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Abstract

We introduce Linearly Constrained Diffusion Implicit Models (CDIM), a fast and
accurate approach to solving noisy linear inverse problems using diffusion models.
Traditional diffusion-based inverse methods rely on numerous projection steps to
enforce measurement consistency in addition to unconditional denoising steps.
CDIM achieves a 10–50× reduction in projection steps by dynamically adjusting
the number and size of projection steps to align a residual measurement energy
with its theoretical distribution under the forward diffusion process. This adap-
tive alignment preserves measurement consistency while substantially accelerat-
ing constrained inference. For noise-free linear inverse problems, CDIM exactly
satisfies the measurement constraints with few projection steps, even when exist-
ing methods fail. We demonstrate CDIM’s effectiveness across a range of applica-
tions, including super-resolution, denoising, inpainting, deblurring, and 3D point
cloud reprojection. Code and an interactive demo can be found on our project
website. 1

1 Introduction

Recovering an unknown signal from noisy linear measurements is a fundamental challenge encom-
passing tasks like super-resolution, inpainting, and denoising. These are examples of linear inverse
problems, for which we observe a partial measurements y ∈ Rd that was generated through a linear
operator A ∈ Rd×n applied to a signal x ∈ Rn. In the noisy case, measurements y are corrupted
with noise sampled i.i.d. from a gaussian distribution with variance σ2

y:

y = Ax+ σ, where σ ∼ N (0, σ2
yI) (1)

We aim to use a pretrained diffusion model [1] as a prior to solve these underdetermined inverse
problems. However, adapting diffusion models to solve inverse problems has traditionally presented
two key challenges. First, recovering the original signal from partial measurements is computation-
ally expensive, requiring numerous additional network evaluations at each step to guide the diffusion
towards the measurement constraint. Second, we would like to guarantee that the constraints are met
to arbitrary precision in the noiseless case, a difficult task when trying to reduce overall steps.

A common approach to diffusion for inverse problems, used by methods like Diffusion Posterior
Sampling (DPS) [2] and others works [3, 4], is to alternate unconditional diffusion steps with pro-
jection steps on the measurement error: ∇xt

∥Ax̂0(xt) − y∥2, where x̂0(xt) is an estimate of the
posterior mean E [x0|xt]. However, the optimal number and size of these projection steps is diffi-
cult to determine as care must be taken to ensure that (1) the steps are sufficient to converge on the
measurement criteria, (2) unnecessary projection steps do not increase inference time, and (3) large
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Figure 1: We show several applications of our method including image colorization, denoising,
inpainting, and sparse recovery. We highlight the fact that we can handle general noise distributions,
such as Poisson noise, and that our method runs in as little as 3 seconds.

step sizes do not cause divergence or pull the iterate xt out of distribution. In light of these chal-
lenges, methods like DPS opt for many small projection steps which each require a pass through the
model. Therefore, despite advances in accelerating unconditional sampling, reliance on numerous
small projection steps still limits the speed of inference under constraints.

We propose linearly constrained diffusion implicit models (CDIM) to address these challenges.
CDIM is a new algorithm for projection-based DDIM sampling that can generate images satisfy-
ing measurement constraints under highly accelerated sampling schedules. Our key insight is to
guide the number and size of the projection steps with the known distribution of ∥Axt − y∥2 un-
der the forward noising process given y. This is a tractable chi-squared distribution, and we show
that forcing ∥Axt − y∥2 to stay within a plausible region similarly enforces the optimization tar-
get ∥Ax̂0(xt) − y∥2 to stay within a plausible region under the forward noising process. Notably
the former is computable without a network evaluation, allowing us to apply strategies like binary
search or line search on step size without costly overhead.

We emphasize that the speedup of CDIM does not simply come from adopting an accelerated un-
conditional DDIM schedule, but rather from a smarter projection strategy that greatly reduces the
number of projection steps required for constrained sampling. This allows outputs to match partial
observations under accelerated sampling without introducing a large number of additional network
evaluations. In contrast, works such as [4] use DDIM as a sampling strategy yet still require 200
additional network evaluations for constrained sampling, showing that DDIM alone is not enough
to accelerate the entire proecess. To further demonstrate this, we present qualitative examples that
simply using DPS with DDIM accelerated sampling yields blurry or divergent results, even when
the projection step size is tuned for optimal performance.

Furthermore, CDIM exactly recovers noiseless measurements, even for out-of-distribution inputs
(impossible with DPS), while requiring 10-50x fewer projection steps. Under Gaussian measure-
ment noise, our step size criterion naturally generalizes from the noiseless case without introducing
additional network evaluations. We further extend CDIM to handle Poisson noise through a re-
formulation based on Pearson residuals. Empirically, CDIM achieves high-quality reconstructions
in under 2.5 seconds, whereas prior methods such as DPS and MCG [3] require over 70 seconds.
Across tasks including super-resolution, box inpainting, deblurring, and random inpainting, CDIM
delivers comparable or superior reconstruction quality while operating an order of magnitude faster.

2 Related Work

Diffusion models [1] have emerged as powerful generative models, building upon early work in
nonequilibrium thermodynamics [5] and implicit models [6]. Denoising Diffusion Implicit Models
(DDIM) [7] was a notable work that improved the efficiency of diffusion sampling through non-
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markovian sampling. This was further advanced through stochastic differential equations [8] and
numerical ODE solvers like PNDM [9].

Applying diffusion models to inverse problems has been an active research area. DPS [2] was a
notable method that uses alternating projection steps to guide the diffusion process. DDNM [10],
DDRM [11], SNIPS [12], and PiGDM [13] use linear algebraic approaches and singular value de-
compositions. Techniques such as DMPS [14], FPS [15], LGD [16], DPMC [4], and MCG [17],
and DAPs [18] focus on likelihood approximation for improved sampling. Guidance mechanisms
have been incorporated through classifier gradients [19], data consistency enforcement [20], and
low-frequency feature matching [21].

Other approaches use projection [22, 3] or optimization [23, 24, 25, 26]. DMPlug [27] backprop-
agates through the entire diffusion process, leading to extremely slow inference. DSG [28] uses a
similar optimization update to us for enforcing consistency with the partial observation; however, it
does not guarantee matching a constraint exactly, instead using a soft constraint, like DPS, to handle
observational noise (see Appendix F.1). Finally, works such as Blind DPS [29] and FastEM [30]
solve inverse problems when the forward operator is unknown, a more difficult problem than the
setting studied in this work.

Figure 2: The family of CDIM methods (top left corner) simultaneously achieves strong generation
strong quality and extremely fast inference compared to other inverse solvers. We plot the inference
speed and average LPIPS image quality score (inverted) averaged across multiple inverse tasks on
the FFHQ dataset. ”Ours” uses T ′ = 50 denoising steps while ”Ours fast” uses T ′ = 25 denoising
steps

3 Background

We work in the context of DDPM [1], which models a data distribution q(x0) by modeling a se-
quence t = 1, . . . , T of smoothed distributions defined by

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (2)

The degree of smoothing is controlled by a monotone decreasing noise schedule ᾱt with ᾱ0 = 1 (no
noise) and ᾱT = 0 (pure Gaussian noise).2 The idea is to model a reverse process pθ(xt−1|xt) that
that incrementally removes the noise in xt such that pθ(xT ) = N (xT ; 0, I) and p(x0) approximates
the data distribution, where p(x0) is the marginal distribution of outputs from the reverse process:

pθ(x0) =

∫
pθ(xT )

T∏
t=1

pθ(xt−1|xt) dx1:T . (3)

Given noisy samples xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where x0 is a sample from the data distribution and

ϵ ∼ N (0, I), a diffusion model ϵθ(xt, t) is trained to predict ϵ:

min
θ

E
xt,ϵ

[
∥ϵ− ϵθ (xt, t) ∥2

]
. (4)

2We define ᾱt using the DDPM convention [1]; this corresponds to αt in DDIM [7].
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To parameterize the reverse process pθ(xt−1|xt), DDIM [7] exploits the Tweedie formula [31] for
the posterior mean of a noisy observation:

E [x0|xt] =
1√
ᾱt

(xt + (1− ᾱt)∇xt log q(xt)) . (5)

Using the denoising model ϵ(xt, t) as a plug-in estimate of the score function via the relationship
E [ϵ|xt] = −

√
1− ᾱt∇xt log q(xt), we define the Tweedie estimate of the posterior mean:

x̂0(xt) ≡
1√
ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
≈ E [x0|xt] . (6)

Throughout this paper, we keep the formula for the Tweedie estimate in functional form x̂0(xt) to
make it clear that x̂0 is a function of our current iterate xt. We can then use this estimator to define
a DDIM forward process xt−1 = fθ(xt) defined by

xt−1 = fθ(xt) =
√
ᾱt−1 · x̂0(xt) +

√
1− ᾱt−1

(
xt −

√
ᾱt · x̂0(xt)√
1− ᾱt

)
. (7)

Unlike DDPM, the forward process defined by Equation (7) is deterministic; the value pθ(x0) is
entirely determined by xT ∼ N (0, I) thus making DDIM an implicit model.

With a slight modification of the DDIM update, we are able to take larger denoising steps and
accelerate inference. Given δ ≥ 1, we define an accelerated denoising process

xt−δ = fδ
θ (xt) =

√
ᾱt−δ · x̂0(xt) +

√
1− ᾱt−δ

(
xt −

√
ᾱt · x̂0(xt)√
1− ᾱt

)
. (8)

Using this process, inference is completed in just T ′ ≡ T/δ steps, albeit with degraded quality of
the resulting sample x0 as δ becomes large.

4 Methods

We are interested in solving linear inverse problems of the form y = Ax, where y ∈ Rd is a
linear measurement of x ∈ Rn and A ∈ Rd×n describes our measurement operator. For example,
if A ∈ {0, 1}n×n is a binary mask (which is the case for, e.g., in-painting or sparse recovery
problems) then y describes a partial measurement of x. We seek an estimate x̂ that is consistent
with our measurements: in the noiseless case, Ax̂ = y. More generally, we seek to recover a robust
estimate of x̂ when the measurements y have been corrupted by Gaussian noise: y = Ax + σ,
where σ ∼ N (0, σ2

yI).

In Section 4.1 we motivate the high-level approach of alternating unconditional DDIM steps with an
adaptive number of gradient updates on the measurement residual energy ∇xt∥Ax̂0(xt) − y∥2.
We choose a step size and number of gradient descent steps to ensure that at each timestep
t, the related quantity ∥Axt − y∥2 remains within a standard deviation of its expected value
Eϵt

[
∥Axt − y∥2 | y

]
under the forward process; as shown in Section 4.2, this ensures that the

residual we are optimizing, ∥Ax̂0(xt) − y∥2, also remains in-distribution of the forward process
with high probability. Finally, in Section 4.3 we discuss our algorithm for choosing a step size η and
stopping criteria based on a target residual energy. The full algorithm is described in Algorithm 1.

4.1 Optimizing x̂0(xt) to match the measurements

For linear measurements A, the Tweedie formula for x̂0(xt) (and the corresponding plugin-estimate
Equation (6)) extends to a formula for the expected measurements:

E [y|xt] = AE [x0|xt] ≈ Ax̂0(xt). (9)
During the diffusion process, we would like the expected denoising trajectory to agree with the
observation, i.e. Ax̂0(xt) = y. Therefore, a reasonable initial idea is to modify the DDIM updates
Equation (7) to find the closest point xt−δ that satisfies the constraint Ax̂0(xt−δ) = y. I.e., at each
time step t, we force the Tweedie estimate of the posterior mean of q(y|xt) to match the observed
measurements y while making the smallest possible update from our unconditional denoising step:

argmin
xt−δ

∥xt−δ − fθ(xt)∥2

subject to Ax̂0(xt−δ) = y.
(10)
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(a) (b) (c)

Figure 3: Results on a 50% noisy inpainting task with σy = 0.2. (a) is the noisy partial observa-
tion. (b) is generated by CDIM (Algorithm 1) without considering the Gaussian measurement noise,
showing that we can exactly match the constraint even when the observation is out of distribution.
(c) is generated by CDIM and using the values from Appendix B that consider the Gaussian mea-
surement noise.

We face two conceptual challenges in optimizing Equation (10). First, for t > 0, typically no value
xt will satisfy Ax̂0(xt) = y and therefore the optimization is infeasible. Second, the estimate of
the score function∇xt log q(xt) from the diffusion model, ϵθ(xt, t) may be inaccurate, particularly
at large t; we risk overfitting to a bad plug-in estimate x̂0(xt) which will pull our iterate xt far out
of distribution during the denoising process. 3

In light of these observations, we replace Equation (10) with a soft optimization

argmin
xt−δ

∥xt−δ − fθ(xt)∥2 + λ∥Ax̂0(xt−δ)− y∥2. (11)

We can interpret Equation (11) as a relaxation of Equation (10) and we implement this optimization
via gradient descent, initialized from x

(0)
t−δ = fθ(xt) and computing k gradient steps

x
(k)
t−δ = x

(k−1)
t−δ + η∇xt−δ

∥Ax̂0(xt−δ)− y∥2. (12)

The regularization by λ∥Ax̂0(xt−δ)−y∥2 is achieved implicitly by stopping after k steps of gradient
descent at a given timestep t. In contrast to a hard constraint at each timestep, this objective is robust
to both (1) the possible infeasibility of Ax̂0(xt−δ) = y and (2) overfitting the measurements based
on an inaccurate Tweedie plug-in estimator.

For notational purposes, we define Lt as the energy of the measurement residual between the
Tweedie posterior mean x̂0(xt) and our observation y. This is the quantity we actively reduce
via gradient descent with each projection step:

Lt := ∥Ax̂0(xt)− y∥2. (13)

We can therefore interpret Equation (11) as a projection of the DDIM update fθ(xt) onto the set
of values xt−δ that sufficiently reduce the residual energy Lt−δ . The full inference procedure is
analogous to projected gradient descent, whereby we alternately take a step fθ(xt) determined by
the diffusion model, and then project back onto the set of plausible values for Lt−δ at timestep t−δ.
At high noise levels, the plausible domain is very large so our constraint is weak. As noise decreases,
the plausible domain constricts to a radius of zero, achieving constraint satisfaction if we can ensure
that Lt = 0 when t = 0.

As t approaches 0, x̂0(xt) converges to xt and Lt = ∥Ax̂0(xt) − y∥2 empirically behaves like
a simple convex quadratic ∥Axt − y∥2, which can be minimized to arbitrary accuracy by taking
sufficiently many gradient steps. This observation is why we can achieve exact recovery of the
measurements y = Ax0 in the final result x0. We demonstrate in Figure 3c that we can match
a measurement even when it is out of distribution. We provide further calculations and empirical
evidence to demonstrate the constraint convergence behavior in Appendix C.

3We illustrate both these claims by considering the Tweedie estimator Equation (6) in the case t = T . In
this case, xt ∼ N (0, I) is independent of x0 and therefore E[x0|xt] = E[x0], the mean of the data distribution
q(x0). Unless AE[x0] = y, the optimization is infeasible when t = T . Furthermore, we observe that when
t = T , the plug-in estimator x̂0 is not independent of xt and x̂0 ̸= E[x0]. This is indicative of error in the
diffusion model, especially at high noise levels.
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Figure 4: We show the conceptual overview of CDIM for a 50% inpainting task without measure-
ment noise. (Left) We compute the Tweedie posterior estimate x̂0(xt) then apply the linear operator
A. This value Ax̂0(xt) is compared with the observation y to obtain our loss Lt = ∥Ax̂0(xt)−y∥2.
We then update our iterate xt with steps on ∇xt

Lt. (Right) Our proxy residual Rt = ∥Axt − y∥2
has an anlytical χ2 distribution under the forward noising process and is used to guide the step size
and number of steps for the left side process.

4.2 Maintaining ∥Axt − y∥2 Within its Plausible Region

When alternating unconditional diffusion steps with measurement consistency steps, a key design
choice is how aggressively to minimize Lt. Specifically, at each timestep t, we must determine
the domain of plausible values for the residual energy, and find the corresponding step size η and
number of gradient steps k to minimize Equation (11). Keeping Lt within its plausible region
means we must sufficiently minimize Lt at each timestep while also not pulling our current iterate
xt out of distribution of the unconditional diffusion process. Existing methods, such as DPS [2],
typically apply a single small projection step per diffusion timestep, which insufficiently minimizes
the residual energy when using accelerated DDIM schedules, leading to under-convergence (see
Figure 7). Alternatively, fixing k > 1 across all timesteps is both computationally inefficient and
may cause us to leave the plausible region, particularly at high noise levels where the residual is
inherently large and uninformative.

To guide the optimization process more effectively, we propose to align the measurement residual
with its expected behavior under the forward diffusion process. That is, at each reverse step t →
t− δ, we would like to ensure that the observed residual Lt−δ is plausible under the distribution of
residuals given by the forward process. This distribution can be defined formally via the forward
noising process: Let εt ∼ N (0, I) be the forward noise and consider Lt = ∥Ax̂0(xt) − y∥2 with
xt =

√
ᾱt x0+

√
1− ᾱt εt and y = Ax0 for some true data sample x0. We then see that, under the

forward diffusion process, p(Lt|y) is a well defined distribution that depends on the forward noise
and ground truth data distribution x0.

Our key idea is to compare the observed residual Lt during the denoising process to its forward-
process expectation Eεt,x0

[Lt | y] and adaptively adjust the optimization effort to maintain consis-
tency. Intuitively, we want to keep our optimization target Lt within a plausible region close to its
expected value, which prevents under or over optimization of the projection steps. This idea is mo-
tivated by prior work [32, 3] that demonstrates improved generative performance when the reverse
process mirrors the forward dynamics. Unfortunately, the forward expectation of ∥Ax̂0(xt) − y∥2
is intractable to compute as it depends on the true data distribution. Furthermore, every function
evaluation x̂0 (and therefore Lt) requires a neural network evaluation, which would make it compu-
tationally expensive to perform any kind of step size search even if we knew the plausible region..

Instead, we propose to use the distribution of a proxy residual Rt := ∥Axt − y∥2 to guide our
projection steps. This residual has several desirable properties compared to Lt: it is analytically
tractable under the forward diffusion process, inexpensive to compute, and strongly correlated with
our target residual Lt. Specifically, we calculate in the Appendix A that under mild conditions,
maintaining Rt near its forward-process expectation, which we denote µt(y), ensures that Lt is
similarly controlled with high probability. This provides a computationally efficient and principled
mechanism for adaptively controlling projection effort at each timestep, without requiring additional
model evaluations. This entire procedure is shown at a high level in Figure 4.
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(a) Random in-
painting
task input y

(b) Stopping at
µR(y) + 4σR

(c) Stopping at
µR + σR

(d) Stopping at
µR + 0.1σR

(e) Ground Truth

Figure 5: We show the results of stopping at various points within the plausible region defined by
µR(y) + c · σR(y) for different values of c. For c < 1 the results do not change dramatically, but
numerically still improve (see Appendix D).

Proposition 1 Define the target residual energy Lt := ∥Ax̂0(xt) − y∥2 and the proxy residual
energy Rt := ∥Axt − y∥2. Suppose that the proxy residual satisfies |Rt − E[Rt|y]| ≤ γ. Then

with high probability,
∣∣Lt − E[Lt | y]

∣∣ ≤ γ
ᾱt

+ O
(√

1−ᾱt

ᾱt

)
.

4.2.1 The χ2 Distribution of Rt

The distribution of the residual energy p(∥Axt−y∥2 | y) under the forward noising process follows
a non-central generalized chi-squared distribution with tractable mean and variance:

µt(y) := Eϵt [Rt | y] = (
√
ᾱt − 1)2∥y∥2 + (1− ᾱt) tr(AA⊤), (14)

σ2
t (y) := Varϵt [Rt|y] = 2 tr((Σt)

2) + 4µ⊤
t Σtµt. (15)

We derive this formally in Appendix B and also derive the corresponding mean and variance given
noisy measurements y = Ax+N (0, σ2

yI).

4.3 Choosing η and Stopping Criteria

Now that we have an analytical understanding of our proxy residual energy Rt := ∥Axt − y∥2, we
can determine the optimal projection step size η and number of steps k for each timestep t.

To decide when to stop projection steps, we compare the current residual energy Rt to the forward
expectation µt(y) = Eϵt [Rt | y] derived above. We denote the plausible region boundary as
ρt(y) := µt(y) + c · σt(y) where we aim to stay within some deviation of the mean. Lower
values of c typically produce better results at the tradeoff of more projection steps. We then halt the
projection loop when the proxy residual lies within this plausible region boundary.

∥Axt−δ − y∥2 ≤ ρt−δ(y). (16)

This rule avoids both under- and over-projection while ensuring the denoising trajectory aligns with
the expected residual behavior. We show comparative results of choosing a different stopping criteria
c in Figure 5 and in Section 5.3.

To determine the optimal step size η, we precompute the gradient of our objective:

g := ∇xt−δ
∥Ax̂0(xt)− y∥2. (17)

We then perform a one-dimensional search (e.g., binary or line search) to select the η that yields
a future residual energy ∥A(xt−δ − ηg) − y∥2 closest to the plausible region boundary ρt−δ . We
find empirically that bringing the residual back to the boundary of the plausible region is better than
trying to bring it directly to the center of the plausible region.

η∗ := argmin
η∈R

∣∣ρt−δ(y)− ∥A(xt−δ − ηg)− y∥2
∣∣ . (18)

Since the objective is a well-behaved quadratic function in η, this search is efficient and stable in
practice. We summarize the complete algorithm in Algorithm 1, using a generalized step size δ
during the denoising process.
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Algorithm 1 Constrained Diffusion Implicit Models

xT ∼ N (0, I)
for t = T, T − δ.., 1 do

xt−δ ←
√
ᾱt−δ

(
xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt

)
+
√
1− ᾱt−δϵθ(xt, t) {▷ Unconditional Generation}

ρt(y)← µt−δ(y) + c · σt−δ(y) {▷ Boundary of Plausible Region}
while ∥Axt−δ − y∥2 > ρt(y) do
x̂0 ← 1√

ᾱt−δ
(xt−δ −

√
1− ᾱt−δϵθ(xt−δ, t− δ))

g ← ∇xt−δ
∥Ax̂0(xt−δ)− y∥22

η∗ := argminη∈R
∣∣ρt(y)− ∥A(xt−δ − ηg)− y∥2

∣∣
xt−δ ← xt−δ − η∗g

end while
end for

(a) Box inpaint-
ing task input y

(b) T’=25
(31 Total Projec-
tion Steps)

(c) T’=10
(15 Total Projec-
tion Steps)

(d) T’=4
(10 Total Projec-
tion Steps)

(e) Ground Truth

Figure 6: We show how the results change as we decrease the number of denoising steps T ′. Notably,
we still produce reasonable results with only T ′ = 4 denoising steps and a corresponding 10 total
projection steps, for a total of 14 Neural Function Evaluations (NFEs) and < 1 second inference.

4.4 Poisson Noise

Possion noise is non-additive noise defined by sy ∼ Poisson(sAx), where y is interpreted as dis-
crete integer pixel values. The scaling factor s ≤ 1 controls the degree of Poisson noise. Poisson
noise is not identically distributed across y; the variance increases with the scale of each measure-
ment. To remedy this, we consider the Pearson residuals [33]:

R(Ax̂0,y) =
λ(y −Ax̂0)√

λx̂0

. (19)

These residuals are identically distributed; moreover, they are approximately normal r ∼ N (0, 1)
[34]. We can therefore treat the Pearson residuals as standard normal noise and solve the inverse
problems using the same method for Gaussian measurement noise. Although the Pearson residuals
closely follow the standard normal distribution for positive values of x̂0, this breaks down for values
of x̂0 close to zero, and extreme noise levels s. In practice we find the Gaussian assumption to be
valid for natural images corrupted by as much noise as s ≈ 0.025. In Figure 1 we show an example
of denoising an image corrupted by Poisson noise with s = 0.05.

5 Results and Experiments

We conduct experiments to demonstrate the efficiency and quality of CDIM across various tasks
and datasets. In Section 5.1, we present quantitative comparisons to state-of-the-art approaches,
followed by a comparison against DPS using DDIM in Section 5.2. In Section 5.3 we describe
ablation studies examining inference speed and hyperparameters. Finally, in Section 5.4 we explore
two novel applications of diffusion models for inverse problems.
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Table 1: Quantitative results (FID, LPIPS) of our model and existing models on various linear
inverse problems on FFHQ 256 × 256-1k validation dataset. (Lower is better). The best result is in
bold and the second best is underlined.

FFHQ Super Inpainting Gaussian Inpainting Runtime
Res (box) Deblur (random) (seconds)

Methods FID LPIPS FID LPIPS FID LPIPS FID LPIPS
Ours T ′ = 25 33.87 0.276 27.51 0.1872 34.18 0.276 29.67 0.243 2.4
Ours T ′ = 50 31.54 0.269 26.09 0.196 29.68 0.252 28.52 0.240 6.4

FPS-SMC 26.62 0.210 26.51 0.150 29.97 0.253 33.10 0.275 116.90
DPS 39.35 0.214 33.12 0.168 44.05 0.257 21.19 0.212 70.42

DDRM 62.15 0.294 42.93 0.204 74.92 0.332 69.71 0.587 2.0
MCG 87.64 0.520 40.11 0.309 101.2 0.340 29.26 0.286 73.2

PnP-ADMM 66.52 0.353 151.9 0.406 90.42 0.441 123.6 0.692 3.595
Score-SDE 96.72 0.563 60.06 0.331 109.0 0.403 76.54 0.612 32.39
ADMM-TV 110.6 0.428 68.94 0.322 186.7 0.507 181.5 0.463 -

5.1 Numerical Results on FFHQ and ImageNet

We evaluate CDIM on the FFHQ-1k [35] and ImageNet-1k [36] validation sets. Each dataset con-
tains 256 × 256 RGB images scaled to the range [0, 1]. The tasks include 4x super-resolution,
box inpainting, Gaussian deblur, and random inpainting. Details of each task are included in the
appendix. For all tasks, we apply zero-centered Gaussian measurement noise with σ = 0.05. To
ensure fair comparisons, use identical pre-trained diffusion models used in the baseline methods:
for FFHQ we use the network from [2] and for ImageNet we use the network from [19]. We report
Frechet Inception Distance (FID) [37] and Learned Perceptual Image Patch Similarity (LPIPS) [38]
with peak signal-to-noise ratio (PSNR) results in Appendix E.5. All experiments are carried out on
a single Nvidia A100 GPU.

In Table 1 we compare CDIM with several other inverse solvers using the FID and LPIPS metrics
on the FFHQ dataset. We present results using our method with both T ′ = 25 denoising steps and
T ′ = 50 denoising steps. In all cases we use c = 0.1 for the number of standard deviations in the
stopping criteria. For ImageNet results please see Appendix E.4.

5.2 Additional Comparisons

We show a qualitative comparison against DPS [2] when we combine it DDIM and fewer steps (see
Figure 7). We use the core DPS sampling algorithm, but with DDIM as the denoising algorithm
instead of DDPM. The number of denoising steps is set to 15 (CDIM is limited to 15 projection
steps) and the step size of DPS is increased in panel (c) to achieve the best constraint convergence

(a) Box inpainting with-
out noise: input y.

(b) DPS + DDIM
MAE: 4%

(c) DPS + DDIM
(large η) MAE: 0.3%

(d) CDIM
MAE: 0.05%∗

Figure 7: We show comparisons against DPS using DDIM sampling where all algorithms use 30
NFEs. For each output, we report the mean absolute error of the observed pixels, ∥Ax − y∥,
relative to the input. (b) If you simply run DPS with DDIM sampling, the constraint is not met. You
can see this in the hair, which is blurrier, along with the background which has changed. (c) If you
try to increase the step size of DPS, the observed region matches better, but the results diverge. (c)
CDIM achieves strong constraint satisfcaation and inpainting results. *The MAE of CDIM should
be 0, but the diffusion schedule sets α0 = 0.999 for numeric stability.
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(a) (b)
Figure 8: Noisy inpainting for sparse point cloud reprojection. (a) Shows a sparse point cloud pro-
jected to a desired camera angle. (b) Shows the result after our method is used for noisy inpainting.

possible. Note that when using DPS, no learning rate can lead to measurement consistency with the
accelerated DDIM sampling scheduling without diverging.

We also compare against DAPs-50 [18], DSG [28], and Diff-PIR [25] in Appendix F.

5.3 Ablation Studies

CDIM only contains two hyperparameters: the number of denoising steps T ′ and the plausible
region stopping criteria constant c multiplied by σt(y). In Figure 6 we show how the results and
total required projection steps change as we decrease the T ′ to as few as 4 denoising steps. For the
stopping criteria, Figure 5 shows qualitative results when changing c, and in Appendix D we show
how quantitative results and number of projection steps change with c.

5.4 Additional Applications

Time-Travel Rephotography In Figure 1 we showcase an application of time-travel rephotography
[39]. Antique cameras lack red light sensitivity, exaggerating wrinkles by filtering out skin subsur-
face scatter which occurs mostly in the red channel. To address this, we input the observed image
into the blue color channel and use the pretrained FFHQ model with Algorithm 1 to project the face
into the space of modern images. We further emphasize the power of our approach; [39] trained a
specialized model for this task while we are able to use a pretrained model without modification.

Sparse Point Cloud Reprojection Twenty different images from a scene in The Grand Budapest
Hotel scene were entered into Colmap [40] to generate a sparse 3D point cloud. Projections of this
point cloud have roughly 90% of the pixels missing. Furthermore, the measurements often contain
significant amounts of non-Gaussian noise due to false correspondences. We can formulate this
as noisy inpainting problem and use Algorithm 1 along with a variance threshold that adequately
captures the imprecise nature of the point cloud. We showcase the results in Figure 8.

6 Conclusion

In this paper we introduced CDIM, a new approach for accelerating noisy linear inverse recovery
using pretrained diffusion models. By projecting DDIM steps into a plausible region of of the
forward process, we can enforce constraints without making out-of-distribution edits to the noised
iterates xt. Note that our method cannot handle non-linear constraints because for a non-linear
function h, E [h(x0)] ̸= h(E [x0]). Therefore, we cannot extend Tweedie’s estimate of the posterior
mean x0 to an estimate of the posterior mean of non-linear observations h(x0). However, for linear
constraints, our method generates high quality images with faster inference than previous methods,
creating a new point on the Pareto-frontier of quality vs. efficiency for linear inverse problems.
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A Proposition: Controlling the Proxy Residual Controls the True Objective
Setup and notation. Fix a reverse–diffusion step t∈{1, . . . , T} with cumulative noise level ᾱt ∈
(0, 1). Let

One–step variance: b := 1− ᾱt

a :=
√
ᾱt − 1,

Σ := AA⊤ ∈ Rd×d.

Given the current state xt =
√
ᾱt x0 +

√
b ϵt with ϵt ∼ N (0, I), define

Proxy residual: rt := Axt − y, Rt := ∥rt∥2,

Mean of proxy residual: µt(y) := Eϵt [Rt | y]

Tweedie estimate: x̂0 :=
xt −

√
b ϵθ(xt, t)√
ᾱt

.

true objective: Lt := ∥Ax̂0 − y∥2,

model noise in measurement space: ζt := Aϵθ(xt, t).

Throughout we assume the denoiser is conditionally unbiased: E [ϵθ(xt, t) | xt] = ϵt.

Proposition Statement: Suppose that the proxy residual is close to its expected value: |Rt −
µt(y)| ≤ γ. Then with high probability,

∣∣Lt − E[Lt | y]
∣∣ ≤ γ

ᾱt
+ O(

√
(1−ᾱt)

ᾱt
), i.e. the target

residual is close to its expectation.

Step 1: Write Lt in terms of Rt

Multiply x̂0 by A and subtract y:

Ax̂0 − y =
Axt −

√
b ζt −

√
ᾱt y√

ᾱt
=

rt −
√
b ζt − ay√
ᾱt

.

Squaring the norm yields:

Lt =
1

ᾱt

(
Rt + b ∥ζt∥2 + a2 ∥y∥2 − 2

√
b ⟨rt, ζt⟩ − 2a ⟨rt,y⟩+ 2a

√
b ⟨ζt,y⟩

)
. (20)

Step 2: Conditional expectation. Taking E[· | y] in Equation (20), using E[⟨rt, ζt⟩ | y] =
E[⟨ζt,y⟩ | y] = 0 (given the unbiased-score assumption and independence of ϵt from y), and using
E[rt | y] = E[

√
ᾱtAx0 +

√
bAεt − y] = ay gives:

E[Lt | y] =
1

ᾱt

(
µt(y) + b tr Σ + a2∥y∥2 − 2a2∥y∥2

)
=

1

ᾱt

(
µt(y) + b tr Σ− a2∥y∥2

)
.

Step 3: Decompose the deviation. Now we can calculate how far our true objective deviates from
its expected value. Write

∆1 := ∥ζt∥2 − tr Σ, ∆2 := ⟨rt, ζt⟩, ∆3 := ⟨ζt, y⟩, ∆4 := ⟨rt, y⟩ − a∥y∥2.
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Then∣∣Lt − E[Lt | y]
∣∣ = 1

ᾱt

(
|Rt − µt(y)|+ b|∆1|+ 2

√
b |∆2|+ 2|a|

√
b |∆3|+ 2|a| |∆4|

)
. (21)

The first term in Equation (21) is the deviation of the proxy residual from its mean, which satisfies

|Rt − µt(y)| ≤ γ.

We then use Hanson-Wright and Cauchy-Schwarz to bound the remainder of the terms.

Step 4: Concentration bounds for the ∆i.

∆1: Since ζt = Aϵt with ϵt ∼ N (0, I), ∥ζt∥2 is a quadratic form in a Gaussian vector. Hanson–
Wright [41] gives

|∆1| ≤ C1

√
tr(Σ2)

with probability at least 1− 2e−c1d. For measurement space dimension d: y ∈ Rd and constant
c1 > 0.

∆2: Using Cauchy-Schwarz, a χ2 tail for ∥ζt∥ and the given bound ∥rt∥ ≤
√

µt(y) + γ,

|∆2| ≤ ∥rt∥ ∥ζt∥ ≤
√

µt(y) + γ C2

√
tr Σ.

∆3: We can use a standard Gaussian tail bound since ⟨ζt, y⟩ ∼ N
(
0, y⊤Σy

)
. This yields

|∆3| ≤ C2 ∥y∥
√
tr Σ.

∆4: This is a deterministic bound once ∥rt∥ is bounded. Using |a| =
√
ᾱt − 1 ≤

√
b and ∥rt∥ ≤√

µt(y) + γ,

|∆4| =
∣∣⟨rt, y⟩ − a∥y∥2

∣∣ ≤ ∥rt∥ ∥y∥+ |a| ∥y∥2 ≤√µt(y) + γ ∥y∥+
√
b ∥y∥2.

Each of the three genuinely probabilistic bounds occurs with failure probability 2e−cd for measure-
ment space dimension d: y ∈ Rd and absorbing constants into c > 0. In typical proofs involving
Hanson-Wright, ci ≈ 10−2 [42], and since d is typically much larger than 100, the failure probability
remains exceedingly small.

Step 5: Assemble the pieces.

Insert the bounds for ∆1:4 into Equation (21), use
√
µt(y) + γ ≤

√
µt(y) +

√
γ, and absorb

numerical constants into a universal C > 0:∣∣Lt − E[Lt | y]
∣∣ ≤ γ

ᾱt
+

C
√
b

ᾱt

(√
γ + ∥y∥

)
+

C b

ᾱt
∥y∥2.

Step 6: Conclusion.

|Rt − µt(y)| ≤ γ =⇒
∣∣Lt − E[Lt | y]

∣∣ ≤ γ

ᾱt
+ O

(√
1−ᾱt

ᾱt
[
√
γ + ∥y∥ ] + 1−ᾱt

ᾱt
∥y∥2

)
,

with probability at least 1−6e−cd. Because 1−ᾱt = b≪ 1 for all practical timesteps, the additional
terms are dominated by

√
b/ᾱt, leaving∣∣Lt − E[Lt | y]

∣∣ ≤ γ

ᾱt
+O

(√
1−ᾱt

ᾱt

)
,

as claimed. Notice that As t→0 (ᾱt→1) the second term vanishes, so matching the proxy residual
to its mean immediately controls the true objective with the same statistical precision.
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B Distribution of ∥Axt − y∥2 with Noiseless and Noisy Observations

B.1 Noiseless Observations

Let us define our proxy residual vector rt := Axt − y and the energy Rt := ∥rt∥2 = ∥Axt − y∥2.

We start with the forward diffusion equation in Equation (2) and multiply both sides by A. We then
subtract y from both sides, yielding the residual

rt := Axt − y = (
√
ᾱt − 1)y +

√
1− ᾱtAϵt, ϵt ∼ N (0, I). (22)

This implies that p(rt|y) ∼ N (µt(y),Σt), where

µt(y) = (
√
ᾱt − 1)y,

Σt = (1− ᾱt)AA⊤.

The residual energy Rt := ∥Axt−y∥2 = ∥rt∥2 is thus a chi-squared distribution with the following
mean µt(y) and variance σ2

t (y):

µt(y) := Eϵt [Rt | y] = (
√
ᾱt − 1)2∥y∥2 + (1− ᾱt) tr(AA⊤), (23)

σ2
t (y) := Varϵt [Rt|y] = 2 tr((Σt)

2) + 4µ⊤
t Σtµt. (24)

Note that often our linear operator A is implemented in a functional form, where computing the
actual matrix representation or its transpose is inconvenient. In practice, we can use trace estimators
such as Hutchinson’s method [43] to estimate all required values involving A, such as tr(AA⊤),
tr((Σr

t )
2), and µ⊤

t Σtµt using only matrix-vector products.

B.2 Noisy Observations

We derive the mean and variance of our residual energy Rt := ∥Axt − y∥2 during the forward
diffusion process when we have measurement noise: y = Ax0 + σy where σy ∼ N (0, σ2

yI).

Unbiased substitutions. Because we never observe the latent projection Ax0, we replace its
quadratic forms with statistics that depend only on the noisy measurement y and d := dim(y):

∥Ax0∥2 = ∥y∥2 − dσ2
y, (25)

(Ax0)
⊤Σ (Ax0) = y⊤Σy − σ2

y tr Σ, (26)

with Σ := AA⊤.

First two moments of the residual energy. Using the forward-diffusion decomposition xt =√
ᾱt x0 +

√
1− ᾱt ϵt, ϵt ∼ N (0, I), one finds the residual Axt − y =

(√
ᾱt − 1

)
Ax0 +√

1− ᾱt Aϵt − σy. After substituting the unbiased identities Equation (25)–Equation (26) and
taking expectations over both noise sources ϵt and σy , we obtain closed-form expressions that are
fully observable.

Expectation.

E[Rt |y] = (1− ᾱt) tr(Σ)︸ ︷︷ ︸
diffusion noise

+ mσ2
y

[
1−

(√
ᾱt − 1

)2]︸ ︷︷ ︸
measurement noise

+
(√

ᾱt − 1
)2 ∥y∥2︸ ︷︷ ︸

deterministic bias

. (27)

Variance. Writing Σ̃t = (1 − ᾱt) Σ + σ2
yI and µ̃t =

(√
ᾱt − 1

)
y, the non-central χ2 moment

formula Var(Qt) = 2 tr
(
Σ̃2

t

)
+ 4µ̃⊤

t Σ̃tµ̃t gives

Var[Rt |y] = 2
[
(1− ᾱt)

2 tr
(
Σ2
)
+ 2(1− ᾱt)σ

2
y tr Σ +mσ4

y

]
+ 4
(√

ᾱt − 1
)2[

(1− ᾱt)
(
y⊤Σy − σ2

y tr Σ
)
+ σ2

y

(
∥y∥2 −mσ2

y

)]
. (28)
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C Convergence of Constraint Satisfaction

We now analyze the convergence properties of the constraint satisfaction procedure in CDIM for
the noiseless case. The algorithm alternates between unconditional diffusion updates and projection
steps:

1. Unconditional update: fθ(xt) = DDIM.step(xt)

2. Projection:
xt−δ = argminxt−δ

∥xt−δ − fθ(xt)∥2 s.t. Ax̂0(xt) = y

where x̂0(xt) denotes the Tweedie estimate E[x0|xt] at timestep t. When the constraint is infeasible,
we perform gradient descent on ∥Ax̂0(xt)− y∥2.

We first show that the Tweedie estimate converges to the identity mapping, and characterize its rate
of convergence. We also demonstrate this rate of convergence empirically in Figure 9.

Given that, we show that as t → 0, finding xt such that ∥Ax̂0(xt) − y∥2 = 0 is feasible and
satisfiable via the proposed gradient descent algorithm.

Tweedie Convergence. In this section, we show that as t → 0, the Tweedie estimate converges to
the identity mapping:

sup
xt

∥x̂0(xt)− xt∥2 ≤ ε(t) (29)

where ε(t)→ 0 as t→ 0.

Consider the forward diffusion process:

xt =

√
1− β̄t x0 +

√
β̄t ϵ, ϵ ∼ N (0, I) (30)

The Tweedie estimate (posterior mean) is given by:

x̂0(xt) =
xt√
1− β̄t

− β̄t√
1− β̄t

∇xt
log p(xt) (31)

For small β̄t (as t→ 0), we perform a Taylor expansion:

1√
1− β̄t

= 1 +
β̄t

2
+O(β̄2

t ) (32)

β̄t√
1− β̄t

= β̄t

(
1 +

β̄t

2

)
+O(β̄3

t ) (33)

Substituting into x̂0(xt):

x̂0(xt) = xt

(
1 +

β̄t

2

)
− β̄t

(
1 +

β̄t

2

)
∇xt

log p(xt) +O(β̄2
t ) (34)

= xt +
β̄t

2
xt − β̄t∇xt

log p(xt) +O(β̄2
t ) (35)

The deviation from xt is thus:

x̂0(xt)− xt =
β̄t

2
xt − β̄t∇xt

log p(xt) +O(β̄2
t ) (36)

Taking norms and applying the triangle inequality:

∥x̂0(xt)− xt∥2 ≤
β̄t

2
∥xt∥2 + β̄t∥∇xt

log p(xt)∥2 +O(β̄2
t ). (37)

To estimate the scaling of ∥∇xt log p(xt)∥2, recall that the marginal p(xt) is the Gaussian-smoothed
density

p(xt) = (p0 ∗ N (0, β̄tI))(xt),
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whose log-gradient scales as the inverse of the noise standard deviation:

∥∇xt
log p(xt)∥2 = O

(
1√
β̄t

)
with high probability. Intuitively, as β̄t → 0, p(xt) becomes sharply peaked around x0, and its
log-density gradient increases proportionally to the inverse of the noise scale.

Substituting this scaling gives a dominant term of
√
β̄t:

∥x̂0(xt)− xt∥2 = O(

√
β̄t) (38)

with high probability as t→ 0.

We show this empirically in Figure 9. This demonstrates that the Tweedie estimate of the posterior
mean converges to the identity mapping at a rate proportional to

√
β̄t.

 vs tσ̄t  vs t∼ −x0(xt) ← xt∼

∼− x
0(x

t)←
x t

∼
σ̄t

Figure 9: We show that ∥x̂0(xt)−xt∥2 = O(
√
β̄t), demonstrating that the Tweedie estimate of the

posterior mean converges to the identity mapping as t→0. (Left) plots
√

β̄t; (Right) plots ∥x̂0(xt)−
xt∥2 for a Gaussian deblur task. At higher t, model inaccuracies in estimating ∇xt

log p(xt) cause
deviations from the convergence pattern.

Convergence of Constraint Satisfaction. Based on the convergence of the Tweedie estimate to xt,
we show that for sufficiently small t:

1. The constraint set {xt : Ax̂0(xt) = y} is non-empty.
2. Gradient descent on ∥Ax̂0(xt)− y∥2 converges to a point satisfying the constraint.

First, we show that the optimization landscape becomes increasingly well-behaved as t → 0. Con-
sider the objective:

∥Ax̂0(xt)− y∥2 = ∥Axt − y +A(x̂0(xt)− xt)∥2 (39)

= ∥Axt − y∥2

+ 2⟨Axt − y,A(x̂0(xt)− xt)⟩
+ ∥A(x̂0(xt)− xt)∥2. (40)

By Tweedie Convergence, the second and third terms are bounded by O(ε(t)). Therefore, as t→ 0,
the objective converges to the convex quadratic ∥Axt−y∥2, which can be efficiently optimized via
gradient descent.

For feasibility, note that as t→ 0, finding xt such that Ax̂0(xt) = y becomes equivalent to finding
xt such that Axt = y up to an error of O(ε(t)). The latter is feasible whenever y is in the range of
A, which is the standard assumption for linear inverse problems.

As t → 0, ε(t) approaches zero, making the constraint feasible. Moreover, since the objective
approaches a convex quadratic, gradient descent will converge to the global minimum for sufficiently
small t.
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D Ablation Studies

D.1 Stopping Criteria

We consider variations of the stopping criteria where we use a different threshold besides 1 standard
deviation on a noiseless random inpainting task when T ′ = 25. We consider three different stopping
criteria and report the LPIPS on the FFHQ test set as well as the total projection steps during the
inference. Notice that having a more generous stopping criteria does not always lead to fewer
projection steps. We risk underfitting at early timesteps, and as the plausible region reduces to a
radius of 0, we must take extra steps at later time steps to ensure consistency.

Stopping criteria Total Projection Steps Random Inpainting LPIPS
µR + 3σR 24 0.296
µR + σR 15 0.171

µR + 0.5σR 25 0.169

Table 2: Comparing stopping criteria based on standard deviations to the expected residual energy.

E Additional Experimental Details

E.1 Task Details

We describe additional details for each inverse task used in our experiments.

Super Resolution Images are downsampled to 64 × 64 using bicubic downsampling with a factor
of 4.

Box Inpainting A random box of size 128 × 128 is chosen uniformly within the image.
Those pixels are masked out affected all three of the RGB channels.

Gaussian Deblur A Gaussian Kernel of size 61 × 61 and intensity 3 is applied to the entire
image.

Random Inpainting Each pixel is masked out with probability 92% affecting all three of
the RGB channels

50% Inpainting In various figures, we showcase a 50% inpainting task where the top half
of an image is masked out. This task is more challenging than box inpainting and can better
illustrate differences between results.

E.2 Number of Projection Steps

Across a variety of tasks and dataset we find that T ′ = 25 denoising steps leads to an average of
27.2 total projection steps and T ′ = 50 leads to an average of 46.5 total projection steps. For exper-
iments where we want to strictly limit the NFEs for fair comparison, we simply disallow additional
projection steps after reaching the limit.

E.3 Measuring Runtime

To measure wall-clock runtime, we used a single A100 and ran all the inverse problems (super-
resolution, box inpainting, gaussian deblur, random inpainting) on the FFHQ dataset. We only
consider the runtime of the algorithm, without considering the python initialization time, model
loading, or image io. For each task, we measured the runtime on 10 images and averaged the result
to produce the final result. We note that the baseline runtimes are taken from [15], where only the
box inpainting task was considered. The runtime does not vary much between tasks when using
CDIM, so we report our average runtime across tasks as a fair comparison metric.
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E.4 ImageNet Results

In Table 3 we report FID and LPIPS for ImageNet.

Table 3: Quantitative results (FID, LPIPS) of our model and existing models on various linear
inverse problems on the Imagenet 256 × 256-1k validation dataset. (Lower is better)

Imagenet Super Inpainting Gaussian Inpainting
Resolution (box) Deblur (random)

Methods FID LPIPS FID LPIPS FID LPIPS FID LPIPS
Ours - T’ = 25 53.70 0.378 52.00 0.267 56.10 0.393 51.96 0.370
Ours - T’ = 50 47.45 0.339 50.31 0.251 38.69 0.347 46.20 0.332

FPS-SMC 47.30 0.316 33.24 0.212 54.21 0.403 42.77 0.328
DPS 50.66 0.337 38.82 0.262 62.72 0.444 35.87 0.303

DDRM 59.57 0.339 45.95 0.245 63.02 0.427 114.9 0.665
MCG 144.5 0.637 39.74 0.330 95.04 0.550 39.19 0.414

PnP-ADMM 97.27 0.433 78.24 0.367 100.6 0.519 114.7 0.677
Score-SDE 170.7 0.701 54.07 0.354 120.3 0.667 127.1 0.659
ADMM-TV 130.9 0.523 87.69 0.319 155.7 0.588 189.3 0.510

E.5 PSNR Results

See Tables 4 and 5

Table 4: Quantitative results (PSNR) of our model and existing models on various linear inverse
problems on the FFHQ 256-1k validation dataset. (Higher is better)

Imagenet Super Inpainting Gaussian Inpainting
Resolution (box) Deblur (random)

Methods PSNR PSNR PSNR PSNR
Ours - T’ = 25 27.08 23.20 26.77 26.49
Ours - T’ = 50 27.30 23.47 27.03 27.10

FPS-SMC 28.10 24.70 26.54 27.33
DPS 25.67 22.47 24.25 25.23

DDRM 25.36 22.24 23.36 9.19
MCG 20.05 19.97 6.72 21.57

PnP-ADMM 26.55 11.65 24.93 8.41
Score-SDE 17.62 18.51 7.21 13.52
ADMM-TV 23.86 17.81 22.37 22.03

Table 5: Quantitative results (PSNR) of our model and existing models on various linear inverse
problems on the Imagenet 256 × 256-1k validation dataset. (Higher is better)

Imagenet Super Inpainting Gaussian Inpainting
Resolution (box) Deblur (random)

Methods PSNR PSNR PSNR PSNR
Ours - T’ = 25 23.67 19.67 22.78 22.38
Ours - T’ = 50 23.92 20.06 23.32 22.61

FPS-SMC 24.78 22.03 23.81 24.12
DPS 23.87 18.90 21.97 22.20

DDRM 24.96 18.66 22.73 14.29
MCG 13.39 17.36 16.32 19.03

PnP-ADMM 23.75 12.70 21.81 8.39
Score-SDE 12.25 16.48 15.97 18.62
ADMM-TV 22.17 17.96 19.99 20.96
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F Additional Comparisons

F.1 Comparison with DSG

We show a qualitative comparison against DSG [28] on 3 tasks in Figure 10. We used the official
code from their github, and generated results with 25 DDIM diffusion steps for both DSG and CDIM
(and K = 1 for CDIM). As you can see, the DSG results are blurrier and sometimes contain artifacts

Figure 10: A comparison between CDIM and DSG [28] when both algorithms use 25 DDIM de-
noising steps. Notice the artifacts in the DSG random inpainting.

F.2 Comparison with Diff-PIR

Below we report quantitative comparisons against Diff-Pir [25] which uses 100 NFEs. These num-
bers are reported directly from their paper. Alhtough the LPIPs numbers are comparable or better
with Diff-PIR on FFHQ, the FID numbers are noticeably worse and LPIPs is also worse on Ima-
genet.

Table 6: Comparison between CDIM and Diff-PIR [25] on the FFHQ dataset.

FFHQ Super Gaussian NFEs
Res Deblur

Methods FID LPIPS FID LPIPS
Ours T ′ = 25 33.87 0.276 34.18 0.276 ∼50
Ours T ′ = 50 31.54 0.269 29.68 0.252 ∼100

Diff-PIR 65.77 0.260 59.65 0.236 100

Table 7: Comparison between CDIM and Diff-PIR [25] on the Imagenet dataset.

Imagenet Super Gaussian NFEs
Res Deblur

Methods FID LPIPS FID LPIPS
Ours T ′ = 25 53.70 0.378 56.10 0.393 ∼50
Ours T ′ = 50 47.45 0.339 38.69 0.347 ∼100

Diff-PIR 106.32 0.371 93.36 0.355 100
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F.3 Comparison with DAPS

Below we report quantitative comparisons against DAPS-50 [18] which uses 50 NFEs. We run the
official code on 100 test images from FFHQ and report the LPIPS loss. These numbers differ from
the numbers in the paper because (1) the paper uses σy = 0.05 for images in [−1, 1] while our
paper and other baselines have images in [0, 1] which leads to twice as much noise and (2) the paper
reports LPIPs with model ”alex” while ours and all baselines use ”vgg”. Both of these cause the
reported numbers in the paper to be significantly better, so we run experiments ourselves to ensure
a fair comparison.

Input GT DAPS-50 CDIM T’=25

Gaussian 
Deblur

Random 
Inpainting

Super 
Resolution

Box 
Inpainting

Figure 11: Comparison between CDIM (T’=25) and DAPs-50 where both are capped at 50 NFEs.
All of the DAPs-50 results contain noticeable artifacts compared to CDIM.

Table 8: Comparison between CDIM (T ′ = 25) and DAPs-50 on the FFHQ dataset.
Methods 4× Super-Resolution Box Inpainting Gaussian Blur Random Inpainting
DAPs-50 0.358 0.244 0.339 0.306

CDIM (T ′ = 25) 0.290 0.187 0.283 0.271
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G Extended Results

Figure 12: FFHQ Super-resolution extended results
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Figure 13: FFHQ Gaussian deblur extended results
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Figure 14: FFHQ random inpainting extended results
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Figure 15: FFHQ box inpainting extended results
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Figure 16: ImageNet Gaussian deblur extended results
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Figure 17: ImageNet random inpainting extended results
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Figure 18: ImageNet box inpainting extended results

(a) (b)

Figure 19: Results on inpainting 50% of an image on LSUN Churches dataset.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, we discuss the accelerated projection algorithm and discuss how it
speeds up constrained diffusion compared to existing methods. We focus on our contri-
bution of speedup
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss a few limitations such as not handling latent diffusion. However
there could be more discussion of overall limitations
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

30



Answer: [Yes]
Justification: Yes, our main claim (Proposition 1) is fully derived in the appendix. Other
claims, such as the chi-squared distribution of residuals are derived in sufficient depth as
they are straightforward.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe all experimental settings, hardware considerations, hyperparam-
eters, and other requirements for running the experiments. Code will be released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code will be open sourced shortly after the review deadline.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we have discussed the training and test datasets, hyperparemeters, stop-
ping criteria, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report many metrics like FID, LPIPS, PSNR, etc. These are standard in
the community.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes we describe the hardware used and execution time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have done our best to follow all ethical guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There are some negative societal of diffusion posterior sampling but we do
not believe it warrants a full broader impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not believe safeguards are required for this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: All IP is from standard community datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: We do not release no assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing was done

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects were used in experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs outside of helping with basic writing/editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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