
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020 3401

Grayscale-Thermal Tracking via Inverse Sparse
Representation-Based Collaborative Encoding
Bin Kang , Dong Liang , Wan Ding, Huiyu Zhou, and Wei-Ping Zhu , Senior Member, IEEE

Abstract— Grayscale-thermal tracking has attracted a great
deal of attention due to its capability of fusing two different
yet complementary target observations. Existing methods often
consider extracting the discriminative target information and
exploring the target correlation among different images as
two separate issues, ignoring their interdependence. This may
cause tracking drifts in challenging video pairs. This paper
presents a collaborative encoding model called joint correla-
tion and discriminant analysis based inver-sparse representation
(JCDA-InvSR) to jointly encode the target candidates in the
grayscale and thermal video sequences. In particular, we develop
a multi-objective programming to integrate the feature selection
and the multi-view correlation analysis into a unified optimization
problem in JCDA-InvSR, which can simultaneously highlight the
special characters of the grayscale and thermal targets through
alternately optimizing two aspects: the target discrimination
within a given image and the target correlation across different
images. For robust grayscale-thermal tracking, we also incor-
porate the prior knowledge of target candidate codes into the
SVM based target classifier to overcome the overfitting caused
by limited training labels. Extensive experiments on GTOT and
RGBT234 datasets illustrate the promising performance of our
tracking framework.

Index Terms— Grayscale-thermal tracking, inverse sparse
representation, discriminant analysis, feature selection.

I. INTRODUCTION

V ISUAL tracking plays a very important role in computer
vision due to its many applications in video analysis [1],

vehicle navigation [2] and human-computer interaction [3].
Despite the significant progress made recently, visual tracking
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Fig. 1. An example of grayscale-thermal video pairs. The grayscale video
sequence has very limited illumination, while the thermal video sequence is
robust to the illumination changes. Grayscale-thermal tracking aims to exploit
the complementarity property to guarantee the robust tracking performance in
both thermal and grayscale sequences.

under bad weather, such as rain and smog, remains very
challenging because the visible spectrum camera only collects
limited light in poor weather, making it difficult to discriminate
the foreground target from the background.

With the rapid development of multimedia and internet
of things, thermal infrared camera has become economically
affordable. Such a camera can capture the thermal infrared
radiation emitted by the subjects with temperature above
absolute zero, and hence is suitable for night surveillance.
For this reason, the joint use of visible spectrum camera and
thermal infrared camera offers two advantages: 1) Thermal
infrared camera is robust to the illumination change, which
can provide complementary data to visible spectrum that are
captured under poor light condition; 2) The gray feature
in visible spectrum camera would contribute to solving the
crossover problem in thermal infrared camera based object
detection. Therefore, grayscale-thermal tracking with both
grayscale and thermal features can effectively tackle the bad
weather challenge [4].

In grayscale-thermal tracking, the grayscale and thermal
video sequences are obtained in pairs (see Fig. 1). Exploiting
the complementarity property of the grayscale and thermal
information to enhance the tracking performance is actually
a multi-modality fusion problem. Existing fusion methods
for grayscale-thermal tracking can be briefly classified into
two categories. The first one is the particle fusion based
method, in which fusing two particle filter models requires to
simultaneously extract robust features from the grayscale and
thermal video sequences for estimating the particle weights.
To this end, Cvejic et al. [5] adopted the color cue and
the structural similarity measure, Leykin and Hammoud [6]
proposed to use the likelihood of the background extraction
result, and Talha and Stolkin et al. [7] used color-based
particle filter to model the appearance of the grayscale and
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thermal targets. The particle weight estimation is sensitive to
the occlusion, thus causing a bottleneck for the particle fusion
based grayscale-thermal tracking methods in challenging video
pairs.

The second category of multi-modality fusion relies on
sparse representation to effectively overcome the occlusion [8],
which is our focus in this paper. Based on the ways of exploit-
ing the complementarity property, the sparse representation
based grayscale-thermal tracking can further be categorized
into two kinds: the first one is to concatenate the grayscale
and the thermal images patches into a vector to sparsely
model the moving target [9], [10]. Those works usually assume
that the target patches extracted from the grayscale and the
thermal video sequences can all work well. However, they
would yield poor tracking performance in challenging video
sequences where such an assumption does not hold. In fact,
there exist not only the potential similarity but also a large
gap between the grayscale and the thermal video sequences.
Hence, the reliability of the extracted target patches cannot be
guaranteed. Considering this fact, the second one integrates the
multi-modality fusion and the modality reliability estimation
into a unified optimization problem [11], [12], which can adap-
tively make the grayscale and thermal information complement
with each other.

Generally speaking, the previous sparse representation
based methods require the corresponding targets in the
grayscale and thermal video sequences to yield a similar
sparse representation. However, the state-of-the-art methods
in [11] and [12] could not meet this requirement in some
practical cases such as that in Fig. 1, where the dissimilarity
between the target and the background in Fig. 1(a) and (b)
is significant. Especially in the grayscale image, the dog is
immersed in the darkness, and only a little useful informa-
tion can be used to represent the appearance of the dog.
The reason why it is difficult to achieve visual tracking
in Fig. 1 is that there exist a chicken-and-egg problem:
without exploring the correlation between the targets in the
grayscale and thermal images, it is hard to directly extract
discriminative information from the grayscale target. On the
other hand, if we cannot use discriminative feature to represent
the target, it may involve corruption in target correlation
analysis. Existing methods often consider the feature selection
and the target correlation as two separate issues, for exam-
ple those in [9]–[12], ignoring the interdependence between
them. Moreover, in contrast to grayscale-thermal tracking,
the existing spectrum camera based tracking methods only
pay attention to the grayscale information, and hence could
not solve the dilemma in Fig. 1 either. The aforementioned
observations motivate our work in this paper.

In this paper, we propose an inverse sparse representation
based framework (see Fig. 2) to address the challenge in
grayscale-thermal tracking, in which the inverse sparse rep-
resentation, the feature selection and the multi-view correla-
tion analysis are firstly integrated into a unified optimization
problem (JCDA-InvSR model) for collaborative target candi-
date encoding. Secondly, the target candidate codes are used
to achieve SVM based target classification. Introducing the
unified optimization based target candidate encoding in the

tracking framework can overcome the dilemma in challenging
video pairs due to two reasons: 1) Feature selection can
highlight the discriminative information in a certain image,
while correlation analysis can enforce the strong target (the
target can be discriminated from the background) to give
more compensation to the weak target (the target is difficult
to be discriminated from the background) through exploring
the correlation between different kinds of images. Integrating
the feature selection and the multi-view correlation analysis
into the joint optimization model can alternately optimize both
the target discrimination within a certain image and the target
correlation in different images, thereby making full use of the
complementarity property. 2) Inverse sparse representation is
an extension of traditional sparse representation. It has been
proved in [13] that if inverse sparse representation is consid-
ered as the target encoder, the target codes are robust to the
illumination change and the occlusion. The main contributions
of this paper are summarized as follows:

• We propose a collaborative encoding model called joint
correlation and discriminant analysis based inver-sparse
representation (JCDA-InvSR) to jointly encode the target
candidates in the grayscale and thermal video sequences.
Since JCDA-InvSR can achieve discriminative feature
selection in a common subspace, it can simultaneously
enhance the discrimination and robustness of target candi-
date codes in the grayscale and thermal video sequences.

• The proposed JCDA-InvSR model involves a joint opti-
mization problem that not only minimizes the inverse
sparse coding error but also maximizes the correlation
between the grayscale and thermal observations. For
practical applications, we propose an alternative recon-
struction method to solve this optimization problem.

• We design a visual tracking framework based on JCDA-
InvSR, which incorporates the prior knowledge of tar-
get candidate codes into the SVM based optimization
problem as a regularizer. This can effectively avoid the
overfitting caused by the insufficient training samples.

• Extensive experiments on GTOT, RGBT234 and
TU-VDN datasets show that our JCDA-InvSR model
not only can collaboratively encode the grayscale and
thermal target candidates, but also can be used for
multi-view observation encoding.

To the best of our knowledge, only a few works focus
on the inverse sparse representation based grayscale-thermal
tracking. Note that our previous work [14] also introduces
inverse sparse representation in grayscale-thermal tracking.
The main differences between this paper and the work in [14]
are summarized as follows: 1) The inverse sparse represen-
tation model in [14] only explores the correlation between
the grayscale and the thermal targets, but it cannot explore
the inter and intra class similarity in the grayscale and the
thermal sequences, respectively. The JCDA-InvSR proposed
in this paper uses multi-objective programming to integrate
the inver-sparse representation, the feature selection and the
multi-view correlation analysis into a unified optimization
problem, which cannot only explore target correlation between
different image domains, but also can exploit the class similar-
ity within certain image. 2) The inverse sparse representation
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Fig. 2. The proposed inverse sparse representation based tracking framework. The JCDA-InvSR model aims to build a joint optimization to estimate
the projection matrices and inverse sparse representation codes for grayscale-thermal target candidates. The projection matrices adopt multi-view correlation
analysis and feature selection to exploit the correlation between grayscale and thermal targets for extracting the useful information in grayscale-thermal targets.

model in [14] is based on a single objective function. By con-
trast, the JCDA-InvSR requires to simultaneously optimize
two objective functions. Since JCDA-InvSR is much more
sophisticated than that reported in [14], we propose a practical
reconstruction method to accelerate the tracking speed. 3) We
have revised the training process of SVM to enhance the target
classification performance.

This paper is organized as follows. In Section II, we discuss
the background and the related works. Section III illustrates
our proposed inverse sparse representation based collaborative
encoding model in detail. Section IV uses the proposed
encoding model to achieve visual tracking. Experiment results
and related discussions are given in section V, and finally
conclusions are presented in Sections VI.

II. BACKGROUND AND RELATED WORKS

A. Sparse Representation Based Visual Tracking

1) Sparse Representation in Visible Spectrum Tracking:
In traditional sparse representation based visual tracking,
the target observation matrix (target candidate matrix) Y =
[y1, y2, . . . , yn] is firstly obtained from particle filter method,
then the observation likelihood is estimated by solving the
following problem [15]

arg min
�

�Y − D��2
F + λ���2,1, (1)

where D = [DP , DN ] is the target dictionary, where DP

and DN are the positive and the negative sub-matrices (the
foreground and the background templates), � is the sparse
representation matrix of observation matrix Y. Problem (1)
for traditional visual tracking is often considered as a clas-
sifier, which is to calculate the importance of observation
vectors yi (i = 1, 2, . . . , n) according to the reconstruction

error �yi − Dθ i�2
2. The observation vector with the minimum

reconstruction error is the final tracking result for the current
frame. Since the dimension of Y is often very large, solving
problem (1) incurs high computational complexity. Inspired by
Eq. (1), extensive works [16]–[20] have been done to enhance
the robustness and reduce the computational complexity of the
sparse representation based visual tracking. However, those
methods cannot give good tracking performance in poor light
condition and severe occlusion because the discriminative tar-
get information extracted from the grayscale video sequences
is very limited.

2) Inverse Sparse Representation in Visible Spectrum Track-
ing: Compared with Eq. (1), the inverse sparse representation
model is originally proposed in [21] for visual tracking. It is
in general written as

arg min
U

�D − YU�2
F + λ�U�1. (2)

In this problem, the target dictionary D is inversely repre-
sented by the observation matrix Y, and U is the inverse sparse
representation matric. Here, the dimension of D is far less than
that of Y, hence, problem (2) has obviously lower computa-
tional complexity than problem (1). Since the target dictionary
is composed of the positive and the negative templates, using
target candidates to inversely represent the target dictionary
can indicate the likelihood of target candidates belonging to
the foreground and background. This is actually a new method
to make the target candidate more class discriminative. Based
on this observation, problem (2) can be regarded as a target
candidate encoder in traditional visual tracking. The state-of-
the-art inverse sparse representation based tracking methods
include [13], [22]–[25]. However, those methods only use
grayscale information to achieve visual tracking, and thus may
yield tracking drift in severe background clutter.
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3) Sparse Representation in Grayscale-Thermal Tracking:
Using sparse representation to model the grayscale-thermal
video pairs, the key point is to adaptively evaluate the con-
tributions of different sparse representation models. To solve
this problem, Li et.al. proposed a collaborative sparse repre-
sentation, which is formulated as [12]

arg min
�,α

2∑
k=1

(αk)s

2
�Yk − Dk�k�2

F

+ λ���2,1 +
2∑

k=1

(
φk(αk)s + (1 − αk)s), (3)

where Y1 and Y2 denote the observation matrices of
the grayscale and thermal video sequences, respectively.
� = [�1,�2] is the sparse representation matrix of
Y = [Y1, Y2], and αk is the reliable weight for the
sparse representation error of Yk . Problem (3) is actually
a multi-modality based sparse representation, in which αk

can be online updated for adaptive multi-modality fusion.
In fact, there exist not only the potential similarity but also
a large gap between grayscale and thermal target candidates,
which means that only partial information in Yi is good
for multi-modality fusion. Moreover, problem (3) can not
highlight useful information in Yk , and thus can not guarantee
that the same target in the grayscale and the thermal images
receives similar sparse representation results in challenging
scenarios. In addition, problem (3) uses sparse representation
to achieve multi-modality fusion, and its computational com-
plexity is in general very high.

B. Other Related Works

1) Deep Learning in Visible Spectrum Camera Based Visual
Tracking: With the rapid development of artificial intelligence,
deep learning has become a useful tool in visible spectrum
camera based visual tracking. According to different network
structures, the state-of-the-art methods can be categorized into
CNN based trackers [26]–[29], RNN based trackers [30],
[31], Siamese network based trackers [32]–[35], etc. Different
from visible spectrum camera based visual tracking, the video
pairs in grayscale-thermal tracking often contain target dis-
crimination bias (the same target has significantly different
target discrimination in different image domain), which would
inevitably incur label noise in appearance training. In this
case, it is hard for deep learning to unleash its potential in
grayscale-thermal tracking because the classification perfor-
mance of deep learning is sensitive to the choice of training
samples and tends to be overfitting in the presence of label
noise. Due to this fact, the non-supervised appearance model,
such as sparse representation, has become a priority research
topic in grayscale-thermal tracking.

2) Correlation Filter in Visible Spectrum Camera Based
Visual Tracking: Correlation filter based tracking methods
have attracted a great deal of attention because it can convert
the spatial correlation to the element-wise multiplication in
the frequency domain, thereby having the advantage of being
computationally efficient for real-time tracking. MOSSE [36]
is the first one that learns correlation filter with few samples in

the frequency domain. After this work, notable improvements
have been made through introducing the kernel trick [37],
the deep feature [38]–[40], the context information [41] or
the spatial/temporal regularization [42], [43] etc, in the ridge
regression model. Those methods cannot be directly applicable
to grayscale-thermal tracking because they only focus on the
grayscale information. If modifying aforementioned methods
through adopting multiple correlation filters to simultaneously
enhance the grayscale and thermal tracking performance, tar-
get discrimination bias may break the consistency of circulant
samples in two video sequences, causing unstable regression
estimation results.

III. JOINT CORRELATION AND DISCRIMINANT ANALYSIS

BASED INVER-SPARSE REPRESENTATION

A. Problem Formulation

As stated in the previous section, in challenging video
pairs, the target appearance may be disturbed by the adverse
factors such as poor light condition, occlusion, etc. In this
case, only partial information of the targets is useful for
multi-modality fusion. This observation motivates us to
extract useful information for multi-modality fusion. To this
end, we first propose to build a feature selection based
inverse sparse representation model to effectively encode the
grayscale and the thermal target observations. Let us define
Y1 = [y1

1, y1
2, . . . , y1

n] and Y2 = [y2
1, y2

2, . . . , y2
n] to be the

grayscale and thermal observation matrices, and D1 and D2

are the target dictionaries for the grayscale and thermal video
sequences. The proposed inverse sparse representation model
is then formulated as

min
U,W

2∑
k=1

{
�(Wk)T Dk − (

(Wk)T Yk)Uk�2
F + λ�Uk�1

+ Tr
(
(Wk)T (Sk

w − Sk
b)W

k)}, (4)

where Wk(k = 1, 2) is the projection matrix for extracting
the important elements in Yk and Dk , Uk is the inverse sparse
representation result of observation projection (Wk)T Yk and
Tr(·) denotes the trace. It is worth mentioning that prob-
lem (4) combines the inverse sparse representation and an
unsupervised feature selection method called the Maximum
Margin Criterion (MMC) [44]. MMC aims at reducing the
dimension of the observation vector through using a trained
projection matrix to extract some important elements in the
observation vector. Since the projection matrix Wk in MMC
is trained through minimizing the intra-class similarity and
maximizing the inter-class similarity, it can extract the discrim-
inative elements in the observation vector to make observation
projection more class discriminative. Due to the advantage of
MMC, in Eq. (4), we do not directly use the grayscale and
the thermal observation matrices to build the inverse sparse
representation model. Instead, we make use of observation
projection (Wk)T Yk = [(Wk)T yk

1, (W
k)T yk

2, . . . , (W
k)T yk

n]
to stress the discriminative information in the observation
matrices for the multi-modality fusion and to enhance the
sparsity in Uk . The projection matrix Wk is online updated
through minimizing T r((Wk)T (Sk

w − Sk
b)W

k), where Sk
w and
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Sk
b are two parameter matrices in the k-th image domain, which

are used to calculate the within-class and the between-class
variations, respectively.

Since Eq. (4) does not exploit the target correlation between
the grayscale and the thermal sequences, it may make the
sparsity of the inverse sparse representation results in U1 dif-
ferent from that in U2 in challenging scenarios. To overcome
this limitation, we introduce Canonical Correlation Analysis
(CCA) [45] in Eq. (4) to enhance the difference between the
positive and negative templates in the target dictionary. The
CCA model is described as

max
P1,P2

T r
(
(P1)T D1(D2)T P2),

s.t .
2∑

k=1

(Pk)T (Dk(Dk)T )Pk = I (5)

where I is the identity matrix, Dk = [Dk
P , Dk

N ] is composed of
the positive sub-matrix Dk

P and negative sub-matrix Dk
N . Each

target template pair, d1
i and d2

i (d1
i ∈ D1 and d2

i ∈ D2), have
not only the potential similarity but also a large gap between
the two elements in this pair. In Eq. (5), the projection matrices
P1 and P2 are trained by emphasizing the correlation between
D1 and D2. Thus we can maximize the common and useful
information in P1d1

i and P2d1
i . This advantage can guarantee

the class discrimination in both P1D1 and P2D2. Specifically,
when the grayscale sequence contains severe background
clutter, the positive and negative templates are similar in
grayscale target dictionary D1 but they can be discriminated
in thermal target dictionary D2. Under this consideration, if
each template projection pair, such as P1d1

i and P2d2
i , can

highlight its own common and useful information, P1D1
P will

be similar to P2D2
P and P1D1

N will be similar to P2D2
N .

As such, the dissimilarity between P1D1
P and P1D1

N can be
enhanced.

Combining Eqs. (4) and (5), the proposed JCDA-InvSR
model is finally formulated as

arg min
U,W

{
F(U, W) :=

2∑
k=1

{
�(Pk)T D̃

k − (
(Pk)T Ỹ

k)
Uk�2

F

+ λ�Uk�1 + T r
(
(Wk)T (Sk

w − Sk
b)W

k)}}
,

s.t .
{
Pk}2

k=1 = arg max
P

{
T r

(
(P1)T C1(C2)T P2

− η

2∑
k=1

((Pk)T Ck(Ck)T Pk − I)
)}

(6)

where D̃
k = (Wk)T Dk , Ỹ

k = (Wk)T Yk , and Ck = Ỹ
k
Uk .

Problem (6) integrates Eqs. (4) and (5) into a joint opti-
mization model, which can simultaneously explore the target
similarity within a given image and between different types
of images. Inspired by Eq. (5) that uses Dk to train projection
matrix Pk , problem (6) uses Ỹ

k
Uk (D̃

k ≈ Ỹ
k
Uk) to update

matrix Pk , which can enforce the same targets in two image
domains to obtain similar inverse sparse representation results.
Specifically, (Wk)T Dk (k = 1, 2) in Eq. (4) can extract the
discriminative information from the grayscale and the thermal

targets, respectively. If the grayscale sequence is obtained in
poor light condition, W1 in grayscale domain is not enough to
guarantee the sparsity of inverse sparse representation result
U1 because the positive templates are very similar to the neg-
ative templates in D1. Maximizing Tr

(
(P1)T C1(C2)T P2) can

make the discriminative thermal templates in Ỹ
2
U2 enforce

the difference between the positive and negative templates
in Ỹ

1
U1, which can simultaneously guarantee the sparsity of

U1 and U2.

B. Discussion
Here we take a further look at the difference between

JCDA-InvSR and related works to gain a better insight into
the JCDA-InvSR model. The state-of-the-art works that are
closely related to JCDA-InvSR model include [11], [12], [46],
[47]. Those sparse representation models can be generally
formulated as

min
�

2∑
k=1

{
αk�Yk − Dk�k�2

F + λ��k�1

}
+ g(�), (7)

where g(�) denotes the regularizer that aims to explore the
correlation between �1 and �2. Note that a different g(�)
is used to restrict sparse representation result in [11], [46]
and [47].

Similar to Eq. (7), Eq. (6) aims to minimize the sum of
two inverse sparse representation errors to make U1 similar
to U2. The main difference between Eqs. (7) and (6) is that
Eq. (7) assumes both Y1 and Y2 contain discriminative target
information, hence it directly uses Dk and Yk to build the
sparse representation model. In fact, the vectors in Yk and Dk

are extracted by rectangular box based sampling strategy. The
rectangular samples may involve background clutter. What is
more, if the target is immersed in darkness, the grayscale
observation matrix Y1 contains negligible target information
while the thermal observation matrix Y2 contains discrimina-
tive target information. In those cases, restricting the sparse
codes only by using g(·) and l1 norm could not guarantee the
two sparse representation models yield similar sparse codes.
To overcome the aforementioned limitations, Eq. (6) firstly
uses

(
Pk

)T (
(Wk)T Dk

)
to build the inverse sparse represen-

tation model, where (Wk)T aims to extract discriminative
target information from Yk and Dk , and (Pk)T (k = 1, 2)
aims to maximize the correlation between (W1)T D1 and
(W2)T D2. The idea of introducing Wk in the inverse sparse
representation is inspired by [48]. In the challenging scenarios,
(Wk)T Dk may not extract useful target appearance, hence we
secondly add the max optimization as a constraint in Eq. (6).
This is to adopt CCA to optimize projection Pk , making(
P1)T (

(W1)T D1) similar to
(
P2)T (

(W2)T D2) through explor-
ing the correlation between grayscale and thermal targets.
In this way, target dictionary matrices in grayscale and thermal
video sequences are enforced to be similar, and thus their
corresponding inverse sparse codes can be guaranteed similar.

Eq. (6) is a two-model fusion based problem. Similar to
Eq. (6), the two-classification model fusion based problem
in [49] also considers integrating feature extraction and tar-
get candidate encoding into a unified optimization problem.
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However, the unified optimization in [49] only uses low-rank
regularizer to explore the similarity between different target
candidates in the grayscale and thermal images, respectively.
It ignores the target correlation between the grayscale and
thermal images. This may not ensure two classification model
to yield similar classification result.

C. Reconstruction Algorithm

Equation (6) is a joint optimization problem, in which
the design of P, W and U are implicitly related to each
other. Inspired by [18], we propose an alternative method to
solve problem (6), for which we firstly define the function
L = {L1,L2} as

Lk(Uk, Wk) = �(Pk)T D̃
k − (

(Pk)T Ỹ
k)

Uk�2
F + λ�Uk�1

+ Tr
(
(Wk)T (Sk

w − Sk
b)W

k), k = 1, 2 (8)

Based on Eq. (7), the objective function of problem (6) can
then be rewritten as

arg min
U,W

{
F(U, W) :=

2∑
k=1

Lk(Uk, Wk)

}
, (9)

The constraint in Eq. (6) is reformulated as

P̃ = arg max
P̃

T r
(
(̃P)T (V1 − V2)̃P

)
, (10)

where

P̃ = [(P1)T , (P2)T ]T , V1 =
(

0 C1(C2)T

0 0

)
,

V2 =
(

C1(C1)T − I 0
0 C2(C2)T − I

)
The objective function in Eq. (8) leads to a nonlinear and

non-convex problem. Here we adopt the stochastic gradient
decent [50] to solve the non-convex problem. We propose to
alternately update the gradient with respect to Uk and Wk for
solving problem (8). However, since Eq. (8) involves the l1
norm of Uk , we cannot directly obtain the gradient with respect
to Uk . Thus, we resort to [51] to obtain limμ→0bμ(Uk) =
�U�1, where bμ(Uk) is formulated as

bμ(Uk)=T r
(
(Uk)T V�

) − μ

2
�V��2

F , wi th V� = S(μ−1Uk).

(11)

Here parameter μ controls the approximation accuracy,
and S(·) is a scaling operator, defined as S(a) =
min(1, max(−1, a)). With this definition, S(μ−1Uk) outputs
a matrix as the operator applies to each element of the matrix
involved. Eq. (10) can approximate �Uk�1 as a differentiable
convex function, which facilitates our calculation of the gra-
dient with respect to Uk .

Substituting Eq. (10) into Eq. (7), the gradient with respect
to Uk is finally obtained as

∇UkLk(Uk, Wk) = −(
(Pk)T Ỹ

k)T (
(Pk)T D̃

k − ((Pk)T Ỹ
k
)Uk)

+ λ∇Uk bμ(Uk), (12)

where ∇Uk bμ(Uk) = Uk − μ(V�)T S(μ−1Uk).

Algorithm 1 The Alternative Reconstruction Method

Using the relationship between the Frobenius norm and the
trace, the gradient with respect to Wk can be obtained as

∇WkLk(Uk, Wk) = (
Zk + (Sk

w − Sk
b)

)
Wk, (13)

where Zk = 2 · (
Dk(Dk)T − YkUk(Dk)T − Dk(Uk)T (Yk)T +

YkUk(Uk)T (Yk)T
)
.

The detailed reconstruction method is shown in
Algorithm 1. It is worth noting that problem (6) can be
considered as a special multiobjective programming with three
variables and two objective functions. The traditional way
to solve problem (6) normally contains two steps: i) change
Eq. (6) into a single objective programming based problem,
and ii) use Augmented Lagrangian method to solve it.
However, there are two limitations on the traditional methods:
1) It is difficult to choose the optimal function weights. 2) It
often involves lots of Lagrangian parameters, causing high
computational complexity. Compared with the traditional
method, Algorithm 1 is derived from the metaheuristic
method, which has only a few parameters to be tuned.
It has been proven in [52] that the metaheuristic method
for nonlinear multi-objective problems is weakly Pareto
optimal, and the optimization performance depends on the
updating strategy of the variables. Based on this observation,
our proposed method adopts accelerated proximal gradient
to alternately update (Uk)t and (Pk)t , which can guarantee
the convergence of Algorithm 1. The main computational
complexity of Algorithm 1 lies in steps 7 and 10. Since the
projections Wk and Pk have reduced the dimension of target
observation, the computational complexity of steps 7 and
10 is largely reduced.

IV. INVERSE SPARSE REPRESENTATION BASED TRACKING

JCDA-InvSR can simultaneously encode the target can-
didates in the grayscale and thermal video sequences.
When using JCDA-InvSR to achieve the SVM based
grayscale-thermal tracking, we only have limited positive and
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negative samples that are accurately labeled from first few
frames. To overcome this limitation, we propose to adopt par-
ticle filter to randomly yield pseudo-labeled samples to enrich
the training data set. Specifically, in the particle filter method,
the state vector of a moving target at time t is denoted as
xt ∈ Rh , and the observations of the state vector from time 1 to
t are denoted as Y t = {y1, y2, . . . , yt }. Using the Bayes rule,
the posterior probability p(xt |Y t ) is calculated as p(xt |Y t ) ∝
p(yt |xt )

∫ [p(xt |xt−1)p(xt−1|Y t−1)]dxt−1, where p(yt |xt ) is
the observation likelihood and p(xt |xt−1) denotes the motion
model. As it is very difficult to calculate p(xt |Y t ) directly
using the aforementioned equation, the posterior probability
is instead approximated by p(xt |Y t ) = ∑n

j=1 ωt
j δ(x

t − xt
j ),

where δ is the Dirac measure, xt
j is the j -th sampled particle

at time t , and ωt
j is the particle importance weight, which is

updated by ωt
j = ωt−1

j p(yt |xt
j ). Based on the particle filter

method, we can adopt the property of JCDA-InvSR model to
design the pseudo-labeled training sets {y1

j }n
j=1 and {y2

j }n
j=1.

Specifically, suppose we have calculated the inverse sparse
representation result uk

j of the particle observation yk
j , then

we can obtain

p(yk
j |xk

j ) ∝ ex p
( − H (yk

j , uk
j )

)
, (14)

with

H (yk
j , uk

j ) = �yk
j − Dk

Puk
j�2 − �yk

j − Dk
N uk

j�2, (15)

where uk
j is the j -th vector in matrix Uk . In Eq. (13), p(yk

j |xk
j )

indicates the likelihood of observation yk
j , which means the

probability of the random sample yk
j belonging to the positive

sample.
Based on the aforementioned analysis, we can obtain two

data sets for training SVM, the first one is the labeled training
set S, which contains the inverse sparse codes of pre-labeled
samples. The second one is the pseudo-labeled training set B,
which contains the inverse sparse codes of random particle
samples. Using S and B for machine learning involves two
challenges: 1) The labeled training samples are limited. 2) The
particle filter is a dense sampling method, which means that
most random samples have a high probability of belonging
to positive samples, causing unbalanced samples. Note that
traditional SVM cannot overcome those challenges. Inspired
by [53], we revise the traditional SVM based optimization
problem as

min
ω

�ω�2
2 + CS

|S|∑
i=1

ξ k
S,i +

|B|∑
j=1

Ck
B, jξ

k
B, j ,

subject to yk
S,i (< ω, uk

S,i > +b) ≥ 1 − ξ k
S,i

i = 1, 2, . . . , |S|
yk
B, j (< ω, uk

B, j > +b) ≥ 1 − ξ k
B, j

j = 1, 2, . . . , |B| (16)

where |S| denotes the size of S, Ck
S and Ck

B, j , j = 1,
2, . . . , |B| are the parameters that control the trade-off between
the function complexity and the training error, and moreover
Ck
B varies with the confidence of the pseudo-label uk

B, j . Finally,

ξ k
S,i and ξ k

B, j are the slack variables in S and B, respectively.

Algorithm 2 The Detailed Tracking Process

Different from the traditional SVM, Eq. (15) considers the
prior knowledge of those pseudo-labeled target candidates
as the regularizer

∑|B|
j=1 Ck

B, jξ
k
B, j , which can enhance the

classification performance in the case of unbalanced samples.
Based on the new training process of SVM, the detailed

tracking process is described in Algorithm 2. In fact,
the inverse sparse representation cannot only be used as
the target encoder but also considered as a classifier.
The traditional inverse sparse representation based tracking
frameworks [21]–[23] often consider inverse sparse repre-
sentation as a classifier, in which the particle observation
likelihood is directly used to estimate the tracking result. Those
frameworks cannot effectively discriminate the target with
severe background clutter and illumination changes. Different
from traditional tracking frameworks, our framework does
not directly use the particle observation likelihood to achieve
online visual tacking. Instead, we use inverse sparse repre-
sentation as the target encoder, and the particle observation
likelihood as the prior knowledge to yield the pseudo-labeled
samples for enriching the SVM training set (the first step
in Algorithm 2). This can effectively enhance the tracking
accuracy. It should be mentioned that although the authors
of [13] also considered the inverse sparse representation as tar-
get encoder in visible spectrum camera based visual tracking,
yet their method is not directly applicable to grayscale-thermal
tracking because it cannot exploit the correlation between the
grayscale and the thermal video sequences. Moreover, their
method cannot overcome the overfitting problem caused by
inaccurate and limited training samples.

V. EXPERIMENT RESULTS

There are two public datasets for testing the
grayscale-thermal tracking performance. One is called the
GTOT benchmark [12], which contains 50 grayscale-thermal
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video pairs under different scenarios with very challenging
factors such as poor illumination, small target, etc. The
other is RGBT234 [54], which contains 234 video pairs
with 12 attributes. Here we use these two datasets to test
the tracking performance of our method. Referring to [55],
we use four objective measures (the position error, the overlap
rate, the precision plot and the success plot) to evaluate the
tracking performance. The position error is defined as the
Euclidean distance between the central location of the tracked
bounding box and the manually labeled ground truth. The
overlap rate is defined as area(BT ∩BG)

area(BT ∪BG) , where BT and BG

are the tracked bounding box for each video frame and the
corresponding ground truth, respectively. The precision plot
indicates accumulated position errors under different location
error thresholds. The success plot reflects the accumulated
success rates versus different overlap thresholds, where the
success rate counts the number of video frames where the
overlap rate is larger than 0.5.

Experiment Setting: In the target coding of our tracking
framework, the target dictionaries are set as Dk ∈ R256×300

(k = 1, 2), in which the number of target templates is 300
(200 for foreground templates and 100 for background tem-
plates). The target dictionaries are updated in every 10 frames,
and the updating strategy is similar to that in [21]. The number
of randomly sampled target candidates in each frame is 600.
The two parameters in Algorithm 1 are empirically set as
λ = 0.1 and η = 0.01. In the target classification process,
SVM is pre-trained by the target codes obtained through
JCDA-InvSR from the first 5 frames, and it is online updated
every 50 frames.

A. Quantitative Tracking Experiments

Existing visual tracking methods mainly focus on visible
spectrum camera based tracking methods, and those meth-
ods only use grayscale video sequence to carry out visual
tracking. By comparison, our tracking method makes use
of grayscale-thermal video pairs and its advantage is that
robust tracking in both thermal and grayscale sequences is
guaranteed through making the thermal and the grayscale
information complement with each other. In the following
texts, we conduct the experiments to show that our method
can effectively utilize the grayscale-thermal video pairs to
enhance the grayscale tracking performance in the challenging
video sequences with the help of thermal information. The
selected tracking methods for comparison include: DSST [56],
MTT [15], MEEM [57], KCF [37], INLCF [13], HCF [38],
SOWP [58], CFnet [59], MCCT [60], JSR [10], CSR [12],
SGT [61], GLT [54]. The detailed information of these meth-
ods are shown in Table I, where DSST, MTT, MEEM, KCF,
MCCT et.al are spectrum camera based trackers. To make
a fair comparison, we extend the spectrum camera based
trackers to grayscale-thermal version. Specifically, we con-
catenate grayscale and thermal features into a single vector
for MTT, MEEM and INLCF. For correlation filter and deep
learning based trackers such as KCF, MCCT, HCF and CFnet,
we consider the thermal video sequence as an extra channel.
We select the state-of-the-art grayscale-thermal trackers for

TABLE I

THE DETAIL INFORMATION ABOUT THE COMPARISON METHODS

Fig. 3. The average tracking performance in GTOT dataset: (a) the mean
value of position error (b) the mean value of overlap rate.

comparison. Since inverse sparse representation based col-
laborative encoding is the core of our tracking framework,
we select well-known sparse representation and inverse sparse
representation methods to illustrate the efficiency of collabo-
rative encoding. In addition to those tracking methods that are
similar to ours, we also select representative correlation and
deep learning based methods KCF, HCF, CFnet and MCCT
for comparison.

1) GTOT Dataset:
a) Overall performance: The 50 video pairs in GTOT

dataset are obtained from sixteen scenarios. Here we first
test the overall tracking performance with the GTOT dataset.
Specifically, the average position error and the average overlap
rate for one video frame are denoted as avep and ave0,
respectively. Based on this definition, the mean values of avep

and ave0 over 50 video sequences are shown in Fig. 3. The
reference method that has “+RGBT” denotes that this visible
spectrum camera based tracking method has been extended
to grayscale-thermal version. From this test we can clearly
see that the mean value of position error of our method is
lower than the state-of-the art grayscale-thermal tracker SGT
in Fig. 3(a), while our mean value of overlap rate is higher
than SGT over 3% in Fig. 3(b). Although the average overlap
rate of our method is similar to MCCT + RGBT, it still can
illustrate the effectiveness of our collaborative encoding. The
reasons are: 1) The average position error of MCCT + RGBT
is obviously higher than our method; 2) MCCT + RGBT
uses deep feature to represent the target appearance, while our
tracking method directly uses two rough handcraft features
(grayscale and thermal pixels) to achieve grayscale-thermal
tracking. Effectively exploring the correlation between the
grayscale and thermal targets during target encoding can make
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Fig. 4. The precision plots with entire dataset and different adverse factors against visual tracking in GTOT dataset: (a) Entire dataset (b) DEF subset (c) LI
subset (d) OCC subset (e) TC subset (f) FM subset (g) LSV subset (h) SO subset. We show the distance precision score in the legend of precision plot, which
can indicate the precision performance of different curves.

Fig. 5. The success plots with entire dataset and different adverse factors against visual tracking in GTOT dataset: (a) Entire dataset (b) DEF subset (c) LI
subset (d) OCC subset (e) TC subset (f) FM subset (g) LSV subset (h) SO subset. We show the area under curve (AUC) score in the legend of success plot,
which can indicate the success performance of different curves.

grayscale and thermal information complement with each
other.

b) Attribute Based Performance: In the GTOT dataset,
the 50 video pairs are tagged by 7 attributes, which indicate
the challenging aspects in visual tracking. These 7 attributes
include: Occlusion (OCC), Large Scale Variation (LSV), Fast
Motion (FM), Low Illumination (LI), Thermal Crossover (TC),
Small Object (SO) and Deformation (DEF). Based on different
attributes, we next refer to [12] to divide 50 video pairs into
7 subsets, and give the precision and the success plots over
different groups (see Fig. 4 and Fig. 5). This can give a detailed
experiment on our tracking framework with different adverse
factors against visual tracking.

From Fig. 4(a) and Fig. 5(a) we could see that our tracking
method gives the best precision and success performance on
entire dataset. The moving target often loses some important

information when facing occlusion. Only using one kind of
video sequence may not make up for the loss well. Dif-
ferent from the competitors, our tacking method can make
the thermal information complement the lost information
in grayscale video sequence, hence it can obviously give
higher distance precision and AUC score than other 11 meth-
ods in Fig. 4(d) and Fig. 5(d). Besides OCC, the proposed
tracking framework also gives the higest AUC score in TC
scenario (see Fig. 5(e)). This can indicate the advantage of
collaborative encoding. Low illumination is very challenging
for visible spectrum camera based tracking methods. Since
the JCDA-InvSR model used in our tracking framework can
explore the correlation between the grayscale and the thermal
video sequences, it can give higher AUC score than SGT
over 9% (see Fig. 5(c)). Some video pairs in GTOT are
not well aligned, this may make the grayscale and thermal
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Fig. 6. The overall tracking performance on RGBT234 dataset via precision
and the success plots: (a) the precision plot (b) the success plot. We show the
distance precision score in the legend of precision plot and the AUC score in
the legend of success plot.

models capture different deformation appearance. In this case,
it may bring some disturbance in correlation analysis. Due
to this reason, our method could not give the highest AUC
score in Fig. 5(b). Small object is very challenging for both
visible spectrum camera based tracking and grayscale-thermal
tracking. Small target means that the target area is less than
3%, in this case, it is hard to discriminate the target from
background in both grayscale and thermal video sequences.
The thermal information cannot give a strong support to the
grayscale information in SO scenario. Due to this reason,
our method gives a slightly lower AUC score than MCCT
(see Fig. 5(h)). Although MCCT gives similar AUC score as
our method in Fig 5. (c), (f), its distance precision score is
obviously lower than our method.

2) RGBT234 Dataset:
a) Overall performance: RGBT234 [54] contains

234 grayscale-thermal video pairs. In this dataset, the total
frame number is 210K and the maximum frames in one
sequences is 8K. The video pairs captured by both static
and moving cameras can be well aligned in RGBT234.
Since RGBT234 contains more challenging video pairs than
GTOT, it can give a comprehensive testing for our method.
The overall tracking performance in RGBT234 is shown
in Fig. 6, from which we clearly see that our method gives
a slightly higher AUC score than GLT by 1.5%. When a
tracking method loses the target in the tracking process,
the output location becomes random, thus the position error
does not measure the tracking accuracy correctly. Due to
this reason, the precision plot in Fig. 6(a) may not fairly
reflect the tracking performance. Comparing with precision
plots, the success plot can fairly evaluate the overlap rate
performance.

b) Attribute Based Performance: In the RGBT234
dataset, the 234 video pairs are tagged by 12 attributes. Those
attributes includes: Scale Variation (SV), Fast Motion (FM),
Low Illumination (LI), Thermal Crossover (TC), Deformation
(DEF), None Occlusion (NO), Partial Occlusion (PO), Heavy
Occlusion (HO), MB (Motion Blur), CM (Camera Moving),
LR (Low Resolution) and BC (Background Clutter). Based
on these attributes, we divide the whole video pairs into
12 subsets. The overlap rate score over different challenging
factors is shown in Table II. Clearly, our method gives highest
overlap rate score among 7 attributes. Especially in TC and
LI, our overlap rate score is obviously higher than other

9 methods, which validates the effectiveness of our inverse
sparse model.

B. Qualitative Tracking Experiments

In this section, we select 6 scenarios as examples to
show the qualitative tracking performance (see Fig. 7). The
video sequence selecting strategy is that: we randomly select
3 video sequences from each scenario. This test can give a
direct impression of the tracking performance in challenging
scenarios. The target is occluded by the bushes in Fig. 7(a),
which would cause drift for traditional tracking methods. From
Fig. 7(a) we can see that the thermal sequence can highlight
the moving target. Effectively using the advantage of thermal
information, our tracking method can give the best tracking
performance. There is a big pool in Fig. 7(b). The reflection
of the target in the water and the shade of the tree would
pose great challenges for grayscale based visual tracking. With
the help of thermal information, our tracking method can still
follow the target. The test in Fig. 7(c) is very challenging
because the moving target is stuck in the heavy rain. Since
the target is very small, it is difficult to discriminate the target
from the background in both grayscale and thermal video
sequences. In this case, our tracking method can still follow
the target with an appropriate bounding box. This test indicates
the proposed JCDA-InvSR model can adaptively adjust the
scale of tracking result. The video sequences in Fig. 7(d)
are obtained in the dawn, which contains a lot of fog.
Since our tracking framework uses JCDA-InvSR to effectively
explore the correlation between the grayscale and the thermal
video sequences, a better tracking performance is obtained
as compared with other 10 methods. Fig 7(e) and (f) show
the test in the dark scenario. In this test, the illumination
is very limited. Traditional deep learning and the correlation
filter based tracking methods (CFnet + RGBT and MCCT +
RGBT) give inevitable drift in those two tests because they
could not effectively utilize extra information to enforce the
target appearance. By contrast, our tracking framework can use
feature extraction and CCA to make the thermal information
enforce the target discrimination in grayscale video sequence,
and hence gives the best tracking performance.

C. Analysis of Collaborative Encoding Model

In this section, we will test the performance of the pro-
posed JCDA-InvSR model which is the core in our tracking
framework through following experiments.

1) Testing the Generality of Collaborative Encoding Model:
The proposed JCDA-InvSR model can jointly encode the
grayscale and thermal target candidates. In fact, JCDA-InvSR
can not only jointly encode the grayscale and thermal target
candidates, but also can be used to jointly encode multi-view
observations (multi-view refers to different feature subsets
used to represent particular characteristics of an object). In this
test, we use TU-VDN dataset [62] as an example to test the
collaborative encoding performance on multi-view observa-
tions (see Fig. 8). TU-VDN dataset is a thermal dataset, which
contains four scenarios: fog, dust, low light and rain. Each
scenario contains three adverse factors such as flat cluttered
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TABLE II

MEAN VALUE OF OVERLAP RATE OVER DIFFERENT VIDEO SUBSETS IN RGBT234 DATASET.
THE BEST TWO RESULTS ARE DENOTED AS RED AND BLUE

Fig. 7. The qualitative results on six video pairs. (a) FastCar2 video pair (b) Pool video pair (c) RainyMotor2 video pair (d) Running video pair (e) Tunnel
video pair (f) WalkingNig video pair.

background, temperature polarity changes and background
dynamics. In the test, the two view observations are obtained
from the thermal pixel and the LBP method, respectively. From
Fig. 8, we can clearly see that our JCDA-InvSR model only
uses two rough observations but can give a similar overlap
rate score as SRDCF does.

2) Ablation Experiment With Robustness Evaluation: In the
grayscale-thermal tracking, the initial position is obtained from
the ground truth in the first frame trackers. In fact, the tracking
performance may be sensitive to the position initialization.
Considering the observation, the robustness of a tracking

method is often evaluated by two objective measures: TRE
and SRE. TRE is to calculate the average overlap rate by
using several position initializations at different time instances.
SRE is defined as the average overlap rate by shifting the
ground truth 12 times at the first frame. TRE is suitable for
evaluating the model robustness for long term video sequences.
Since the GTOT dataset contains a large number of short
term sequences (less than 200 frames), TRE may not give
accurate evaluation. Thus, we follow the same procedure of
using SRE as in [55] to carry out the ablation experiment.
Specifically, we add three competitors in the experiments:
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TABLE III

ABLATION EXPERIMENT WITH ROBUSTNESS EVALUATION. THE BEST RESULTS ARE DENOTED AS RED

Fig. 8. Average overlap rate performance of four scenarios on TU-VDN
dataset.

i) Our-I: removing the optimization element of Pk , and
only introducing projection Wk in inverse sparse represen-
tation based collaborative encoding model (see equation (4)).
ii) Our-II: removing the optimization element of Wk , and only
introducing projection Pk in the inverse sparse representation
based collaborative encoding model. iii) Our-III: removing
both of Wk and Pk in the inverse sparse representation based
target encoding model, which is similar to INCLF-RGBT
method. Our proposed JCDA-InvSR model (see equation (6))
simultaneously introduces projection Wk and Pk in the inverse
sparse representation, which is called Our here.

The 50 video pairs in GTOT dataset can be divided into
seven subsets. In the ablation experiment, we evaluate the
mean value of overlap rate over seven subsets as shown
in Table III. This table shows that: 1) The average overlap
rate score of Our is obviously higher than Our-I, Our-II and
Our-III. This indicates that alternately updating Wk and Pk

can enhance the robustness of our JCDA-InvSR model; 2) The
robustness of our tracking method with JCDA-InvSR model is
better than the CSR method; 3) The second and the seventh
rows of Table III indicate that Our-II and Our-III give
different overlap score in grayscale and thermal images while
Our still gives similar overlap score in those two rows. This
implies that JCDA-InvSR model can yield similar grayscale
and thermal target codes.

D. Parameter Analysis

There are two parameters η and λ required to be tuned
in Algorithm 1, where η controls the convergence rate of
reconstruction algorithm and λ controls the sparsity of the
inverse sparse representation result. We refer to [63] to carry

TABLE IV

THE TRACKING PERFORMANCE WITH DIFFERENT PARAMETER VALUE

Fig. 9. The convergence of Algorithm 1.

out the parameter analysis in Table IV. Specifically, we firstly
fix η = 0.01, then use AUC and distance precision scores
[55] to evaluate the tracking accuracy on GTOT dataset with
different settings of λ. Similarly, we fix λ = 0.1 and evaluate
the FPS (Frame number Per Second) with different η values.
From Table IV we can see that the proposed JCDA-InvSR
model is not sensitive to the variation of η and λ.

E. Convergence and Computational Complexity

The convergence experiment for Algorithm 1 is shown
in Fig. 9. It is clearly seen that the proposed reconstruction
method begins to converge after 100 iterations, and after
400 iterations, the reconstruction error reaches a steady state.
The main computational complexity of our tracking framework
lies in the JCDA-InvSR model. Here, we use FPS (Frame num
Per Second) to evaluate the computational complexity of our
method. The average FPS is carried out on a desktop with
Inter (R) Core (TM) i3-2310M CPU @ 2.10Hz (2GB RAM)
(see Table III), where different methods are all implemented
on GTOT dataset.

Table V gives the computational complexity comparison
of our method and traditional visible spectrum camera based
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TABLE V

FPS PERFORMANCE ON DIFFERENT SPECTRUM CAMERA BASED TRACKERS

TABLE VI

FPS PERFORMANCE ON DIFFERENT GRAYSCALE-THERMAL TRACKERS

Fig. 10. Two examples of failure case. (a) carlight video pair (b) kite2 video
pair.

tracking methods, where HFC, CFnet, MDnet and SimaFC are
deep learning based trackers whose FPS counts only the online
tracking speed without including off-line training. More-
over, we give the computational complexity of our method
and the state-of-the-art grayscale-thermal tracking methods
in Table VI. Clearly, our tracking speed is faster than the sparse
representation based grayscale-thermal tracking method CSR.
From Tables IV and V we can conclude that although our
tracking speed is slower than fast tracking methods such as
CFnet, KCF and SimaFC, its speed is comparable to some
correlation filter and deep learning trackers such as MCCT,
MCPF and HCF. This means that our joint optimization has
moderate computational complexity only.

F. The Experiment Discussion

The aforementioned experiments have validated the effec-
tiveness of our JCDA-InvSR model. However, it should be
mentioned that our model does not work well in some special
cases (see Fig. 10). The video pair in Fig. 10(a) is very
challenging because the grayscale video sequence is captured
by moving camera, and the appearance of the car is seriously
disturbed by the motion blur and headlamps. In addition to
above challenges, the outline of the car is not clear in thermal
sequence. In this scenario, the handcraft feature obtained from

thermal image could not give strong support to the severe
disturbance of the grayscale image. This would incur side
effect when using CCA to enforce the commonality between
grayscale and thermal target. The case in Fig. 10(b) is more
challenging than Fig. 10(a) because it is hard to discriminate
the flying kite from the background in both grayscale and
thermal images. In this case, the feature selection matrices
used in our JCDA-InvSR model could not extract useful infor-
mation to make two handcraft features complement with each
other. Introducing deep features in our JCDA-InvSR model
may enhance the tracking accuracy in the aforementioned two
cases, and thus will be considered in our future work.

VI. CONCLUSION

In this paper, we have proposed an inverse sparse represen-
tation based tracking framework by using both grayscale and
thermal video sequences. Our tracking framework has bene-
fited from the proposed JCDA-InvSR model that can adopt
multi-objective programming to integrate the feature selection
and the multi-view correlation analysis into a unified optimiza-
tion. This can simultaneously highlight the special characters
of the grayscale and thermal targets through alternately opti-
mizing two aspects: the target discrimination within a given
image and the target correlation in different images. Extensive
experiments on GTOT and RGBT234 datasets indicate that
our tracking framework can give a superior performance as
compared to many other state-of-the-art techniques.
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