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Abstract

We study the causal bandit problem that entails
identifying a near-optimal intervention from a spec-
ified set A of (possibly non-atomic) interventions
over a given causal graph. Here, an optimal inter-
vention in A is one that maximizes the expected
value for a designated reward variable in the graph,
and we use the standard notion of simple regret to
quantify near optimality. Considering Bernoulli
random variables and for causal graphs on N
vertices with constant in-degree, prior work has
achieved a worst case guarantee of Õ(N/

√
T ) for

simple regret. The current work utilizes the idea
of covering interventions (which are not necessar-
ily contained within A) and establishes a simple
regret guarantee of Õ(

√
N/T ). Notably, and in

contrast to prior work, our simple regret bound
depends only on explicit parameters of the prob-
lem instance. We also go beyond prior work and
achieve a simple regret guarantee for causal graphs
with unobserved variables. Further, we perform ex-
periments to show improvements over baselines in
this setting.

1 INTRODUCTION

Causal Bayesian Networks (CBNs) are a prominent
paradigm for modelling many real world problems Pearl
[2009]. Recent applications include language modelling
Sevilla [2020], medicine Koch et al. [2017], Caillet et al.
[2015], Lee et al. [2018], robotics Yoshida and Nakadai
[2012] and computational advertising Bottou et al. [2013].

While CBNs have been the focus of research for decades,
questions related to online learning in the CBN context have
been studied only recently. Prototypical questions at the
interface of online learning and CBNs are captured by the
causal bandits model. Causal bandits—first introduced by

Lattimore et al. [2016]—merges concepts from CBNs and
multi-armed bandits (MABs) to provide a framework for
optimized learning over CBNs. The focus of the current
work is to obtain simple regret guarantees in the causal
bandit setup.

A CBN consists of a causal graph—a directed acyclic
graph G = (V, E)—that provides the direction of causa-
tion amongst N := |V| random variables. That is, in the
given graph G, the vertices V correspond to variables and E
corresponds to the set of (directed edges) causal relations
between these variables. Here, each variable is some func-
tion of its parents. Complementarily, a variable that has no
parents (known as an exogenous or independent variable) is
a random variable over some distribution; see Pearl [2009]
for a textbook treatment of CBNs.

We will, throughout, consider V to be Bernoulli random
variables. In the causal bandit problem, one designates a
particular vertex in the causal graph VN ∈ V as the reward
variable and seeks to optimize for the expected value of
this reward variable. The optimization is over a specified
set A, which consists of interventions in the causal graph.
Interventions, known as do() operations, fix the values of
certain variables, irrespective of their parents. Specifically,
in an intervention A = do(S = s), we fix the value of each
variable i ∈ S ⊆ V to be the ith component of the given
binary assignment s ∈ {0, 1}|S|. Under intervention A =
do(S = s), the un-intervened variables (in V\S) then follow
the causal relations that remain. The goal of the causal bandit
learner is to perform exploratory interventions, for a given
number of rounds T , and at the end of this time horizon, the
learner needs to identify a near-optimal intervention from
within the target set A. That is, the overarching objective in
the causal bandit problem is to identify an intervention A ∈
A under which the expected value of the reward variable,
VN , is as high as possible.

As in the classic multi-armed bandits literature Lattimore
and Szepesvári [2020], Slivkins et al. [2019], the notion of
simple regret is used to quantify near optimality in the causal
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bandit setup. In particular, for an algorithm that selects
intervention AT ∈ A after after T rounds, the simple regret
is the difference (in expectation) between optimal reward
and the reward induced by AT .

Most prior works on causal bandits Lattimore et al. [2016],
Maiti et al. [2022], Sen et al. [2017a], Lu et al. [2020], Nair
et al. [2021], Sen et al. [2017b], Lu et al. [2021, 2022] ad-
dress the problem with A restricted to atomic interventions.
That is, these works hold when each intervention A ∈ A
fixes some single vertex in the causal graph. Other causal
bandit results Varici et al. [2022], Xiong and Chen [2023]
consider settings in which all the causal relations in G are
confined to be linear functions. In this active thread of re-
search on causal bandits, a notable exception is the work
of Yabe et al. Yabe et al. [2018], which addresses the broad
setting of non-atomic interventions over general graphs and
holds without assumptions on the causal relations.

Indeed, such a general form of the problem is nontrivial. In
particular, the number of non-atomic interventions under
consideration can be exponential in the number of variables
N . Hence, a naive approach of sampling for each inter-
vention A ∈ A can yield a simple regret proportional to
Õ(
√
exp(N)/T ). Interestingly, for the general form of the

causal bandit problem, Yabe et al. Yabe et al. [2018] achieve
a worst-case guarantee on simple regret of Õ(

√
N2/T );

here, the Õ notation subsumes the dependence on the maxi-
mum in-degree in the causal graph and logarithmic factors.
In particular, the regret guarantee of Yabe et al. [2018]
depends on the optimal value of a proposed optimization
problem. We also note that, even during exploration, Yabe
et al. Yabe et al. [2018] consider interventions only from the
target set A and use the solution of the proposed optimiza-
tion problem to guide the exploration.

While the algorithm of Yabe et al. Yabe et al. [2018] is
applicable with significant generality, it has certain key lim-
itations. Firstly, the algorithm entails solving a non-convex
optimization problem that is “time-consuming to solve” (see
page 8 in Section 5 of Yabe et al. [2018]). In fact their own
experiment implementations do not explicitly solve the op-
timization problem. Next, the regret bound is in terms of
a quantity that is analytically unwieldy to estimate. In par-

ticular, their simple regret guarantee is O
(√

γ∗ log(|A|T )
T

)
,

where γ∗ is the optimal value of a (hard to compute) non-
convex optimization problem and it satisfies γ∗ = O(N2).
In addition, the regret guarantee in Yabe et al. [2018] holds
for time horizon T ≳ N16. Finally, their algorithm expects
full observability, and does not allow for the presence of
unobserved (hidden) variables in the causal graph.

The current work develops an algorithm that overcomes
the above-mentioned limitations and continues to address
the general form of the causal bandit problem. We use the
idea of covering interventions and improve the simple regret

guarantee. We also go beyond Yabe et al. [2018] and achieve
a simple regret guarantee for causal graphs with unobserved
variables.

1.1 OUR CONTRIBUTIONS

We present an algorithm to minimize simple regret in the
causal bandit problem. Here, the learner is given a causal
graph G on N Bernoulli random variables and a set A of
(possibly non-atomic) interventions over G. The learner’s
objective is to identify, within A, an intervention that maxi-
mizes the expected value for a designated reward variable
in G. Furthermore, we consider a model wherein, while a
near-optimal intervention is required from the target set A,
the learner is not confined toA during the exploration phase.
In particular, we use the construct of covering interventions
(see Definition 1) during exploration and show that this
flexibility leads to multiple improvements over prior work.
Indeed, this model is applicable in many settings wherein the
learner is not confined to the target set during exploration.
Consider, as stylized examples: (i) the display advertising
context, wherein, during testing, one can intervene upon fea-
tures, which during deployment, cannot be altered, and (ii)
robotic control, in which, during simulations, hypothetical
configurations can be deployed.

In fact, our result is robust enough to be used in settings
where certain variables cannot be intervened upon even dur-
ing exploration. One can consider such ‘off-limits’ variables
as unobserved and then utilize our extension to graphs with
unobserved parts (see Section 4). The list below summarizes
our main contributions:

• For the causal bandit problem, we improve the worst-
case guarantee for simple regret from Õ(

√
N2/T ) to

Õ(
√
N/T ).1 Here, the Õ(·) notation subsumes the de-

pendence on the maximum in-degree d in the graph
and logarithmic factors; see Theorem 1 for an explicit
bound. Our algorithm can address arbitrary causal
graphs. Though, as in prior works Yabe et al. [2018],
Acharya et al. [2018], our result is particularly rele-
vant for graphs in which the maximum in-degree d is
sufficiently smaller than N .

• We obtain a novel simple regret algorithm for causal
graphs with unobserved variables. This extension ad-
dresses the most general setting for causal Bayesian
networks (see Definition 1.3.1 in Pearl [2000]) and
addresses a key limitation of almost all2 prior works
on causal bandits. We detail the extension in Section 4.

1As mentioned previously, T denotes the time horizon (i.e.,
number of exploratory interventions) and N denotes the number
of vertices in the causal graph.

2The exceptions here are the recent works of Maiti et al. Maiti
et al. [2022] along with Xiong and Chen Xiong and Chen [2023].
These works are discussed at the end of the section.



• Our experiments show a marked improvement on the
baselines from prior work (see Section 5), thereby sub-
stantiating the theoretical guarantees.

Our worst-case guarantee for simple regret is in terms
of only the explicit parameters, such as the number of
variables N and the maximum in-degree in G; see Theorem
1. By contrast, the simple regret bound provided in Yabe
et al. [2018] depends on analytically complex quantities.
In addition, our guarantee holds for time horizon T ≳ N3.
This is a marked improvement over Yabe et al. [2018],
which requires T ≳ N16. In fact, our algorithm (Algorithm
1) is notably simple – we view this as a positive feature,
which aids in implementation and adaptation of the
developed method. Here, it is also relevant to note that the
key technical contribution of the work is the involved regret
analysis (see Section 3.1).

Covering interventions as a complementary tool for explo-
ration. We note that covering interventions do not conform
to the existing causal-bandit framework of exploring solely
within the specified set of interventionsA. However, instead
of viewing A as a confined set of ‘arms,’ one can work with
the enriched perspective that causal bandits are an optimiza-
tion problem. Indeed, the goal of the optimization problem
is to identify the best intervention in A, but—similar to
many other optimization methods—exploration can happen
outside the feasible region (i.e., outside A). In this spirit,
the use of covering interventions can be identified as a com-
plementary exploration model. This model leverages the
richer context of the causal bandits setting (e.g., the causal
graph itself) and, as mentioned previously, is potentially
applicable in various real-world contexts. Overall, cover-
ing interventions are theoretically interesting and enable
notable improvements, including novel simple regret guar-
antees with unobserved variables.

1.2 ADDITIONAL RELATED WORK

Lattimore et al. Lattimore et al. [2016] first addressed the
causal bandit, though only for parallel causal graphs and
with atomic interventions. Maiti et al. Maiti et al. [2022] ex-
tended this work on atomic interventions to provide simple
regret guarantees in the presence of unobserved or hidden
variables. An importance sampling based approach was
studied in Sen et al. [2017a] to identify atomic soft inter-
ventions that minimize simple regret. Lu et al. Lu et al.
[2020] provide guarantees for cumulative regret for gen-
eral causal graphs (which include hidden variables). Nair
et al. Nair et al. [2021] looked at cumulative as well as
simple regret in case of the budgeted setting where the
observation-intervention trade-off was studied when inter-
ventions are costlier than observations. Sen et al. Sen et al.
[2017b] extend the model causal bandits to include con-
textual causal bandits and study cumulative regret in this

context. Lu et al. Lu et al. [2021] study cumulative regret
in the case where the full graph structure is not known. The
work Lu et al. [2022] extends the model for causal bandits to
include causal Markov decision processes (C-MDPs) using
a modification of the algorithm in Azar et al. [2017].

There are two recent works that focus on non-atomic in-
terventions in the causal bandit context. The paper by
Varici et al. Varici et al. [2022] studies cumulative regret
for causal bandits with non-atomic interventions, albeit in
the specific context of linear structural equation models.
Xiong and Chen Xiong and Chen [2023] obtain sample-
complexity bounds for identification of near-optimal inter-
ventions, with a particular focus on binary generalized linear
models (BGLMs). The worst-case sample complexity guar-
antee obtained in Xiong and Chen [2023] is proportional
to the size of the intervention set A, i.e., proportional to
|A|. By contrast, the simple regret bound obtained in the
current work has only a logarithmic dependence on |A|;
recall that |A| can be exponentially large. Xiong and Chen
Xiong and Chen [2023] also address the case of unobserved
(hidden) variables. However, this work assumes identifia-
bility (the fact that all interventional distributions can be
estimated through observations alone). We require no such
assumption.

Apart from these works on causal bandits, we utilize the
idea of covering interventions proposed by Acharya et
al. Acharya et al. [2018]. They use covering interventions
for distribution learning and testing problems over causal
graphs. On the other hand, we use covering interventions
for simple regret minimization. It is important to note that
a direct use of the distribution learning algorithm (Algo-
rithm 3) from Acharya et al. [2018] leads to a suboptimal
regret bound for the causal bandit problem. Specifically, the
learning algorithm of Acharya et al. Acharya et al. [2018]
requires Õ(N2ε−4) samples to learn interventional distri-
butions up to a total variation distance of ε; see Theorem
3.4 in Acharya et al. [2018]. Hence, if used for identifying
a near-optimal intervention in A, this method would incur
Õ
( √

N
T 1/4

)
simple regret.

2 NOTATION AND PRELIMINARIES

We study the causal bandit problem over causal graphs
G = (V, E). In the given (directed and acyclic) graph G the
vertices, V , correspond to Bernoulli random variables and
E is the set of directed edges that capture causal relations
between these variables.

We will use Vi or i, interchangeably, to refer to the ith
node of the given causal graph G. Since G is directed and
acyclic, it admits a topological ordering. We will, through-
out, assume that the vertices in V are indexed to respect a
topological order, i.e., for each pair of indices i < j, vertex
Vi appears before Vj in the topological order. Note that for



any subset of vertices U ⊆ V the indexing of the vertices
within U follows the topological ordering of these vertices.
Furthermore, in the set V , the last vertex with respect to the
indexing (and, equivalently, the topological ordering) is the
designated reward variable. That is, in a causal graph with
N := |V| vertices, VN is the reward variable.

Write Pa(i) to denote the set of parents of node Vi. Also,
we define the set of parents for a subset of vertices U ⊆ V
as Pa(U) := (∪V ∈U Pa(V )) \ U . We use the following
notations to indicate subsets of the vertices: write [i, j] :=
{Vi, Vi+1, Vi+2 . . . Vj} and, similarly, (i, j] = [i + 1, j],
(i, j) = [i + 1, j − 1] and [i, j) = [i, j − 1]. Write the
ancestor set Ac(i) := [1, i) \ Pa(i), i.e., Ac(i) denotes the
set of vertices that precede Vi in the topological ordering,
excluding the parents Pa(Vi).

An intervention is defined as an N = |V| dimensional vector
A ∈ {0, 1, ∗}N that encapsulates the values assigned to
each vertex in G; in particular, Ai = ∗ denotes that Vi is
not intervened upon, while Ai = 1 and Ai = 0 denote
that, in the intervention, Vi is set to 1 and 0, respectively.
In addition, V(A) := {Vi ∈ V : Ai = ∗} denotes the set
of vertices that are not intervened under A. Also, for any
subset of vertices U ⊆ V , write VU (A) := U ∩ V(A).

Binary vectors z ∈ {0, 1}N will be used to denote an assign-
ment to the vertices (random variables) in V . Here, zi de-
notes the assignment to vertex Vi. For any subset of vertices
U ⊆ V , we will use zU ∈ {0, 1}|U| to denote an assignment
to the vertices in U . Let Z(A) denote the set of all binary
assignments that comply with an intervention A and have
the reward VN = 1, i.e., Z(A) := {z ∈ {0, 1}N : zi = Ai,
for all i ∈ V \ (V(A)), and zN = 1}.

We use the following short-hand notations in our analy-
sis to denote the conditional and interventional probability
distributions:

P (zi | zU ) = P [Vi = zi|U = zU ] .

PzU
(zi) = P [Vi = zi|do (U = zU )]

= Pdo(U=zU ) [Vi = zi] .

PzU
(zi | zW ) = P [Vi = zi|do (U = zU ) ,W = zW ] .

PA (zi | zW ) = P [Vi = zi|do (A) ,W = zW ] .

It is important to note that intervening on all parent nodes
of a vertex is the same as conditioning on them

PzPa(i)
(zi) = P

(
zi | zPa(i)

)
(1)

We use µ (A) to denote the expected reward under interven-
tion A, i.e., µ (A) = P [VN = 1|do(A)]. Specifically,

µ (A) =
∑

z∈Z(A)

∏
i∈V(A)

P
(
zi | zPa(i)

)
We use µ̂(A) and P̂ () to denote the estimates for the cor-
responding quantities, and ∆P () to denote the error in the

estimates. In particular, for an empirical estimation in which
vertex Vi is sampled Ti times, with parents taking value
zPa(i) ∈ {0, 1}|Pa(i)|, we have estimate

P̂
(
zi | zPa(i)

)
=

∑Ti

s=1 I[Yi,s = zi]

Ti
,

where Yi,s is the s-th sample of vertex Vi. In addition, we
have

∆P
(
zi | zPa(i)

)
= P

(
zi | zPa(i)

)
− P̂

(
zi | zPa(i)

)
µ̂(A) =

∑
z∈Z(A)

∏
i∈V(A)

P̂
(
zi | zPa(i)

)
(2)

Recall that, in the causal bandits problem, the objective
is to find—from within a specified collection of inter-
ventions A—an intervention with maximum possible ex-
pected reward. We will write A∗ ∈ A to denote the opti-
mal intervention and µ(A∗) for the optimal reward, i.e.,
µ(A∗) = maxA∈A µ(A). Also, for any algorithm, let
AT ∈ A be the (randomized) output computed after T
rounds; in each round the algorithm performs an interven-
tion and observes a sample under it.3 The simple regret of
the algorithm is defined as

RT = E [µ(A∗)− µ(AT )] . (3)

3 FINDING NEAR-OPTIMAL
INTERVENTION VIA COVERING

To find a near-optimal intervention from the given set of in-
terventions A (specifically, to bound simple regret), instead
of directly performing each A ∈ A, we utilize interven-
tions from a curated set of interventions I , referred to as the
covering intervention set (see Definition 1). The obtained
samples are then used to estimate the interventional dis-
tribution for each A ∈ A and, hence, find a near-optimal
intervention within A. The notion of covering intervention
set was formulated in Acharya et al. [2018] and is defined
next.

Definition 1 (Covering Intervention Set). A collection of
interventions I is said to be a covering intervention set
iff, for each vertex i ∈ V and every assignment zPa(i) ∈
{0, 1}|Pa(i)|, there exists an intervention I ∈ I with the
properties that

• Vertex i not intervened in I (i.e., Ii = ∗).
• Every vertex in Pa(i) is intervened (i.e., Ip ̸= ∗, for all
p ∈ Pa(i)).

• I restricted to Pa(i) has the assignment zPa(i) (i.e.,
Ip = zPa(i),p for all p ∈ Pa(i)).

3Note that while the computed intervention must be contained
in set A, the interventions performed in the T rounds are not
necessarily from A.



It is shown in Acharya et al. [2018] that, for any causal
graph G with N vertices and in-degree at most d, one can
construct—using a randomized method—a covering inter-
vention set I of size O

(
d 2d log(NT )

)
.

Specifically, for count k = 3d 2d(logN +2d+ log T ), one
can populate k interventions I ∈ {0, 1, ∗}N as follows: for
each variable i ∈ V , independently, set

Ii =


0 with probability d

2(1+d) ,

1 with probability d
2(1+d) ,

∗ otherwise.

All the constructed k interventions constitute the set I . This
randomized construction is known to succeed (in provid-
ing a covering interventions set) with probability at least
(1− 1/T ). Formally,4

Lemma 1 (Acharya et al. [2018]). For any moderately large
T ∈ Z+, every causal graph G—with N vertices and in-
degree at most d—admits a covering intervention set I of
size k = 3d 2d(logN + 2d+ log T ). Furthermore, such a
set I can be found with probability at least (1− 1/T ).

We will write CONSTRUCTCOVER(G) to denote the
randomized construction of I mentioned above.
CONSTRUCTCOVER(·) will be used as a subroutine
in our simple-regret algorithm (Algorithm 1).

Theorem 1, stated below, is the main result of this section.
The theorem asserts that, for causal graphs with constant
in-degree and N vertices, Algorithm 1 achieves a simple
regret of Õ

(√
N/T

)
.

Given a causal graph G and a collection of interventions A,
Algorithm 1 first obtains a covering intervention set I, for
the graph G, via the subroutine CONSTRUCTCOVER. Then,
the algorithms performs, T/|I| times, each intervention
I ∈ I . Since I is a covering intervention set, for each vertex
î ∈ V , there exists an intervention Î ∈ I under which all the
parents Pa

(̂
i
)

are intervened upon, but î itself is not. The

intervention Î has already been performed T/|I| times by
the algorithm. Using these T/|I| independent samples and
for a specific assignment zPa(̂i) (induced under Î), we have

the estimate P̂
(
ẑi | zPa(̂i)

)
. Hence, for every vertex i ∈ V

and every assignment zPa(i), the algorithm has an estimate
P̂
(
zi | zPa(i)

)
in hand. Using these probability estimates,

the algorithm computes the reward estimates µ̂(A) for each
intervention A ∈ A; see equation (2). Finally, enumerating
over the given set A, the algorithm returns the intervention
with the maximum estimated reward. It is relevant to note
that this patently simple algorithm requires a technically
involved regret analysis (detailed in Section 3.1). Indeed,
the analysis is a key contribution of the current work.

4This lemma is a direct implication of Lemma 2 from Acharya

Algorithm 1 Covering Interventions Algorithm
Input: Causal graph G, target intervention set A, and time
horizon T ∈ Z+.

1: Set I ← CONSTRUCTCOVER(G).
2: For each I ∈ I, intervene with do(I) and collect T

|I|
samples.

3: for each intervention A ∈ A do
4: Compute µ̂(A) using equation (2).
5: end for
6: return argmaxA∈A µ̂(A).

Theorem 1. Let G be any given causal graph with N ver-
tices and in-degree at most d. Also, let I be a covering
intervention set of G. Then, Algorithm 1—when executed
for any (moderately large) time horizon T—achieves simple
regret

RT = O

(√
N |I| log (|A|T )

T

)
.

Hence, using Lemma 1, we obtain the following bound on
the simple regret of Algorithm 1

RT = O

(√
N d2d log |A|

T
log T

)
.

For graphs with additional structure (e.g. bounded out de-
gree or trees), one can obtain covering intervention sets with
size smaller than the one provided in Lemma 1 (see Lemma
2 in Acharya et al. [2018]). Since the regret guarantee of
Algorithm 1 depends on the size of the covering interven-
tion set, the simple regret bound improves for such specific
graphs.

3.1 REGRET ANALYSIS

For each intervention A ∈ A, the estimate µ̂(A) can be
expressed as

µ̂ (A) =
∑

z∈Z(A)

∏
i∈V(A)

(
P
(
zi | zPa(i)

)
+∆P

(
zi | zPa(i)

))
.

Expanding the product, we obtain

µ̂ (A) = µ(A)+
∑

z∈Z(A)

( ∑
i∈V(A)

∆P
(
zi | zPa(i)

)
×

∏
j∈V(A),j ̸=i

P
(
zj | zPa(j)

)
+ Lz

)
.

Here, Lz represents all the product entries in the expansion
that include more than one error term of the form ∆P(· | ·).

et al. [2018], instantiated with δ = 1
T

, K = 2.



Specifically,

Lz =

|V(A)|∑
k=2

∑
U⊆V(A)
|U |=k

[(∏
i∈U

∆P
(
zi | zPa(i)

))
×

( ∏
j∈V(A)\U

P
(
zj | zPa(j)

))]
(4)

We further writeHz to represent the sum of the entries with
a single error term:

Hz :=
∑

i∈V(A)

∆P
(
zi | zPa(i)

) ∏
j∈V(A)

j ̸=i

P
(
zj | zPa(j)

)
(5)

Hence,

µ̂(A)− µ(A) =
∑

z∈Z(A)

(Hz + Lz) .

We will establish upper bounds on the sums of Lzs andHzs
and in Lemma 3 and Lemma 4, respectively. These lemmas
show that the sum of theH terms dominates the sum of the
L terms. Furthermore, these bounds imply that the estimated
reward µ̂(A) is sufficiently close to the true expected reward
µ(A) for each A ∈ A. In the interest of space, the proofs of
the following three lemmas are deferred to Appendix A in
the Supplementary Material.

Lemma 2. For estimates obtained via a covering inter-
vention set I, as in Algorithm 1, write E to denote the

event that |∆P
(
zi | zPa(i)

)
| ≤

√
|I|(d+log (NT ))

T , for all

vertices i ∈ V and all assignments zPa(i) ∈ {0, 1}|Pa(i)|.
Then, P{E} ≥

(
1− 2

T

)
.

Lemma 3. For estimates obtained via a covering interven-
tion set I, as in Algorithm 1, the following event holds with
probability at least

(
1− 2

T

)
:∑

z∈Z(A)

|Lz| ≤ 4(Nη)2 for all A ∈ A.

Here, parameter η =
√

|I|(d+log (NT ))
T and T is moderately

large.

Lemma 4. For estimates obtained via a covering interven-
tion set I, as in Algorithm 1, the following event holds with
probability at least

(
1− 2

T

)
:∣∣∣∣∣∣

∑
z∈Z(A)

Hz

∣∣∣∣∣∣ ≤
√

N |I| log (|A|T )
T

for all A ∈ A.

Recall that the random variables Lz and Hz depend on
the error terms ∆P

(
zi | zPa(i)

)
. Moreover, in Lemma 3

and 4, the considered sums can range over exponentially
many such variables. The technically involved contribution
of these lemmas is that we obtain small error bounds even
in such settings of exponentially large sums.

Proof of Theorem 1. Lemma 1 implies that, with probabil-
ity at least

(
1− 1

T

)
, the set I obtained in Line 1 of Algo-

rithm 1 is indeed a covering intervention set. We combine
this guarantee with Lemmas 3 and 4. In particular, with
probability at least

(
1− 5

T

)
, we have, for all A ∈ A:

|µ(A)− µ̂(A)|

=

∣∣∣∣∣∣
∑

z∈Z(A)

(Hz + Lz)

∣∣∣∣∣∣
≤
√

N |I| log (|A|T )
T

+
4N2|I|(d+ log (NT ))

T

≤ 2

√
N |I| log (|A|T )

T
(for T ≳ N3)

Let AT ∈ A be the intervention returned by Algo-
rithm 1 (after T rounds of interventions), i.e., AT =
argmaxA∈A µ̂(A). In addition, A∗ = argmaxA∈A µ(A)
be the optimal intervention. Hence, with probability at least(
1− 5

T

)
, we have

µ(A∗)− µ(AT ) ≤ 4

√
N |I| log (|A|T )

T
(6)

This guarantee gives us the desired upper bound on the
simple regret, RT , of Algorithm 1:

RT = E [µ(A∗)− µ(AT )]

≤

(
4

√
N |I| log (|A|T )

T

)(
1− 5

T

)
+

5

T

≤ 5

√
N |I| log (|A|T )

T
.

Since the size of the covering intervention set satisfies |I| =
3d · 2d(logN + 2d+ log T ) (see Lemma 1), we also have
the following explicit form of the simple regret bound

RT = O

(√
N d2d log |A|

T
log T

)
.

The theorem stands proved.

4 ALGORITHM FOR GRAPHS WITH
UNOBSERVED VARIABLES

We now extend our algorithm to causal graphs with unob-
served variables. In particular, we study Semi Markovian



Bayesian Networks (SMBNs) where we have the causal
graph defined as G = (V, E,E′). Here, E is the set of di-
rected edges, and E′ is the set of bi-directed edges denoting
the presence of an unobserved common parent. Any gen-
eral causal graph can be projected to an equivalent SMBN
[Tian and Pearl, 2002]. Hence, without loss of generality
and throughout this section, we assume that the causal graph
is an SMBN. It is relevant to note that in an SMBN all the
vertices in V are observable and the unobserved variables
are encapsulated by the edges E′.

Assume that the vertices V are topologically ordered (based
on the directed edges E) and the ordering is preserved in any
subset U ⊂ V . The SMBN graph G can be decomposed into
a disjoint set of vertices known as confounded components
(c-components), where each c-component is the maximal
set of vertices that are connected through a bi-directed edge
in E′. Let C(A) denote all the c-components of G under
intervention A. We use Ci to denote the ith c-component
in C(A). We assume that any Ci maintains the topological
order (induced by the directed edges E). Now, the joint
distribution of the vertices for an assignment z ∈ Z(A),
under intervention A, can be written as

P [V = z | do(A)] =
∏

Ci∈C(A)

PzPa(Ci)
(zCi

) .

Under an empirical estimation, we represent the sth sam-
ple from the distribution PzPa(Ci)

(zCi
) via the indicator

random variable Ys(zCi
, zPa(Ci)), which takes the value

one when VCi = zCi , else it takes the value zero. Let
n
(
Ci, zPa(Ci)

)
be the total number of samples in this for

the pair (Ci, zPa(Ci)). We compute the probability estimates
as follows

P̂zPa(Ci)
(zCi) =

∑Ti

s=1 Ys

(
zCi

, zPa(Ci)

)
n
(
Ci, zPa(Ci)

) (7)

µ̂(A) =
∑

z∈Z(A)

∏
Ci∈C(A)

P̂zPa(Ci)
(zCi

) (8)

Next, we extend the definition of covering intervention set
(Definition 1) for SMBNs:

Definition 2. A set of intervention I is a covering interven-
tion set if for all subsets S of every c-component in G, and
every assignment zPa(S) ∈ {0, 1}|Pa(S)| there exists and
I ∈ I with the properties that

• No vertex in S is intervened in I .

• Every vertex in Pa(S) is intervened in I .

• Pa(S) is intervened with assignment zPa(S).

We construct a covering intervention set as before using
the randomized method in Acharya et al. [2018]. The next
lemma states that the randomized method provides a cov-
ering intervention set of size Õ(logN) even in the case of

SMBNs. This result is a direct implication of Lemma 4.2 in
Acharya et al. [2018].

Lemma 5 ([Acharya et al., 2018]). For any moderately
large T ∈ Z+ and any causal graph G—with in-degree at
most d and c-components of size at most ℓ—there exists a
covering intervention set I of size k = (3d)ℓ 2ℓd(logN +
2ℓd+ log T ). Furthermore, such a set I can be found with
probability at least

(
1− 1

T

)
.

The simple regret algorithm for SMBNs is exactly the same
as Algorithm 1, except for the following two changes:

• The CONSTRUCTCOVER subroutine returns a covering
intervention set of size (3d)ℓ2ℓd(logN +2ℓd+log T ).

• We use equation (8) to compute the estimates µ̂(A) for
each A ∈ A.

The theorem below is the main result of this section.

Theorem 2. Let G be any given causal graph over N ver-
tices and with c-components of size at most ℓ. Also, let the
in-degree of the vertices in G be at most d. Then, for any
(moderately large) time horizon T and given any covering
intervention set I of G, Algorithm 1 achieves simple regret

RT = O

(√
N 2d 4ℓ |I| log (|A|T )

T

)
.

Hence, using Lemma 5, we obtain the following bound on
the simple regret

RT = O

(√
N (3d 8d)ℓ log |A|

T
log T

)
.

A complete proof of Theorem 2 appears in Appendix B;
below, we provide a sketch.

Proof Sketch of Theorem 2. We first introduce the notion
of pseudo parents Pa′(j) of each vertex j in an SMBN
graph G (see Appendix B). This notion crucially aids the
regret analysis. We show that one can essentially view the
factorization of an SMBN (under an intervention A) as
a factorization over a fully observable graph where each
vertex Vj has the set Pa′(j) as its parents (see Lemma 6 in
Appendix B).

Now, to bound the simple regret in the SMBN context, we
express, for interventions A ∈ A, the difference between
the estimated means, µ̂(A), and the true means, µ(A), as
follows: µ̂(A) − µ(A) =

∑
z∈Z(A) (Hz + Lz). Here, Hz

and Lz denote the first order and higher order terms, respec-
tively, with respect to estimate errors ∆P (· | ·).

Note that, in the SMBN context, the error terms ∆P (· | ·),
as such, are obtained for individual c-components (see equa-
tion (7)). However, we are able to obtain tractable forms for



the quantities Hz and Lz via the above-mentioned factor-
ization, which considers each vertex Vj in conjunction with
its pseudo parents Pa′(j).

Building up on these involved expressions, we establish up-
per bounds on the sums ofLzs andHzs. These upper bounds
imply that, with high probability, the estimated mean µ̂(A)
is close to the true mean µ(A), for each intervention A ∈ A.
Hence, our SMBN algorithm (which selects intervention
argmaxA∈A µ̂(A)) achieves low simple regret as stated in
Theorem 2.

Remark. As mentioned previously, this extension to SMBNs
enables us to address settings wherein one is allowed to
intervene only on a subset of the vertices. In such a case, we
can reduce the graph to an SMBN by treating the vertices
that can be intervened upon as observable vertices and the
rest of the vertices as unobservable.

5 EXPERIMENTS
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Figure 1: Plot of simple regret with rounds of exploration.

This section provides empirical evaluations of our algo-
rithm. In the experiments, we compare our algorithm,
COVERINGINTERVENTIONS (Algorithm 1) with PROPINF,
the propagating inference algorithm of Yabe et al. Yabe
et al. [2018]. As in implementation of Yabe et al. [2018]
(see Section 5 of the cited paper), we uniformly sam-
ple and do not explicitly solve their proposed optimiza-
tion problem. The source code of our implementations is
available at https://github.com/sawarniayush/learning-good-
interventions-using-covering.

For the experiments, we consider a causal graph G = (V, E)
(over Bernoulli random variables) with number of nodes
(variables) N = |V| = 17 and in-degree d = 4. The ver-
tex set V is partitioned into four subsets with cardinalities
|V1| = 7, |V2| = 5, |V3| = 4, and |V4| = 1, respectively.

Here, the singleton V4 consists of the reward variable, which
is connected to all the 4 nodes in V3. Furthermore, the graph
G is layered in the sense that, for each index ℓ ∈ {2, 3, 4}
and each node Vi ∈ Vℓ, the parents Pa(i) ⊂ Vℓ−1. Also, V1
is the set of leaf vertices – the vertices in V1 do not have any
incoming edges.

For each non-reward variable, Vi, we set the condition
probability P {Vi = 1 | Pa(i) = 1} = 0.8. That is, when
all the parents of Vi are equal to 1,5 then Vi = 1,
with probability 0.8. For any other realization of the par-
ents, the conditional probability of Vi = 1 is set to be
0.4, i.e., P {Vi = 1 | Pa(i) ̸= 1} = 0.4. For the reward
node V17 we have P {V17 = 1 | Pa(17) = 1} = 0.9 and
P {V17 = 1 | Pa(17) ̸= 1} = 0.4.

The set of interventions A is composed of all
possible interventions on the leaf nodes, A ={
do(V1 = s) | s ∈ {0, 1}7

}
; recall that |V1| = 7. Note that

setting each leaf node to 1 yields the optimal intervention
A∗ = do(V1 = 1).

Simple Regret vs. Time: In our experiments, for the two
algorithms, we compare the simple regret with time horizon
T . In particular, for each relevant T , we execute the two
algorithms 140 times and average the simple regret across
these runs. We plot our results in Figure 1 and show that
COVERINGINTERVENTIONS converges to low regret faster
than PROPINF.

Runtime: For this experimental setup,
COVERINGINTERVENTIONS ran at least 8 times faster
than PROPINF across all the executions.6 This runtime
gap between the two implementations, highlights that
COVERINGINTERVENTIONS scales better with the number
of variables N .

6 CONCLUSION AND FUTURE WORK

Using the idea of covering interventions, this paper obtains
improved simple regret guarantees for the causal bandit
problem. We also generalize the guarantee to causal graphs
with unobserved variables. Notably, and in contrast to prior
works, our regret guarantees only depend on the explicit
problem parameters. Our experiments empirically highlight
that our algorithm provides improvements over baselines.
Establishing lower bounds in the general causal bandit setup
is an important direction of future work. It is also interesting
to develop computationally efficient (simple regret) algo-
rithms for settings in which the target set A is large and
implicitly specified.

5Recall that intervening on all parent nodes of a vertex is the
same as conditioning on them.

6The computation of the β parameters is a time consuming
step in PROPINF.

https://github.com/sawarniayush/learning-good-interventions-using-covering
https://github.com/sawarniayush/learning-good-interventions-using-covering
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