
Published as a conference paper at ICLR 2024

TOWARDS TRANSPARENT TIME SERIES FORECASTING

Krzysztof Kacprzyk
University of Cambridge
kk751@cam.ac.uk

Tennison Liu
University of Cambridge
tl522@cam.ac.uk

Mihaela van der Schaar
University of Cambridge
The Alan Turing Institute
mv472@cam.ac.uk

ABSTRACT

Transparent machine learning (ML) models are essential for ensuring inter-
pretability and trustworthiness in decision-making systems, particularly in high-
stakes domains such as healthcare, finance, and criminal justice. While transpar-
ent machine learning models have been proposed for classification and regression,
time series forecasting presents some unique challenges for ensuring transparency.
In particular, currently used bottom-up approaches that focus on the values of
the time series at specific time points (usually regularly spaced) do not provide
a holistic understanding of the entire time series. This limits the applicability
of ML in many critical areas. To open up these domains for ML, we propose a
top-down framework of bi-level transparency, which involves understanding the
higher-level trends and the lower-level properties of the predicted time series. Ap-
plying this framework, we develop TIMEVIEW, a transparent ML model for time
series forecasting based on static features, complemented with an interactive visu-
alization tool. Through a series of experiments, we demonstrate the efficacy and
interpretability of our approach, paving the way for more transparent and reliable
applications of ML in various domains.

1 INTRODUCTION

Why do we need transparent models? eXplainable Artificial Intelligence (XAI) methods are
broadly divided into transparent models and post-hoc explanation techniques (Barredo Arrieta et al.,
2020). Transparent (also called glass box) models are crucial in many settings involving high-stakes
decisions such as healthcare or credit scoring (Rudin, 2019). As these models are interpretable by
design, they are by themselves understandable. Such understanding, apart from being mandated
by certain regulatory bodies (Goodman & Flaxman, 2017), is needed, for instance, to improve ro-
bustness, detect biases, evoke trust, or certify model compliance with legislation (Barredo Arrieta
et al., 2020). Many transparent machine learning models that issue static predictions have been
proposed. That includes Linear/Logistic Regression, Generalized Additive Models (Hastie & Tib-
shirani, 1986), and Decision Trees (Hu et al., 2019). By definition, these methods are not directly
applicable to time series forecasting—when we want to predict a whole trajectory rather than a
single label. Although they can be adapted, they exhibit poor performance (see Section 7).

Challenges of time series forecasting: limitations of a bottom-up approach. In contrast to a
single-label output (as in classification or regression), understanding the change in the trajectory is
more complicated as it is an entire function (described by many values). As time series forecasting
remains an under-studied field of XAI (Barredo Arrieta et al., 2020), current techniques usually
resolve to a bottom-up approach. This means they focus on the values of the trajectory at individual
time points (usually regularly spaced). For instance, the importance scores in saliency methods are
calculated for different prediction horizons (Leung et al., 2023). This may be sufficient when we
are interested in a particular time point (e.g., 5-year survival rate), but we often want to comprehend
the whole trajectory at once. For instance, when administering a drug, we may be less interested in
the concentration of the drug every few hours but rather in understanding the entire curve, including
properties like the peak plasma concentration and the time when it is achieved (Han et al., 2018).

Bi-level transparency for time series forecasting: a top-down approach. We propose a top-down
approach to trajectory comprehension and consequently two levels of transparency for time series
forecasting: (level 1) understanding how the trend (the general shape of the trajectory) changes as we

1

Published as a conference paper at ICLR 2024

modify the input, and (level 2) understanding how the properties of the current trend (e.g., minimum
value) change as we modify the input. To illustrate this, let us consider the following example.

Forecasting a tumor volume trajectory from patient’s baseline covariates and drug dose

Understanding a model like this may include answering questions such as: (Liao et al., 2020)

• What if: “What would happen to the model’s prediction if a specific covariate changes?”
• How to be that: “How should the covariates be modified to get a different prediction?”
• How to still be this: “What range of drug dose values keeps the prediction the same?”

We characterize the difference between predicted trajectories on two levels, which enables
us to answer concrete questions about each level such as

Level 1 (trends) Level 2 (properties)

“Would the predicted tumor volume keep
decreasing if we adjusted the treatment?”

“What feature changes would lower the
minimum tumor volume?”

We explain trends and properties in detail in Section 2 and then formalize them in Section 4. It is
worth noting that answering such questions with the current bottom-up approaches may often be
futile since the notion of a “different prediction” (based on individual time points or norms such as
Lp) may be non-interpretable (see Section 2) or simplistic. We demonstrate how our framework can
enable answering such questions in Figure 1 and more thoroughly in Appendix E.1.

Time series forecasting based on static features. Our work focuses on understanding the change
in the predicted trajectory. However, time series models take many types of inputs, including time
series and exogenous features. To provide a clear exposition of our framework, we focus on one spe-
cific input type: static features. Time series forecasting based on static features has applications in
many domains ranging from finance through medicine and pharmacology to physics (see Section 3).
In Section 5, we introduce TIMEVIEW—a transparent ML model for time series forecasting based
on static features. As with many transparent models (e.g., GAMs, decision trees), model visual-
ization is crucial for its interpretability. In Section 7, we demonstrate a visualization tool based on
interactive plots that allows for the examination of both the higher and lower-level features of the
predicted trajectories and how they change based on the input (Figure 1).

Level 1 (trends)

Predicted tumor volume

Transition points

3

2

1

Level 2 (properties)

feature

y or t coordinate

Figure 1: Snapshot of our dynamical visualization of TIMEVIEW. Our model adheres to bi-level
transparency—a top-down approach that focuses on the trend of the trajectory (Level 1) and the properties
of the particular trend, e.g., transition points (Level 2). The left panel shows how the trajectory trend changes
when one of the features is perturbed. For instance, the tumor will increase if we lower the dose and decay
if we increase the dose. The right panel investigates the position (y-coordinate) of the second transition point
(local minimum) as the initial tumor volume changes.

Contributions. We introduce bi-level transparency, a novel top-down framework for time series
forecasting that allows for a holistic understanding of the entire trajectory through trends and prop-
erties (Section 2). We formalize it by introducing the notions of motifs and compositions (Section 4).
Based on the new formalism, we develop TIMEVIEW, Time series Interpretable Model with Effec-
tive VIsualization (Section 5). We demonstrate how its visualization aids in model comprehension
while exhibiting only a minor performance drop compared to black-box models (Section 7).

2

Published as a conference paper at ICLR 2024

2 TRANSPARENCY FOR TIME SERIES FORECASTING

2.1 SETUP

Time series forecasting. A general ML model is a function f mapping samples from the input
space X to the output space Y . We say that f issues static predictions when Y is a subset of R (a
regression model) or a finite set of labels {1, . . . ,K} (a classification model).1 In contrast, we define
f to be a time series forecasting model (or just forecasting model) when Y is a space of trajectories.
A trajectory is a function y : T → R, where T ⊂ R is a set of time points. Although the conceptual
framework in Section 2 is agnostic to the nature of T , our work focuses on settings where T is an
interval [0, T] ⊂ R, where T ∈ R is a time horizon, and the underlying trajectory is continuous.
Note, in practice, we only observe discrete samples of y, which may be irregular and noisy.

Transparency. We assume the following general definition of transparency: ML model is transpar-
ent if we can understand the impact of the inputs on the prediction. In particular, how changing one
(or a few) of the features would impact the output. This is crucial for counterfactual reasoning (e.g.,
“What would the model predict if the patient was female?”) or detecting anomalies (e.g., “Why does
the model assign a significantly higher risk score if the patient’s age is changed from 64 to 65?”).

Comprehending the change in the output. As discussed in Section 1, understanding the change in
the output is crucial for answering important questions about the model (e.g., “What would happen
to the model’s prediction if a specific feature changes?”). In a static setting, when the prediction
is a single label, understanding the change in the output is relatively straightforward as only a few
things can happen. In regression, the target variable can decrease, increase, or remain constant. In
classification, the target variable can change from one option to another among a finite number of
classes. In time series forecasting, when the prediction is a trajectory, understanding the change in
the output is challenging because there are numerous ways a function can change (discussed further
in Appendix E). Moreover, these changes need to be interpretable for humans.

2.2 BOTTOM-UP: CURRENT XAI APPROACH TO TRAJECTORY COMPREHENSION

As trajectory is a function y : T → R, current XAI techniques for time series forecasting focus
on understanding the impact of the inputs on y(t) for a particular t ∈ T . For instance, the values
in saliency methods are calculated independently for different prediction horizons (Leung et al.,
2023) (and might be later aggregated). Inspired by the motivations of rough path theory (Lyons,
2014; Fermanian et al., 2023), we call the current comprehending strategy bottom-up. It means the
trajectory is understood by looking at its values at individual time points, and subsequently, more
information is gained by looking at more points2. However, we argue that this strategy for trajectory
understanding is not optimal in many scenarios. In particular, it is not a natural way for people to
understand trajectories, and it is challenging to convey time-varying trends and global features by
simply looking at individual time points in isolation.

Inconsistent with the natural way people understand trajectories. Standard representation of a
trajectory y : [0, T] → R is a line graph. Research on graph comprehension (Zacks & Tversky,
1999; Xi, 2010) suggests that people understand line graphs in terms of trends rather than individual
values. For instance, “when x increases, y also increases”. They also tend to focus on the minimum
and maximum values and trend reversals (Carswell et al., 1993). Thus, understanding a (continuous)
trajectory by individual values is unnatural for humans. See Appendix E for more details.

Increased cognitive load. As mentioned above, the bottom-up approach requires an increasing
number of values to understand the trajectory better. This becomes problematic when we want to
understand any change in the trajectory, as it places the cognitive burden on the human interpreter
to piece together changes in trends from changes at individual time steps.

Unsuitable for global features. A bottom-up approach may be sufficient when we are interested
in a particular time point (e.g., 5-year survival rate) or when there are only a few time points of
interest. However, we often want to comprehend the whole trajectory at once. For instance, when
administering a drug, we are interested in understanding the entire drug concentration curve, includ-
ing properties like peak plasma concentration and the time when it is achieved (Han et al., 2018).

1Another example of a model issuing static predictions is a multi-output regression where Y ⊂ RK .
2Note, ”bottom-up” refers to how the trajectory is comprehended, not how the prediction is generated

3

Published as a conference paper at ICLR 2024

2.3 TOP-DOWN: NEW APPROACH TO TRAJECTORY COMPREHENSION

To address the shortcomings of the bottom-up approach, we propose a top-down approach to un-
derstanding a trajectory. It is motivated by the fact that humans tend to describe trajectories by
referring to the trends and properties it exhibits rather than just the values it attains (Carswell et al.,
1993). Consider the natural language descriptions of trajectories presented in Table 1. In all these
examples, we have a trend—the general shape of the function (e.g., “increasing”, “stays below”),
and properties—the details of the particular trend (e.g., “for the last 10 years”, “below 100mg/dl”).

Table 1: When we describe a trajectory, we often refer to the trends and properties it exhibits. We use this
observation in our definition of bi-level transparency, which ultimately informs the design of our method. The
table shows three examples of descriptions of trajectories with their corresponding trends and properties.

Description Trend Properties Visualization

“The GDP has been steadily increasing for the last
10 years” increasing for the last 10

years

“The blood sugar level in non-diabetic patients
should stay below 100mg/dl while fasting” stay below below

100mg/dl

“Tumor volume decreases, obtains a minimum after
6 months, and then increases”

decreases then
increases

minimum at 6
months

The top-down approach addresses shortcomings of the bottom-up approach, i.e., it is more consis-
tent with the natural way people understand trajectories and conveys time-varying trends and global
features in an interpretable way. Moreover, it is also compatible with the scientific approach to ana-
lyzing various trajectories. For instance, while studying dynamical systems, we are often interested
in understanding bifurcations—a qualitative change in the behavior of a system as the parameter
changes (Blanchard et al., 2012). This corresponds to understanding the inputs where the trend of
the trajectory changes.

Bi-level transparency: understanding how the trends and properties change. By using the top-
down approach above, we do not need all the trajectory values to understand it. Instead, we can
focus on the trends and properties of the trajectory and only access the exact values when necessary.
This is how we can achieve an interpretable model: instead of tracking the individual values of the
trajectory (as in bottom-up approaches), we track how the trends and properties of the trajectory
change as we vary the input. Thus, we refine the definition of transparency and adapt it specifically
for time series forecasting. We call it bi-level transparency.

A time series forecasting model is (bi-level) transparent if the following holds.

• (Level 1) We can understand the impact of the input on the trends of the trajectory.
• (Level 2) We can understand the impact of the input on the properties of a given trend.

3 TIME SERIES FORECASTING FROM STATIC FEATURES

Bi-level transparency unweaves the “output” part of transparency into two separate objects: trends
and properties. Thus, it provides a concrete answer to the question: what does it mean to understand
the change of the output? However, time series models may take many types of inputs, including
static features, information about the future (e.g., upcoming holiday dates), and other exogenous
time series (Lim et al., 2021). To provide a clear exposition of our framework, develop formalism,
and demonstrate a practical implementation, we focus on settings where inputs are static features.

Real life settings. Time series forecasting from static features is frequently encountered in medicine
and pharmacology, where we are interested in predicting the disease progression or the drug concen-
tration based on the patient’s covariates. Static features can also include the dosage/strength of the
treatment or even the time and type of intervention. If necessary, one or a few initial observations
at pre-specified times can also be considered to be static features. More examples of such scenarios
can be found in finance (predicting stock values from the company’s static data), time-to-event prob-
lems (predicting the survival or the hazard function), or modeling any 1D dynamical system from

4

Published as a conference paper at ICLR 2024

its initial conditions. In some scientific or engineering domains, time can be even replaced by other
continuous variables. For instance, when modeling stress-strain or current-voltage curves.

Problem formulation. Let T ∈ R be the time horizon. Each sample consists of static features
x(d) ∈ RM , whereM ∈ N is the number of features, and a discretely sampled trajectory y(d) ∈ RNd

at times t(d) ∈ RNd , where Nd ∈ N is the number of measurements for the dth sample. We assume
that y(d) consists of noisy samples of some true underlying continuous trajectory y(d)∗ : [0, T]→ R.
Given a dataset {x(d),y(d), t(d)}Dd=1, the task is to find a model that matches static covariates x ∈
RM to a trajectory ŷ : [0, T]→ R such that ŷ minimizes the expected value of 1

T

∫ T

0
(ŷ(t)−y∗(t))2dt

for all test samples. We denote the class of predicted trajectories as Ŷ .

4 MOTIFS AND COMPOSITIONS

In this section, we propose a way to formalize the notion of a trend by defining the composition of a
trajectory. The composition is a sequence of motifs where each motif describes the current “shape”
of the trajectory at a specific interval. For instance, we can choose a set of three motifs: “increasing”
(i), “decreasing” (d), and “constant” (c). Then, we can divide a trajectory into a few segments, so
each can be classified as being in one of these motifs throughout the interval. Thus, we can assign
a sequence of motifs to this trajectory - a composition. For instance, a ReLU function on [-1,1]
has a composition (“constant”, “increasing”) or just (c, i), whereas a sin on the interval [0, 2π] has a
composition (i, d, i). The motifs can be chosen based on the application and the required granularity.
The points between motifs are called transition points, and their coordinates can be mapped to the
properties of a trend (see Figure 2)

Concepts Mathematical objects
Trend Composition

Part of a trend Motif
Properties of a trend Transition points

Figure 2: Correspondence between concepts in Section 2 and mathematical objects in Section 4

Notation. We say I is an interval (of R) if it is an open interval, closed interval, or half-closed
interval. The interval has to contain more than one point. We denote the set of all intervals on R
as I. Let c ∈ R, we denote the shifted interval as I + c = {x + c | x ∈ I}. Let I ⊂ R be any
interval, we call any function f : I → R an interval function and we denote its domain as dom(f).
We denote the set of all interval functions as F .
Definition 1 (Motif). A motif s is a binary relation between the set of interval functions F and the
set of intervals I (i.e., s ⊂ F × I = {(f, I) | f ∈ F , I ∈ I}). We denote (f, I) ∈ s as f |I ∼ s
and read it as “f on I has a motif s”. Each motif s needs to be:

• well-defined, i.e., for any f ∈ F , and any I ∈ I,
f |I ∼ s =⇒ I ⊆ dom(f) (1)

• translation-invariant, i.e., for any I ∈ I, and any f ∈ F ,
f |I ∼ s ⇐⇒ f ◦ (x− c)|(I + c) ∼ s ∀c ∈ R (2)

Now, we would like to assign a minimal sequence of motifs to a given trajectory: a composition.
Definition 2 (Composition). Let f : I → R be an interval function and S be a set of motifs. A
motif sequence of f in S is a finite sequence of motifs (s1, . . . , sd), such that there exists an interval
partition3 (I1, . . . , Id) of I such that f |Ij ∼ sj ∀j ∈ [d]. A composition of f in S is the shortest
motif sequence of f in S. The points between the intervals are called the transition points. The set of
all compositions for a given set of motifs S is denoted by CS . A set of motifs S is called compatible
with a subset F ′ ⊂ F if for every f ∈ F ′ there exists a unique composition, denoted CS [f]

Compatibility between the set of motifs and the set of trajectories is crucial for an ML model that
employs bi-level transparency as we want to assign a composition to every possible prediction un-
ambiguously and, in turn, to every feature vector. We call this assignment a composition map.

3For a definition of interval partition, see Appendix A

5

Published as a conference paper at ICLR 2024

Definition 3 (Composition map). Let a set of motifs S be compatible with some subset F ′ ⊂ F .
Let g : RM → F ′ be an ML model for time series forecasting, where M ∈ N is the number of static
features. A composition map is denotedMS : RM → CS defined byMS(x) = CS [g(x)].

To understand a model g, it is crucial to understand its composition map with respect to some mean-
ingful set of motifs. We discuss examples of motifs and when they can be helpful in Appendix A. We
define a particular set of motifs that we call dynamical motifs (see Table 2). They encode informa-
tion about the trajectory’s first and second derivatives. Moreover, the transition points between these
motifs correspond to local minima, maxima, and inflection points. These are the exact properties
used in a standard mathematical exercise of function sketching whose goal is precisely to understand
the function. These motifs form a backbone of TIMEVIEW introduced in Section 5. Dynamical
motifs are depicted in Table 2 and defined formally in Example 5 in Appendix A.

Table 2: We introduce a set of dynamical motifs that are often important to understand trajectories.

Symbol Name Definition Visualization

s+0 Straight line with positive slope f(x) = ax+ b, a > 0, b ∈ R

s−0 Straight line with negative slope f(x) = ax+ b, a < 0, b ∈ R

s00 Straight line with zero slope f(x) = b, b ∈ R

s++ Increasing and strictly convex f ′(x) > 0, f ′′(x) > 0

s+− Increasing and strictly concave f ′(x) > 0, f ′′(x) < 0

s−+ Decreasing and strictly convex f ′(x) < 0, f ′′(x) > 0

s−− Decreasing and strictly concave f ′(x) < 0, f ′′(x) < 0

5 TIMEVIEW

Based on our formalism in Section 4, we introduce Time series Interpretable Model with Effective
VIsualization (TIMEVIEW). This framework consists of two parts: the predictive model based on
B-Spline basis functions, and an algorithm for calculating the composition map. This map aims to
facilitate model visualization that complements our framework and is demonstrated in Section 7.

Realizing bi-level transparency through dynamical motifs. To realize bi-level transparency
through dynamical motifs, we need to (1) understand the relation between the feature vectors x
and the compositions of the predicted trajectories, and (2) understand the relation between the fea-
ture vectors x and the transition points of a given composition. To fulfill these conditions, we need
to find a space of trajectories Ŷ satisfying the following criteria.

1. The set of dynamical motifs S is compatible with the class of predicted trajectories Ŷ
2. For every ŷ ∈ Ŷ we can calculate its composition CS [ŷ]
Cubic splines are a class of functions that satisfies both criteria mentioned above. We demonstrate
that dynamical motifs are compatible with cubic splines in Appendix B. Moreover, it is easy to
calculate the dynamical composition of a cubic spline as it is a piece-wise function consisting of
cubic polynomials connected at knots. We describe the exact procedure below and in Appendix C.

B-Spline basis functions. We describe cubic splines as linear combinations of B-Spline (De Boor,
1978) basis functions. Let ϕb : [0, T] → R be a bth B-Spline basis function of degree 3. Given a
set of B basis functions {ϕb}b∈[B], we can express a cubic spline as a linear combination ŷ(t) =∑B

b=1 cbϕb(t), where cb ∈ R ∀b ∈ [B]. Thus, each spline is described by a latent vector c ∈ RB .

Architecture. To match a feature vector x ∈ RM to a vector c ∈ RB describing a time series, we
use an encoder h : RM → RB . Ultimately, we define our model g : RM → Ŷ as

g(x)(t) = ŷx(t) =

B∑
b=1

h(x)bϕb(t) (3)

6

Published as a conference paper at ICLR 2024

Implementation. We implement the encoder h as a fully-connected neural network. We choose a
set of knots for the B-Spline basis functions based on the training dataset using a heuristic algorithm
described in Appendix C (note, the number of knots controls explainability-performance trade-off).
The values of ϕb at times td (∀b ∈ [B] ∀d ∈ [D]) can be efficiently precomputed before the training
using scipy library’s BSpline class. We want to minimize the MSE loss between the predicted
values of the trajectory ŷ at points td and the ground truth yd. We also add L2 regularization loss
LL2, so that the B-Spline coefficients (and thus the compositions) do not change too abruptly. The
final objective is:

L =
1

D

D∑
d=1

 1

Nd

Nd∑
j=1

(
ydj −

B∑
b=1

h(xd)bϕb(t
d
j)

)2
+ αLL2(g) (4)

We minimize it using gradient descent. The block diagram describing the training procedure can be
seen in Figure 3. Implementation details, including the pseudocode, can be found in Appendix C.

𝐷

𝑿 ∈ ℝ𝐷×𝑀

𝒕(𝑑) ∈ ℝ𝑁𝑑

𝒚(𝑑) ∈ ℝ𝑁𝑑

𝐷

Static features Time series

1

Knot selection
Appendix C.3

𝑡1 𝑡2 𝑡3 𝑡𝐵−2...

knots

𝜙𝑏 𝑏=1
𝐵

Define

Evaluate

𝚽(𝑑)
𝑑=1

𝐷

Φ𝑗𝑏
(𝑑)

= 𝜙𝑏 𝑡𝑗
𝑑

Combine
𝑀

𝐵

Encode

Predict
ෝ𝒚(𝑑) = 𝚽 𝑑 𝒉 𝒙 𝑑 Calculate loss

Backpropagate

B-Spline basis functions

Dataset

𝒉:ℝ𝑀 → ℝ𝐵

Before training

Training

Equation 4

Figure 3: This figure shows a block diagram depicting the training procedure of TIMEVIEW

As with many transparent models (e.g., GAMs, Decision Trees), model visualization is crucial for
its interpretability. After TIMEVIEW is trained, we compute the composition map (see Definition 3)
and demonstrate how we can visualize it (or a part of it) in Section 7. To compute the composition
map, we need to perform composition extraction from a predicted trajectory, i.e., calculate CS [ŷ].
Composition extraction. As described earlier, each trajectory is described by a latent vector c ∈
RB and defined as a linear combination of B-Splines, ŷ(t) =

∑B
b=1 cbϕb(t). Each ϕb is a piece-wise

polynomial defined over the intervals determined by the internal knots (t1, . . . , tB−2)
4 chosen by

our heuristic algorithm (Appendix C). We can associate a cubic in a monomial basis (t3, t2, t, 1) with
each of these intervals for each basis function (this can be precomputed). We call these cubics ψb,k,
where k ranges from 1 toB−3 (the number of intervals). Given a vector c, we can now calculate the
cubic in a monomial basis for each interval. The kth interval is just

∑B
b=1 cbψb,k. As it is just a cubic

polynomial, we can readily calculate its first and second derivatives and thus assign a composition
to the kth interval. We repeat this process for every other interval, connect all the compositions, and
merge some neighboring motifs if they are the same. Ultimately, we get a global composition for
the whole ŷ. See Appendix C for the pseudocode and the block diagram description.

6 RELATED WORKS

We explain how our work intersects with related areas of ML. Refer to Appendix F for more details.

Transparent models for static predictions. Standard transparent methods for static predictions
include linear/logistic regression, scoring systems (Ustun & Rudin, 2016), decision trees/rule lists

4For B-Splines of degree 3, B − 2 knots produce B basis functions.

7

Published as a conference paper at ICLR 2024

(Angelino et al., 2018; Hu et al., 2019), and generalized additive models (GAMs) (Hastie & Tibshi-
rani, 1986; Lou et al., 2012). Such methods can often be used for time series forecasting by passing
the time t as an additional feature. They often satisfy bi-level transparency but have poor perfor-
mance. In particular, all trajectories predicted by linear regression and GAMs are parallel; thus,
they cannot model different trends (Section 7). Decision Trees capture non-additive interactions,
enabling flexible forecasting models. However, they require many splits to approximate the ground
truth, leading to poor performance or incomprehensibility (Section 7).

Closed-form expressions. Symbolic Regression (Schmidt & Lipson, 2009; La Cava et al., 2021)
aims to fit closed-form expressions to data, i.e., mathematical formulas composed of a finite number
of variables, binary operators (+,−,×,÷), well-known functions (e.g., sin, exp, log), and constants.
For instance, sin(x2) − e2.1y . Differential equations represent another category of mathematical
expressions that draw significant interest in the scientific community. Numerous algorithms have
been proposed for discovering Ordinary Differential Equations (ODEs) (Brunton et al., 2016; Qian
et al., 2022) and Partial Differential Equations (Rudy et al., 2017; Long et al., 2019). Mathematical
expressions may not always satisfy bi-level transparency. In fact, the reparametrization of equations
to reflect key theoretical quantities is an active area of research (Preacher & Hancock, 2015).

Feature importance for time series. While our research focuses on transparent models, many
saliency (or feature importance) methods have been developed to highlight which features the model
is sensitive to (Ribeiro et al., 2016; Lundberg & Lee, 2017). Although these methods have been
extended to time series inputs (Crabbé & Schaar, 2021; Leung et al., 2023), limited work has been
done to extend them specifically to time series outputs. Current XAI techniques either assume
the output is a scalar (Siddiqui et al., 2019) (e.g., time series classification (Hao & Cao, 2020)),
treat the trajectory as a single object (Gao et al., 2023)—thus do not show how a feature changes
the trajectory—or show a saliency map at each predicted point separately (Pan et al., 2020), thus
allowing only for a bottom-up understanding of the predicted trajectory. The last category also
includes many recently proposed methods with attention mechanisms (Alaa & van der Schaar, 2019;
Lim et al., 2021). We contrast our framework with feature importance techniques in Appendix E.

Shapelets and motifs. As our method discusses the shape of the trajectory, it may seem related
to shapelet-based methods (Ye & Keogh, 2009). However, these methods are usually used for data
mining and classification tasks. They aim to find subsequences of a time series that represent the
most important patterns of each class and thus can be used to distinguish between them (Chen et al.,
2022). Similarly, motif discovery identifies short repeating patterns in the time series (Torkamani &
Lohweg, 2017) usually for insights into the problem or classification tasks.

7 TIMEVIEW IN ACTION

Answering questions. Our interactive visualization tool for TIMEVIEW allows for answering ques-
tions such as “What If ”, “How to be that”, and “How to still be this” from the XAI Question Bank
(Liao et al., 2020) discussed in Section 1. As explained earlier, answering such questions with the
current bottom-up approaches may often be futile since the notion of a “different prediction” may be
non-interpretable or simplistic. In contrast, TIMEVIEW allows the analysis of a trajectory change
at two levels, i.e., the composition of the trajectory or the coordinate of the transition point.

Figure 4: Our interface can visualize per-
turbing two features simultaneously.

Visualizing perturbations. We can visualize the effect
of perturbing one or two features at a time using colorful
bands (as in Figure 1) and colorful 2D contour plots (Fig-
ure 4). In the left panel of Figure 1, we have a movable
slider for each feature that changes the predicted trajec-
tory in the center. The colors on the band below the slider
signify the composition of the trajectory if the feature is
in the corresponding range. This allows us to understand
how the trend of the trajectory changes as we change each
feature (level 1 of bi-level transparency). To understand
the properties of this trend (level 2), we choose any of the
transition points in the central plot, and we can analyze
its position with respect to the chosen feature on the plot
on the right. It currently shows how the y-coordinate of
the second transition point (local minimum) increases as initial tumor volume increases. (Figure 4)

8

Published as a conference paper at ICLR 2024

shows how we can visualize the effect of changing two features at a time. Each color in the contour
plot corresponds to a different composition, so it is clear how changing the features influences the
composition of the trajectory. Please see Appendix E for a more in-depth discussion.

Comparison with other methods. In the absence of time series methods fulfilling bi-level trans-
parency, we adapt static transparent methods, such as linear regression, decision trees, and GAMs
(Lou et al., 2012; Nori et al., 2019) to time series forecasting by treating time as a feature, denoted
as Linear-T, DecisionTree-T, and GAM-T. We also compare with methods discovering closed-form
expressions for trajectories, such as PySR for symbolic regression (Cranmer, 2020), and SINDy for
ODE discovery (Brunton et al., 2016). We also include black-box models RNN, ∆t-RNN, and state-
of-the-art tree-based models adapted to time series forecasting (XGB-T (Chen & Guestrin, 2016),
LGBM-T (Ke et al., 2017), CatBoost-T (Prokhorenkova et al., 2018)).

Experiments were conducted on four real-world datasets (Airfoil (Brooks et al., 1989), flchain (Dis-
penzieri et al., 2012), Stress-Strain (Aakash et al., 2019), and Tacrolimus (Woillard et al., 2011))
and three synthetic ones (Sine, Beta, and Tumor, the latter based on a model from (Wilkerson et al.,
2017)). The synthetic datasets are constructed to contain trajectories exhibiting many different
trends. Figure 1, Figure 4, Figure 1 show TIMEVIEW fitted to Sine, Beta, and Tumor datasets.
As shown in Table 3, TIMEVIEW outperforms the transparent methods and closed-form expres-
sion on most datasets and achieves comparable performance to the black boxes. Details about the
experiments can be found in Appendix D.

Table 3: Comparison between TIMEVIEW, other transparent methods, closed-form expressions, and black
boxes. The numbers denote a mean squared error. The lower, the better. Boldface red denotes the best black
box results, boldface orange denotes the best closed-form expression results, and boldface green denotes the
best transparent results. † denotes failure to converge. Note, RNN only works for regular time series.

Real datasets Synthetic datasets

Method Airfoil flchain Stress-Strain Tacrolimus Tumor Sine Beta

Black boxes
RNN - 0.26 ± 0.02 - - 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.02
∆t-RNN 0.17 ± 0.02 0.27 ± 0.01 0.14 ± 0.01 0.41 ± 0.05 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.02
XGB-T 0.09 ± 0.00 0.20 ± 0.00 0.02 ± 0.00 0.29 ± 0.01 0.01 ± 0.00 0.53 ± 0.00 0.07 ± 0.00
LGBM-T 0.11 ± 0.00 0.20 ± 0.00 0.08 ± 0.00 0.29 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
CatBoost-T 0.09 ± 0.01 0.21 ± 0.00 0.05 ± 0.00 0.37 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Closed-form expressions
PySR 0.26 ± 0.03 0.22 ± 0.01 0.48 ± 0.11 0.36 ± 0.04 0.10 ± 0.02 0.05 ± 0.04 0.24 ± 0.03
SINDy 0.61 ± 0.00 0.39 ± 0.00 † 1.11 ± 0.00 0.07 ± 0.00 1.30 ± 0.00 2.74 ± 0.00

Transparent models
Linear-T 0.37 ± 0.00 0.34 ± 0.00 0.66 ± 0.00 0.57 ± 0.00 0.68 ± 0.00 0.99 ± 0.00 1.03 ± 0.00
DecisionTree-T 0.36 ± 0.00 0.21 ± 0.00 0.15 ± 0.00 0.31 ± 0.00 0.22 ± 0.00 0.10 ± 0.00 0.34 ± 0.00
GAM-T 0.28 ± 0.01 0.32 ± 0.00 0.09 ± 0.00 0.38 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.69 ± 0.00
TIMEVIEW 0.13 ± 0.01 0.24 ± 0.02 0.04 ± 0.00 0.31 ± 0.03 0.00 ± 0.00 0.02 ± 0.00 0.04 ± 0.00

8 DISCUSSION AND CONCLUSION

Applications. We believe bi-level transparency and our mathematical framework can inspire future
XAI methods. For instance, note, that models adhering to our framework (like TIMEVIEW) provide
additional output next to the standard forecasted trajectory: the current composition and the coor-
dinates of the transition points. Traditional XAI techniques for regression and classification can be
applied to these additional outputs, instead of individual trajectory points, to gain more meaningful
explanations. Thus, techniques such as feature importance methods (Lundberg & Lee, 2017), local
surrogates (Ribeiro et al., 2016), and counterfactual explanations (Karimi et al., 2020) can now be
extended to time series forecasting settings. These, in turn, can open domains where the applicability
of ML has been limited due to transparency concerns, including medicine, finance, and science.

Limitations and open challenges. TIMEVIEW is a particular application of bi-level transparency
for time series forecasting from static features. We hope future works will extend it to settings where
the input may contain the previous part of the trajectory or other exogenous time series (further
discussion in Appendix E).

9

Published as a conference paper at ICLR 2024

Ethics statement. In this paper, we present a novel conceptual framework for enhancing trans-
parency in the domain of time series forecasting, accompanied by its practical implementation
known as TIMEVIEW. A better understanding of machine learning models serves critical purposes
such as model debugging and identifying and mitigating potential harmful biases. However, XAI
techniques can also be misused to foster unwarranted trust in models or to merely achieve surface-
level compliance with regulatory standards. As highlighted in our paper, domains such as medicine
and pharmacology involve high-stakes scenarios. Therefore, prior to deploying our model in such
contexts, a rigorous examination is imperative to ensure it does not endorse decisions that could
prove detrimental to individuals’ well-being.

Reproducibility statement. All mathematical definitions are provided in Section 4 and Ap-
pendix A. The proofs of theoretical results are shown in Appendix B. The implementation, including
block diagrams and pseudocode, is discussed in Section 5 and in Appendix C. The experiment set-
tings are discussed in Section 7 and Appendix D. The code to reproduce the results and for the visu-
alization tool can be found at https://github.com/krzysztof-kacprzyk/TIMEVIEW
and at the wider lab repository https://github.com/vanderschaarlab/TIMEVIEW.

Acknowledgments. This work was supported by Roche and AstraZeneca. We want to thank
Katarzyna Kobalczyk, Fergus Imrie, Andrew Rashbass, and anonymous reviewers for their useful
comments and feedback on earlier versions of this work.

REFERENCES

B. S. Aakash, JohnPatrick Connors, and Michael D. Shields. Stress-strain data for aluminum 6061-
T651 from 9 lots at 6 temperatures under uniaxial and plane strain tension. Data in Brief, 25:
104085, August 2019. ISSN 2352-3409. doi: 10.1016/j.dib.2019.104085.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Ahmed M Alaa and Mihaela van der Schaar. Attentive State-Space Modeling of Disease Progres-
sion. Advances in Neural Information Processing Systems, 32:11338–11348, 2019.

Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin. Learning
Certifiably Optimal Rule Lists for Categorical Data. Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2018.

Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja
Chatila, and Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI. Information Fusion, 58:82–115, June 2020.
ISSN 1566-2535. doi: 10.1016/j.inffus.2019.12.012.

L. Biggio, T. Bendinelli*, A. Neitz, A. Lucchi, and G. Parascandolo. Neural Symbolic Regression
that Scales. In 38th International Conference on Machine Learning, July 2021.

Paul Blanchard, Robert L. Devaney, and Glen R. Hall. Differential Equations. Cengage Learning,
July 2012. ISBN 978-1-133-38808-1.

Thomas F. Brooks, D. Stuart Pope, and Michael A. Marcolini. Airfoil self-noise and prediction, July
1989.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the Na-
tional Academy of Sciences, 113(15):3932–3937, April 2016. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.1517384113.

C. Melody Carswell, Cathy Emery, and Andrea M. Lonon. Stimulus complexity and information
integration in the spontaneous interpretations of line graphs. Applied Cognitive Psychology, 7(4):
341–357, 1993. ISSN 1099-0720. doi: 10.1002/acp.2350070407.

10

https://github.com/krzysztof-kacprzyk/TIMEVIEW
https://github.com/vanderschaarlab/TIMEVIEW

Published as a conference paper at ICLR 2024

Jiahui Chen, Yuan Wan, Xiaoyu Wang, and Yinglv Xuan. Learning-based shapelets discovery by
feature selection for time series classification. Applied Intelligence, 52(8):9460–9475, June 2022.
ISSN 1573-7497. doi: 10.1007/s10489-021-03009-7.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 785–794, New York, NY, USA, August 2016. Association for Computing Machin-
ery. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.

Erin Chung, Jonathan Sen, Priya Patel, and Winnie Seto. Population Pharmacokinetic Models of
Vancomycin in Paediatric Patients: A Systematic Review. Clinical Pharmacokinetics, 60(8):
985–1001, August 2021. ISSN 0312-5963, 1179-1926. doi: 10.1007/s40262-021-01027-9.

Jonathan Crabbé and Mihaela Van Der Schaar. Explaining Time Series Predictions with Dynamic
Masks. In Proceedings of the 38th International Conference on Machine Learning, pp. 2166–
2177. PMLR, July 2021.

Jonathan Crabbe, Zhaozhi Qian, Fergus Imrie, and Mihaela van der Schaar. Explaining Latent
Representations with a Corpus of Examples. In Advances in Neural Information Processing
Systems, volume 34, pp. 12154–12166. Curran Associates, Inc., 2021.

Miles Cranmer. PySR: Fast & parallelized symbolic regression in Python/Julia. Zenodo, September
2020.

Stéphane D’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and Francois Charton. Deep
symbolic regression for recurrence prediction. In Proceedings of the 39th International Confer-
ence on Machine Learning, pp. 4520–4536. PMLR, June 2022.

Carl De Boor. A Practical Guide to Splines, volume 27. springer-verlag New York, 1978.

Brian de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J. Kutz, and Steven
Brunton. PySINDy: A Python package for the sparse identification of nonlinear dynamical sys-
tems from data. Journal of Open Source Software, 5(49):2104, 2020. doi: 10.21105/joss.02104.

Angela Dispenzieri, Jerry A. Katzmann, Robert A. Kyle, Dirk R. Larson, Terry M. Therneau,
Colin L. Colby, Raynell J. Clark, Graham P. Mead, Shaji Kumar, L. Joseph Melton, and S. Vin-
cent Rajkumar. Use of Nonclonal Serum Immunoglobulin Free Light Chains to Predict Overall
Survival in the General Population. Mayo Clinic Proceedings, 87(6):517–523, June 2012. ISSN
0025-6196, 1942-5546. doi: 10.1016/j.mayocp.2012.03.009.

Adeline Fermanian, Terry Lyons, James Morrill, and Cristopher Salvi. New Directions in the Ap-
plications of Rough Path Theory. IEEE BITS the Information Theory Magazine, pp. 1–18, 2023.
ISSN 2692-4110. doi: 10.1109/MBITS.2023.3243885.

Penglei Gao, Xi Yang, Rui Zhang, Kaizhu Huang, and John Y. Goulermas. Explainable Tensorized
Neural Ordinary Differential Equations for Arbitrary-Step Time Series Prediction. IEEE Trans-
actions on Knowledge and Data Engineering, 35(6):5837–5850, June 2023. ISSN 1558-2191.
doi: 10.1109/TKDE.2022.3167536.

Amirata Ghorbani and James Zou. Data Shapley: Equitable Valuation of Data for Machine Learning.
International conference on machine learning, 2019.

Bryce Goodman and Seth Flaxman. European Union Regulations on Algorithmic Decision-Making
and a “Right to Explanation”. AI Magazine, 38(3):50–57, October 2017. ISSN 2371-9621. doi:
10.1609/aimag.v38i3.2741.

Yi Rang Han, Ping I. Lee, and K. Sandy Pang. Finding Tmax and Cmax in Multicompartmental
Models. Drug Metabolism and Disposition, 46(11):1796–1804, November 2018. ISSN 0090-
9556, 1521-009X. doi: 10.1124/dmd.118.082636.

Yifan Hao and Huiping Cao. A New Attention Mechanism to Classify Multivariate Time Series.
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, July
2020. doi: 10.24963/ijcai.2020/277.

11

Published as a conference paper at ICLR 2024

Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical Science, 1(3):297–
318, 1986.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep Generative Symbolic Regression.
The Eleventh International Conference on Learning Representations, 2023.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal Sparse Decision Trees. In Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on
Machine Learning, pp. 448–456. PMLR, June 2015.

Krzysztof Kacprzyk, Zhaozhi Qian, and Mihaela van der Schaar. D-CIPHER: Discovery of Closed-
form Partial Differential Equations. In Advances in Neural Information Processing Systems, vol-
ume 36, pp. 27609–27644, December 2023.

Kadierdan Kaheman, J. Nathan Kutz, and Steven L. Brunton. SINDy-PI: A robust algorithm for
parallel implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 476(2242):20200279, October 2020. doi:
10.1098/rspa.2020.0279.

Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Andy J. Goldschmidt,
Jared Callaham, Charles B. Delahunt, Zachary G. Nicolaou, Kathleen Champion, Jean-Christophe
Loiseau, J. Nathan Kutz, and Steven L. Brunton. PySINDy: A comprehensive Python package
for robust sparse system identification. Journal of Open Source Software, 7(69):3994, 2022. doi:
10.21105/joss.03994.

Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. Model-Agnostic Counterfactual
Explanations for Consequential Decisions. International Conference on Artificial Intelligence and
Statistics, 2020.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory
Sayres. Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation
Vectors (TCAV). In Proceedings of the 35th International Conference on Machine Learning, pp.
2668–2677. PMLR, July 2018.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrı́cio Olivetti de França, Marco Vir-
golin, Ying Jin, Michael Kommenda, and Jason H. Moore. Contemporary Symbolic Regression
Methods and their Relative Performance. In 35th Conference on Neural Information Processing
Systems (NeurIPS 2021) Track on Datasets and Benchmarks, July 2021.

Kin Kwan Leung, Clayton Rooke, Jonathan Smith, Saba Zuberi, and Maksims Volkovs. Temporal
Dependencies in Feature Importance for Time Series Prediction. In The Eleventh International
Conference on Learning Representations, 2023.

Q. Vera Liao, Daniel Gruen, and Sarah Miller. Questioning the AI: Informing Design Practices
for Explainable AI User Experiences. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, CHI ’20, pp. 1–15, New York, NY, USA, April 2020. Association
for Computing Machinery. ISBN 978-1-4503-6708-0. doi: 10.1145/3313831.3376590.

Bryan Lim, Arik Sercan, Nicolas Loeff, and Tomas Pfister. Temporal Fusion Transformers for
interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4):
1748–1764, October 2021. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2021.03.012.

Zichao Long, Yiping Lu, and Bin Dong. PDE-Net 2.0: Learning PDEs from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, December 2019.
ISSN 0021-9991. doi: 10.1016/j.jcp.2019.108925.

12

Published as a conference paper at ICLR 2024

Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible models for classification and regression.
In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’12, pp. 150–158, New York, NY, USA, August 2012. Association for
Computing Machinery. ISBN 978-1-4503-1462-6. doi: 10.1145/2339530.2339556.

Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Terry Lyons. Rough paths, Signatures and the modelling of functions on streams, May 2014.

Daniel A. Messenger and David M. Bortz. Weak SINDy: Galerkin-Based Data-Driven Model Se-
lection. Multiscale Modeling & Simulation, 19(3):1474–1497, January 2021a. ISSN 1540-3459,
1540-3467. doi: 10.1137/20M1343166.

Daniel A. Messenger and David M. Bortz. Weak SINDy for partial differential equations. Journal of
Computational Physics, 443:110525, October 2021b. ISSN 00219991. doi: 10.1016/j.jcp.2021.
110525.

Dr Mould and Rn Upton. Basic Concepts in Population Modeling, Simulation, and Model-Based
Drug Development. CPT: Pharmacometrics & Systems Pharmacology, 1(9):6, 2012. ISSN 2163-
8306. doi: 10.1038/psp.2012.4.

Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. InterpretML: A unified framework for
machine learning interpretability. arXiv preprint arXiv:1909.09223, 2019.

Qingyi Pan, Wenbo Hu, and Jun Zhu. Series Saliency: Temporal Interpretation for Multivariate
Time Series Forecasting, December 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Sebastian Pölsterl. Scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-
learn. Journal of Machine Learning Research, 21(212):1–6, 2020.

Kristopher J. Preacher and Gregory R. Hancock. Meaningful aspects of change as novel random
coefficients: A general method for reparameterizing longitudinal models. Psychological Methods,
20(1):84–101, 2015. ISSN 1939-1463, 1082-989X. doi: 10.1037/met0000028.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. CatBoost: Unbiased boosting with categorical features. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating Training Data
Influence by Tracing Gradient Descent. In Advances in Neural Information Processing Systems,
volume 33, pp. 19920–19930. Curran Associates, Inc., 2020.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-CODE: Discovering Closed-
form ODEs from Observed Trajectories. The Tenth International Conference on Learning Repre-
sentations, 2022.

L. Rabiner and B. Juang. An introduction to hidden Markov models. IEEE ASSP Magazine, 3(1):
4–16, January 1986. ISSN 1558-1284. doi: 10.1109/MASSP.1986.1165342.

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlin-
ear partial differential equations. Journal of Computational Physics, 357:125–141, March 2018.
ISSN 0021-9991. doi: 10.1016/j.jcp.2017.11.039.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust You?”: Explain-
ing the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 1135–1144, New York,
NY, USA, August 2016. Association for Computing Machinery. ISBN 978-1-4503-4232-2. doi:
10.1145/2939672.2939778.

13

Published as a conference paper at ICLR 2024

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, May 2019. ISSN
2522-5839. doi: 10.1038/s42256-019-0048-x.

Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven discovery
of partial differential equations. Science Advances, 3(4):e1602614, April 2017. ISSN 2375-2548.
doi: 10.1126/sciadv.1602614.

Michael Schmidt and Hod Lipson. Distilling Free-Form Natural Laws from Experimental Data.
Science, 324(5923):81–85, April 2009. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.
1165893.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Features Through
Propagating Activation Differences. In Proceedings of the 34th International Conference on
Machine Learning, pp. 3145–3153. PMLR, July 2017.

Shoaib Ahmed Siddiqui, Dominique Mercier, Mohsin Munir, Andreas Dengel, and Sheraz Ahmed.
TSViz: Demystification of Deep Learning Models for Time-Series Analysis. IEEE Access, 7:
67027–67040, 2019. ISSN 2169-3536. doi: 10.1109/ACCESS.2019.2912823.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep Networks. In
Proceedings of the 34th International Conference on Machine Learning, pp. 3319–3328. PMLR,
July 2017.

Sahar Torkamani and Volker Lohweg. Survey on time series motif discovery. WIREs Data Mining
and Knowledge Discovery, 7(2):e1199, 2017. ISSN 1942-4795. doi: 10.1002/widm.1199.

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, April 2020. ISSN 2375-2548. doi: 10.1126/
sciadv.aay2631.

Berk Ustun and Cynthia Rudin. Supersparse linear integer models for optimized medical scoring
systems. Machine Learning, 102(3):349–391, March 2016. ISSN 1573-0565. doi: 10.1007/
s10994-015-5528-6.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in
python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Julia Wilkerson, Kald Abdallah, Charles Hugh-Jones, Greg Curt, Mace Rothenberg, Ronit Simantov,
Martin Murphy, Joseph Morrell, Joel Beetsch, Daniel J Sargent, Howard I Scher, Peter Lebowitz,
Richard Simon, Wilfred D Stein, Susan E Bates, and Tito Fojo. Estimation of tumour regression
and growth rates during treatment in patients with advanced prostate cancer: A retrospective
analysis. The Lancet Oncology, 18(1):143–154, January 2017. ISSN 1470-2045. doi: 10.1016/
S1470-2045(16)30633-7.

Jean-Baptiste Woillard, Brenda C. M. de Winter, Nassim Kamar, Pierre Marquet, Lionel Ros-
taing, and Annick Rousseau. Population pharmacokinetic model and Bayesian estimator for two
tacrolimus formulations–twice daily Prograf and once daily Advagraf. British Journal of Clinical
Pharmacology, 71(3):391–402, March 2011. ISSN 1365-2125. doi: 10.1111/j.1365-2125.2010.
03837.x.

14

Published as a conference paper at ICLR 2024

Xiaoming Xi. Aspects of performance on line graph description tasks: Influenced by graph familiar-
ity and different task features. Language Testing, 27(1):73–100, January 2010. ISSN 0265-5322.
doi: 10.1177/0265532209346454.

Lexiang Ye and Eamonn Keogh. Time series shapelets: A new primitive for data mining. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 947–956, Paris France, June 2009. ACM. ISBN 978-1-60558-495-9. doi:
10.1145/1557019.1557122.

Çağatay Yıldız, Markus Heinonen, and Harri Lähdesmäki. Continuous-Time Model-Based Rein-
forcement Learning, June 2021.

Jeff Zacks and Barbara Tversky. Bars and lines: A study of graphic communication. Memory &
Cognition, 27(6):1073–1079, November 1999. ISSN 1532-5946. doi: 10.3758/BF03201236.

Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks. In
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision – ECCV
2014, Lecture Notes in Computer Science, pp. 818–833, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-10590-1. doi: 10.1007/978-3-319-10590-1 53.

Hui Zou and Trevor Hastie. Regularization and Variable Selection Via the Elastic Net. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, April 2005. ISSN
1369-7412. doi: 10.1111/j.1467-9868.2005.00503.x.

15

Published as a conference paper at ICLR 2024

TABLE OF SUPPLEMENTARY MATERIALS

1. Appendix A: notation and definitions

2. Appendix B: theoretical results

3. Appendix C: implementation details

4. Appendix D: experimental details and additional results

5. Appendix E: additional discussion

6. Appendix F: extended related works

A NOTATION AND DEFINITIONS

A.1 NOTATION

We present the symbols used in this work and their meanings in Table 4.

Table 4: Notation used throughout the paper

Symbol Meaning

[n] {1, 2, . . . , n}
I Interval (Definition 4)
f |I Restriction of f onto I , i.e., f |I0 : I0 → R, f |I0(t) = f(t) ∀t ∈ I0.
F Interval functions (Definition 6)
I + c Shifted interval (Definition 4)
f |I ∼ s f on I has motif s (Definition 1)
S Set of motifs (Definition 1)
CS Set of compositions for a given set of motifs S (Definition 2)
CS [f] Composition of f in S (Definition 2)
MS Composition map for a set of motifs S (Definition 3)
ϕ B-Spline basis function (Section 5)
h Encoder (Section 5)
g TIMEVIEW model (Section 5)
ŷ Predicted trajectory (Section 3)
Ŷ Set of predicted trajectories (Section 3)
D Number of samples
M Number of static features
Nd Number of measurements for a sample d
B Number of basis functions

A.2 GLOSSARY OF TERMS

In Table 5, we present a glossary of important words and where they can be found in the paper.

A.3 DEFINITIONS

Definition 4 (Interval). We say I is an interval (of R) if it is an open interval, closed interval, or half-
closed interval. The interval has to contain more than one point. We denote the set of all intervals
on R as I. Let c ∈ R, we denote the shifted interval as I + c = {x+ c | x ∈ I}.
Definition 5 (Interval partition). Interval partition of an interval I is a sequence of intervals
(I1, . . . , In) such that

⋃n
i=1 Ii = I , Ii ∩ Ii+1 = ∅ ∀i ∈ [n − 1] and the right boundary of Ii

should be no greater than the left boundary of Ii+1 for all i ∈ [n− 1].

Definition 6 (Interval function). Let I ⊂ R be any interval, we call any function f : I → R an
interval function and we denote its domain as dom(f). We denote the set of all interval functions as
F .

16

Published as a conference paper at ICLR 2024

Table 5: All important words defined in the paper and their locations

Word Location in the paper

Bi-level transparency Section 2
Compatibility Definition 9
Composition Definition 2
Composition extraction Section 5
Composition map Definition 3
Dynamical motifs Example 5
Exclusive motifs Definition 12
Inclusive motifs Definition 11
Interval Definition 4
Interval function Definition 6
Interval partition Definition 5
Motif Definition 1
Property (of a trend) Section 2
TIMEVIEW Section 5
Transition point Definition 2
Trend Section 2

Definition 7 (Motif). A motif s is a binary relation between the set of interval functions F and the
set of intervals I (i.e., s ∈ F ×I = {(f, I) | f ∈ F , I ∈ I}). We denote (f, I) ∈ s as f |I ∼ s and
read it as “f on I has a motif s”. Each motif s needs to be:

• well-defined, i.e., for any f ∈ F , and any I ∈ I,

f |I ∼ s =⇒ I ⊆ dom(f) (5)

• translation-invariant, i.e., for any I ∈ I, and any f ∈ F ,

f |I ∼ s ⇐⇒ f ◦ (x− c)|(I + c) ∼ s ∀c ∈ R (6)

Definition 8 (Composition). Let f : I → R be an interval function and S be a set of motifs. A
motif sequence of f in S is a finite sequence of motifs (s1, . . . , sd), such that there exists an interval
partition (I1, . . . , Id) of I such that f |Ij ∼ sj ∀j ∈ [d]. A composition of f in S is the shortest motif
sequence of f in S. The points between the intervals are called the transition points. The set of all
compositions for a given set of motifs S is denoted by CS . A set of motifs S is called compatible
with a subset F ′ ⊂ F if for every f ∈ F ′ there exists a unique composition, denoted CS [f]
Definition 9 (Compatibility). Let S be a set of motifs and F ′ ⊂ F be a subset of interval functions.
S is called compatible with F ′ if for every f ∈ F ′ there exists a unique composition, CS [f] and a
unique sequence of the transition points associated with this composition.

Definition 10 (Composition map). Let a set of motifs S be compatible with some subset F ′ ⊂ F .
Let g : RM → F ′ be a machine learning model for time series forecasting. A composition map is
denotedMS : RM → CS defined byMS(x) = CS [g(x)].
Definition 11 (Inclusive motifs). We say that a motif s is inclusive if for any function f ∈ F and
any interval I ∈ I, we have

f |I ∼ s =⇒ f |I0 ∼ s ∀I0 ⊂ I (7)

Definition 12 (Exclusive motifs). We say that a finite set of motifs S is exclusive if for any function
f ∈ F and any interval I ∈ I, we have

f |I ∼ s =⇒ f |I ̸∼ s′ ∀s ̸= s′ (8)

for all s, s′ ∈ S. In other words, if f is in a particular motif on the interval I then it cannot be in any
other motif on this interval.

A.4 MOTIF EXAMPLES

Example 1 (Range motifs). Let a, b ∈ R such that a < b. We define range motifs s<, s=, s> as:

17

Published as a conference paper at ICLR 2024

• f |I ∼ s< if ∀x ∈ I f(x) < a
• f |I ∼ s= if ∀x ∈ I a ≤ f(x) ≤ b
• f |I ∼ s> if ∀x ∈ I b < f(x)

These motifs are beneficial when our interest lies not in the trajectory’s exact shape, but in whether
its value falls within a specific range [a, b] and at what point in time. This can be particularly useful
in control problems where different policies apply based on whether a variable is within or outside
the operating range [a, b]. More motif examples can be found in Appendix A.

Example 2 (Threshold motifs). Range motifs (Example 1) can be modified by choosing a = b.
Then we end up with only two motifs:

• f |I ∼ s< if ∀x ∈ I f(x) < a
• f |I ∼ s> if ∀x ∈ I a < f(x)

These motifs are useful for monitoring whether the trajectory is above or below a certain threshold.

Example 3 (Monotonic motifs). Let us define monotonic motifs s+s−, s0 which are defined as:

• f |I ∼ s+ if f is strictly increasing on I (∀x, y ∈ I x < y =⇒ f(x) < f(y))
• f |I ∼ s− if f is strictly decreasing on I (∀x, y ∈ I x < y =⇒ f(x) > f(y))
• f |I ∼ s0 if f is constant on I (∀x, y ∈ I f(x) = f(y))

Example 4 (Derivative range motifs). Let a, b ∈ R and a < b. We define derivative range motifs
as:

• f |I ∼ s< if f |I ∈ C1 and ∀x ∈ I f ′(x) < a
• f |I ∼ s= if f |I ∈ C1 and ∀x ∈ I a ≤ f ′(x) ≤ b
• f |I ∼ s> if f |I ∈ C1 and ∀x ∈ I b ≤ f ′(x)

Example 5 (Dynamical motifs). We define seven dynamical motifs:
s0+, s0−, s00, s++, s+−, s−+, s−− as follows (also visualized in Table 2).

• f |I ∼ s+0 if ∃a > 0 ∃b ∈ R ∀x ∈ I f(x) = ax+ b
• f |I ∼ s−0 if ∃a < 0 ∃b ∈ R ∀x ∈ I f(x) = ax+ b
• f |I ∼ s00 if ∃b ∈ R ∀x ∈ I f(x) = b
• f |I ∼ s++ if f |I ∈ C2 and ∀x ∈ int(I) f ′(x) > 0, f ′′(x) > 0
• f |I ∼ s+− if f |I ∈ C2 and ∀x ∈ int(I) f ′(x) > 0, f ′′(x) < 0
• f |I ∼ s−+ if f |I ∈ C2 and ∀x ∈ int(I) f ′(x) < 0, f ′′(x) > 0
• f |I ∼ s−− if f |I ∈ C2 and ∀x ∈ int(I) f ′(x) < 0, f ′′(x) < 0

B THEORETICAL RESULTS

Theorem 1 (Dynamical motifs are compatible with cubic splines). Let S be the set of dynamical
motifs and let F ′ be the set of cubic splines on some interval [a, b]. Then S is compatible with F ′

Before we prove this theorem, we will prove two propositions about dynamical motifs, and two
helpful lemmas.

Proposition 1. Dynamical motifs are inclusive (as defined in Definition 11.

Proof. Observe that s+0, s−0, and s00 can be equivalently defined as:

• f |I ∼ s+0 if f |I ∈ C2 and ∀x ∈ int(I)f ′(x) > 0, f ′′(x) = 0
• f |I ∼ s−0 if f |I ∈ C2 and ∀x ∈ int(I)f ′(x) < 0, f ′′(x) = 0
• f |I ∼ s00 if f |I ∈ C2 and ∀x ∈ int(I)f ′(x) = 0, f ′′(x) = 0

This (with the rest of the motifs defined in Example 5) shows that each motif is uniquely defined by
the signs of its first and second derivatives.

If sign(f ′) on an interval I is constant then sign(f ′|I0) = sign(f ′) for any interval I0 ⊂ I . The
same holds for the second derivative. This proves that dynamical motifs are inclusive.

Proposition 2. Dynamical motifs are exclusive (as defined in Definition 12.

18

Published as a conference paper at ICLR 2024

Proof. As we shown in the proof of Proposition 1, each dynamical motif is uniquely defined by the
signs of its first and second derivatives. If sign(f ′) on an interval I is constant then it cannot be
equal to anything else. The same holds for the second derivative. This proves that dynamical motifs
are exclusive.

Lemma 1 (Uniqueness of dynamical motif sequences). Let S be the set of dynamical motifs and let f
be an interval function. If there exists a motif sequence for f , (s1, . . . , sd), satisfying si ∈ S∀i ∈ [d],
si ̸= si+1 ∀i ∈ [d− 1], then this motif sequence is unique.

Proof. Consider two motif sequences (s1, . . . , sd), (p1, . . . , pe) such that for both of them every
two consecutive motifs are different. We show that these sequences need to be the same.

Let us compare p1 and s1. Consider the intervals described by s1 and p1 and denote them I1
and J1 respectively. By inclusivity of dynamical motifs (Proposition 1), f |(I1 ∩ J1) ∼ s1 and
f |(I1 ∩ J1) ∼ p1. That implies, by exclusivity (Proposition 2), that s1 = p1. That also shows that
J1 cannot be bigger than I1. If that were the case, it would overlap with I2 (described by s2). But
s2 ̸= s1 = p1. So, J1 ⊂ I1. If J1 is smaller than I1 then J2 ⊂ (I1 \ J1), where J2 is described by
p2, and p2 = s1 = p1. But we assumed that p1 ̸= p2. Thus, J1 = I1. Now, we can apply exactly
the same reasoning to the next pair of motifs (s2, p2). We continue this procedure and in the end,
we get these two motif sequences are the same. Note, it is also possible that I1 \ J1 is just a single
point. That is why the intervals corresponding to the motif sequence are unique up to the boundaries
of the interval, i.e., the intervals might differ by single points.

Lemma 2 (Dynamic motifs are compatible with cubics). Let S be the set of dynamical motifs and
let Q be the set of polynomials up to a third degree on R. Then S is compatible with Q.

Proof. Consider any polynomial f ∈ Q. Let’s write f as f(t) = at3+bt2+ct+d. We can calculate
its first and second derivatives. Respectively, f ′(t) = 3at2 + 2bt + c, f ′′(t) = 6at + 2b. f ′ and
f ′′ divide R into intervals where on each interval f ′ (or f ′′ respectively) is either positive, negative,
or equal to zero. f ′ divides R into at most 3 intervals, and f ′′ divides R into at most two intervals.
There might be some isolated points that do not belong to any of these intervals. For instance, if
f ′′(t) = t, we have two intervals: (−∞, 0) where f ′′ is negative, (0,+∞) where f ′′ is positive,
and an isolated point at t = 0. For f ′′ we have at most one isolated point, and for f ′ we have at
most two isolated points. We can now take the intersection of every interval defined by f ′ with
every other interval defined by f ′′. This gives us at most 4 intervals where each interval belongs to
one of 9 different configurations that we denote by two symbols. The first symbol denotes the sign
of the first derivative (+,−, 0), and the second sign denotes the sign of the second derivative. For
instance, an interval might be described as −+ if it was created by intersecting an interval that has
a negative first derivative with an interval that has a positive second derivative. We observe that two
configurations are impossible, 0+ and 0−, so we end up with 7 possible configurations.

We observe that if an interval I is described by +− then by Example 5 f |I ∼ s+−. Similarly for
++, −+, and −−. If an interval I is denoted by 00 then it means that 6at + 2b = 0 ∀t ∈ I , and
3at2 + 2bt+ c = 0 ∀t ∈ I . From the first equation, we get that a = 0, b = 0, and from the second
one we get c = 0. That means that f |I ∼ s00. Similarly, an interval I is described by +0 then
a = 0, b = 0 and c > 0. That means f is given by ct+ d, where c > 0, so f |I ∼ s+0. Analogously
with −0. The isolated points mentioned above are exactly the transition points between different
motifs.

This shows how for every polynomial up to a third degree, there exists a sequence of dynami-
cal motifs and we showed explicitly how to construct such a sequence. Let us call this sequence
(s1, . . . , sd). Observe that the shortest motif sequence for f cannot have two identical consecutive
motifs. If that were the case, they could have been combined into a shorter motif sequence. As
every two consecutive motifs of (s1, . . . , sd) are different then, by Lemma 1, this is the only such
sequence and thus it is the shortest. So (s1, . . . , sd) is a composition. That shows that for every
f ∈ Q there exists a unique composition and thus S is compatible with Q.

Now, we can prove Theorem 1.

19

Published as a conference paper at ICLR 2024

Proof of theorem Theorem 1. Let f be a cubic spline defined on internal knots t1, . . . , tn. Let us
denote fi the polynomial defined on (ti, ti+1). To construct a composition for f , we construct
compositions for each of the polynomials fi (as described in Lemma 2). Then we look at the
neighboring motifs on both sides of every knot. If the motifs are the same, then we combine them
and remove the transition point. This procedure gives us a motif sequence for f that we denote as
(s1, . . . , sd).

Observe that the shortest motif sequence for f cannot have two identical consecutive motifs. If that
were the case, they could have been combined into a shorter motif sequence (this is true because
cubic splines have continuous first and second derivatives at the knots). As every two consecutive
motifs of (s1, . . . , sd) are different then, by Lemma 1, this is the only such sequence and thus it is
the shortest. So (s1, . . . , sd) is a composition. That shows that for every cubic spline, there exists a
unique composition, and thus S is compatible with cubic splines.

C IMPLEMENTATION

C.1 MODEL

Pseudocode. The pseudocode of the model training in TIMEVIEW is shown in Algorithm 1.

Algorithm 1 TIMEVIEW Model training
Input: Static features X ∈ RD×M

Input: Time series {t(d)}Dd=1, {y(d)}Dd=1, t(d) ∈ RNd , y(d) ∈ RNd

Input: Number of basis functions B
Input: Gradient-based optimization algorithm O
Output: Trained model G : RM → Ŷ
t1, . . . , tB−2 ← SELECTKNOTS({t(d)}Dd=1, {y(d)}Dd=1) ▷ Appendix C.3
{ϕb}Bb=1 ← B-Spline basis functions for knots t1, . . . , tB−2

Initialize matrices {Φ(d)}Dd=1, Φ(d) ∈ RNd×B

Φ
(d)
jb ← ϕb(t

(d)
j)

procedure LOSS(h)
ŷ(d) ← Φ(d)h(x(d))

L ← 1
D

∑D
d=1

(
1
Nd

∑Nd

j=1

(
ŷ
(d)
j − y(d)j

)2)
+ αLL2

return L
end procedure
h = O(LOSS) ▷ Training
procedure G(x ∈ RM , t ∈ RN)

Initialize Φ ∈ RN×B

Φjb ← ϕb(tj)
ŷ ← Φh(x)
return ŷ

end procedure
return G

Architecture of the encoder. We implement encoder h as a fully connected neural network with
3 hidden layers. We also include dropout (Srivastava et al., 2014) and batch normalization (Ioffe
& Szegedy, 2015). The sizes of the hidden layers, activation functions, and dropout probability are
fine-tuned.

Dynamic bias. We add an additional constant basis function (equal to 1 everywhere) as a “bias”
that is adjusted for each sample.

Hyperparameters. We perform hyperparameter tuning using Optuna (Akiba et al., 2019) and run
it for 100 trials. We describe the hyperparameters we tune and their ranges in Table 6. We fix
the number of basis functions to be 9 for all real datasets and Tumor, and 5 for Sine and Beta
datasets. We found that 9 usually gives the best or nearly the best performance while maintaining
compositions that are still short. We chose 5 for Sine and Beta datasets because the compositions

20

Published as a conference paper at ICLR 2024

of trajectories in these datasets are very short, so there was no need for a bigger number of basis
functions. In practice, this parameter can be fine-tuned but numbers between 5 and 9 work well by
default.

Table 6: TIMEVIEW hyperparameter ranges

Hyperparameter Considered values

Hidden sizes Integers from [16,128]
Activation {ReLU,Sigmoid,Tanh,Leaky ReLU,ELU,SeLU}
Dropout probability Float from [0.0,0.5]
Learning rate Float (log) from [0.0001,0.1]
Batch size {64,128}
Weight decay Float (log) from [0.000001, 0.1]

C.2 COMPOSITION EXTRACTION

Block diagram. The composition extraction procedure in TIMEVIEW is depicted in Algorithm 2.

𝜙𝑏

𝜓𝑏,1 𝜓𝑏,2 𝜓𝑏,3𝜓𝑏,4

𝑀

𝐵

𝒙 ∈ ℝ𝑀

𝒄 ∈ ℝ𝐵

ො𝑦 𝑡 =
𝑏=1

𝐵

𝑐𝑏𝜙𝑏(𝑡)

Knots

𝑠++ 𝑠++ s+− 𝑠−− 𝑠−+|𝑠++ 𝑠++|𝑠+0

𝑠++ s+− 𝑠−− 𝑠−+ 𝑠++|𝑠+0

𝑏=1

𝐵

𝑐𝑏𝜓𝑏,1
𝑏=1

𝐵

𝑐𝑏𝜓𝑏,2
𝑏=1

𝐵

𝑐𝑏𝜓𝑏,3
𝑏=1

𝐵

𝑐𝑏𝜓𝑏,4

Figure 5: This figure shows a block diagram depicting TIMEVIEW composition extraction

Pseudocode. The pseudocode of composition extraction implemented in TIMEVIEW is shown in
Algorithm 2.

C.3 ALGORITHM FOR KNOT SELECTION

Each B-Spline basis function is determined by its knots—places where two polynomials meet. The
challenge of knot selection in TIMEVIEW comes from the necessity of having fixed knots for all
trajectories. As each trajectory may have a different optimal knot placement, we aim to find knots
that may not be optimal but are nevertheless chosen based on the trajectories in the dataset. For
instance, there is no need to have many knots in parts of the domain where the trajectories vary little.
But it might be beneficial to have more knots in parts of the domain where the trajectories do vary. To
achieve this goal we propose the following heuristic algorithm based on the UnivariateSpline
function in scipy library (Virtanen et al., 2020).

21

Published as a conference paper at ICLR 2024

Algorithm 2 TIMEVIEW Composition Extraction
Input: Static features x ∈ RM

Input: Encoder h
Input: Knots t1, . . . , tB−2

Input: Method for calculating the composition of a cubic COMPOSITIONCUBIC
Output: Composition C
{ϕb}Bb=1 ← B-Spline basis functions for knots t1, . . . , tB−2

{ψbk}b∈[B],k∈[B−3] ← ϕb on interval [tk, tk+1] is given by a cubic ψbk

c = h(x)
Clist ← empty list
for k = 1 to B − 3 do
Clist ← append COMPOSITIONCUBIC

(∑B
b=1 cbϕbk, tk, tk+1

)
end for
C ← concatenate Clist
for i = 1 to len(C)−1 do

if Ci == Ci+1 then
remove Ci

end if
end for
return C

UnivariateSpline function takes the trajectory (both t and y), a smoothing parameter s5, cal-
culates the optimal number of knots, and returns their placement. For each trajectory in our training
dataset, we test different values of s to find the one that gives the exact number of knots we want
(using a method similar to binary search). Then we take the positions of these knots and add them to
our set of found knots. We repeat this procedure for every trajectory. Then we use the K-means clus-
tering algorithm from scikit-learn library (Pedregosa et al., 2011) with the number of clusters
equal to the desired number of knots. The clusters returned by the algorithm are the selected knots.

D EXPERIMENTS

D.1 DATASETS

All datasets are split into training, validation, and testing sets with ratios (0.7 : 0.15 : 0.15).

D.1.1 REAL DATASETS

Airfoil. Airfoil Self-Noise dataset (Brooks et al., 1989) is a UCI dataset, obtained from a series
of aerodynamics and acoustic tests of airfoil blade sections conducted in a wind tunnel. The static
features are the angle of attack, chord length, free-stream velocity, and suction side displacement
thickness. The output is a sound pressure level at specified frequencies (obtained by a Fourier
transform of the raw signal). We treat the sound pressure level with respect to the frequency as a
time series, i.e., t—frequency, y—sound pressure level. As the frequencies are uniformly chosen
on a logarithmic scale, we take the log transform of t. The processed dataset contains 106 samples,
each having on average 14 measurements.

flchain. Flchain is a dataset of the subjects from a study of the relationship between serum-free
light chain and mortality (Dispenzieri et al., 2012), often used in time-to-event problems. We train a
Random Survival Forest using scikit-survival library (Pölsterl, 2020). Then for each sample
from the dataset, we generate a survival function and sample it at 20 predetermined points. The
static features are the same as in the original dataset, i.e., age, serum creatinine, the FLC group,
kappa portion of serum FLC, lambda portion of FLC, monoclonal gammapothy (MGUS), and sex.
The time series is described by y—the probability of survival up to this point, t—time in days. We
subsample the dataset to get 1000 samples , each with 20 measurements.

5Note, do not confuse with s denoting motifs in our work

22

Published as a conference paper at ICLR 2024

Stress-Strain. We take the stress-strain curves of aluminum 6061-T651 obtained by Aakash et al.
(2019). The aluminum samples are sourced from 9 different lots at a few temperatures between
20◦C and 300◦C. W treat the temperature and lot as static features and the time series is defined by
t—strain, y—experienced stress. After preprocessing, we end up with 100 samples, each with 212
measurements on average.

Tacrolimus. We take the drug concentration curves of two tacrolimus formulations obtained by
Woillard et al. (2011). The static features include sex, weight, hematocrit, hemoglobin, creatinine,
dose, CYP3A5 genotype, and formulation. We also supplement it with the initial concentration of
the drug in the blood. After preprocessing, we end up with 90 samples, each with 10 measurements
on average.

D.1.2 SYNTHETIC DATASETS

Tumor. We take the tumor growth model proposed in Wilkerson et al. (2017). This model is
described by the following equation:

y(t) = ϕ exp(−dt) + (1− ϕ) exp(gt)− 1 (9)

Where ϕ, d, g are free parameters corresponding to the proportion of tumor cells that undergo cell
death due to treatment, decay of the tumor, and the growth of the tumor. This equation has been
shown to capture many different trends of tumor volume over time and that is why we decided to
use it in our experiments. To make the model more realistic we multiply y by the initial tumor
volume, and we add the following static features: age, weight, and drug dosage. We describe the
parameters from Equation (9) using the following relationships:

g = g0 ∗ (age/20.0)0.5

d = d0 ∗ dosage/weight
ϕ = 1/(1 + exp(−dosage ∗ ϕ0))

(10)

These relationships are inspired by covariate models often used in PKPD models (Mould & Upton,
2012; Chung et al., 2021).

We choose the following parameters to get trajectories of different and realistic shapes.

g0 = 2.0

d0 = 180

ϕ0 = 10

(11)

To generate the data, we create 2000 samples. For each sample, we draw static features from uniform
distributions described below.

• age ∼ Uniform(20, 80)

• weight ∼ Uniform(40, 100)

• initial tumor volume ∼ Uniform(0.1, 0.5)

• dosage ∼ Uniform(0.0, 1.0)

For each sample, we evaluate the tumor volume function y at 20 equally spaced time points on [0, 1].

Sine. This synthetic dataset was created to show how our model can be used when we have one static
feature that nevertheless renders trajectories with different trends. We use the following equation:

y(t) = sin

(
2tπ

x

)
(12)

In this equation, x is the static covariate. As we show in Figure 1, it can generate trajectories with
different compositions. To create the dataset we generate 200 values for x uniformly on [0, 2.5], and
for each x we generate 20 uniform time points from 0 to 1 and evaluate y on them.

Beta. This synthetic dataset was created to show how our model can be used when we have two static
features that render trajectories with different trends. As the probability density functions of the beta

23

Published as a conference paper at ICLR 2024

distribution are known for their variety of shapes, we decided to use them in our experiments. In
particular, we define our trajectory by the following equation

y(t) =
1

B(α, β)
tα−1(1− t)β−1 (13)

where B is the beta function. We treat α and β as static features. To create the datasets, we create a
grid of (α, β) pairs where α and β are created by taking 30 values uniformly spread over [1.0, 4.0].
This gives us 900 samples in total. For each sample, we generate 20 uniform measurements on [0, 1].

D.2 BASELINES

Linear-T. We implement the linear model with elastic net regularization (Zou & Hastie, 2005) using
scikit-learn package. We adapt them for time series forecasting by passing time as a feature.
We perform hyperparameter tuning using Optuna (Akiba et al., 2019) and run it for 100 trials. We
describe the hyperparameters we tune and their ranges in Table 7

Table 7: Linear-T hyperparameter ranges

Hyperparameter Considered values

alpha Float from [0.0, 1.0]
l1 ratio Float from [0.0, 1.0]

DecisionTree-T. We implement decision tree regressor using scikit-learn package. We adapt
them for time series forecasting by passing time as a feature. To keep the decision trees transparent,
we restrict their depth to 5. We perform hyperparameter tuning using Optuna (Akiba et al., 2019)
and run it for 100 trials. We describe the hyperparameters we tune and their ranges in Table 8

Table 8: DecisionTree-T hyperparameter ranges

Hyperparameter Considered values

max depth 5
min samples split Integers from [2, 32]
min samples leaf Integers from [1, 32]
criterion {squared error, friedman mse, absolute error}

GAM-T. We implement GAM using the Explainable Boosting Machines (EBMs) (Lou et al., 2012)
available in the InterpretML package (Nori et al., 2019). We adapt them for time series fore-
casting by passing time as a feature. By doing so, GAM finds a “baseline” trajectory which is the
shape function associated with the t variable. Then every prediction consists of the same baseline
trajectory but shifted vertically depending on the values of other shape functions. Such model is very
transparent but it is likely to underperform in settings where the trajectories have different trends for
different features. We perform hyperparameter tuning using Optuna (Akiba et al., 2019) and run it
for 100 trials. We describe the hyperparameters we tune and their ranges in Table 9

Table 9: GAM-T hyperparameter ranges

Hyperparameter Considered values

max bins Integers from [128, 512]
outer bags Integers from [4, 16]
inner bags Integers from [0, 8]
learning rate Float (log) from [0.001, 0.1]
max leaves Integer from [1, 6]
min samples leaf Integers from [1, 4]

24

Published as a conference paper at ICLR 2024

SINDy. SINDYy (Brunton et al., 2016) is an ODE discovery algorithm that produces closed-form
ODEs. We use the implementation in PySINDy library (de Silva et al., 2020; Kaptanoglu et al.,
2022). We adapt SINDy to work with static features by treating static features as a constant control
input. We perform hyperparameter tuning using Optuna (Akiba et al., 2019) and run it for 100 trials.
We tune the optimizer threshold by considering values from 0.001 to 0.1 (on a logarithmic scale),
and we tune the derivative estimation method. We consider three different kinds of differentiation
algorithms: finite difference, spline, and trend filtered. We show their corresponding hyperparameter
ranges in Table 10

Table 10: SINDy differentiation algorithms: hyperparameter ranges

Differentiation method Hyperparameter Considered values

Finite difference k Integer from [1, 5]
Spline s Float (log) from [0.001, 1]
Trend filtered order Integer from [0, 2]
Trend filtered α Float (log) from [0.0001, 1]

PySR. PySR (Cranmer, 2020) is a symbolic regression library that uses genetic programming. Ge-
netic programming algorithms highly depend on the time they are allowed to run for (as they can
explore more possibilities). We put a time constraint for PySR that is equal to the time it took
TIMEVIEW to run, including the hyperparameter tuning. Thus we do not perform hyperparame-
ter tuning for PySR (we run with default parameters). Instead, after each run we look at the best
equations of each length and we try each of them on the validation set. We then report the loss of
the best-found equation on the test set. We choose the maximum length of the expression to be a
maximum of 20 and the number of features times 3. We choose 20 as this is a reasonable length of
expression to comprehend, and we choose 3 times the number of features as that is the length of a
GAM that is usually considered interpretable. The parameters of PySR are listed in Table 11

Table 11: PySR hyperparameters

Hyperparameter Value

Binary operations +,−,×,÷
Unary operators log, exp, sin
maxsize max(20, 3M)

RNN. As a Recurrent Neural Network baseline, we use a multi-layer long short-term memory
(LSTM) RNN as implemented in pytorch. We implement the encoder as multi-layer neural net-
works. We also include dropout (Srivastava et al., 2014) and batch normalization (Ioffe & Szegedy,
2015). The sizes of the hidden layers, activation functions, and dropout probability are fine-tuned.
We perform hyperparameter tuning using Optuna (Akiba et al., 2019) and run it for 100 trials. We
describe the hyperparameters we tune and their ranges in Table 12.

Table 12: RNN hyperparameter ranges

Hyperparameter Considered values

Activation {ReLU,Sigmoid,Tanh,Leaky ReLU,ELU,SeLU}
Encoder hidden sizes 3 integers from [16, 128]
Encoder dropout probability Float from [0.0, 0.5]
Decoder dropout probability Float from [0.0, 0.5]
Decoder number of layers Integer from [1, 3]
Decoder hidden sizes Integer from [16, 128]
Learning rate Float (log) from [0.0001,0.01]
Batch size {64,128}
Weight decay Float (log) from [0.000001, 0.001]

25

Published as a conference paper at ICLR 2024

∆t-RNN. We adapt RNN described above to a setting with irregular measurements by passing the
difference between time points as an additional feature (Yıldız et al., 2021).

XGB-T. We implement XGBoost (Chen & Guestrin, 2016) using py-xgboost package. We adapt
it for time series forecasting by passing time as a feature. We perform hyperparameter tuning using
Optuna (Akiba et al., 2019) and run it for 100 trials. We describe the hyperparameters we tune and
their ranges in Table 13

Table 13: XGB-T hyperparameter ranges

Hyperparameter Considered values

n estimators Integers from [10, 1000]
eta Float (log) from [0.001, 0.1]
min child weight Integer from [1, 10]
max depth Integer from [3, 9]
gamma Float (log) from [0.00000001, 1.0]
subsample Float from [0.1, 1.0]
colsample bytree Float from [0.1, 1.0]
lambda Float (log) from [1e− 8, 1.0]

CatBoost-T. We implement CatBoost (Prokhorenkova et al., 2018) using catboost package. We
adapt it for time series forecasting by passing time as a feature. We perform hyperparameter tuning
using Optuna (Akiba et al., 2019) and run it for 100 trials. We describe the hyperparameters we tune
and their ranges in Table 14

Table 14: CatBoost-T hyperparameter ranges

Hyperparameter Considered values

n estimators Integers from [500, 2000]
learning rate Float (log) from [0.001, 1.0]
depth Integer from [1, 12]
boosting type {Ordered, Plain}
bootstrap type {Bayesian, Bernoulli, MVS}
l2 leaf reg Float (log) from [0.01, 10]
early stopping rounds Integers from [10, 50]

LGBM-T. We implement LightGBM (Ke et al., 2017) using lightgbm package. We adapt it
for time series forecasting by passing time as a feature. We perform hyperparameter tuning using
Optuna (Akiba et al., 2019) and run it for 100 trials. We describe the hyperparameters we tune and
their ranges in Table 15

Table 15: LGBM-T hyperparameter ranges

Hyperparameter Considered values

n estimators {10, 50, 100, 200, 500, 1000, 2000, 5000}
learning rate Float (log) from [0.00001, 10.0]
num leaves Integer from [2, 256]
min child samples Integer from [1, 100]
reg alpha Float (log) from [1e− 7, 10.0] or 0.0
reg lambda Float (log) from [1e− 7, 10.0] or 0.0

D.2.1 SENSITIVITY ANALYSIS

In this section, we investigate how sensitive TIMEVIEW is to the number of basis functions B.
We perform our experiments for different numbers of basis functions (from 5 to 16) on two real

26

Published as a conference paper at ICLR 2024

datasets—Airfoil and Tacrolimus. The results can be seen in Figure 6. We observe that TIMEVIEW
is not very sensitive to the number of basis functions and achieves good performance even when the
number of basis functions is very low. That means it can have a good predictive power even if the
compositions of the predicted trajectories are very short—and thus easy to understand.

6 8 10 12 14 16
Number of basis functions

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r

Impact of the number of basis functions

Tacrolimus
Airfoil

Figure 6: This figure shows how the error changes with the number of basis functions

D.3 COMPUTATION TIME

It is important to note that training TIMEVIEW is basically the same as training a standard neural
network for multi-output regression. Thanks to the preprocessing of the B-Spline basis functions
there is no significant overhead due to time series forecasting. In fact, TIMEVIEW uniquely requires
a single pass through the network to predict the whole trajectory no matter the time horizon. This
may make it faster than methods that forecast trajectory by generating outputs sequentially. The
visualization tool is applied only after the model is trained and works in real-time. The computation
times (in seconds) can be seen in the Table 16 below. The run times are for all experiments for a
given dataset. That includes 100 runs of hyperparameter tuning and 10 runs to get standard errors.

The experiments were performed on 12th Gen Intel(R) Core i7-12700H with 64 GB of RAM and
NVIDIA GeForce RTX 3050 Ti Laptop GPU as well as on the 10th Gen Intel Core i9-10980XE
with 60 GB of RAM and NVIDIA RTX A4000. All experiments take around 23.6h to run.

Table 16: Computation times (in seconds)

method Airfoil Beta Sine Stress-Strain Tacrolimus Tumor flchain

RNN - 3098 1121 - - 4299 1034
∆t-RNN 691 2952 1265 1265 175 3901 1112
XGB-T 34 134 98 124 32 244 79
LGBM-T 25 364 71 172 9 93 30
CatBoost-T 70 1426 1098 882 93 1289 715
PySR 214 2018 1040 308 272 2977 1211
SINDy 64 292 77 2757 232 1136 35247
GAM-T 12 28 14 109 56 194 1139
Linear-T 1 2 1 2 1 4 5
DecisionTree-T 1 17 2 50 1 104 58
TIMEVIEW 191 1908 1022 194 135 2740 987

D.4 LICENSES

The licenses of the software used in this work are presented in Table 17

27

Published as a conference paper at ICLR 2024

Table 17: Software used and their licenses

Software License

gplearn BSD 3-Clause “New” or “Revised” License
scikit-learn BSD 3-Clause “New” or “Revised” License
numpy liberal BSD license
pandas BSD 3-Clause “New” or “Revised” License
scipy liberal BSD license
python Zero-Clause BSD license
PySR Apache License 2.0
interpret MIT License
py-xgboost Apache License 2.0
pytorch BSD-3
pytorch lightning Apache License 2.0
tensorboard Apache License 2.0
matplotlib Matplotlib license - BSD compatible
jupyter notebook BSD 3-Clause “New” or “Revised” License
scikit-survival GPL-3.0 license
pysindy MIT License
catboost Apache License 2.0
lightgbm MIT License

E ADDITIONAL DISCUSSION

E.1 ANSWERING QUESTIONS ABOUT TIMEVIEW: TUMOR EXAMPLE

In this section, we demonstrate how we can use the visualization tool to understand TIMEVIEW
predictions. In particular, we show how our tool allows us to answer the questions described in
Section 1. We train TIMEVIEW on the synthetic tumor dataset (details in Appendix D).

Q: Would the predicted tumor volume keep decreasing if we adjusted the treatment?

This is a question on level 1—about the trend of the trajectory. Figure 7 shows that the current
trajectory is decreasing. The colorful band under the dosage slider shows the compositions for
different drug dosages. We can see that the trajectory is increasing for very low dosages (orange).
For higher dosage (blue), the trajectory is first decreasing and then increasing. Finally, higher dosage
(green and pink) corresponds to decreasing trajectories. To answer the question, it is enough to check
at which points the bands change color. If the drug’s dose is kept above 0.46, the trajectory will keep
decreasing. The secondary plot in the right panel shows how the y-coordinate of the first transition
point changes as the initial tumor volume changes. As expected, the plotted function is close to the
identity. It is a good sanity check to confirm that our model learned that one of the static features
corresponds to the initial measurement.

Q: What feature changes would lower the minimum tumor volume?

This is a question on level 2—about the property of a particular trend. Let us consider a lower drug
dosage where the trajectory decreases and then increases (Figure 8). We observe that the minimum
of the tumor corresponds to the y-coordinate of the second transition point. We can use the tool on
the right to plot how the minimum depends on the dosage (or any other feature). We can see that the
minimum volume decreases with an increased drug dosage.

Q: How feature changes would impact the time this minimum is achieved?

Similarly, we can consider the time when this minimum is achieved. We can easily do that by just
switching from the y-coordinate of the transition point to its t-coordinate (Figure 9). We can see
how the time depends on the dose of the drug. Crucially, we can see how by lowering the dose of
the drug, we bring this time closer to 0 where it “merges” with the first transition point, and the
composition of the trajectory changes. The trajectory becomes increasing (Figure 10).

28

Published as a conference paper at ICLR 2024

0.460.15

Tumor volume

Figure 7: TIMEVIEW applied to the tumor dataset. Different dosages of the drug correspond to trajectories
with different compositions. We can infer that if the drug’s dose is kept above 0.46, the trajectory will keep de-
creasing. The right panel demonstrates that TIMEVIEW has learned that one of the static features corresponds
to the initial measurement.

Tumor volume

Figure 8: TIMEVIEW applied to the tumor dataset. The right panel shows how the trajectory’s minimum
depends on the drug’s dosage.

Tumor volume

Figure 9: TIMEVIEW applied to the tumor dataset. The right panel shows how the time to achieve the
minimum volume depends on the drug’s dosage.

E.2 CLOSED-FORM EXPRESSIONS

Whether a closed-form expression guarantees bi-level transparency or not is highly dependent on the
exact for of the expression. For instance, a trajectory described by y = sin(2πxt) is transparent. We
can understand the trend of the trajectory (the characteristic sinusoidal shape) and we can understand
the impact of the covariate (x) on the property of this trend (its frequency). However, some even very

29

Published as a conference paper at ICLR 2024

Tumor volume

Figure 10: TIMEVIEW applied to the tumor dataset. For such low dose of the drug, the trajectory keeps
increasing exponentially. We can also see that, for instance, the trajectory has the same trend regardless of the
weight of the patient. The right panel shows how the final tumor volume depends on age.

simple expressions do not have this property. A good example is the expression for the probability
density function of the beta distribution used in Section 7, i.e., y(t) = 1

B(α,β) t
α−1(1− t)β−1, where

B is the beta function, Even though the expression is very compact it is very challenging to infer
the trend of the trajectory based on the features α and β. It is even harder to understand the impact
of the features on the properties of these trends. That is why, we believe, the Beta dataset is a very
interesting example for TIMEVIEW.

E.3 CONTRAST WITH FEATURE IMPORTANCE METHODS

As we explain throughout the paper, current feature importance techniques are bottom-up, i.e., they
calculate the importance scores with respect to individual prediction horizons. Below we show the
results of applying SHAP (Lundberg & Lee, 2017) on top of LightGBM (adapted for time series
forecasting) to the Sine (Figure 11), Beta (Figure 12), and Tacrolimus (Figure 13) datasets.

SHAP values assign an importance score to each feature. Features with positive scores impact the
prediction positively, while those with negative SHAP values impact the prediction negatively. As
we are interested in time series forecasting, the output of the algorithm is not a single outcome, but
rather a whole trajectory. That is why we apply SHAP separately to a set of predictions at discrete
time points.

While SHAP offers insights into the importance of specific features at discrete time points,
TIMEVIEW takes this analysis a step further by providing a comprehensive understanding of fea-
ture impacts on the entire trajectory. It shows exactly how the prediction would change if the value
of the feature is changed (i.e., how the trend of the trajectory and its properties would change).

Moreover, SHAP indicates feature importance at pre-specified time steps that may lack broader
significance. In contrast, TIMEVIEW, captures the essence of the trajectory’s behavior by demon-
strating the impact on critical properties such as local maxima, minima, and inflection points even
as their time coordinates vary.

Even in complex, high-dimensional scenarios, TIMEVIEW remains adept at addressing counterfac-
tual queries. For instance, it can address the question of how the maximum of a trajectory changes if
one of the variables is adjusted. This is of critical importance in pharmacology, where the trajectory
is the drug concentration curve and the variable of interest is the drug dose. It also provides a clear
understanding of how changes to the feature vector influence the trajectory’s direction, for instance,
transitioning it from ascending to descending. It is impossible to answer such queries using SHAP
values.

In the table below we summarize examples of questions that can be asked about the model and
whether they can be answered by SHAP and TIMEVIEW. We also observe that SHAP can always
be used on top of TIMEVIEW to get additional insights. However, we cannot get TIMEVIEW-type
explanations from just any black box model.

30

Published as a conference paper at ICLR 2024

Table 18: Questions about a model and whether they can be answered using SHAP and TIMEVIEW

Question SHAP TIMEVIEW

Which features are important? Yes Yes
Which features are important for the prediction at t = 1.5? Yes No
How does the dose of the drug impact the maximum concentration? No Yes
How does the feature vector need to be altered to change the trajectory
from increasing to decreasing No Yes

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (hours)

x
tFe

at
ur

e SHAP values for each feature over time (Sine dataset)

0.6

0.4

0.2

0.0

0.2

0.4

Figure 11: SHAP values for each feature over time calculated for LightGBM trained on the Sine dataset

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (hours)

alpha
beta

tFe
at

ur
e

SHAP values for each feature over time (Beta dataset)

0.75

0.50

0.25

0.00

0.25

0.50

Figure 12: SHAP values for each feature over time calculated for LightGBM trained on the Beta dataset

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
Time (hours)

DOSE
DV_0
SEX

WEIGHT
HT
HB

CREAT
CYP

FORM
t

Fe
at

ur
e

SHAP values for each feature over time (Tacrolimus dataset)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 13: SHAP values for each feature over time calculated for LightGBM trained on the Tacrolimus dataset

31

Published as a conference paper at ICLR 2024

E.4 ADDITIONAL SNAPSHOTS OF THE INTERFACE

Tacrolimus. We apply our model to the Tacrolimus dataset (Woillard et al., 2011) that contains
measurements of drug concentration in blood, and we present a snapshot of the trained model in
Figure 14. The band under each slider shows the values of the composition map when we change
the value of the corresponding slider but all other features are fixed. This allows us to answer
questions such as “What If ”, “How to be that”, and “How to still be this” from the XAI Question
Bank (Liao et al., 2020) discussed in Section 1. For instance, in Figure 14, we choose the second
transition point that corresponds to the maximum concentration of the drug. On the secondary plot,
on the right, we can see how the position of this maximum changes as we vary any of the covariates.
Currently shown plot indeed shows that if the dose of the drug is decreased then the maximum
concentration decreases as well. We can also see that it is not an entirely linear relationship.

Features

Current feature values

Predicted trajectory

Transition points

Different
compositions

Movable
sliders

Location of the transition point
vs

feature value

𝑦 or 𝑡
coordinate

Figure 14: This figure shows the full interface where we are interested in perturbing one feature at a time (thus
we use colorful bands instead of contour plots)

Sine. We also show a snapshot of our interface when TIMEVIEW is applied to the Sine dataset—
Figure 15.

Level 1 (trends) Level 2 (properties)

Transition points

Movable slider Current feature value Predicted trajectory

𝑥

4

3

2

1

y or t coordinate

feature

Figure 15: Snapshot of our dynamical visualization of TIMEVIEW. Our model adheres to bi-level
transparency—a top-down approach that focuses on the trend of the trajectory (Level 1) and the properties
of the particular trend, e.g., transition points (Level 2). The left panel shows how the trajectory trend changes
when one of the features is perturbed. The right panel investigates the position (y-coordinate) of the second
transition point (local minimum) as the initial tumor volume changes.

32

Published as a conference paper at ICLR 2024

Beta. Sometimes, we may be interested in the effect of perturbing two features at the same time.
We visualize it using a colorful 2D contour plot. Figure 16 shows TIMEVIEW applied to the Beta
dataset.

Predicted trajectory for alpha 2.68 and beta 1.93

alpha

b
et

a

1.58 2.21

A B

C

Figure 16: This figure shows how our interface can be used to understand perturbations of two features at
the same time. Panel A shows how you can move the sliders to move around the feature space and update the
predicted trajectory on the plot on the right. Panel B shows different trends corresponding to different regions
of the feature space. Panel C shows how we can choose any of the transition points and see how their position
changes as we change any of the features. In particular, we show how the second transition point, the maximum
of the trajectory, moves to the left as the α increases.

E.5 INSIGHT INTO RESULTS

Some methods perform better on real datasets than synthetic ones. As we explain in Section 7,
we create the two synthetic datasets (Sine and Beta) to be challenging in the following way: the
trend of the trajectory changes significantly for different features. The same is true for the Tumor
datasets. The tumor growth model we use was proposed to fit many different cancer trajectories
(Wilkerson et al., 2017). That includes exponential increase, exponential decay, decrease and then
increase. Although real data can be noisy, the bigger variability of trends makes it harder for some
methods.

GAM-T struggles on the Tumor dataset. As we mention in Section 6, GAM-T’s predicted
trajectories are all parallel. They are equal to the shape function ft(t) shifted vertically by
f1(x1) + . . . ,+fM (xM) for static features x. That means it can model only one trend. As the
focus of the synthetic datasets was on different trends, it is not surprising that GAM-T performs
very poorly on them. In particular, the Tumor dataset contains trajectories of different trends (e.g.,
exponential increase, exponential decay, decrease and then increase).

E.6 LIMITATIONS AND FUTURE WORKS

Static inputs. TIMEVIEW is a particular application of bi-level transparency for time series fore-
casting from static features. We hope future works will extend it to settings where the input may
contain the previous part of the trajectory or other exogenous time series.

Modelling the trajectory as a cubic spline. We chose to model the trajectory as a cubic spline
because cubic splines are flexible, and this representation allows for a straightforward composition
extraction (see Section 5 and Appendix C). However, not all trajectories can be effectively approxi-
mated by a cubic spline. Future works should investigate other ways to represent the trajectory that
would still make it amenable to composition extraction.

33

Published as a conference paper at ICLR 2024

Regularization. Although we use the L2 penalty to constrain how quickly the compositions change
as we change the input features, future research could explore constraining the learned composition
map for improved interpretability or designing better penalties for overly long and abruptly changing
compositions.

Likelihood of a sample. The visualization interface allows for showing all combinations of input
variables, even ones that do not appear in reality. In the future, the interface can be enhanced to
display information about the likelihood of a particular sample (or a whole set of samples).

Confidence bounds. We could apply a technique like Deep Ensembles to get uncertainty estimates
on the coefficients of the B-Spline basis functions which we could then transform into uncertainty
estimated for the whole trajectory. Another interesting approach would be to adapt uncertainty
estimation to our conceptual framework of trends and properties, i.e., how uncertain we are about a
particular trend.

Modeling seasonality. Our framework could accommodate seasonality by modeling seasonal
changes as a sine function where the neural network determines the frequency, magnitude, and
offset (the same way as the B-Spline coefficients). Our model would be defined as:

g(x)(t) =

B∑
k=1

h(x)bϕb(t) +A(x) sin(ω(x)t+ ψ(x)) (14)

where A : RM → R, ω : RM → R, ψ : RM → R are either separate neural networks or they share
weights with the encoder h.

Then, we can treat the compositions in the same way as the current implementation of TIMEVIEW
but with three additional properties to monitor (in addition to transition points). This allows us to
answer questions like ”How would the variability increase if I decrease this particular feature?”.

Alternatives to cubic splines. As we describe in Section 5, we chose cubic splines because we
needed a space of trajectories that satisfies the following two criteria.

• The set of dynamical motifs S is compatible with the class of predicted trajectories Ŷ .

• For every ŷ ∈ Ŷ we can calculate its composition CS [ŷ]

We could use many other basis functions, such as a sine basis or some types of wavelets. They could
satisfy the first condition, but the composition would likely need to be calculated numerically and
not analytically as it is done now. In case we are interested in a different set of motifs (please see
Appendix A.4 for examples), other choices may also be possible. For instance, for range motifs or
monotonic motifs, Haar wavelets may be a good choice, and we suspect the compositions can be
calculated efficiently.

Applications to traditional XAI techniques for static predictions. Adhering to our framework
provides additional output next to the standard forecasted trajectory: the current composition and the
coordinates of the transition points. Traditional XAI techniques for regression and classification can
be applied to these additional outputs instead of individual trajectory points to gain more meaningful
explanations. Thus, techniques such as dimensionality reduction, feature importance methods, local
surrogates, and counterfactual explanations can now be extended to time series forecasting. This
opens up numerous potential extensions and applications of our approach.

E.7 INHERENTLY DISCRETE TRAJECTORIES

Modeling a phenomenon as a continuous system is an established practice in sciences and engineer-
ing. That includes settings mentioned in our paper, such as disease modeling or drug concentration
in blood. Of course, in practice, we only observe discrete measurements, which may be irregular
and noisy. However, sometimes the phenomenon cannot be modeled as a continuous system. This
happens where the set of time points is inherently discrete, and there is no notion of time “in between
the time points”. For instance, the number of sunshine hours for each day would be an inherently
discrete trajectory as there is no meaningful “number of sunshine hours” between two consecutive
days. We note that our conceptual work in Section 2 still accommodates such scenarios. However,
the formalism in Section 4 must be adapted.

34

Published as a conference paper at ICLR 2024

E.8 TRAJECTORY CHANGES

In Section 2, we claim that although a prediction of a regression algorithm can change in only 3
ways (increase, decrease, remain constant), a trajectory can change in numerous ways. To see that,
let us consider a set of time points T = {1, 2, . . . , 9, 10}. The function can increase, decrease, or
remain constant for each time step. Thus, the function described by these ten values can change in
310 = 59049 ways (which is much bigger than 3—the number of ways an output of a regression
model can change). We describe this in the paragraph on ”increased cognitive load” in Section 2.
It is infeasible for a human to reason about all these different possibilities, which motivates our
proposal of a top-down approach. The situation becomes even more complex where the trajectory is
not defined over ten time points but over a whole real interval—which is the focus of our work.

F EXTENDED RELATED WORKS

Transparent models for static predictions. Standard transparent methods for static predictions
include linear/logistic regression, scoring systems (Ustun & Rudin, 2016), decision trees/rule lists
(Angelino et al., 2018; Hu et al., 2019), and generalized additive models (GAMs) (Hastie & Tibshi-
rani, 1986; Lou et al., 2012). Such methods can often be used for time series forecasting by passing
the time t as an additional feature. They often satisfy bi-level transparency but have poor perfor-
mance. For instance, all trajectories predicted by linear regression and GAMs are parallel; thus,
they cannot model different trends (Section 7). Decision Trees capture non-additive interactions,
enabling flexible forecasting models. However, they require many splits to approximate the ground
truth, leading to poor performance or incomprehensibility (Section 7).

Closed-form expressions. Closed-form expressions are mathematical formulas composed of a fi-
nite number of variables, binary operators (+,−,×,÷), well-known functions (e.g., sin, exp, log),
and constants. For instance, sin(x2) − e2.1y . A machine learning area that aims to find such ex-
pressions fitting the data is called Symbolic Regression (La Cava et al., 2021). This area originated
from attempts to unearth equations describing physical systems through machine learning (Schmidt
& Lipson, 2009; Udrescu & Tegmark, 2020; Holt et al., 2023; Biggio et al., 2021; D’Ascoli et al.,
2022). Differential equations represent another category of mathematical expressions that draw
significant interest in the scientific community. Numerous algorithms have been proposed for dis-
covering Ordinary Differential Equations (ODEs) (Brunton et al., 2016; Qian et al., 2022; Kaheman
et al., 2020; Messenger & Bortz, 2021a) and Partial Differential Equations (Rudy et al., 2017; Long
et al., 2019; Raissi & Karniadakis, 2018; Messenger & Bortz, 2021b; Kacprzyk et al., 2023). Al-
though some mathematical expressions may satisfy bi-level transparency, this is not guaranteed as
it depends on the actual form of the found equation. In fact, reparametrization of equations so that
their parameters reflect quantities of key theoretical interest is an active area of research (Preacher
& Hancock, 2015). We delve into this subject in greater detail and provide examples in Appendix E.

Overview of XAI techniques. While our research focuses on transparent models, the landscape
of post-hoc explainability methods has experienced significant growth. Such methods are used to
explain the predictions of a black box model. These include feature importance methods (Ribeiro
et al., 2016; Lundberg & Lee, 2017) (also called saliency methods) that highlight which features
the model is sensitive to, example importance methods (Ghorbani & Zou, 2019; Pruthi et al., 2020;
Crabbe et al., 2021) that identify important training samples, and concept-based explanations (Kim
et al., 2018). Relatively little attention has been devoted to time series (Barredo Arrieta et al., 2020),
but a few recent methods aim to extend feature importance to this setting (Crabbé & Schaar, 2021;
Leung et al., 2023).

Feature importance for time series. While our research focuses on transparent models, many
saliency (or feature importance) methods have been developed to highlight which features the model
is sensitive to (Ribeiro et al., 2016; Lundberg & Lee, 2017). Although these methods have been ex-
tended to time series inputs (Crabbé & Schaar, 2021; Leung et al., 2023), limited work has been
done to extend them specifically to time series outputs. Current XAI techniques either assume the
output is a scalar (Siddiqui et al., 2019) (e.g., time series classification (Hao & Cao, 2020)), treat
the trajectory as a single object (Gao et al., 2023)—thus do not show how a feature changes the
trajectory—or show a saliency map at each predicted point separately (Pan et al., 2020), thus allow-
ing only for a bottom-up understanding of the predicted trajectory. Saliency methods can be broadly
divided into Gradient-based (Sundararajan et al., 2017; Shrikumar et al., 2017), Perturbation-based

35

Published as a conference paper at ICLR 2024

(Zeiler & Fergus, 2014), and Attention-based methods (Vaswani et al., 2017; Alaa & van der Schaar,
2019; Lim et al., 2021). Other important examples include SHAP (Lundberg & Lee, 2017) based on
Shapley values and LIME (Ribeiro et al., 2016) that fits a local linear model.

Shapelets and motifs. As our method discusses the shape of the trajectory, it may seem related
to shapelet-based methods (Ye & Keogh, 2009). However, these methods are usually used for data
mining and classification tasks. They aim to find subsequences of a time series that represent the
most important patterns of each class and thus can be used to distinguish between them (Chen et al.,
2022). Similarly, motif discovery identifies short repeating patterns in the time series (Torkamani &
Lohweg, 2017) usually for insights into the problem or classification tasks.

Statistical methods. Although methods like ARIMA or Hidden Markov Models (Rabiner & Juang,
1986) have potential for compact state transition equations, these models generally fail to meet bi-
level transparency standards due to the complexity of understanding how the input feature changes
influence the entire trajectory—they do not allow for top-down understanding as the trajectory is
constructed sequentially.

36

	Introduction
	Transparency for Time Series Forecasting
	Setup
	Bottom-Up: Current XAI Approach to Trajectory Comprehension
	Top-Down: New Approach to Trajectory Comprehension

	Time Series Forecasting From Static Features
	Motifs and Compositions
	TIMEVIEW
	Related Works
	TIMEVIEW in Action
	Discussion and Conclusion
	Notation and definitions
	Notation
	Glossary of terms
	Definitions
	Motif Examples

	Theoretical Results
	Implementation
	Model
	Composition Extraction
	Algorithm for Knot Selection

	Experiments
	Datasets
	Real Datasets
	Synthetic Datasets

	Baselines
	Sensitivity Analysis

	Computation Time
	Licenses

	Additional Discussion
	Answering Questions About TIMEVIEW: Tumor Example
	Closed-Form Expressions
	Contrast With Feature Importance Methods
	Additional Snapshots of the Interface
	Insight Into Results
	Limitations and Future Works
	Inherently Discrete Trajectories
	Trajectory Changes

	Extended Related Works

