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Abstract

Goal-driven deep learning (DL)-based artificial neural networks (ANNs) have
shown many promising bio-functional similarities with different biological neural
systems, though they are less reported to model the motor neural system. Even less
is known about whether goal-driven DL-based spiking neural networks (SNNs)
exhibit similar bio-functional properties or predictive capabilities in the motor sys-
tem. In this study, we employed the motorSRNN, a recurrent SNN inspired by the
primate neural motor circuit. It successfully decoded cortical spike trains (CSTs)
from the primary motor cortex (M1) of two monkeys performing a reaching task.
Notably, the motorSRNN replicated bio-functional properties at population and
circuit levels, closely matching those observed in biology. Moreover, motorSRNN
captured and cultivated more significantly cosine-tuned neurons (SCtNs) and main-
tained stable proliferation existence during learning, suggesting that similar pro-
cesses may occur in a learning biological neural network. To test this prediction, we
designed a brain-machine interface (BMI) experiment in which the cortical neural
networks in M1 of two monkeys learned to modulate their activities to control a
new decoder in four widely spaced sessions. Our results confirmed that new task
learning indeed induced the stable existence of proliferation of SCtNs in M1. In
summary, the goal-driven motorSRNN demonstrates bio-functional similarity and
predictive capability, offering a framework for motor circuit modeling.

1 Introduction

Understanding the neural basis of perception and motor functions has long been a central focus in
neuroscience. Goal-driven DL-based ANNs have successfully elucidated perceptual neural informa-
tion processing across various systems [1], including the visual cortex [2–5], Whisker-Trigeminal
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system [6], prefrontal cortex [7, 8], and brain areas involved in natural language processing [9]. For
instance, convolutional neural networks (CNNs) trained for object classification show object and face
separation similar to the biological brain [2] , while recurrent neural networks (RNNs) trained on
cognitive tasks replicate prefrontal cortex changes from adolescence to adulthood [8]. However, when
it comes to motor neural circuits, the resemblance between ANNs and biological systems remains less
explored. David et al. showed that RNNs trained for motor activity generation in simulations exhibit
dynamics comparable to those of motor cortex neurons in non-human primates [10]. Additionally, a
modular RNN trained to generate object-specific grasping activities captured neural dynamics in the
visuomotor circuit of monkeys [11].

Spurred by such insights, researchers have increasingly adopted DL-based ANNs directly as models
to better understand biological neural mechanisms. Notably, Pouya et al. developed a DL-based
CNN image synthesis method that predicted neuronal tuning in the primate V4 area and controlled
neural activities accordingly [12]. Furthermore, deep CNNs have also been used to construct a
low-dimensional space for object representation, the existence of which was validated within the
biological inferotemporal (IT) cortex [13].

SNNs, known for their biological realism through spike-based communication, are emerging as more
authentic neural models [14]. They have been used to study various neural functions such as proactive
inhibitory control [15], real-time vision [16], sound source localization [17], cerebellar pathologies
[18], and sleep [19]. Recently, DL-based SNNs have also been trained for various goal-driven tasks,
such as decoding MNIST [20], CIFAR [21], Heidelberg Spiking Dataset (SHD) [22], and cortical
spike trains (CST) from the biological motor cortex [23–26], with promising results. However, it’s
unclear if these goal-driven DL-based SNNs can replicate the bio-functional similarities like ANNs
and serve effectively as models for neural mechanism studies. While Chen et al. demonstrated that
a large-scale SNN of the primary visual cortex shares neural coding properties with the brain [27],
whether bio-functional similarities of neural motor circuits exist in these SNNs are yet to be clarified.
Therefore, our study aims to assess the bio-functional similarities of goal-driven DL-based SNNs.

Beyond identifying bio-functional similarities, establishing predictive validity of neural mechanisms
is essential to demonstrate the utility of any neural model. BMIs are widely used to probe neural
mechanisms, especially in motor learning [28–32]. For example, Hennig et al. showed that abrupt
changes in motor cortex population activity, reflecting internal state fluctuations, systematically
influence the learning of new BMI mappings [31]. Likewise, Losey et al. found that learning a
new BMI mapping can alter neural activity for familiar tasks, leaving a ’memory trace’ but without
affecting performance [30]. In this study, after examining bio-functional similarities, we assess
the predictive capacity of goal-driven DL-based SNNs for neural mechanisms in motor learning,
leveraging BMIs’ advantages.

This research employs the motorSRNN, inspired by the primate neural motor circuit, to decode
CSTs from monkeys into the directions of their moving hands. We first assessed the bio-functional
similarity between the motorSRNN and the primate motor circuit, then examined learning-induced
changes in the tuning properties of motorRSNN’s artificial neurons. Finally, anticipating similar
changes during biological learning, we propose to validate these findings using a BMI approach.

2 Methods

Dataset A joystick control experiment involved two monkeys (B04 and C05) performing a 4-
direction center-out reaching task. Neural and joystick signals were recorded concurrently. The
neural signals are then filtered, detected, and sorted to extract spike trains. These CSTs are then
segmented into samples and used to classify joystick moving directions (Top, bottom, left, and right).
One-tenth of the samples were randomly selected for the validation set, with the rest used for the
training set. For more details, see Sections 1.1.1 and 1.2.1 in the supplementary material (SM).

motorSRNN motorSRNN is a recurrent SNN inspired by the motor circuit in primates, as shown
in FIg. S2. It features a multi-layer structure with adaptive leaky integrate-and-fire (ALIF) neurons in
layers simulating the motor cortex (MC), subcortical region (SC), and spine (Sp), and non-firing leaky
integrator (LI) neurons in the layer representing muscles (Ms). recurrent SNNs are embedded in layer
MC1, MC2, and SC, while a feedforward SNN is used in layer Sp. Layer Ms outputs cumulative
probabilities for 4 labels over time, with the highest cumulative probability at the final moment
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indicating the predicted label. Membrane time constant (TC) τm and the adaptive threshold TC τadp
of motorSRNN are trainable. Surrogate gradient descent and back-propagation-through-time are used
for model training. For further details, see Section 1.3 in the SM.

BMI setting In the BMI mind control experiment, monkeys C05 and B11 were trained to modulate
activities in their cortical neural networks in M1 to control a cursor in a 4-radial center-out task
using a Kalman filter (Fig. 3A). Neural signals were processed through filtering, spike detection, and
sorting, with training divided into look, assisted, and pure mind control blocks. The look and pure
mind control blocks corresponded to the before-training and after-training phases, while the assisted
and pure mind control blocks together represented the during-training phase. Sessions were widely
spaced to ensure neural variability and achieving more generalizable results. For more details, see
Section 1.1.2 and 1.2.2 in the SM. All animal experiments above were conducted with approval from
the Experimental Animal Welfare Ethics Committee of Zhejiang University.

3 Results

Designed to establish a connection between the brain and the externals, motorSRNN achieved average
accuracies on held-out data of 89.4%±0.4% on B04 and 79.9%±0.5% on C05 for four-direction
classification tasks [26]. We then investigate how it learns the task and its potential for exhibiting
bio-functional similarities.

3.1 Proliferation and persistency of cosine-tuning in motorSRNN

Previous studies have identified cosine-tuned pyramidal neurons in the motor cortex that exhibit a
preferred direction (PD) to the primate’s hand movement direction [33]. This discovery has been
fundamental to numerous motor BMI applications [34–37]. Cosine-tuning is a key characteristic of
the recorded biological neurons producing the input CSTs. Some artificial SCtNs in the motorSRNN
of the movement direction labels were found even before learning, interestingly with more appearing
after learning, particularly in layer MC1, as illustrated in Fig. 1A-D. More example SCtNs are
shown in Fig. S3. The relatively small number of SCtNs in motorSRNN before training reflected the
cosine-tuning purely induced by the input CSTs collected from M1.

For both dataset B04 and C05, Fig. 1C-D showed the distribution of R2 values from cosine fits of
the neuronal firing rates in layer MC1 of motorSRNN. After training, most neurons achieved high
R2, with many showing significant improvement. To avoid overestimating the dependence between
firing rates and reaching directions, a statistical F -test was applied, considering R2 only if p < 0.05
in the fitting. Neurons with significant cosine tuning and R2 > 0.7 are referred to as SCtNs. Fig. 1B
compared the number of SCtNs in layer MC1 before and after training, showing a marked increase
post-training, indicating that motorSRNN effectively captured and proliferated more SCtNs.

However, these results were based on the epoch with the highest validation accuracy, leaving the
stability of this proliferation over epochs uncertain. To assess its persistency, we examined whether
the number of SCtNs remained significantly elevated across training epochs for both datasets. Our
findings confirmed that this proliferation was stable across epochs, as demonstrated in Fig. 1E-F.

3.2 Bio-functional similarity between the neural motor circuit and motorSRNN

The results above demonstrate a transfer and proliferation of cosine-tuning from the input CSTs to
the motorSRNN. We next examined whether the motorSRNN developed additional bio-functional
properties or simply utilized the input information.

Population level Symmetry is an important feature of neuronal PD distribution in the motor cortex
of primates [38, 39, 43]. We analyzed PD distributions of SCtNs in motorSRNN’s layer MC1 using
datasets B04 and C05. Initially, the PD polar distribution of SCtNs in layer MC1, motorSRNN (Fig.
2B-C, yellow) resembled the innate distribution from input CSTs recorded from B04 and C05 (Fig.
2A). Post-training, the decreased RVL (see section 3.2 in SM) indicated increased symmetry in these
PD distributions (Fig. 2B-C, blue), aligning with in vivo experimental observations (Fig. 2D). Note
that peaks in the polar plot indicate more neurons tuned to specific directions, but not deeper tuning.
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Figure 1: Cosine-tuning was captured and proliferated in layer MC1 of motorSRNN, and existed
persistently. (A) Example SCtN in layer MC 1, motorSRNN after training. Dots represent average
firing rates for different directional labels: Left: 0, Up: π/2, Right: π, Down: 3π/2. Curves show
fitted cosine functions, with dashed arrows indicating the PD. (B) The average number of SCtNs
in layer MC 1, motorSRNN before and after training over 10 runs for dataset B04 and C05. Error
bars represent standard deviation. (C-D) R2 values of cosine fits for neurons’ firing rates in layer
MC1, motorSRNN for datasets B04 (C) and C05 (D), before and after training. Gray dots represent
pooled neurons from 10 runs, while red dots indicate neurons that gained significant cosine tuning
(p < 0.05) post-training, but not before (p ≥ 0.05). Marginal density plots show data distribution.
(E-F) Average number of SCtNs during training for datasets B04 (E) and C05 (F). Red curves show
SCtN counts during training, while gray lines indicate counts before training. BT: before training,
AT: after training, DT: during training. Under 2-sample t-test, n.s.: not significant (p ≥ 0.05), *:
p < 0.05, **: p < 0.01, ***: p < 0.001.

Additionally, the distributions of membrane TCs of neurons in layer MC1, motorSRNN after training
(Fig. 2E) are also qualitatively similar to biological observations (Fig. 2F).

Circuit level The motorSRNN’s unique M1LC, inspired by cortico-motoneuronal (CM) connections
specific to primates [44], was explored through ablation experiments. Biological CM connections
are key to dexterous hand and finger control [45], leading us to hypothesize that M1LC ablation
would increase the standard deviation during training. The ablation results confirmed our hypothesis,
showing significant increases in standard deviations (Fig. 2G), highlighting the bio-functional
similarity between the M1LC topology in motorSRNN and biological CM connections.

3.3 Proliferation and persistency of cosine-tuning in the biological motor cortex

In section 3.1, we observed the proliferation and persistency of cosine-tuning in layer MC1 of
motorSRNN. To explore whether similar effects occur in the motor cortex of primates (the biological
counterpart of MC1) during new task learning, we conducted BMI experiments. Monkeys learnt to
modulate the activities in their cortical neural networks to adapt to a new Kalman filter decoder. To
generalize results, one new monkey B11 together with C05 were trained in widely separated sessions
(Fig. S1). Each session began with a look block (before learning), followed by learning blocks with
decreasing assistance (during learning), and ended with pure mind control blocks (after learning).
Both monkeys successfully modulated neural activity to control the cursor, with success rates of
95.60% and 90.65%, respectively. We compared the number of SCtNs in the M1 neurons of C05 and
B11 before and after training (Fig. 3B). Both monkeys showed significant increases in SCtNs after
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Figure 2: Bio-functional similarities of motorSRNN at population and circuit levels. (A) PD
polar distribution of SCtNs from recorded CSTs in monkeys B04 and C05. RVL: resultant vector
length. (B-C) PD polar distribution of SCtNs in motorSRNN layer MC1, before (yellow) and after
(blue) training on B04 and C05. 10 runs pooled. (D) Observed PD symmetric distribution of SCtNs
from large-scale recording of MC in monkeys [38, 39]. (E) Normalized membrane TC distributions
of neurons in MC1, motorSRNN, after training on B04 and C05. (F) Observed TC distributions for
spiny (excitatory) cells in mouse V1 layer 4 and human MTG [40–42]. 10 runs pooled. (G) Mean
standard deviation of decoding performance over 10 random initialization at each epoch for original
(yellow) and M1LC-ablated (blown) motorSRNNs, all epochs pooled.

learning, consistent with layer MC1 of motorSRNN (Fig. 1B). We also assessed the persistency of
this proliferation during training. Results indicated a stable existence of increase in SCtNs across
blocks (Fig. 3C), confirming that new task learning induces both the proliferation and persistency of
cosine-tuning in the primate motor cortex. Note that here proliferation refers to a short-term increase
in SCtN number, not modulation depth [46] or long-term number increase [47].

4 Discussion

Summary This study examines whether motorSRNN, a goal-driven DL-based SNN, shares bio-
functional properties with the primate motor circuit and makes verifiable predictions. motorSRNN
mirrors bio-functional similarities at population and circuit levels. And it predicts that proliferation
and persistency of cosine-tuning occurs during new task learning in the cortical neural networks of
the motor cortex in monkeys, which was further validated by BMI experiments.

Limitations & impacts While the motorSRNN shows emergent bio-functional similarities, it only
simplistically mimics the primate neural motor circuit. Incorporating more biological facts [48–50]
could enhance the model’s biological authenticity, potentially leading to better predictions of neural
computation mechanisms. This study suggests that a goal-driven DL-based SNN offers a promising
framework for comprehending the brain, potentially aiding in curing neural disorders.
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Figure 3: BMI experimental paradigm and changes of SCtNs counts for monkey C05 and B11.
(A) BMI experimental paradigm. Two monkeys (B11 & C05) were trained to control the activities in
their cortical neural networks to complete a 4-direction task. A Kalman filter mapped their neural
signals to move a blue cursor toward an orange target on the screen. Successful task completion
earned them a reward. (B-C) Same result presenting way as Fig. 1B, E-F. White text on the red bars
shows the average success rates of pure mind control for the two monkeys.
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1 Experiments and dataset

1.1 Animal Experiments

Three macaque monkeys (B04, C05, B11) each received a 96-channel microelectrode array (Blackrock
Microsystems Inc., USA) implanted in the right primary motor cortex (M1). Monkeys B04 and
C05 were trained for joystick control tasks, while C05 and B11 participated in the brain-machine
interface (BMI) experiments. All procedures were conducted with approval from the Experimental
Animal Welfare Ethics Committee of Zhejiang University.

1.1.1 Experiment Paradigm: joystick control

This study conducted a joystick control experiment to acquire data for training the network model.
Monkeys B04 and C05 were trained to use their left hand to operate a joystick while seated in a
primate chair, facing a computer screen displaying task instructions. Two circular cursors were shown:
a target cursor and a controlled cursor, the latter reflecting the joystick’s position. At the start of each
trial, the target cursor appeared randomly in one of four directions (top, bottom, left, or right), and the
monkeys were tasked with aligning the controlled cursor with the target for 300 milliseconds within
the 2-second trial duration. Upon successful completion, a reward was given, and a new trial began
with a re-randomized target position.

Neural signals and joystick positions were recorded simultaneously using the Cerebus multi-channel
data acquisition system (Blackrock Microsystems Inc., USA). Neural activity was sampled at 30 kHz,
and joystick data at 1 kHz. Data used in this study was derived from a single session for each monkey.
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1.1.2 Experiment Paradigm: BMI

In this study, we conducted the mind control experiments to validate the predictability of the mo-
torSRNN. By assigning different decoders for every experimental section, we could guide the
biological neural network in the motor cortex of primates to learn multiple new tasks, thereby obtain-
ing more generalizable results. In this mind control experiment, C05 and B11, seated in a primate
chair, were trained to voluntarily modulate their neural activity to complete a 4-radial center-out
task. A computer screen in front of the monkeys displayed the operational cues. The collected neural
signals were mapped to the movement of the controlled cursor on the screen using a Kalman filter, to
align with the target cursor. Other designs were identical to the joystick control experiment. Similarly,
during the experiments, the Cerebus multi-channel data acquisition system (Blackrock Microsystems
Inc., USA) was utilized to collect the neural signals of the monkeys at a sampling rate of 30 kHz.

Monkeys C05 and B11 were both required to undertake the experiment for 4 sessions. Due to the
neural variability [1, 2], the consecutive interval between these sessions was set to around one month,
to ensure the composition difference of recorded neuronal groups in different sessions to a large
extent for more generalizable results. As shown in Fig. S1, every session consisted of a look block,
several assisted mind control blocks and pure mind control blocks, where the number of assisted and
pure MC blocks are determined by the willingness of monkeys. The neural signals collected during
the look block were used to establish a new Kalman filter decoder. During the assisted mind control
blocks, an auxiliary vector was utilized to aid in guiding a controlled cursor toward the target, and
the strength of the auxiliary vector gradually decreased. Finally, the auxiliary vector was eliminated
during the pure mind control blocks, thus the monkeys were required to solely rely on modulating
their neural activity to control the cursor. In every assisted and pure MC block, the decoder was
updated based on neural activities in the last block. The look and pure mind control blocks were
identified as the before-training and after-training phases, respectively, while the assisted and pure
mind control blocks as a whole were regarded as the during-training phase.

Figure S1: Timeline of the BMI experiment. The monkeys completed the mind control experiments
for 4 sessions, with consecutive intervals of around 1 month. Every session consisted of a look block,
several assisted mind control blocks, and several pure mind control blocks. A new Kalman filter was
established by the neural signals collected in the look block. The look and pure mind control blocks
were regarded as before training and after training, respectively, while the assisted and pure mind
control blocks were considered during training.

1.2 Signal Processing

1.2.1 Joystick control experiment

The raw neural signals were first filtered using a 4th-order Butterworth high-pass filter at 250 Hz
to isolate spike trains. Spikes were identified with a detection threshold set at 4.5 times the root
mean square (RMS) of the baseline signal. Offline Sorter (Plexon Inc., USA) then classified the
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detected spikes into individual neurons based on waveform similarity and principal component
distribution. This process yielded 157 and 153 spike trains for B04 and C05, respectively, which
were downsampled to 10 kHz for computational efficiency. Joystick position signals were smoothed
using a 20-point moving average filter.

To account for neural transmission delays to the muscles, data segmentation incorporated delays of
120 ms for B04 and 140 ms for C05. Neural signals were segmented using a 50 ms time window, and
corresponding joystick velocities were adjusted for the delay. Velocity samples that crossed a speed
threshold were categorized by direction: Top (45◦ to 135◦), Bottom (-135◦ to -45◦), Right (135◦ to
225◦), and Left (-45◦ to 45◦). Post-segmentation, 1981 samples for B04 and 3755 for C05 were
obtained. From these, 1/10 of the samples were randomly chosen for validation, with the remaining
used for training. Separate datasets were then constructed for B04 and C05.

1.2.2 BMI experiment

Similarly, a 250 Hz 4th-order Butterworth high-pass filtering was first applied to the neural signals.
Next, to reduce the influence of the recording instability during the experiments, we set the threshold
for spike detection to 8.0 times the RMS of the baseline signal. The spikes were sorted out online
based on the waveform shape. Signals of all the first collected neuron in every valid channel were
mapped to the movement of the controlled cursor via a Kalman filter. In each trial, we decoded the
cursor velocity every 30 ms, then calculated and updated the cursor position on the screen.

2 motorSRNN: an SNN architecture inspired by the motor circuit in primates

spiking recurrent neural networks (SRNNs) have been shown prosiming in many different tasks [3, 4].
The motorSRNN, an spiking neural network (SNN) architecture modeled after primate motor circuits
(Fig. S2B), aims to reconstruct the pathway between the brain and the externals. It incorporates
distinct layers representing the the motor cortex (MC), subcortical region (SC), spine (Sp) and
muscles (Ms) (Fig. S2A). Following principles of modularity [5] and hierarchy [6], the motor cortex
is divided into three layers: the input layer, MC1, and MC2. The input layer itself yields the cortical
spike trains (CSTs) collected from the M1 of monkeys. Layer MC1 receives these CSTs, while layer
MC2, a lower-level module, is not directly connected to the input layer. To introduce modularity, the
MC1 and MC2 modules are sparsely connected, where 20% of the connections are randomly set to
zero. In the primate motor cortex, certain neurons transmit signals to the subcortical region, while
others connect directly to motoneurons via cortico-motoneuronal (CM) pathways, which are specific
to primates [7] (Fig. S2B, right dashed rectangle). In motorSRNN, layer SC receives inputs from
MC1 and MC2, and sends feedback to them, mimicking the role of the thalamus in biological systems
(Fig. S2B, left dashed rectangle). Additionally, layer Ms receives direct inputs from the input layer
via a long-loop connection (M1LC), analogous to the biological CM pathway. Layer Sp processes
outputs from the basal ganglia in SC and sends signals to Ms. SRNNs are implemented in MC1,
MC2, and SC [8, 9], while a feedforward SNN operates in layer Sp. For enhanced biological realism,
distance-dependent connectivity is applied, where connection strength diminishes with increasing
distance [10]. Finally, layer Ms outputs cumulative probabilities for four movement directions (up,
down, left, right) in a 50 ms time window. The predicted direction is determined by the maximum
cumulative probability at the final moment.

2.1 Neuron Models

2.1.1 Firing-threshold ALIF neurons

ALIF neurons build up the SNN in layer MC 1, MC 2, SC, and Sp in the motorSRNN, for its better
biological plausibility [12] and performance in classification [13] than traditional leaky integrate-
and-fire (LIF) models. An ALIF neuron receives the spikes emitted by the presynaptic input ALIF
neurons. The received spikes cause the ALIF neurons’ membrane potential to increase. When
an ALIF neuron’s membrane potential reaches the firing threshold, it emits a spike. And then its
membrane potential will be reset to the resting potential (set to 0 in this study), and its firing threshold
will increase. When no spike is received, the membrane potential and firing threshold of the ALIF
neuron will both gradually decrease.
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Figure S2: Architecture of motorSRNN. (A) The architecture of motorSRNN. Different layers
represent different structures solidly framed in corresponding colors in (B). The SNNs in MC1, MC2,
and SC are recurrent, while the one in Sp is feedforward. The neurons in layer MC1, MC2, SC,
Sp are ALIF models, and the ones in layer Ms are LI models. MC1: motor cortex module 1, MC2:
motor cortex module 2, SC: subcortical region, Sp: spine. Solid arrows denote full connections,
and dashed arrows indicate sparse initialized connections. The darker the arrow, the stronger the
initialized connection is. (B) The motor circuit in primates, modified from [11].

Eq. (1) describes the dynamical process of an ALIF neuron’s membrane potential.

ut = αut−1 + (1− α)RmIt − st−1θ (1)

where ut denotes the membrane potential at time t, ut−1 denotes the membrane potential at time
t−1; α represents the decay coefficient of the membrane potential, as shown in Eq. (2); Rm indicates
the constant membrane resistance of the ALIF neuron; It is the total current received from the
presynaptic ALIF neurons, as shown in Eq. (3); st−1 denotes the spiking state of an ALIF neuron at
time t− 1, as shown in Eq. (4); and θ indicates the dynamical firing threshold, as shown in Eq. (5).

α = exp

(
− dt

τm

)
(2)

where dt denotes the unit time, τm represents the time constant (TC) of the membrane potential.

It =
∑
i

st (3)

where i indicates the index of the presynaptic ALIF neurons connected to the current ALIF neuron,
and st denotes the spiking state of the connected ALIF neuron at time t. That is, Eq. (3) shows that
the input current of an ALIF neuron at the current moment is the sum of the number of spikes from
the presynaptic ALIF neurons at the current moment.

st =

{
1, ut ≥ θ
0, ut < θ

(4)
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When st equals 1, it means that the ALIF neuron fires at time t, while when st equals 0, it means
there is no spike fired at time t.

θ = b0 + βηt (5)

where b0 indicates the minimal firing threshold, and the product of β and ηt denotes the change of
the dynamical threshold θ at time t, within which β is a constant, and ηt is calculated as shown in Eq.
(6).

ηt = ρηt−1 + (1− ρ)st−1 (6)

where ρ represents the decay coefficient of the dynamical firing threshold, as shown in Eq. (7).

ρ = exp

(
− dt

τadp

)
(7)

where τadp denotes the TC for the decay of the dynamical firing threshold.

2.1.2 Non-firing a LI neurons

LI neurons are used to mimic the continuity of muscles in layer Ms of the motorSRNN. LI neurons
receive spikes from presynaptic ALIF neurons. The received spikes will cause the membrane potential
of the current LI neurons to increase, but unlike ALIF neurons, LI neurons will only accumulate
membrane potentials, but not fire. Similarly, when no spike is received, the membrane potential of
the current LI neuron will gradually decrease. The membrane potential uLI

t is updated as shown in
Eq. (8).

uLI
t = αLIuLI

t−1 + (1− αLI)RLI
m ILI

t (8)

where the other relative variables and their updating equations are the same as those of ALIF neurons.

2.2 Training

In SNNs, surrogate gradients provide a smooth, differentiable approximation of the true gradient,
enabling backpropagation in networks with non-differentiable spiking neurons. This approach allows
efficient training using standard gradient-based optimization methods [14]. In the motorSRNN,
surrogate gradients are computed, and the trainable parameters—including feedforward and recurrent
weights, membrane TC τm, and adaptive threshold TC τadp—are updated using backpropagation-
through-time and the Adam optimizer. Feedback connections remain fixed after initialization.

Key parameter settings refer to Tab. S1. The size of the input layer equals the amount of the collected
biological neurons. The output layer contains 4 LI neurons corresponding to 4 labels. The LI neuron
with the highest membrane potential indicates the output at every time step. A softmax function
is utilized to convert the membrane potential to the probability. The accumulated probabilities of
4 output neurons over all time steps are the final output of the network. The largest accumulated
probability denotes the output label. All the models are implemented with PyTorch 1.8.1 and trained
on two NVIDIA GeForce RTX 3090.

3 Cosine-tuning Analysis

3.1 Cosine-tuning neurons in the motor cortex

In 1982, the firing rates of many pyramidal neurons in the M1 of monkeys were found to vary
systematically with the direction of monkeys’ hand movements [15]. A neuron exhibited the highest
firing rate when a monkey moved its hand to the neuron’s preferred direction (PD), and the firing
rate decreased as movements deviated from the PD. This relation between the firing rate (F ) of a
specific neuron and the direction of movements of the monkeys’ hands (δ) could be fitted by a cosine
function as shown in Eq. 9:

F = f0 + g cos(δ − δ0) (9)

where f0 denotes the baseline firing rate, g indicates the modulation depth, and δ0 represents the PD.
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Table S1: Key parameter settings of the motorSRNN for both datasets. τmh and τadph denote
the membrane and adaptive TCs in the hidden layers. τmo indicates the membrane TCs in the output
layer. Rm & RLI

m , β, and b0 are parameters describing the neuronal dynamics represented in the
equations.

Dataset B04 C05

Hidden Layers Size [64, 32, 16, 8] [64, 32, 16, 8]

τmh 1 1
τadph 5 5
τmo 1.5 1.5
Rm & RLI

m 1.4 1.4
β 1.8 1.8
b0 0.01 0.01

Batch Size 32 32
Loss Function Cross-entropy Cross-entropy
Epochs 30 30
Learning Rate (LR) 1e-2 8.75e-3
LR Decay Type Step Step
LR Decay 0.7 per 20 epochs 0.5 per 20 epochs

3.2 Resultant vector length and the distributional symmetry

Symmetry has been found to be an important feature of the neuronal PD distributions in the motor
cortex of primates [16–18]. In circular statistics, the distributional symmetry of data points on the
unit circle can be deduced by the resultant vector length (RVL). Every data point rj represents an
angle γj , as shown in Eq. 10:

rj =

(
cos γj
sin γj

)
(10)

where j indicates the index of the data point. Next, RVL is the length of the average vector of all the
data points, as shown in Eq. 11:

RVL =

∥∥∥∥∥∥ 1

Ns

∑
j

rj

∥∥∥∥∥∥ , (11)

where Ns denotes the total number of data points. The closer the RVL is to 0, the more symmetrical
the distribution of data points is. On the contrary, if the RVL equals 1, the data points totally
concentrate in one single direction. In this study, every data point on the unit circle means the PD of
an significantly cosine-tuned neuron (SCtN). That is, a smaller RVL indicates a more symmetrical
distribution of the PDs of the SCtNs. Note that the symmetry is defined on polar coordinate, thus an
absolute symmetry satisfies Nγ = Nγ+π , where Nγ+π and Nγ represent the numbers of data points
with certain angles γ and γ + π, respectively. CircStats, an MATLAB toolbox, was employed for the
aforementioned calculation [19].

4 Statistical Analysis

F -test was applied to determine whether the cosine fitting regression is significant. p < 0.05 indicates
a significant dependency between the response and predictor variables. In the motorSRNN, since
there are four predictor variables and three parameters to be fitted in the cosine function, only the
fitting with very high R2 can pass the statistical test.

The significance of distributional differences was judged by a 2-sample t-test. The null hypothesis is
that the two groups of data to be tested are independent random samples from normal distributions
with equal means. p < 0.05 indicates a significant distributional difference. Smaller p-value indicates
stronger significance.
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5 Supplementary results

Here we provided additional example SCtNs in layer MC1 of motorSRNN, as shown in FIg. S3.

Figure S3: Example significant cosine-tuning neurons (SCtNs) in the MC1, motorSRNN trained
on both the datasets of B04 and C05. Note that angles are circular, i.e., f(x) = f(x + 2π). A
unimodal or a monotonic function can not fit the data well.

6 Supplementary discussion

6.1 Implications for neuroscience

After training the motorSRNN, a topologically brain-inspired SNN, we discovered several bio-
functional similarities at single-neuron, population, and circuit levels. Firstly, at the single-neuron
level, the neurons in the motor cortex, corresponding to layer MC1 of motorSRNN, possess an
essential characteristic of cosine-tuning [15]. And we found that more cosine-tuned neurons emerged
in layer MC1 of motorSRNN, besides those induced by the input. Secondly, at the population level,
a symmetrical distribution of PDs of SCtNs in layer MC1 of motorSRNN was observed, in line
with reports in the literature [16–18]. Thirdly, at the circuit level, previous studies have established
that the biological CM connections, the counterpart of M1LC, primarily contribute to the dexterous
control of hands and fingers [20]. Similarly, after ablating M1LC, the standard deviations of decoding
performance over 10 random initialization at each epoch significantly increased. As far as the authors
are aware, these bio-functional similarities were observed for the first time in a goal-driven SNN
model.

Due to these discoveries of bio-functional similarities, we hypothesize that the motorSRNN can
provide valuable insights into the biological motor circuit. Based on the proliferation and persistency
of cosine-tuning observed in layer MC1 of motorSRNN, we predict that new task learning can also
induce such proliferation and persistency in the biological motor cortex. To validate this prediction,
we designed a BMI experiment, where monkeys need to learn to modulate the activities in their
cortical neural networks to adapt to a new Kalman filter decoder. And the results confirmed that new
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task learning indeed induces both the proliferation and persistency of cosine-tuning in the primate
motor cortex.

Task-tuning should definitely appear in decoding, however, it is not necessarily cosine-like. In
our study, the analysis of cosine-tuning was based on a statistical F -test for fitting. Thus, only
neurons passing the test would be further considered. In a classical work, Perge et al. also fitted
neuronal firing rates with four directions using a cosine function, based on statistical F -tests [21].
But importantly, we emphasize that the purpose of our cosine-tuning investigation is to establish the
biological consistency of the proposed motorSRNN and the biological motor circuit, rather than to
exclude other possible mathematical fitting functions.

In this study, we focused on training motorSRNN for classification instead of regression as an initial
step to validate the feasibility of applications of SNN on invasive BMI. However, it should not be
inferred that the role of the motor cortex is just for classification. The motor cortex’s primary function
is to generate motion, which is a complex process that cannot be simply reduced to a classifier or
regressor. Nevertheless, classification, in our view, represents a reasonable simplification, which can
still facilitate our understanding of neural systems to some degree. Notably, the continuity of muscles
was also considered in the motorSRNN, so that the output neurons were non-spiking integrators.
The classification targets could be regarded as the directions of “muscles” in the output layer. Even
under such simplification, some bio-functional similarities still emerged in the proposed motorSRNN.
Similarly, although the convolutional neural network, a classifier, have been widely accepted as neural
models of the visual system by the community [22–25], we cannot assert that the visual cortex solely
performs image classification.

6.2 Comparison between motorSRNN and other goal-driven DL models

Bio-functional similarities and predictability of neural computations Bio-functional similarities
have been reported in numerous goal-driven DL models at different levels, as shown by the following
examples. At the single-neuron level, Khaled et al. found that ANNs can spontaneously develop
numerosity-selective neurons similar to those found in the biological brain [26]. At the population
level, Katharina et al. showed that ANNs can exhibit functional separations for objects and faces, just
like the biological brain [23]. At the circuit level, Shahab et al. demonstrated that self-supervision can
promote the emergence of both the biological ventral and dorsal pathways in a deep neural network
[25]. Moreover, David et al. found that artificial neurons in a recurrent neural network (RNN)
can closely resemble the dynamics of motor cortex neurons in monkeys at both the single-neuron
and population levels [27]. In our study, the motorSRNN showed the bio-functional similarities at
all single-neuron, population, and circuit levels. These bio-functional similarities have motivated
researchers to seek potential neuroscientific inspirations from ANNs. For example, Pouya et al.
developed an ANN-driven image synthesis method for predicting neuronal tuning by taking ANNs as
models of the primate brain’s ventral visual stream [28]. Bao et al. found a hierarchical map of object
space in the IT cortex, and further validated it in biology [29]. Inspired by the observation in layer
MC1 of motorSRNN in this study, we also validated that training can indeed promote cultivation and
persistency of cosine-tuning in the biological motor cortex in primates. Additionally, ablation studies
predicted that long-term stable feedback synapses may contribute to the training-induced cultivation
of cosine-tuning.

6.3 Goal-driven SNN models for neural computation

Importantly, the significance of this work goes beyond the proposition of motorSRNN, as it introduces
a novel framework for building models of neural computation. Incorporating biological signals as
input enhances the authenticity of models and potentially results in more biologically plausible
representations. Consequently, such models are likely to exhibit more bio-functional similarities
and offer valuable insights into the mechanisms of neural computation. The proposed motorSRNN
demonstrated bio-functional similarities at the single-neuron, population, and circuit levels, and
generated the prediction of the presence of learning-induced proliferation and persistency of cosine-
tuning in the biological motor cortex, which we also validated by BMI experiments in monkeys.
However, the utilization of this framework should be approached with caution. The bio-functional
similarities directly arising from biological signal input must be accounted first, before identifying
emergent bio-functional similarities. In this study, the occurrence of cosine-tuning before training was
not surprising, but the emergence of more cosine-tuned neurons after training was a novel finding.
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