 and1057

C5. C5 continues C4 and together they provide a1058

comment to A. Furthermore, we believe that CDU1059

(C4, C5) should be linked to A2 instead of A3 since1060

A2 and A3 are attached with a subordinating con-1061

junction marker “before”, which makes A3 head of1062

this CDU. Semantically, “only a couple lines” also1063

echos with “all of that”. However, the original an-1064

notation does not capture the relationship between1065

C4 and C5 and only link them individually to the1066

previous utterance A3.1067

For each training document, annotators went1068

through a similar discussion in order to reach con-1069

sensus on difficult or ambiguous cases. We believe1070

that this stage contributes to our improved under-1071

standing of dialogue content and the SDRT frame-1072

work, and facilitate the production of more reliable1073

annotations.1074

C Class-wise Correlation Between1075

Confidence and Accuracy1076

C.1 Correlation with Base Model1077

We investigate the correlation between class-wise1078

confidence scores and prediction accuracy. For bet-1079

ter readability, we divide 16 relations into 3 groups1080

based on their frequency in the STAC corpus, as1081

shown from top to bottom in the Figure 6. Recall1082

6https://www.irit.fr/STAC/
stac-annotation-manual.pdf.

Figure 4: Original annotation of document 1035.

Figure 5: Re-annotated structure of document 1035.
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Figure 6: Relation class-wise accuracy and confidence
score correlation in the base BERT-ft model. From top
to bottom: the 5 most frequent, 5 medium-frequent, and
6 infrequent classes. The gray line is the aggregated
score of all 16 relations.

that we translate confidence score with model’s1083

prediction probability.1084

The top plot in Figure 6 shows the first 5 rela-1085

tions: QAP, Comment, Acknowledgement, Continu-1086

ation, and Elaboration. They are the most frequent1087

relations. They show good positive correlation be-1088

tween the confidence and accuracy.1089

The middle plot in Figure 6 shows 5 medium-1090

frequent relations: Question elaboration, Result,1091

Contrast, Explanation, and Clarification. These1092

relations have a frequency less than 10% and higher1093

than 2% in STAC. The density of the bars moves1094

towards the center compared to that with frequent1095

relations, suggesting that the model is less confident1096

to give predictions for these relations.1097

Finally, the last group contains six infrequent1098

relations, as shown in bottom in Figure 6. They1099

are the least present and the most difficult to pre-1100

dict. From this plot, we see that Parallel, Narration,1101

Conditional, and Background are completely miss-1102

ing, while Alternative and Correction are correctly1103

predicted with rather low confidence (∈ [0.2, 0.3]).1104

Figure 7: Accuracy and confidence score of the five
medium-frequent relations in loop {1, 2, 3}.

C.2 Iterative Self-training Enhance 1105

Correlation for Infrequent Classes 1106

Figure 7 and Figure 8 shows the changes of corre- 1107

lation during three loops. During iterative training, 1108

we observe that medium and the least frequent la- 1109

bels typically gain better correlation between ac- 1110

curacy and confidence scores, demonstrating that 1111

iterative training is good reinforcement for infre- 1112

quent classes. 1113

This observation is further proved in the confu- 1114

sion matrices, as displayed in Figure 9. A clear ob- 1115

servation is that the infrequent classes has some re- 1116

call improvement along self-training, typically for 1117

Correction and Alternation. For medium-frequent 1118

classes, Result, Contrast, and Explanation also ob- 1119

tain higher recall. 1120

D SJ Model Reproduction Experiments 1121

Table 10 shows the reproduction results on SJ 1122

model. Tellingly, removing the dummy roots leads 1123

to a noticeable drop, from around 59 to 54.6 in 1124

full parsing, which is even larger (−8 points) in 1125

cross-domain setting. 1126

E Full Parsing Result Decomposition 1127

Table 11 reports scores per class in each step of 1128

discourse parsing. 1129
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Train / Test STAC/STAC STAC/Molweni-clean STAC/Molweni

#Train Link Rel Link&Rel Link Rel Link&Rel Link Rel Link&Rel

(1) SJ reported scores 947 74.4 - 59.6 - - - 64.5 - 38.0
(2) SJ w dummy 947 73.40.4 80.11.1 58.80.7 66.03.0 66.83.5 44.13.3 55.23.1 66.22.7 36.92.4
(3) SJ w/o dummy 947 70.70.5 77.31.2 54.60.7 61.53.4 59.54.3 36.63.8 49.83.6 57.52.9 28.92.8
(4) SJ w dummy 50 58.62.7 66.81.8 38.91.9 56.85.6 47.67.5 27.04.7 49.35.0 50.27.1 24.94.7
(5) SJ w/o dummy 50 55.13.5 61.12.1 33.62.2 51.16.4 33.69.5 17.25.3 42.95.6 35.210.1 15.35.3

Table 10: SJ model reproduction (row 2-5) in different setups: in-domain and cross-domain, with different train
sizes, and with or without dummy root. Scores are average F1 over 10 runs. First row from the paper (2022).

Figure 8: Infrequent relation accuracy and confidence
scores, loop {1, 2, 3}.

#(%) #(%) False #(%) False #(%) False
Relation correct relation link EDU

qap 143 (46.9) 22 (7.2) 127 (41.6) 13 (4.3)
commt 42 (25.5) 45 (27.3) 63 (38.2) 15 (9.1)
ackno 60 (40.5) 13 (8.8) 71 (48.0) 4 (2.7)
conti 20 (17.7) 30 (26.5) 55 (48.7) 8 (7.1)
elab 46 (45.5) 25 (24.8) 24 (23.8) 6 (5.9)
q_ela 20 (27.8) 9 (12.5) 41 (57.0) 2 (2.8)
resul 5 (17.2) 9 (31.0) 14 (48.3) 1 (3.5)
contr 10 (22.7) 12 (27.3) 17 (38.6) 5 (11.4)
expla 4 (12.9) 11 (35.5) 16 (51.6) 0 (0)
clari 6 (18.2) 10 (30.3) 13 (39.4) 4 (12.1)
paral 1 (6.7) 4 (26.7) 8 (53.3) 2 (13.3)
corre 2 (9.5) 10 (47.6) 7 (33.3) 2 (9.5)
alter 8 (42.1) 0 (0) 7 (36.8) 4 (21.1)
narra 0 (0) 3 (23.1) 10 (76.9) 0 (0)
condi 3 (16.7) 2 (11.1) 2 (11.1) 11 (61.1)
backg 0 (0) 0 (0) 1 (100) 0 (0)

Total 370 (32.8) 205 (18.2) 476 (42.2) 77 (6.8)

Table 11: Class-wise performance on relation prediction,
link attachment, and EDU segmentation modules.

Figure 9: Confusion matrices in the base model and
self-trained model with multiple loops. Relations (top
to bottom, left to right): QA pair, comment, acknowl-
edgement, continuation, elaboration, question elabora-
tion, result, contrast, explanation, clarification question,
parallel, correction, alternation, narration, conditional,
background.
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