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Abstract— Imitation learning is a common paradigm for teach-
ing robots new tasks. However, collecting robot demonstrations
through teleoperation or kinesthetic teaching can be tedious and
time-consuming, slowing down training data collection for policy
learning. On the other hand, while transfer to the robot can
be non-trivial, directly demonstrating a task using our human
embodiment is much easier, and data is available in abundance.
In this work, we propose Real2Gen to train a manipulation
policy from a single human demonstration. Real2Gen extracts
required information from the demonstration, transfers it to a
simulation environment, where a programmable expert agent
can demonstrate the task arbitrarily many times, generating
an unlimited amount of data to train a flow matching policy.
We evaluate Real2Gen on human demonstrations from three
different real-world tasks and compare it to a recent baseline.
Real2Gen shows an average increase in the success rate of
26.6% and better generalization of the trained policy due to the
abundance and diversity of training data. We make the data,
code, and trained models publicly available at real2gen.cs.uni-
freiburg.de.

I. INTRODUCTION

In the future, we want robots to easily be able to perform
new manipulation skills with very little to no overhead in
teaching them. To achieve this, in recent years, imitation
learning has crystallized to be one of the main paradigms to
teach a robot skills [1], [2]. Classically, imitation learning
uses a dataset consisting of demonstrations of aligned robot
observations and actions collected through tele-operation [3]
or kinesthetic teaching [4]. While the user operates the robot,
the robot actively records its observations and actions to
form a training demonstration dataset. We call these type of
demonstrations robot demonstrations. One advantage of robot
demonstrations is the embodiment alignment of the training
data with the robot. On the other hand, while collecting
the data itself is not only time-consuming, tele-operating
also requires a skilled operator. For kinesthetic teaching, the
operator needs to be physically present in the scene and can
block cameras, for example.

A recent trend revolves around the tedious collection
process by trying to directly learn from demonstrations
of humans in their own embodiment [5], [6]. We coin
these types of demonstrations human demonstrations. While
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Fig. 1: Overview of Real2Gen. Real2Gen takes a single human demonstration
as input, produces simulatable meshes using 3D generative foundational
models which can be used in an generative simulation setup.

human demonstrations compared to robot demonstrations
are easy to collect or are even widely available on the
internet [7], they impose a significant challenge as the
embodiment between human and robot differs. This challenge
was tackled by researchers, for example, through using hand-
crafted heuristics to match a human hand to the robot
gripper [8] or through constraining the possible human
movements in a demonstration to the robots capabilities [9].
Differently, works like DITTO [10] and ORION [11] proposes
to close the embodiment gap through finding explicit object
correspondences between the human demonstration and the
robot environment at inference time, allowing for the transfer
of motion in an object-centric manner.

In this work, we aim to combine the best of human and
robot demonstrations and propose a “Reality to Simulation”
(Real2Sim) [12] method that processes a single-human
human demonstration to set up a simulator that automatically
allows us to collect robot demonstrations. Thus, we leverage
the ease of collecting demonstrations using our human
embodiment but train a policy directly on data using robot
embodiment. While previous Real2Sim approaches needed
to scan the environment in an offline step [13], [14], we
use 3D generative foundational models like Point-E [15]
or Zero-1-to-3 [16] to directly generate 3D assets of
task-relevant objects given their appearance in the human
demonstration. We then use a DINO-like matcher [17] to align
the 3D assets to the human demonstration to retrieve their
scale and canonical orientation. Similarly to other simulation
works [18], [19], we first randomly sample poses of the assets
and second, use a scripted expert agent to generate robot
demonstrations. Last, we train a flow matching policy [20]
on the collected robot demonstrations. We evaluate our policy
in a simulation environment consisting of unseen object
instances retrieved from a curated large-scale 3D object set
such as Objaverse [21]. Compared to the DITTO [10] baseline,
we show an average success rate improvement of 26.6%.

Our main contributions are as follows:
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• A framework to process human demonstrations for
generating robot demonstrations.

• An extensive evaluation of mesh generation rates.
• Code, trained models, and data will be made publicly

available at real2gen.cs.uni-freiburg.de.

II. RELATED WORK

This section reviews prior works on learning robotic manip-
ulation policies from human demonstrations and scaling robot
learning data through generative or procedural simulations.

A. Robot Manipulation from Human Demonstrations

A key challenge in learning from human demonstrations
is bridging the gap between the human and robot embodi-
ment. Approaches range from object trajectories [10], [11],
affordances [8], [22], and pixel-level motion [23], [24].

Trajectories: Methods like DITTO [10] and ORION [11]
detect and track objects in human demonstrations, extracting
object-centric trajectories. ORION additionally segments
demonstrations into key frames and encodes object inter-
actions in Open-World Object Graphs.

Affordance: Affordance-based methods, such as RAM [25]
and HRP [22], serve as intermediate representations for task
transfer. Different from trajectories, affordance formulations
usually consist of a region and simple motion direction or
horizon [26].

Pixel-Level: Track2Act [24] and Im2Flow2Act [23] infer
motion trajectories from pixels, bypassing explicit object
detection. These models can be trained on large-scale internet
data and transferred to the robot through a learned policy.

Real2Gen builds on these advances by generating diverse
training data from extracted trajectories and key frames.

B. Robot Learning via Procedural and Generative Simulation

To execute trajectories using the robot embodiment, the pre-
viously discussed works use either motion planning [10], [11]
or closed-loop policies [23], [24], but combining both remains
a challenge. To combine the advantages of both, the ease
and determinism of motion planning and the robustness of
closed-loop policy execution, automatic robot demonstration
generation in real-world-aligned simulations is a promising
candidate [18], [19]. LLMs can enable task generation
and reward specification in simulated environments [27],
leveraging curated 3D assets [28]. To reduce human effort
for curating, Gen2Sim [29] enhances object diversity by
generating 3D assets from 2D images, while GRS [30] uses
VLMs to match real-world objects to existing 3D datasets.

RoboGen [31] integrates either generating meshes or
using a 3D dataset, selecting between reinforcement learning,
trajectory optimization, or motion planning for different tasks.
Unlike prior works, Real2Gen employs generative 3D models
for asset creation and automatic scene alignment, eliminating
the need for manual curation or textual task descriptions.

III. TECHNICAL APPROACH

In this section, we detail our approach, Real2Gen. We start
by describing the pre-processing procedure (in Sec. III-A),
how we generate 3D assets (in Sec. III-B) and robot training

data (in Sec. III-C), and lastly detail our policy learning
approach (in Sec. III-D). An overview is presented in Fig. 2.

A. Pre-Processing Human Demonstrations

The input to Real2Gen is a single human demonstration
consisting of a sequence of T RGB-D images oh. We pre-
process the sequence oh using an object trajectory extractor
DITTO [10], but other options such as ORION [11], are also
possible. Similarly to these methods, we assume there is a
primary object p moving, either in free-form or depending
on another secondary goal object s. The goal of the pre-
processing step is to extract segmentation masks of all relevant
objects, i.e., mp and ms if applicable, in the first RGB image
I0 as well as the object-centric trajectory of the primary object
Jp consisting of relative poses. By segmenting the first RGB
image I0 using mp and ms masks, we get unobstructed object-
centric RGB reference images Ip and Is of our primary and
secondary objects, respectively, before the human interacts
with them.

B. Asset Generation

Given one of the reference object RGB images If , i.e.,
either Ip or Is if applicable, we use an off-the-shelf 3D
generative foundational model, specifically Point-E [15]
combined with marching cubes, to generate a raw 3D mesh
mc. We decided on this combination because of its ease
of use, but other models such as Zero-1-To-3 [16], Stable-
Dreamfusion [32], or Shape-E [33] are also utilizable. As
these models return object meshes in a canonical non-metric
frame, they are not directly usable in a robot simulation.
Although VLMs were previously used to verify the mesh and
guess a metric dimension [29], we use our provided human
demonstration and match the generated mesh to it. As our
generated mesh and the object in the human demonstration
share semantic similarities but are not the exact instance,
methods like FoundationPose [34] are not applicable here.
Instead, we propose to use a DINO [35] based feature matcher
Zero-Shot-Pose (ZSP) [17] to first generate correspondences
and then subsequently align the correspondences through a
7-DoF affine transformation with a closed form solution [36].
We detail this approach in the following.

Given a generated mesh from our 3D generative foun-
dational model mc, we render Nv views V of it using
spherical Fibonacci sampling [37] to sample the polar and
azimuthal angles, similarly as done by Giammaorino et al.
[38]. The Fibonacci sampling procedure ensures maximum
diversity in views compared to densely sampling the polar and
azimuthal angles. For each view vr = {Ir, Dr}, we render
an RGB image Ir and a depth image Dr. We collectively
give all views V and the initial reference image If to
ZSP [17]. ZSP [17] then first extracts descriptors for each
view’s RGB image Ir, matches these descriptors to the
reference image If to select the view v̂ with the top-K
similar descriptors. Second, ZSP [17] uses the most similar
descriptors as correspondences and projects them in 3D using
the selected views v̂ depth image D̂ and the reference depth
image Df . Lastly, ZSP [17] solves a closed-form seven degree
of freedoms (7-DoF) least squares problem [36] to estimate
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Fig. 2: Technical Approach of Real2Gen. Real2Gen uses a single human demonstration as input, consisting of a sequence of RGB-D images. We pre-process
(Sec. III-A) these images using DITTO [10] to retrieve a primary and, if applicable, a secondary object mask as well as an object-centric trajectory of the
object. In the second step, asset generation (Sec. III-B), we pass object images to Point-E [15] to generate 3D meshes in a canonical space. We then use
Zero-Shot-Pose (ZSP) [17] to scale and align the meshes to the human demonstration. We then use the generated meshes combined with object-centric
trajectories to set up a simulation (Sec. III-C). Using grasp and motion planning, we use the simulation to generate an expert dataset of policy rollouts. In
the last step, policy learning (Sec. III-D), we use the collected dataset to train a conditional flow matching policy [20].

a full affine transformation Tc m to transform the canonical
mesh mc to a metric mesh mm of which the up-orientation
matches the human demonstration. Despite using the top-K
similar descriptors across all views, there might be outliers
present. Thus, the estimate is done multiple times using
RANSAC. This process can be repeated arbitrarily many
times to continuously generate new and unseen meshes usable
in a robotic simulation. In practice, though, we generate
a fixed amount of Nm meshes M before continuing with
our demonstration generation. We additionally verify all
matches before proceeding, which, with improvements in
3D generative foundational models, will become obsolete.
Throughout our experiments, we sampled Nv = 80 views
and used the top-30 descriptors in ZSP [17].

C. Demonstration Generation

After we generate a set of meshes Mp for the primary
object and if applicable, a set Ms for the secondary object,
we use them in a simulation environment to generate large-
scale robot data. Specifically, we use SAPIEN [39] as our
simulator with a Franka Panda Robot mounted on a table. To
observe the scene, we set up an external RGB-D camera as
well as attach an RGB-D wrist camera to the robot.

To generate a robot demonstration, we first sample random
meshes, one for the primary object mm

p ∈ Mp and if
needed, one for the secondary object mm

s ∈ Ms. We then
sample random poses, constraining the meshes to be on
the table and randomly rotated around the up-axis. Next,
using our privileged simulation information, we analytically
calculate grasps on the primary object mesh using antipodality
constraints1 and pick a random grasp. At this point, we
explicitly differentiate between tasks only moving the primary
object and tasks with an additional secondary object. For tasks

1In practice, this process was done in a pre-processing step for each mesh
and stored. At demonstration generation time we only perform collision
checks to filter out grasps.

that only involve a primary object, we apply the extracted
object-centric trajectory Jp to the grasp. For tasks consisting
of an additional secondary object, we constrain the primary
object to be placed in the center of the secondary object2

approached through a bottleneck pose above the table. To
finally execute the task, we use a motion planner3. During
execution, we record all observations or and the robots
proprioceptive states as end-effector poses. After the roll-
out is completed, using the proposed pose error metric by
GraspNet [40], we compare the distance between the actual
pose of the primary object and the expected pose to determine
whether the roll-out was a success or failure. Only successful
roll-outs d are added to our demonstration dataset D.

D. Policy Learning

The last component of Real2Gen consists of learning a
manipulation policy given our previously generated demon-
stration dataset D. As our policy model we chose to use
PointFlowMatch [20] a flow matching based imitation learn-
ing method. Similar to PointFlowMatch [20], our policy learns
to move a Gaussian distribution to a target distribution being
our ground truth actions where the process is conditioned on
the current robot observations. The robot observations are the
last two point clouds encoded using a PointNet-encoder [41]
as well as the last two robot proprioceptive states, in our
case, the end-effector pose in SE(3). We use an aggregated
point cloud from the wrist camera and one external camera
by concatenating the points and randomly downsample it
to a fixed size. Our inferred actions are future end-effector
poses with a fixed horizon length H . See App. A for our
hyperparameter setup.

2We plan to extend our work to use the final relative poses between the
primary and secondary object.

3https://motion-planning-lib.readthedocs.io/latest/
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Method Sponge
on Tray

Coke on
Tray

Paperroll
upright

Mean
SR (↑)

DITTO [10] 6.3±2.1 26.0±3.6 0.3±0.5 10.9±2.1

DITTO [10] w/ ZSP [17] 4.3±1.2 19.7±3.8 0.7±0.6 8.2±1.8

Real2Gen (ours) 41.3±4.5 46.3±6.4 25.0±1.0 37.5±3.0

TABLE I: Performance comparison of Real2Gen against different baseline
methods. We evaluate all methods on three different tasks and report per-task
success rate as well as overall mean success rate [%] (↑).

IV. EXPERIMENTAL EVALUATION

In our experiments, we quantitatively evaluate how well
Real2Gen can transfer the human demonstration to a robot
compared to a DITTO [10] baseline. We also investigate the
difference in quality and effort when using a 3D generative
foundational model over a large-scale object dataset, such as
Objaverse [21].

A. Quantitative Evaluation

For our evaluation, we selected three tasks from
DITTO [10] and, following DITTO [10], a single human
demonstration for each task. We generate five meshes and 800
demonstrations. We use a simulator with the same fixed seeds
across all evaluations for a fair and reproducible comparison.
We evaluate Real2Gen against DITTO [10] baselines as well
as ablate Real2Gen.
Evaluation Setup: To set up and align our evaluation simulator
with our tasks, we use unseen realistic 3D meshes from
Objaverse [21]. All objects were manually checked and
scaled to have reasonable geometry and realistic sizes. For the
Sponge on Tray and Can on Tray-task we select five
sponge, five can and seven tray meshes. For the Paperroll
upright-task, we select five paperroll meshes. As for
generating robot demonstrations (see Sec. III-B), during each
simulation run, we randomly select meshes according to
the task and spawn them at random poses. To perform the
evaluation, we select three random seeds. For each seed, we
evaluate each method 100 times and record the successes
of the roll-outs. We evaluate the successes as described in
Sec. III-C. As done in [20], [42], we report the mean and
standard deviation across all seeds.
Baseline Comparisons: We compare Real2Gen against two
variants of DITTO [10]. First, the original variant using
LoFTR [43] to match the live observation to the demon-
stration. This is an unfair comparison as DITTO [10] was
designed to be faced with the same object instance as in the
demonstration. Thus, we extend DITTO [10] by replacing
the LoFTR [43] matching step with ZSP [17] which should
enable DITTO [10] to work across categories. The results
of our experiment are reported in Tab. I. When comparing
Real2Gen to DITTO [10] with and without ZSP [17], we
see that the overall performance is better. We assume the
difference stems from having only a single image available,
which increases difficulty for matching. To our surprise, the
original DITTO [10] baseline outperforms the variant with
ZSP [17]. Additionally, we observe that grasp and motion
planning fail quite often, aligning with the reported results
in DITTO [10], whereas our learned policy produces more
robust results.

Source Available
Meshes

100 Mesh
Pre-Selection

Matching Successful
and Task Relevant✝

Point-E [15] (ours) ∞∞∞ Random 54%

Objaverse [21] 690 Most viewed or All 19%
Random or All 18%

TABLE II: Comparison of Mesh Generation. We compare the number of
resulting meshes when using our proposed generative way vs. using a large-
scale object dataset. For an extended version, see App. C. ✝We report the
total percentage from the 100 selected meshes per category, or if fewer than
100 meshes are available from all available ones.

Ablation Studies: We additionally perform ablation studies of
Real2Gen to study the effect of the number of generated
meshes and demonstrations. Results are reported in the
appendix in App. B.

B. Comparison of Mesh Generation

To highlight the effectiveness of our proposed automatic
mesh generation and matching procedure, we compare the
human effort needed to perform manual mesh retrieval from
a large database, as done, for instance, in Scaling Up And
Distill Down [19]. To have representative results, we set
the goal to generate 100 object meshes. For Real2Gen, this
process is straightforward, and we run the asset generation
a hundred times. For the object set comparison, we query
Objaverse [21] to retrieve meshes with the tag of either
sponge, coke/coca can, tray, or paperroll. If
there are more than a hundred meshes available, we evaluate
using the hundred most viewed meshes and a hundred random
meshes. We additionally report the total meshes available.
We then apply the same matching procedure as for the
generated meshes. Lastly, we manually go through all of
the generated and retrieved object set meshes and classify
whether they are task relevant. For the retrieved meshes,
this is particularly important as they are not anchored to
the human demonstration, e.g., for sponge, sometimes the
cartoon character Sponge Bob is returned. We report the
results in Tab. II. Overall, following our proposed way to
generate meshes through a generative model results in almost
3x more available meshes on average while also being able
to generate an infinite amount.

V. CONCLUSION

In this work, we investigated the use of 3D generative
foundational models to transfer a single human demonstration
to simulation. We showed that with Real2Gen, more robust
policies are learned with an increase in success rate of 26.6%
against baselines. We additionally analyzed the effort needed
to generate task-relevant and usable simulation CAD models.

In the future, we see potential to extend our work to enable
more tasks with constrained movement like interacting with
articulated objects, e.g., sampled from an object prior like
in CARTO [44]. Additionally, we want to further study the
difference between generated meshes and large-scale object
sets by comparing Real2Gen against a policy trained on
objects from an object set. We are also interested in testing
the capabilities of VLMs as described in Gen2Sim [29].
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APPENDIX

A. Policy Hyper Parameters Setup

We adopt the training settings and hyperparameters from
PointFlowMatch [20]. We randomly downsample the input



Category Source Available
Meshes 100 Mesh Pre-Selection Matching Successful✝

Matching Successful
and Task Relevant✝

Sponge
Point-E [15] (ours) ∞ Random 94% 58%

Objaverse [21] 351 Most viewed 65% 2%
Random 65% 2%

Tray
Point-E [15] (ours) ∞ Random 60% 34%

Objaverse [21] 278 Most viewed 20% 6%
Random 15% 3%

Coke Can Point-E [15] (ours)(ours) ∞ Random 100% 54%
Objaverse [21] 41 All 66% 54%

Paper Roll Point-E [15] (ours)(ours) ∞ Random 95% 70%
Objaverse [21] 20 All 25% 15%

All
Point-E [15] (ours) ∞∞∞ Random 87% 54%

Objaverse [21] 690 Most viewed or All 44% 19%
Random or All 43% 18%

TABLE III: Comparison of Mesh Generation. We compare the number of resulting meshes when using our proposed generative way vs. using a large-scale
object dataset. ✝We report the total percentage from the 100 selected meshes, or if fewer than 100 meshes are available from all available ones. d

Fig. 3: Results of Ablation Study. We show the average success rate [%] (↑)
across all tasks. We either vary the number of demonstrations while using
five meshes or we vary the number of meshes using 800 demonstrations.

point cloud to a size of 4096 points. The policy is trained
using AdamW optimizer with a learning rate of 3e−5 and
weight decay of 1e−6. We schedule the learning rate with
cosine annealing and linear warmup of 5000 steps. The batch

size is 128, and we apply EMA on the weights of the model.
Throughout our experiments, we use 20 denoising steps for
flow matching and predict actions with a horizon of H = 32.

B. Ablation Study

In our ablation study, we investigate the effect of the
amount of used meshes and the demonstration. Specifically,
we change the number of demonstrations from 800 to 600
and 200, while still using five meshes, as well as changing the
number of meshes to three and one with 800 demonstrations.
We visualize the results in Fig. 3. As one would expect, the
more meshes and demonstrations, the better. Nonetheless, the
average performance increase diminishes rather soon when
going from 600 to 800 (1.1%) demonstrations and three to
five meshes (5.2%), respectively.

C. Extended Comparison of Mesh Generation

In Tab. III we show extended results from our mesh filtering
experiment in Sec. IV-B. We show results split by categories
and individual pipeline steps.
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