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ABSTRACT

Hypergraphs are essential in modeling higher-order complex networks, excelling
in representing group interactions within real-world contexts. This is particu-
larly evident in collaboration networks, where they facilitate the capture of group-
wise polyadic patterns, extending beyond traditional pairwise dyadic interactions.
The use of hypergraph generators, or generative models, is a crucial method for
promoting and validating our understanding of these structures. If such genera-
tors accurately replicate observed hypergraph patterns, it reinforces the validity
of our interpretations. In this context, we introduce a novel hypergraph gener-
ative paradigm, HyperPLR, encompassing three phases: Projection, Learning,
and Reconstruction. Initially, the hypergraph is projected onto a weighted graph.
Subsequently, the model learns this graph’s structure within a latent space, while
simultaneously computing a distribution between the hyperedge and the projected
graph. Finally, leveraging the learned model and distribution, HyperPLR gener-
ates new weighted graphs and samples cliques from them. These cliques are then
used to reconstruct new hypergraphs by solving a specific clique cover problem.
We have evaluated HyperPLR on existing real-world hypergraph datasets, which
consistently demonstrate superior performance and validate the effectiveness of
our approach.

1 INTRODUCTION

Hypergraphs are powerful data structures that go beyond traditional graph theory by enabling a more
nuanced representation of multifaceted relationships. Unlike standard graphs, where edges connect
merely pairs of nodes, hypergraphs employ hyperedges, each binding multiple nodes, thereby cap-
turing complex, multi-way interactions with higher fidelity. This capability renders hypergraphs
indispensable across a vast array of fields such as drug discovery (Kajino, 2019), electronics (Luo
et al., 2024), research collaboration networks (Benson et al., 2018), and protein interaction model-
ing (Feng et al., 2021), where interactions often occur among more than two entities.

Despite the expansive potential of hypergraphs, the generative models that craft these complex struc-
tures are still in their nascent stages. Existing models predominantly cater to simpler graph structures
or are bound by pre-assumed hypergraph characteristics, which might not be universally applicable
to the diverse and intricate patterns present in the actual datasets (Lee et al., 2021; Do et al., 2020;
Kook et al., 2020). Recent advancements include learning-based generative models (Zuo et al., 2023;
Gailhard et al., 2024) that attempt to sidestep the necessity for predefined data structures; however,
these too often fail to encapsulate critical structural nuances that define hypergraph integrity.

In light of these challenges, we propose a pioneering framework known as HyperPLR (Projection,
Learning, and Reconstruction), which introduces a robust three-phase process for the generation of
hypergraphs. Initially, HyperPLR projects the complex hypergraph onto a simplified weighted graph
format, essentially maintaining key relationships. It then transitions into a learning phase, wherein it
discerns the latent structures within this graph and models the inter-dynamics among the projected
entities.
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In the final phase, we define a novel clique cover problem to reconstruct new hypergraphs from
the learned weighted projection graph: Weighted Clique Edge Cover (WCEC). It is a common
strategy to project hypergraphs onto graphs, but it is evident that this process results in the loss
of some higher-order relationships. However, limited research has investigated the reverse direc-
tion—reconstructing hypergraphs from graph projections (Bresler et al., 2024; Wang & Kleinberg,
2024). The closest work so far is by Young et al. (2020), which proposes a maximal clique recon-
struction that uses the least number of cliques to cover the projected graph, following the principle
of parsimony. However, this method does not consider the number of hyperedges or the degree in-
formation of vertices. To address these issues, we use a weighted graph as the projection, design the
WCEC problem, and show that solving WCEC allows efficient and more controllable hypergraph
reconstruction from the projection. Additionally, we develop a fast heuristic for approximating the
solution.

Our extensive evaluations of various real-world datasets underscore HyperPLR’s adeptness at weav-
ing hypergraphs that faithfully reflect the underlying complexities of group interactions. Thus, Hy-
perPLR marks a significant technological leap in hypergraph generation.

The principal contributions of this paper are encapsulated in the following:

• Introduction and formulation of the WCEC problem, complemented with an efficient algo-
rithmic solution for reconstructing hypergraphs.

• Development of the novel HyperPLR framework, which harmoniously integrates the struc-
ture and intricate interactions within a hypergraph.

• Empirical validation of HyperPLR against multiple real-world datasets, showcasing en-
hanced efficiency and remarkable performance in hypergraph reconstruction.

2 RELATED WORK

The study of hypergraph generation has garnered increasing attention as an extension of traditional
graph generation techniques, addressing higher-order relational structures present in many real-
world applications. Traditional graph generation models have advanced significantly with the intro-
duction of deep learning techniques. (Kipf & Welling, 2016; Jin et al., 2018; Bojchevski et al., 2018)
generate graphs by imitating the structural properties of given graphs. This is typically achieved by
learning node/edge embeddings and injecting appropriate randomness (Grover et al., 2019; Wang
et al., 2019; Dai et al., 2020). However, methods relying on node/edge embeddings often focus pri-
marily on local structures, particularly in large graphs. While graph spectral theory offers an alter-
native approach, some studies incorporate spectral information into deep models to capture global
characteristics (Martinkus et al., 2022; Bojchevski et al., 2018; Rendsburg et al., 2020). Among
these, CELL (Rendsburg et al., 2020) stands out for its efficiency and scalability, achieved by re-
moving unnecessary operations from Bojchevski et al. (2018). Another consideration is to generate
graphs with weights (edge features) (Grover et al., 2019; Niu et al., 2020; Kocayusufoglu et al.,
2022), which again heavily relies on embeddings.

Traditional graph generation models, while effective for molecular graphs and citation networks, are
not suitable for hypergraph generation. Hypergraphs, with hyperedges connecting multiple nodes,
pose challenges that standard graph models cannot address. Several methods have been proposed
for hypergraph generation. HYPERPA (Do et al., 2020) uses a statistical approach, relying on three
key metrics from real-world hypergraphs: node count, hyperedge size distribution, and new hyper-
edges per node. While HYPERPA generates hyperedges based on these metrics, its dependence on
precomputed statistics and iterative generation process increases time complexity. HyperDK (Naka-
jima et al., 2022) generates hypergraphs that preserve local properties of nodes and hyperedges,
controlled by two hyperparameters, dv and de. A higher dv value indicates that higher-order in-
formation regarding node degrees is preserved, while a higher de value implies the preservation of
higher-order information regarding hyperedge sizes. ThERA (Kim et al., 2023) organizes nodes in
a hierarchical structure across multiple levels, with nodes divided into disjoint levels and deeper
levels containing more nodes. It generates hyperedges locally within each group based on a given
probability. Compared to parameter-based methods, only a few deep learning models have explic-
itly addressed hypergraph generation to date (Zuo et al., 2023; Gailhard et al., 2024), and existing
learning-based hypergraph generation approaches are limited by scalability issues.
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Figure 1: Hypergraph’s graph projection (left direction) and weighted graph projection (right direc-
tion), with line thickness referring to its weight.

In summary, while deep learning techniques for graph generation have made significant strides, hy-
pergraph generation remains an emerging area of research. Existing models, though promising, often
rely on adaptations of graph generation methods and statistical approaches, with inherent limitations
in scalability and evaluation. There is a growing need for more robust models specifically designed
for hypergraph generation, particularly ones that can efficiently capture the complex, higher-order
relationships that hypergraphs represent.

3 PRELIMINARIES AND NOTATIONS

Hypergraph. A hypergraph is a generalization of a graph where edges, called hyperedges, can
connect more than two vertices. Formally, a hypergraph is defined as H = (V, E) where V is a set
of vertices and E is a set of hyperedges (e1, e2, · · · , em) with ei ⊆ V . In a hypergraph, hyperedges
can be of varying sizes, capturing higher-order relationships between sets of nodes beyond pairwise
connections and we assume the hyperedges are distinct in our paper, which means ∀1 ≤ i, j ≤
m, ei ̸= ej .

Graph Projection. A graph projection, or clique expansion, of a hypergraph, is a transformation
process that converts a hypergraph into a traditional graph. In this projection, each hyperedge of the
hypergraph is mapped to a clique (a complete subgraph) in the graph, where each pair of nodes in the
hyperedge is connected by an edge in the projected graph. Formally, ifH = (V, E) is a hypergraph,
the projection graph G = Proj(H) = (V, E ′), where E ′ consists all pairs (vi, vj) ∈ ei for hyperedge
ei ∈ E .

Weighted Graph Projection. In this paper, we introduce a novel graph projection method for
learning-based hypergraph generation, namely Weighted Graph Projection, which effectively pre-
serves the frequency with which vertices co-occur within hyperedges. Formally, given a hy-
pergraph H = (V, E), the weighted graph projection is to project H into a weighted graph
Gw = Projw(H) = (V, E ′, w). The w is a weight function that assigns a weight to each edge
e′ ∈ E ′. The common way to assign weight is w(vi, vj) =

∑
e∈E

I(vi, vj ∈ e) where I is an indicator

function that equals 1 if both vertices vj and vj are part of the same hyperedge.

Clique Edge Cover Problem. The Clique Edge Cover problem is concerned with covering all
the edges of a graph using the minimum number of cliques (complete subgraphs). This problem is
also referred to as the Minimum Clique Edge Cover (MCEC) problem. Given a graph G = (V, E ′)
a clique cover is a collection of cliques such that every edge in E ′ belongs to at least one clique.
The goal is to minimize the number of cliques in the cover. This problem is closely related to
the projection of hypergraphs, as each hyperedge in a hypergraph corresponds to a clique in the
projected graph, and reconstructing the original hyperedges can be seen as a clique cover problem
in reverse Bresler et al. (2024).

Fig. 1 illustrates the two different projection methods between hypergraph and traditional graph.
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Figure 2: An overview of HyperPLR framework. We use RED and BLUE arrowed lines to indicate
flows in the training and the testing phases, respectively. Black arrowed lines are normal flows.

4 HYPERPLR

In this part, we elaborate on the framework of HyperPLR in detail. A high-level overview of the
HyperPLR framework can be found in Fig. 2. As shown, the framework consists of three core
blocks: “Projection”, “Learning”, and “Reconstruction”, acting in the presented order. Given an
input hypergraph H, the projection block project H to the corresponding graph G and weighted
graph Gw. In the following learning block, we employ CELL (Rendsburg et al., 2020) to sample
the new graph G′. In parallel to CELL, we adopt a GCN (Kipf & Welling, 2017) to train a weight
predictor taking node features of G as input, to optimize the MSE error w.r.t. the real edge weight w
in Gw. During the testing phase, the sampled graph G′ is instead fed into this predictor as the graph
topology, and the new weighted graph G′

w is obtained by filling predicted weights into G′. In the
last block of reconstruction, GWC performs a heuristic strategy to dynamically produce the most
likely overlapping cliques out of G′

w. Finally, this collection of cliques is readily converted to a new
hypergraphH′. We detail each block in the following sections.

4.1 PROJECTION

Projecting hypergraphs onto graphs and utilizing graph algorithms is a common technique for solv-
ing hypergraph-related problems, as it improves storage efficiency, interpretability, and allows for
the use of well-established data structures and algorithms. However, hypergraph projection often
results in the loss of higher-order relationships. To address this, there has been research on the lim-
itation when reconstructing hypergraphs from their graph projections (Bresler et al., 2024; Wang &
Kleinberg, 2024). Although exact reconstruction of the original hypergraph is generally infeasible,
we find that with appropriate “guidance”, it is possible to effectively reconstruct most of the patterns
in the hypergraph. This insight motivates our investigation into the generation of such “guidance”.
Specifically, we demonstrate that learning to generate this guidance can enable the creation of a
new hypergraph that retains most of the information from the original hypergraph’s projection. In
our study, we show that the weighted graph projection Gw serves as an effective form of guidance
during the reconstruction process.

On one hand, the weighted projection offers a more condensed hyperedge information into edges,
reducing graph size compared to bipartite representations, which require separate hyperedge nodes.
As discussed in Bojchevski et al. (2018); Rendsburg et al. (2020), bipartite graphs are difficult to
analyze using spectral tools, as they do not possess steady states. On the other hand, the weighted
projection provides a higher representational capacity than the unweighted projection. Notably, in
the weighted projection, the weight of each edge in the graph reflects the co-occurrence frequency
of its nodes within hyperedges, thereby preserving crucial information for the reconstruction of the
original hypergraph.
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4.2 LEARNING

Learning to generate weighted projection Gw that resembles the projection from the real-world
hypergraph is non-trivial, as 1) Gw with weights are hard to model and learn, and 2) real-world
hypergraph can easily scale up (to tens of thousands of vertices) with long-range dependencies like
overlapping cliques or communities in large hypergraphs. We first present how this can be achieved
at a high level. Considering a weighted graph with node feature X ∈ Rn×d, adjacency matrix A,
and weight matrix W , we have:

P(W,A|X) = P(W |A,X)P(A) (1a)

= P(W |A,X)
∏
i,j

P(Ai,j) (1b)

=
∏
i,j

P(Wi,j |Ai,j , X)
∏
i,j

P(Ai,j) (1c)

=
∏
i,j

Pα(Wi,j |Ai,j , Xi, Xj)Pβ(Ai,j), (1d)

where P(·) measures the probability. Eq. (1a) stands because A is derived solely from a spectral
method, independent of X . Eq. (1b) is due to the fact that A is drawn from an edge-independent
“score matrix” as in Bojchevski et al. (2018); Rendsburg et al. (2020). Eq. (1c) and (1d) are further
built upon the assumption that edge weight Wij is only dependent on the features of the ending
nodes Xi and Xj , and the existence of this edge Ai,j , under two distributions parameterized by α
and β.

We first introduce Pβ(·) allowing for generating large-scale graphs with high efficiency. To this
end, we employ CELL (Rendsburg et al., 2020). CELL is a graph generative model working in
the spectral space by removing redundant computation from NetGAN (Bojchevski et al., 2018). In
NetGAN, the following objective is optimized

min
Z∈Rn×n

−
∑

(u,v)∈R

log σrows(Z)u,v s.t. rank(Z) ≤ h, (2)

whereR is a collection of (massive) random walks and (u, v) is a transition. σrows(Z) is a row-wise
softmax function perform on the low-rank variable Z. In practice, NetGAN needs to sample mil-
lions of random walks from a graph with moderate size, which is prohibitively expensive. Besides,
the extra computational burden is required as NetGAN trained a generator to produce fixed-length
random walks to obtain a new graph.

CELL (Rendsburg et al., 2020) argued that such a massive amount of sampling procedures and the
generator in NetGAN can be avoided by only considering the spectral properties in limit. Concretely,
given the adjacency matrix A of a graph, its transition matrix can be obtained via P = D−1A where
D = diag(d) ∈ Rn×n

+ is the degree matrix. Assuming the stationary state π of P exists and is
unique, CELL considers acting an infinite number of infinite long random walks and calculates how
many times a node can be visited. The time of visit for nodes can be encoded in a “score matrix” S,
and the normalized score matrix in limit is

lim
q→∞
T→∞

S

qT
= diag(π)P, (3)

where q and T are number and length of random walks, respectively. Thus S can serve as a surrogate
of random walk setR in Eq. (2):

min
Z∈Rn×n

−
n∑

u,v=1

Su,v log σrows(Z)u,v. (4)

Since diag(π)P ∝ A and rescaling S will not change the optima in Eq. (4), the final objective of
CELL becomes

min
Z∈Rn×n

−
n∑

u,v=1

Au,v log σrows(Z)u,v s.t. rank(Z) ≤ h, (5)
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whose solution is denoted as Z∗. Then P ∗ = σrows(Z
∗) can be viewed as a low-rank-regularized

transition matrix. We can obtain a new score S∗ = diag(π∗)P ∗, where π∗ is the stationary distribu-
tion of P ∗. Finally, the edges of a new graph can be independently sampled according to S∗.

Next, we discuss Pα(·). To allow generating graphs with weights, we extend CELL by providing
predicted weights on the sampled edges, where the edge weight predictor is a Graph Convolutional
Network (GCN) (Kipf & Welling, 2017). During the training phase, this predictor takes the vertex
embeddings X(0) and the adjacency matrix A as input, and outputs a set of new embedding X(l):

X(l) = GCN(X(0), A), (6)

where l is the number of basic GCN layers. The loss is the MSE between the predicted weights
X(l)X(l)⊤ and the ground-truth weights W of the original WLIG on the observed edge set A:∑

(i,j)∈A

((
X(l)X(l)⊤

)
i,j
−Wi,j

)2

. (7)

This weight predictor can be trained not only on a single graph projection (though we train separate
embedding networks for each instance) but throughout a set of formulas, since all these formulas
may share common structures on weights. In the testing stage, we feed the embedding X0 and a
sampled adjacency A′ from CELL into the well-trained GCN:

X(l)
s = GCN(X(0), A′). (8)

Then weights can be derived using X
(l)
s X

(l)⊤
s . We only consider the weights on the edges that

appear in A′. See the “Learning” block in Fig. 2 for an intuitive view.

One remaining problem is how to obtain the initial Node Embedding X(0) for each vertex. One of
the most intuitive ways is to use a one-hot representation, but as the size of the hypergraph grows,
the vertices number n and the required dimension increase rapidly. In practice, we train the node
embedding with the Node2Vec algorithm (Grover & Leskovec, 2016) from the simple projection
graph G.

4.3 RECONSTRUCTION

As each hyperedge in the hypergraph H is mapped to a clique in the graph projection G or Gw,
it is straightforward to consider the reconstruction as a clique cover problem, for example, MCEC
problem (Rodrigues, 2021). Here, we give a proposition about the limitations of the MCEC:
Proposition 1. One hypergraphH can be reconstructed by solving the MCEC on the graph projec-
tion G if and only if each hyperedge appears as an isolated clique.

Proof. A hyperedge must be a clique in the graph projection, but not vice versa. A clique may not
be a hyperedge in only two cases: 1) for a hyperedge e, there is a hyperedge e′ set that e ⊂ e′; 2) for
several hyperedges e1, · · · , ek, which’s projections overlap together and form a bigger clique than
each other. The first case would lead the solving of MCEC to ignore some hyperedges which are
included by other hyperedges. The second case would lead the MCEC solving to produce the new
hyperedges.

Although the MCEC has its limitations, it still can be a strong baseline in the hypergraph recon-
struction task (Young et al., 2020). Due to the “principle of parsimony”, solving MCEC on the
projection graph will ignore the frequency of node level pairwise appearance and always recover
fewer hyperedges than the original hypergraph. To address these issues, inspired by MCEC, we
make a step to raise a novel Weighed Clique Edge Cover (WCEC) problem and an associated ef-
ficient algorithm Greedy Weighted Cover (GWC) in a hill-climbing manner. WCEC substantially
differs from MCEC by taking into account an essential but less explored factor–frequency of node
level pairwise appearance.

Weighted Clique Edge Cover Problem (WCEC). Though there exist several variants of clique
covering problems, our problem of recovering clique covers from weighted graphs has been less
studied. The most related problem in literature is Weighted Edge Clique Partition (WECP), which is
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proposed by Feldmann et al. (2020) and we provide a more comprehensive analysis for the connec-
tion and difference betwen WECP and WCEC in Appendix. A. Here, we define the WCEC problem
as follows:

Problem 1 (Weighted Clique Edge Cover). Given a weighted graph G with weight matrix W , it asks
to select k cliques from G, such that the distance d(W,W ′) ≥ 0 between W and W ′ is miminized,
where weight matrix W ′ is derived from a new weighted graph G′ by stacking k selected cliques.

In our setting, we let d(W,W ′) be the L1-distance:

d(W,W ′) =

n∑
i=1

n∑
j=1

|Wij −W ′
ij |, (9)

where Wij represents the entry of W at ith row and jth column. Comparing the proposed WCEC
and MCEC, we have the following lemma:

Lemma 2. Suppose a WCEC problem with weight matrix W is obtained by assigning positive
weights to edges in adjacency A associated with an MCEC problem. Then a solution clique cover
to this WCEC such that d(W,W ′) = 0 must form a cover of the MCEC, but a clique cover of MCEC
on A may not satisfy d(W,W ′) = 0.

Proof. We first prove the initial part. By definition, d(W,W ′) = 0 implies that for every (i, j),
the weight matrix Gw of the found cover satisfies W ′

i,j = Wi,j . Since W is derived by assigning
positive weights to the non-zero entries in A, we have W ′

i,j > 0 =⇒ Ai,j = 1 and Wi,j =
0 =⇒ Ai,j = 0. Therefore, the solution to the WCEC is a cover of the MCEC. For the second
part, it suffices to provide an easily verifiable example, which is presented as a constructive proof in
Appendix. B.

Lemma 2 provides an interpretation of why the proposed framework “weighted projection +WCEC”
is more powerful than “projection + MCEC” utilized by Young et al. (2020). In general, solving
WCEC provides rich information for solving MCEC, but not vice versa. Nevertheless, solving
either of them is NP-complete (Feldmann et al., 2020; Ullah, 2022).

Greedy Weight Cover (GWC) Algorithm. Due to NP-completeness, an exact solution to WCEC
can be infeasible. Therefore, we develop a specialized algorithm to obtain a local optima of WCEC
via hill-climbing. Our algorithm works on a local search basis, wherein each iteration will take
action with the largest gain. We term this procedure the Greedy Weighted Cover (GWC) algorithm.
Concretely, GWC first enumerates or samples the cliques set from the weighted graph projection,
whose sizes are below the maximal hyperedge size of the original hypergraph, using the algorithm
proposed by Zhang et al. (2005). Then we create a GainTable measuring how much one can
improve by decoding the corresponding clique. In each subsequent step, GWC finds a clique with
the largest gain and updates the GainTable in a dynamic programming fashion, until the number
of found cliques reaches a preset threshold m or distance. To prevent redundant computation, we
first build an EdgeTable mapping from an edge to its related cliques (see Alg. 2), which allows
GWC only updates the gain of the local cliques in each step. The overall procedure is summarized
in Alg. 1.

5 EXPERIMENT

5.1 PROTOCALS

Implementation details. Throughout all the experiments, HyperPLR is running on an Apple M1
CPU. The dimension of node embedding from Node2Vec is 50. The GCN consists of two layers,
with input/output dimensions 50/128 and 128/128, respectively. We employ ADAM as the opti-
mizer for all learning modules (i.e., Node2Vec, GCN, and CELL). For CELL, we set parameter
edge overlap limit = 0.8 which controls the overlapping portion of the generated and the origi-
nal graphs. For more details, one can refer to the supplementary material.
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Algorithm 1: Greedy Weight Coverage
1 Input: weighted adjacency matrix W , set

of cliques C, clause number m
Output: set of chosen cliques Cover

2 function GWC(W, C,m)
3 Cover← ∅
4 GT← {C1 : g1, · · · , Cn : gn}// Gain

table
5 E ← GenerateEdgeTable(C)
6 for k ← 1 to m do
7 C ′ ← LargestGain(GT)
8 Cover← Cover ∪ C ′

9 GT[C ′]← −∞
10 W ← Update(W,C ′)
11 for Edge e ∈ C ′ do
12 Cliques← E [e]
13 for C ∈ Cliques do
14 GT[C]← Update′(W,C)

15 return Cover

Algorithm 2: Generate Edge Table
1 Input: set of cliques C

Output: edge table E
2 function GenerateEdgeTable(C)
3 E ← {e1 : ∅, · · · , en : ∅} // Edge

table
4 forall e ∈ E , C ∈ C do
5 if e ∈ C then
6 E [e]← E [e] ∪ C

7 return E

Dataset. Following the standard approach outlined in Nakajima et al. (2022); Lee et al. (2021);
Kim et al. (2023), we evaluate performance on five datasets across three domains: contact
(contact-high-school, contact-primary-school), email (email-Eu, email-Enron), and drug (NDC-
classes) (Benson et al., 2018). In the contact datasets, each node represents an individual, and each
hyperedge represents a group communication event involving all participating individuals. In the
email datasets, each node represents a user, and each hyperedge corresponds to an email, consisting
of the sender and all recipients. In the drug dataset, each hyperedge corresponds to an NDC code
for a drug, and the nodes represent the substances composing the drug. More details can be found
in Appendix. C.1.

Baselines. We compared the performance of our proposed model against four existing hypergraph
generation methods: HyperDK (Nakajima et al., 2022), Hyperlap (Lee et al., 2021), Hyperlap+ (Lee
et al., 2021), and THERA (Kim et al., 2023). HyperDK, Hyperlap, and Hyperlap+ are static gener-
ators, primarily suited for producing static hypergraphs, while THERA generates dynamic graphs,
such as temporal hypergraphs. Since HyperDK is highly sensitive to parameter settings, we evalu-
ated it under two configurations: HyperDK0,0, which aims to generate hypergraphs that preserve
the average node degree and the average hyperedge size, and HyperDK1,1, which seeks to preserve
the degree of each individual node and the size of each hyperedge.

5.2 RESULTS

Graph statistics. The results of the comparisons between our model and state-of-the-art methods
across five datasets, using various evaluation metrics, are presented in Table 1. We further compare
some of the advanced structural properties in Appendix. C.2. Each dataset was generated five times,
and the average results were reported. The graph properties evaluated include hypergraph structure-
level metrics (density, average hyperedge size, average node degree), graph projection-level metrics
(“G coefficient” and “G modularity”), and bipartite graph representation-level metrics (“B modular-
ity”). These properties provide a comprehensive overview of the graph’s structural characteristics.
The detailed definitions about the metrics can be found in Appendix. C.3.

Representation ability and reconstruction ability. We investigate how much the graph structure
statistics can retain after feeding a hypergraph into different consecutive phases of HyperPLR from
projection Gw, learning GL

w, and reconstruction GR
w . Results are in Table 2. We also visualize this

process using the email-Enron instance in Fig. 3. It is evident that the main structures of the
WLIGs are well-preserved across all three phases.

8



Published as a conference paper at ICLR 2025

(a) Gw of email-Enron (b) Graph GL
w in learning (c) Graph GR

w in reconstruction

Figure 3: Visualization of weighted graph projection of hypergraph email-Enron at different
phases. Each node corresponds to one vertex and each edge (with thickness) indicates inter-node
incidence (with frequency). (a) Weighted graph projection Gw derived from original hypergraph;
(b) Generated Weighted graph projection GL

w based on (a) using hyperPLR; (c) Weighted graph
projection GR

w of generated hypergraph from (b) with GWC. Zoom in for a better view.

Table 1: Results of hypergraph generation in terms of graph metrics with 5 real-world hypergraphs

density average size average degree G coefficient G modularity B modularity
contact-high-school 23.908 2.327 55.633 0.504 0.582 0.754
HyperDK0,0 272.161 3.089 840.796 0.999 0.000 0.324
HyperDK1,1 142.573 2.178 310.567 0.861 0.016 0.459
Hyperlap 23.938 2.327 55.701 0.341 0.394 0.622
Hyperlap+ 23.908 2.327 55.633 0.632 0.742 0.747
THERA 23.908 2.609 62.382 0.354 0.405 0.831
HyperPLR 24.055 2.703 65.011 0.471 0.556 0.649
contact-primary-school 52.496 2.419 126.979 0.526 0.284 0.635
HyperDK0,0 229.896 3.129 719.429 1.000 0.000 0.319
HyperDK1,1 143.343 2.285 327.516 0.924 0.010 0.437
Hyperlap 52.496 2.419 126.979 0.496 0.281 0.620
Hyperlap+ 52.496 2.419 126.979 0.655 0.496 0.640
THERA 52.496 2.767 145.252 0.446 0.150 0.758
HyperPLR 52.714 2.648 139.593 0.491 0.281 0.600
email-Enron 10.573 3.009 31.818 0.593 0.352 0.656
HyperDK0,0 52.045 3.188 165.933 0.958 0.007 0.322
HyperDK1,1 39.596 2.885 114.252 0.796 0.040 0.355
Hyperlap 10.232 3.131 32.034 0.646 0.275 0.576
Hyperlap+ 10.203 3.131 31.944 0.841 0.582 0.738
THERA 10.203 3.386 34.545 0.674 0.166 0.736
HyperPLR 10.723 3.244 34.782 0.593 0.351 0.569
email-Eu 25.077 3.426 85.909 0.492 0.371 0.675
HyperDK0,0 156.130 3.125 487.965 0.723 0.015 0.327
HyperDK1,1 114.040 2.887 329.223 0.788 0.035 0.353
Hyperlap 25.778 3.621 93.338 0.623 0.280 0.571
Hyperlap+ 25.860 3.621 93.633 0.785 0.745 0.751
THERA 24.868 4.696 116.792 0.837 0.099 0.793
HyperPLR 29.081 3.135 91.155 0.446 0.319 0.493
NDC-classes 0.937 5.922 5.550 0.611 0.610 0.741
HyperDK0,0 36.112 3.583 129.392 0.311 0.038 0.303
HyperDK1,1 31.083 3.594 111.711 0.754 0.058 0.296
Hyperlap 1.089 6.166 6.718 0.672 0.456 0.575
Hyperlap+ 1.098 6.166 6.767 0.750 0.793 0.836
THERA 0.999 6.282 6.277 0.793 0.520 0.892
HyperPLR 1.210 5.501 6.655 0.791 0.623 0.733

5.3 ANALYSIS AND DISCUSSION

The experimental results demonstrate several key findings regarding the performance and capabili-
ties of the proposed HyperPLR framework:

Graph Statistics Comparison. Towards graph-level metrics, HyperPLR outperformed traditional
hypergraph generation models, including HyperDK, Hyperlap, and ThERA, across various datasets.
Remarkably, despite not receiving any direct structural parameters from the original hypergraph,

9
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Table 2: Results of the graph metrics for the weighted graph projection Gw derived from origi-
nal hypergraph; Generated Weighted graph projection GL

w; and weighted graph projection GR
w of

generated hypergraph

Hypergraph Gw coefficient Gw modularity GL
w coefficient GL

w modularity GR
w coefficient GR

w modularity
contact-high-school 0.504 0.582 0.388 0.546 0.472 0.556
contact-primary-school 0.526 0.284 0.453 0.308 0.491 0.277
email-Enron 0.593 0.352 0.508 0.433 0.593 0.347
email-Eu 0.492 0.371 0.366 0.448 0.446 0.315
NDC-classes 0.611 0.610 0.452 0.538 0.788 0.625

HyperPLR consistently demonstrates competitive similarity across nearly all graph metrics when
compared to other parameter-based methods, underscoring its superior potential in hypergraph gen-
eration. Additionally, the clustering coefficient distribution of the hypergraphs generated by Hy-
perPLR exhibits the highest degree of similarity to real-world datasets. Furthermore, HyperPLR is
parameter-insensitive, delivering stable and robust results with default parameter settings. For ex-
ample, the default rank number of CELL Rendsburg et al. (2020) is 9. To investigate how much this
parameter impacts the generated results, we conduct extra experiments on varying rank = 8, 10, 12.
We also present three generated weighted graph projections in Appendix. D. Additionally, a brief
discussion on the trade-off between the fidelity and diversity of HyperPLR is provided in Ap-
pendix. E. All these reuslt indicate that the HyperPLR framework, despite not requiring parameter
tuning specific to each dataset, can generalize effectively across different domains. This robust-
ness and parameter insensitivity highlight HyperPLR’s advantage in practical applications, where
real-world datasets can vary widely in structure.

Representation and Reconstruction Ability. Table 2 and Figure 3 provide insights into how
HyperPLR maintains structural properties throughout the projection, learning, and reconstruction
phases. The close similarity between the weighted graph projections derived from the original hyper-
graph (Gw) and the generated hypergraph (GR

w) demonstrates that HyperPLR effectively preserves
critical structural information. The consistency in clustering coefficients and modularity across the
different phases (as seen in Table 2) suggests that the proposed weighted graph projection method
captures essential high-order relationships. This is further confirmed by the visualization in Fig-
ure 3, where the main structures are visibly well-retained, implying that the framework’s learning
and reconstruction processes are efficient in preserving hypergraph topology.

Limitations and Future Directions. Despite its strengths, HyperPLR has limitations. It requires
significant computational resources, especially for larger datasets, and the GWC heuristic algorithm,
while effective, doesn’t guarantee optimality. Future research could explore advanced optimization
techniques like reinforcement learning or MCTS for improving clique selection. Additionally, the
complexity of HyperPLR is constrained by the exponential nature of the maximal clique enumer-
ation problem, though it remains manageable for real-world hypergraphs. Future work could also
focus on accelerating clique enumeration using hyperedges as prior information.

6 CONCLUSION

Deep hypergraph generation models have demonstrated their ability to capture the complex distribu-
tion of hypergraphs by leveraging the rich information embedded within them to generate more real-
istic structures. In this paper, we address a novel clique cover problem—WCEC—for reconstructing
hypergraphs from weighted graph projections, and we propose an efficient and effective framework,
HyperPLR, for generating real-world hypergraphs. The weighted graph projection shows strong
representational power compared to existing inexact graph representations, while also significantly
enhancing learning and generation against the exact representation. This is the first work to achieve
both. Our method demonstrated superior efficiency and stability compared to previous state-of-
the-art methods across various graph-based metrics. In the future, we aim to extend HyperPLR’s
capabilities to additional generation tasks, such as bipartite network generation or SAT instance
generation, in order to capture the rich information inherent in these structures.
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A WECP PROBLEM

Problem 2 (Weighted Edge Clique Partition). Given a graph G with weight function we : E(G)→
Z+ and a positive integer k, it asks to select at most k cliques such that each edge appears in exactly
as many cliques as its weight (if it exists, otherwise output NO).

Note that although the WECP may appear similar to the WCEC problem, they have essential dif-
ferences. In WECP, the objective is to partition the edges such that each edge is covered exactly as
many times as indicated by its given weight. This means that if an edge has a weight greater than
one, it must be covered by multiple cliques, and no edge can be covered more or fewer times than
specified. This strict covering constraint makes the problem more restrictive. The solution either
finds such a partition or determines that it is impossible, framing WECP as a Constraint Satisfaction
Problem (CSP).

In contrast, the WCEC problem aims to minimize the distance between the original weight matrix
W of the graph and a derived weight matrix W ′, which is formed by stacking the selected cliques. In
this sense, it approximates or covers the edge weights using cliques. Unlike WECP, there is no strict
requirement for how many times each edge must be covered; instead, the focus is on minimizing the
difference between the original and derived weight distributions. Therefore, WCEC is essentially a
combinatorial optimization problem.

B ADDITIONAL PROOF FOR THE SECOND PART OF LEMMA 2

Proof. Consider a simple hypergraph H = (V, E) where V = {v1, v2, v3, v4} and E =
{(v1, v2, v4), (v2, v3, v4), (v1, v3)}. The graph projection G of H will be a complete graph. If
G is used as the input for the minimum clique edge cover problem, the optimal solution will be a
clique c = (v1, v2, v3, v4). In the WCEC setting, let W be the weighted matrix of the weighted
graph projection of hypergraph H, and let W ′ be the weighted matrix derived from the solution of
the MCEC. Then we have:

W =

0 1 1 1
1 0 1 2
1 1 0 1
1 2 1 0

 , W ′ =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

It is evident that d(W,W ′) =
∑n

i=1

∑n
j=1|Wij −W ′

ij | = 2, which is not the optimal solution for
WCEC problem.

C EXPERIMENTAL DETAILS

The code of our experiments is publicly available at https://github.com/LOGO-CUHKSZ/
HyperPLR.

C.1 DATASETS

Our experimental evaluation utilizes five real-world datasets from Benson et al. (2018):

• contact-high-school: This dataset is constructed from interactions recorded by wearable
sensors at a high school, consisting of 327 nodes, 172,035 timestamped hyperedges, and
7,818 unique hyperedges. The projected graph contains 5,818 edges and 6,151 maximum
cliques.

• contact-primary-school: This dataset is constructed from interactions recorded by wear-
able sensors at a primary school, consisting of 242 nodes, 106,879 timestamped hyper-
edges, and 12,704 unique hyperedges. The projected graph contains 8,317 edges and
100,153 maximum cliques.

• email-Enron: In this dataset, nodes represent email addresses at Enron, and each hyper-
edge comprises the sender and all recipients of an email. The dataset contains 143 nodes,
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Table 3: Comparative result of advanced properties of the ground-truth hypergraphs and generation
hypergraphs.

Diameter contact-high-school contact-primary-school email-Enron email-Eu NDC-classes
HyperDK0,0 0.500 0.333 0.500 0.667 0.778
HyperDK1,1 0.250 0.333 0.250 0.333 0.533
Hyperlap 0.200 0.067 0.250 0.333 0.422
Hyperlap+ 0.250 0.333 0.050 0.133 0.289
TheRA 0.250 0.000 0.250 0.667 0.222
HyperPLR 0.250 0.000 0.000 0.033 0.000
Triangles Num
HyperDK0,0 167.117 21.456 41.427 156.738 184.785
HyperDK1,1 84.440 15.988 10.867 41.227 79.077
Hyperlap 0.599 0.409 3.315 8.998 3.536
Hyperlap+ 0.942 0.284 1.517 2.981 2.124
TheRA 0.468 0.198 2.451 3.725 1.638
HyperPLR 0.316 0.354 0.055 0.742 0.281
Degree Distribution
HyperDK0,0 23.026 23.026 23.026 23.026 23.026
HyperDK1,1 21.002 22.635 12.406 8.490 3.960
Hyperlap 5.958 8.072 9.294 6.946 4.415
Hyperlap+ 5.336 8.812 9.023 6.448 4.474
TheRA 6.634 10.530 7.986 15.315 14.325
HyperPLR 5.065 7.657 4.639 7.424 4.020
Singular Value Distribution
HyperDK0,0 6.212 5.730 4.653 6.422 6.750
HyperDK1,1 5.462 5.147 4.513 6.345 7.008
Hyperlap 5.369 5.043 4.470 6.293 6.589
Hyperlap+ 5.372 5.056 4.520 6.319 6.560
TheRA 5.377 5.054 4.465 6.339 6.620
HyperPLR 5.347 5.032 4.451 6.278 6.432

10,883 timestamped hyperedges, and 1,512 unique hyperedges. The projected graph con-
tains 1,800 edges and 10,883 maximum cliques.

• email-Eu: This dataset includes email addresses at a European research institution, with
hyperedges representing the sender and all recipients of an email with the same timestamp.
The dataset consists of 998 nodes, 234,760 timestamped hyperedges, and 25,027 unique
hyperedges. The projected graph contains 29,299 edges and 237,231 maximum cliques.

• NDC-classes: In this dataset, each hyperedge corresponds to a drug, and the nodes are the
class labels assigned to the drugs. The dataset consists of 1,161 nodes, 49,724 timestamped
hyperedges, and 1,088 unique hyperedges. The projected graph contains 6,222 edges and
624 maximum cliques.

C.2 ADVANCED PROPERTIES

Inspired by the reviewer, we expand the evaluation metrics to some advanced properties like SHyRe
in Wang & Kleinberg (2024). The result is presented in Table 3. Notably, the simplicial closure
metric from SHyRe evaluates the temporal evolution process of dynamic hypergraphs, is not ap-
plicable to our work or the baseline static generation models. Therefore, we use a similar concept,
triangle numbers, which is a widely used graph structural metric (Sansford et al., 2023). For density,
we have already presented the results in Table 1, so it is not repeated here. Similar to the approach in
SHyRe, we standardized the metrics for triangle numbers and diameter using the formula: |x1−x2|

x1
,

where x1 and x2 represent the values of the ground truth and the generated graphs, respectively.
For degree distribution and singular value distribution, we compared their cross-entropy. A smaller
value indicates better alignment for all the metrics. From the results, we observe that HyperPLR
outperforms or is competitive with other models across most datasets and metrics.

C.3 EVALUATION METRICS

We evaluate the training and generated hypergraphs using the following six metrics:
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• Density: While multiple definitions of hypergraph density exist in different contexts, we
adopt a most straightforward definition as the ratio of the number of hyperedges to the
number of nodes, given by Density = |E|

|V | .

• Average Hyperedge Size: The average hyperedge size is calculated as:
Average Hyperedge Size = 1

|E|
∑

e∈E |e|.
• Average Node Degree: The average node degree represents the average number of hyper-

edges in which each node participates, given by: Average Node Degree = 1
|V |

∑
v∈V d(v).

• Clustering Coefficient of Graph Projection: The clustering coefficient is computed for
the 2-section (or graph projection) of the hypergraph, where each hyperedge induces a
clique among its nodes. This coefficient measures the likelihood that two neighbors of a
node are also neighbors. It is calculated as: C = 1

|V |
∑

v∈V C(v), where C(v) is the local
clustering coefficient of node v in the projected graph.

• Modularity of Graph Projection: The modularity of the graph projection measures the
quality of a partition of the graph into communities, with higher values indicating a stronger
community structure. It is given by: Q = 1

2m

∑
i,j

[
Aij − kikj

2m

]
δ(ci, cj), where Aij

represents the adjacency matrix, ki and kj are the node degrees, m is the total number
of edges, and δ(ci, cj) equals 1 if nodes i and j belong to the same community, and 0
otherwise.

• Modularity of Bipartite Graph Representation: The modularity of the bipartite graph
representation measures the quality of a partition of the bipartite graph, considering nodes
representing original vertices and hyperedges. The formula for modularity is similar to that
used for the projected graph.

D IMPACT OF RANK VALUE IN CELL

(a) rank = 8 (b) rank = 10 (c) rank = 12

Figure 4: Visualization of generated weighted graph projection of Hypergraph email-Enronwith
different rank values. Zoom in for a better view.

From fig. 4, we can conclude that, in terms of graph structure, there is almost no influence from
rank value. However, rank greatly impacts the generation speed in the CELL module. High rank
can accelerate the generation greatly but lose some diversity in the generated hypergraph, which is
also discussed in Rendsburg et al. (2020).

E DIVERSITY OF THE GENERATION

To the best of our knowledge, this is an essential yet unresolved problem in the graph (and hyper-
graph) generation task. Below, we make the best effort to provide a fair comparison and discussion
of the diversity of hypergraphs generated by our model and HyperLap. Despite the lack of discus-
sion on diversity in hypergraph generation directly, Velikonivtsev et al. (2024) proposed a theoret-
ical framework for evaluating graph diversity. In summary, the paper defines the diversity of a set
of graphs S as Diversity(S) = F (D(G,G′) : G,G′ ∈ S), where D(G,G′) is a distance measure
between two graphs, and F is a function that computes the overall diversity from the set of pairwise
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distances. Building on this theory, we conducted the following experiments. First, we converted the
hypergraphs generated by HyperLap, HyperLap+, and HyperPLR into bipartite graph representa-
tions for each dataset1. In this representation, one set of vertices corresponds to the hyperedges, and
the other set corresponds to the vertices connected by these hyperedges. This conversion is lossless
with respect to the original hypergraph structure.

Given the large size of the graphs, classical graph distance measures like graph edit distance are
NP-hard and computationally prohibitive. Instead, we followed the suggestions of Tsitsulin et al.
(2018) and utilized two spectral-based distance measures introduced in : NetLSD-heat and NetLSD-
wave. For the function F , we adopted the sum of pairwise distances between elements, as it is the
most natural and widely used approach. The Table 4 presents the results of our experiments. From
the results, we can see that in most cases, HyperPLR achieves graph diversity that either surpasses
or is competitive to that of random generators like HyperLAP and HyperLap+. At the same time,
we believe that the concept of diversity in the hypergraph generation task requires a more targeted
definition and evaluation method.

Table 4: NetLSD-Heat&NetLSD-Wave results across various datasets.
NetLSD-Heat contact-high-school contact-primary-school email-Enron email-Eu NDC-classes
HyperLap 0.006 0.002 0.011 0.015 0.094
HyperLap+ 0.007 0.056 0.009 0.007 0.087
HyperPLR 0.008 0.006 0.017 0.022 0.354
NetLSD-Wave
HyperLap 0.070 0.033 0.158 0.262 1.216
HyperLap+ 0.086 0.975 0.097 0.127 0.562
HyperPLR 0.113 0.107 0.183 0.251 1.479

1For THERA, we encountered limitations as the provided code was not executable, and the authors only
supplied a single generated sample per dataset. While we were able to compute graph metrics for this single
sample, evaluating its diversity was not possible due to the absence of multiple samples.
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