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Abstract

Algorithms that take data as input commonly assume that variables in the input dataset are In-
dependent and Identically Distributed (IID). However, IID may be violated in many real world
datasets that are generated by processes in which units/samples interact with one another. Typical
examples include contagion that may be related to infectious diseases in public health, economic
crisis in finance and risky behavior in social science. Handling non-IID data (without making ad-
ditional assumptions) requires access to the true data generating process and the exact interaction
patterns among units/samples, which may not be easily available. This work focuses on a specific
type of interaction among samples, namely interference (i.e. some units’ treatments affect other
units’ outcomes), in situations where there exists uncertainty regarding interaction patterns. The
main contributions include modeling uncertain interaction using linear graphical causal models,
quantifying bias when IID is incorrectly assumed, presenting a procedure to remove such bias and
deriving bounds for average causal effects.

Keywords: Causal Inference, Independent and Identically Distributed (IID), Average Causal Ef-
fect, Linear Structural Causal Models

1. Introduction

Almost all Machine Learning (ML) and Causal Inference algorithms are predicated on the assump-
tion that data are Independent and Identically Distributed (IID); however, this is not true in most
real-world datasets (Kalaitzis et al., 2013; Scholkopf, 2022). For example, in the analysis of the
causal effect of a drug on recovery, it is common to assume that the drug dose, health condition, and
other relevant factors pertaining to a patient are independent of those pertaining to other patients in
the dataset. But this assumption is violated, for instance, in the case of contagious diseases wherein
a patient can transmit the disease to a close contact (Lin et al., 2021). IID could also be violated
when the treatment (drug taken by a patient) results in lower transmission rates and thus indirectly
improves the health condition of a close contact. In this work, we are interested in determining
how causal analysis can be conducted accurately when data are not IID and full information about
interaction patterns is not available.

Interference analysis is a line of existing work related to non-IID causal inference that handles
interactions among units, more specifically the violation of independence condition in IID. Inter-
ference was first defined by David Cox (Cox, 1958), as the phenomenon that a unit’s outcome is
causally affected by another unit’s treatment. Partial interference is a specific type of interference
that splits the population into “blocks” (usually with the same number of units per block) such
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that interference interactions only occur between two units that belong to the same block (Ogburn
and VanderWeele, 2014). In addition, partial interference requires corresponding units in different
blocks to satisfy the ‘identical’ condition in IID. Thus partial interference methods assume “block
IID,” which is weaker than “unit IID” assumed by traditional causal methods. However, in many
domains such as infectious diseases, it is unrealistic to assume that the samples in the dataset can
be divided into blocks that satisfy the requirements for partial interference. For instance, if blocks
pertain to families then all families may not have the same number of members and individuals in
the family are likely to interact with people outside the family. Zhang et al. (2022) is a recent work
that does not rely on partial interference and instead models true interactions using graphical mod-
els called interaction networks that represent general interaction patterns between units, and is not
limited to interference. However, one limitation with interaction models and many other approaches
(such as those in Aronow and Samii (2017); Jagadeesan et al. (2020)) is that the interaction patterns
need to be known in advance. This level of detail is not easily available in real-world datasets. For
example, in a drug trial, it may not be feasible to track down each participant; in an online study,
it is difficult to know if participants communicated with others in the study. The question we seek
to answer is, how can we perform causal analysis given non-IID data when there is uncertainty in
the interaction pattern? We answer this question by extending the interaction model framework in
Zhang et al. (2022) to allow for uncertainty in the existence of interference paths.

The main results of this paper are given as follows. 1. Quantifying interaction bias when
some interaction paths exist with uncertainty (Thm. 11). 2. Reducing or removing bias when
some interaction paths exist with uncertainty (Thm. 12). 3. A polynomial algorithm for the bias-
reduction/removal method. (Algo. 1). 4. Bounding ACE when some interaction paths exist with
uncertainty. (Thm. 13 & Cor. 14).

2. Preliminaries

Independent and Identically Distributed (IID) Let X be a variable and X1, . .., X,, be n samples
of X. X isIIDif Xy,..., X, are independent and each X; has the same marginal distribution with
CDF F'(Wasserman, 2013). A dataset is IID if all variables in it are IID.

Linear Causal Models A traditional linear causal model is also known as a linear structural
causal model (SCM) (Brito, 2004; Pearl, 2009; Chen and Pearl, 2014). The edge coefficients on the
causal DAG represent direct effects.

A collider in a DAG is a structure with two edges connecting three nodes such that the arrows
both point to the middle node. An open path is collider-free, i.e., there are no head-to-head arrows
on this path. Note that if there exists an open path from W; to V}, it implies W; JL V;. The value of
an open path in a linear model is defined as the product of the edge coefficients on that path.

Average Causal Effects In this work the query we are primarily interested in generalizing to
the non-IID case is the Average Causal Effect (ACE), also named as the Average Treatment Effect
(ATE) (Rubin, 1977; Holland, 1988). For consistency, we use ACE to refer to both. Given a causal
model M, the average causal effect (ACE) of X = ¢ vs X = c (¢ and c are constants) on Y for
k units is defined as ACExy = %Zz(Yi x,=t — Yix,=c). ACE is defined under the assumption
that Y; depends only on factors of unit ¢ (including X;) Holland (1988). Without loss of generality,
we assume t = ¢ + 1'. In linear models, ACE of X on Y can be identified as Sy x, the linear
regression slope of Y on X, if there is no backdoor (non-directed open paths) between X and Y

1. If t # ¢ + 1, the ACE is multiplied by the constant (¢ — c).
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(Pearl et al., 2016; Pearl, 2017). In this paper, we always use X to represent the cause/treatment
and Y to represent the effect/outcome.

We refer to the variables in a traditional causal model as generic variables. An explicit variable
is similar to a generic variable except that it represents an attribute/event of one specific unit (or
sample or individual). For example, “treatment (X )” is a generic variable, and “the treatment of
unit ¢ (X;)” is an explicit variable.

In the remainder of this section we present definitions from Zhang et al. (2022) that will be used
in this work.

Cl 02 Cg Cl 02 03

) .\{(1 X2 X3 .\{(1 \{(2 X3
X1 =0.2C, + Uy,
X9 =0.205 + UX2

g X3 =0.2C5 + Ux,

Y =5X; + Uy1 Y1 Yo Y3 Y1 Y Y3

Yo =5X> + Uy,

Y3 = 5X;5 + Uy, Figure 1: An* interaction graph Figure 2: The* isolated graph
(G™). IG").

Definition 1 (Interaction model M *(G*, S*)) An interaction model, M*(G*, S*), is a causal model
where G* is the interaction graph and S™ is the set of structural equations defining the data generat-
ing process of the observed explicit variables. An interaction graph, G*, is a directed acyclic graph
with each node representing an explicit variable and each directed edge A; — Bj representing A;
causes Bj.

An example interaction model M ™ over 3 units and 9 explicit variables is shown above, with Figure
1 being the interaction graph, G*, and the structural equations S* are shown on the left.

Definition 2 (Isolated interaction model /M *(IG*,15*)) IM*(1G*,1S5*) is the Isolated inter-
action model of an interaction model M*(G*, S*) if IM satisfies the following conditions:

1. IG* = G' where G' is the graph obtained by removing from G* all edges A; — Bj, i # j,

2. 158* = S’ where S’ is the set of equations obtained by removing from each equation X; =
f(Pa(X;))? in S* all terms containing any Y;, Vj # i.

For example, the isolated interaction model of M™* has the interaction graph IG* as in Figure 2,
where all the unit-interacting components are removed.

Definition 3 (Balanced interaction model M *(G*, S*)) Let M*(G*, S*) be an interaction model
with isolated model IM*. M* is a balanced interaction model if IM* has the same unit-model
(IM;(1G},1IS})) for every unit i.

2. Pa(X;) denotes the parents of X; in G*.
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For the model M™ above, after removing all the interaction terms (the orange terms in 5*), the
resulting model has the same unit-model for every unit. For example, Y; = 5X; + Uy, applies for
every unit ¢. Hence, M™ is balanced.

Definition 4 (Ancestral same-distribution condition (ASDC)) In the interaction network G* a
balanced interaction model, generic variable W to satisfies the ancestral same-distribution con-
dition (ASDC) if for all unit i, 1) Pa(W;) satisfies ASDC, and 2) Pa(W;) C V), and 3) for any
different unit j # i, Pa(W;) and Pa(W;) have the same set of generic variables, and their exoge-
nous errors Uy, and UWj have the same distribution. (When i=j, the condition is automatically
satisfied.)

ASDC is a graphical condition that checks if two variables are IID. In the example in Figure 1, C1,
C», and (s satisfy ASDC. If the error terms for them, Uc,, Uc,, and Uc, are IID, then this implies
C1, Cy, and C5 are 1ID. Similarly, X7, X5, and X3 satisfy ASDC and are IID.

Definition 5 (True Average Causal Effect (T AC Exy)) Let M* be an interaction model. True
average causal effect of X on'Y, denoted as TAC Exy, is defined as the ACE of X on'Y in the
isolated interaction model I M* corresponding to M*.

TACExy is 5 in the example above, since Y; = 5X; for all s.

Definition 6 (Interaction bias) Let balanced model M* be the true model that generated the
(available) non-I1ID dataset D. Let () denote the query of interest and let Q* be its true value.
Let A denote an algorithm that outputs an unbiased estimate of () given data that are IID and the
causal graph that generated the IID data. Let GT denote an approximate causal graph constructed
under the assumption that D is IID such that no assumption in G is refuted by D. Let Q be the
estimate computed by A using G and D as input. Interaction bias is given by ||Q* — Q||.

Interaction bias denotes the size of the bias resulted from the IID assumption, in the estimation of
ACE given non-IID data with interacting units. ACE is usually estimated using the ordinary least
squares regression coefficient Sy x, for linear causal models with IID data and X and Y are not
confounded (Pearl, 2017). In this paper, we also assume ordinary least squares regression is used.
So the interaction bias we are trying to assess is simply \E[ﬁ;;x] — TACExy].

3. Bias Reduction for Graph with Uncertain Interactions

While the interaction modeling results proposed in Zhang et al. (2022) has the benefit of model-
ing general arbitrary interactions, they rely on knowing the full interaction graph structure, which
is often unavailable. In this section we will generalize their results to handle uncertainty in the
interaction patterns among units.

Definition 7 (Uncertain Paths) An uncertain path between two distinct nodes A and B in a DAG
is an open path between A and B that exists with probability 0, 0 < 6 < 1.

A definite path on the other hand is one that exists with probability 1.

Definition 8 (Uncertain Interaction Graphs) An uncertain interaction graph is an interaction graph
with uncertain paths.
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Figure 3: An uncertain interaction graph

Figure 3 shows an uncertain interaction graph, where uncertain paths are represented as dashed
arrows, and definite paths are represented as solid arrows.

There are multiple ways in which units can interact, such as two units’ outcomes are con-
founded, a unit’s treatment affects its outcome through another unit’s variables, etc. In this work we
focus on interference, since it is one of the most common and most studied type of interactions. In-
terference is defined as the phenomenon that one unit’s treatment affects another unit’s outcome. We
assume that the only form of interaction in the interaction model is via interference paths, defined
below.

Definition 9 (Interference Paths) Given an interaction graph, an interference path is a directed
path from X; to Y;, i # j.

We impose a few additional restrictions on the graph so it is not too arbitrary to draw useful
conclusions.

Definition 10 (Balanced Graph for Uncertain Interference(b-G U, for short)) An interaction graph,
GY, is termed as a balanced graph for uncertain interference if

1. it is the interaction graph of a balanced interaction model M*,

2. the only type of bias structures in M* are directed paths from X; to Y; where all intermediate
nodes belong to either unit i or j.

3. only definite edges exist between any two nodes A; and B; of unit i, for any i. Uncertain
edges may exist only between nodes of distinct units 1, j, for any © and j.

4. the sum of the values of interference paths from X; to Y; (if such exists) is the same as that

from Xy, to Y] (if such exists), for all i # j and k # 1.

Note that each interaction graph with or without uncertainty corresponds to an underlying in-
teraction model that encodes the data generating process. Figure 4 is a b-GU, if the interaction
model it corresponds to is balanced. Condition 1 is satisfied. Condition 2 is satisfied since the only
such path with an intermediate node is from X5 to Y7, with M5 being an intermediate node, and it
belongs to unit 2. Condition 3 is satisfied since the only uncertain edges My — Y7 and Xy — Y3
are both between distinct units. As for Condition 4, we can calculate the sum of the values on the
three interference paths. The edge coefficients are labeled in Figure 4, and they all equal to 6. Thus,
Condition 4 is also satisfied.
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Figure 5: A balanced graph for uncertain in- Figure 6: A balanced graph for uncertain in-
terference. terference with N; = 0.

As is mentioned in the preliminaries, the interaction bias (Definition 6) is the bias resulted from
incorrectly assuming IID to estimate the unit “true” ACE (T'AC' Exy). Theorem 11 below quantifies
the interaction bias in an uncertain interaction graph.

Theorem 11 Suppose M*, D, G' refer to the true model, available data and approximate graph
as specified in definition 6 such that Q = TAC Exy and Q = By x. X; and Y; are not confounded
by any variable of i, for all i. Let GU be the b-GU corresponding to M*. For all i # j pairs, let
Ny be the number of pairs of units that have definite interference paths from i to j and let Ny be
the number of pairs of units that have uncertain interference paths from i to j with probability 6.
Let the sum of the values of the interference paths from X; to Y; be p,> forall i # j. The expected
interaction bias is given by

E[|E[Byx] - Q] = Ip|(Ng + ONy).

L
n(n —1)

Figure 5 is a b-GU with Ny = 1 (X35 — Ys) and Ny = 3 (X3 — My — Y7, X; — Yo, and
X9 — Y3). n = 3 since there are 3 units. The underlying true interaction model (unavailable) is
shown in Figure 7, with the structural equations on the right. The interference effect |p| is equal to
2, calculated from the structural equations. TAC E'xy is 5. We can also see that the true 6 is 2/3,
i.e., out of the 3 uncertain paths, there are 2 that really exist. Although in real-world applications,
0 is usually unavailable, so we need an estimate from expert knowledge about the frequency of
interference in this sample. Figure 6 shows another b-GY that corresponds to Figure 7. In Figure

3. Le., p is equal to the causal effect of X; on Y.
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X4 Xy X3
M M- M. .
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Figure 7: The underlying true interaction Vs = 5X;5 LUy
graph (unavailable). ?

6, there is no definite interference paths. This is in fact an interesting special case, which we will
elaborate more in the next section.

Note that the interference strength p and uncertain probability € need not be the same for all
units. We assume they are the same in Theorem 11 to keep the expression in a simple form. Theorem
13 can be easily generalized for p and 6 being different for different units. See the example in Figure
6. Suppose the interaction path strengths are p1, p2, p3, and the uncertain probabilities are 61, 0o,
03, for the interaction paths X; — Y5, Xo — Xi, X3 — Ya, respectively. The path strength of
X3 — Y5 is p. Then the interaction bias is given by

E[|E[yx] - Q||

:3(31_1)|(p1(0+91 . 1) +p2(0+92 . 1) —|—p3(0+93 . 1) _|_p(1 +0))‘

1
:6’p191 + p2by + p3b3 + p|.

In this case, we generalize Theorem 13 by summing over different path strengths and uncertain
probabilities.

The debias method in Zhang et al. (2022) selects a bias-free subset of units and uses it to un-
biasedly compute TACE given the full interaction graph. When there is uncertainty, if we treat all
uncertain interference paths as definite existence, we might end up selecting too small a subset,
especially when there are many uncertain interference paths. One solution is to select a larger sub-
set to maybe include some interactions, while still bound the interaction bias at a reasonable level.
Theorem 12 below shows such a method.

Theorem 12 Consider the setting in Theorem 1. Suppose we are additionally given a bias thresh-
old T, and the interference effect is bounded by a constant I times the TACE (i.e., |p| < T|Q|). If a
subset B of units satisfies

1
———— (N, + 0Nyl <,
1B](18] - 1)
then using the samples in BB, the expected interaction bias will be at most T|Q|. For all i # j pairs

withi,j € B, N/, denotes the number of pairs with definite interference paths from i to j in G*, and
Ny, denotes the number of pairs with interference paths from i to j in G* with probability 6.
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If such a subset is found, then the bias is bounded. For example, if the threshold 7 = 0.1, the
bias will be as large as 10% of the true ACE, computed using the data from the selected subset.
This theorem becomes a debias method if 7 = 0, since that simply implies that the bias has to be 0.
Algorithm 1 is a polynomial greedy algorithm that selects such a subset given threshold 7.

Algorithm 1: Select a subset 3 from an uncertain interaction graph GU that makes the inter-
action bias < 7

Input : an interaction graph GV, probability of uncertain paths 6, interference/TACE ratio
bound constant I', bias threshold 7
Output: a subset B resulting in < 7 bias
Units = randomly sorted list 1, ..., n;
B = Units|1];
fori=2,...,ndo
if BU {Units[i]} satisfies 1/((|B + 1|)|B|)(N}; + ON,)T' < 7 then
| B=BU{Units[i]};
end
end
return B

Algorithm 1 goes through all the units, and select units one at a time, until the condition is no
longer satisfied, and the selected subset is returned.

4. Causal Effect Estimation with Unknown Interference Structures

Next, we present a theorem for unbiased estimation of TACE. Unbiased estimation is possible if the
relationship between the interference path strength and the TACE is given, and where the interfer-
ence paths occur need not be known.

Theorem 13 Consider the setting described in Theorem 11. Suppose we know the relationship
between p (the interference path strength) and Q) (TACE) is p = vQ), where 7y is a constant, then )
is unbiasedly estimated as

E[Byx]
1- ﬁV(Nd + ONy)

Q=

Applying Theorem 13 to generate bounds In this work there are two types of effects under
consideration. First, the effect of X; on Y; (unit specific effect) and second, the effect of treatment
applied to other units such as X;, j % ¢ on Y; (interference). In many situations such as when
treatment is vaccination and outcome is disease, (i) the magnitude of unit-level treatment effects
(TACE) can be safely assumed to be higher than those due to interference (p); mathematically, this
translates to || > |p| and 0 < v < 1.
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Corollary 14 Consider the setting described in Theorem 13, if we further assume 0 < v < 1 and
|Q| > |p| and 0 < v < 1 then Q) can be bounded as,

E[By .
%W@[ﬁ”]

n(n—1)

Note that from Corollary 14, () is always less than F [63; x]. This implies that when the unit
specific effect and the interference effect have the same sign, then assuming IID (E[Sy x|) always
“overestimates” the true unit specific effect (Q)).

Remark 15 Note that there are several interesting special cases with the the results presented in
Theorems 11, 12, and 13.

1. Ny = Ny = 0. In this case, there is no interference path (definite or uncertain) in the model,
which results in a model without interaction structures. In Theorem 11, the interaction bias
is 0. In Theorem 12, the inequality always hold since the L.h.s. is 0, while T is positive, so we
can select any subset B where |B| > 1. In Theorem 13, Q = E[By x|, which is consistent
with an interference-free setting.

2. Ng = 0. Inthis case, there is no definite interference path. This special case is useful when we
do not have any information about which units interact with which units in some real-world
applications. All those theorems still apply.

3. Ng = 0. In this case, there is no uncertain interference path. This means we have all the
information regarding which units interact with which units. The theorems reduce to the
results in Zhang et al. (2022), where there is no uncertainty in the interaction network.

5. Related Work

Interference was first defined by David Cox in his 1958 book, “Planning for Experiments” (Cox,
1958). Handling interference is non-trivial and majority of literature in empirical fields assume no-
interference. In fact, SUTVA is a common assumption in causal inference (Rubin, 1978). However,
in some fields such as epidemiology that deal with health care data and infectious diseases, ignoring
interference can lead to biased outcomes and decisions that can put lives at risk; unsurprisingly, a
big chunk of literature on interference comes from these fields.

Recent years have witnessed a rise in papers on interference that employ graphical models. This
includes Ogburn and VanderWeele (2014); Sherman and Shpitser (2018); Bhattacharya et al. (2020);
Zhang et al. (2022). Ogburn and VanderWeele (2014) was the first to model the problem of inter-
ference using DAGs. Sherman and Shpitser (2018) models interference using chain graphs which
permits modeling unknown interactions between individuals. Bhattacharya et al. (2020) proposes a
method to do structure learning for chain graphs.

Graham et al. (2010) estimates spillover effects with the focus on the social reallocating prob-
lems. Nabi et al. (2020) shows that interference is a problem even in applications related to ad-
placement and develops methods for identification and estimation of multiple queries under condi-
tions of interference and homophily, assuming partial interference. Sobel (2000) is the first to notice



ZHANG MOHAN PEARL

the effect of interference in the housing mobility problem, and proposes causal estimands for this
application.

Aronow and Samii (2017), Sussman and Airoldi (2017) model general interference (without
assuming partial inference) by constructing a function to define an individual’s exposure level on
the number of treated neighbors they have. The methods are less restricted than partial interference
methods, and allow individuals to be affected by any number of neighbors. However, the methods
are limited to the type of interference where one individual’s treatment affects another individual’s
outcome. Jagadeesan et al. (2020) proposes a quasi-coloring method to estimate direct effect under
interference using experimental data, which is useful in the setting where it is allowed to design the
experiment. But it does not easily generalize to observational studies. Another paper in a similar
direction, Fatemi and Zheleva (2020), proposes experiment design to minimize interference bias
and selection bias at the same time. Liu and Hudgens (2014) proposes a two-stage randomization
design to minimize interference bias.

Tchetgen Tchetgen et al. (2021) proposes a g-computation method for general interference.
Their method is the first to model general interference using DAGs (chain-graphs) and requires
the interference effects to be symmetrical between individuals, and fits parameters for chain-graph
models.

Hudgens and Halloran (2008) defines six types of queries in the problems involving interfer-
ence. Work in interference that focuses on different queries/problems include a few as follows.
VanderWeele et al. (2012) is the first to decompose the spillover effect (the effect of an individual’s
treatment on another’s outcome (Quammen (2012))) to contagion and infectiousness effects using
counterfactual mediation analysis. Shpitser et al. (2017) does decomposition for individuals with
unknown and symmetrical interaction patterns. Such decomposition permits analysis of different
interference paths. In our case (linear models), the contagion and infectiousness effects reduce to
the interference paths from X to Y; through Y} (contagion) and not through Y; (infectiousness),
respectively. Hu et al. (2021) is the first to define and provide estimands for the average indirect
effect. VanderWeele et al. (2014) develops methods for sensitivity analysis under interference.

6. Conclusions

This work focused on the problem of interference when there is uncertainty regarding the interaction
patterns. We showed that bias due to interference can be quantified using the interference strength
and expected number of interactions. We developed an algorithm that computes true average causal
effect such that bias is guaranteed to be less than a given quantity 7. Finally, we bound the average
causal effect when it is guaranteed that unit level causal effect is higher than interference.
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Appendix A. Proof

Theorem 11 Suppose M*, D, G refer to the true model, available data and approximate graph as
specified in definition 6 such that () = TAC Exy and Q = By x. X; and Y; are not confounded
by any variable of i, for all i. Let GY be the b-GY corresponding to M*. For all i # j pairs, let
Ny be the number of pairs of units that have definite interference paths from i to j and let Ng be
the number of pairs of units that have uncertain interference paths from i to j with probability 0.
Let the sum of the values of the interference paths from X; to Y be p,% for all i # j. The expected
interaction bias is given by

BBl x] = Q) = s pI(N -+ 03,

Proof Let G* be the true interaction graph corresponding to M * (no uncertainty). By Theorem 1 in
Zhang et al. (2022),

By - =t ¥ Y vawTe - by £ T vap) T

1<Z<TLpEP[z]z] 1<Z<anP[]z] X

Under our settings, there is no reflecting bias structure, but only deflecting bias structures. So the
first term on the r.h.s. is 0. Theorem 1 becomes

Bloial Q=] -y XY Vai) e

1<i<n pe P[ji]

The sole term on the r.h.s. is the sum of all deflecting bias paths’ strengths multiplied by the variance
factors, divided by 1/(n(n1)). Under our settings, interference paths are the only deflecting bias
structures, and the roots of those paths are all X; for some i. So we have a%p / ag( = 1. In addition,
the summation is over all interference paths. It can be rearranged as summing over all pairs of
i # j, and for each pair, sum over all the interaction paths. For each pair, the summation of all
the interaction paths is the same and equal to p, from our assumptions. Hence, Theorem 1 can be
further simplified as

E[Byx] — Q‘f’ = EAI4L

where N is the total number of ordered pairs of i £ j where there are interference paths from X;
to Y;. The term on the r.h.s. inside of the absolute symbols except p is less than 0. So Theorem 1
becomes

4. Le., pis equal to the causal effect of X; on Y.
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E[8yx] - Q| = sy Nlol.

Hence, we have

Bl[E1Byx) - Q) = Bl
1
- Ll (1)

Nipl]

Next we evaluate E[N]. N is the sum of the pairs whose interference paths appear in GV as definite
paths, and the pairs whose interference paths appear in GU as uncertain paths. The first part is
simply Ng4. The second part’s expectation is 6 Vy by the definition of §. So we have

E[N] = Ng+ ONy.
Plugging this into Equation 1, we have the equation in the statement of Theorem 11. |
Theorem 12 Consider the setting in Theorem 11. Suppose we are additionally given a bias thresh-

old T, and the interference effect is bounded by a constant I" times the TACE (i.e., |p| < T'|Q|). If a
subset B of units satisfies

1

(N NI <
s~ =T

then using the samples in BB, the expected interaction bias will be at most T|Q|. For all i # j pairs
with i,j € B, N, denotes the number of pairs with definite interference paths from i to j in G*, and
Ny, denotes the number of pairs with interference paths from i to j in G* with probability 6.

Proof Consider the sub-graph G, formed by projecting the true interaction graph G* on B. vari-
ables of units in B. Consider an interference path from X; to Y}, where ¢ # j and ¢, 7 € B. It does
not go through a third unit by our assumptions, and since i, j € B, the path remains unchanged in
G sup- Let Gsup be the uncertain sub-graph formed by projecting GV on B. For each pair i # j in
the original uncertain sub-graph GV such that the interference paths from X; to Y; are uncertain,
consider the following scenarios.

1. If 4,5 € B, then from the previous discussion, the interference paths from X; to Y; remains
unchanged after the projection. So the probability of those paths existing is still 6.

2. If i € B,j ¢ B, then the interference paths are removed in G gyp.

3. Ifi ¢ B, j € B, if we also have interference paths from X to Y, with k # 7, this will result
in a bidirected path between Y} and Y. However, this can be ignored since it is not a bias
structure, by Definitions 7 and 8 in Zhang et al. (2022).

As a result, we can apply Theorem 11 on G4, and obtain the interaction bias as

1

—— (N, + 6N))|p|.

Plugging in |p| < I'|@|, we have the interaction bias is at most 7|@)| by Theorem 12. [
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Theorem 13 Consider the setting described in Theorem 11. Suppose we know the relationship
between p (the interference path strength) and ) (TACE) is p = v(Q), where 7y is a constant, then )
is unbiasedly estimated as

E[By x]
)'Y(Nd + ONy)

n(n—1

Qzl— 1

Proof From the proof of Theorem 1 in Zhang et al. (2022), we have a slightly stronger result than
Theorem 11, which is Theorem 11 without the absolute signs. We have

1

E[B);X] - Q = _m

p(Ng + 6Ny).

Plugging in p = (@), we have the expression in the theorem statement. |

Corollary 16 Consider the setting described in Theorem 13, if we further assume 0 < v < 1 and
|Q| > |p| and 0 < v < 1 then Q can be bounded as,

E[By .
% < Q < E[pyx]

n(n—1)

Proof () is monotonic with respect to . Hence, Corollary 14 results from Theorem 13 by plugging
iny=0and~y = 1. |
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