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ABSTRACT

The design and development of effective drug formulations is a critical process
in pharmaceutical research, particularly for small molecule active pharmaceutical
ingredients. This paper introduces a novel agentic preformulation pathway assis-
tant (APPA), leveraging large language models coupled to experimental databases
and a suite of machine learning models to streamline the preformulation process
of drug candidates. APPA successfully integrates domain expertise from scien-
tific publications, databases holding experimental results, and machine learning
predictors to reason and propose optimal preformulation strategies based on the
current evidence. This results in case-specific user guidance for the developability
assessment of a new drug and directs towards the most promising experimental
route, significantly reducing the time and resources required for the manual col-
lection and analysis of existing evidence. The approach aims to accelerate the
transition of promising compounds from discovery to preclinical and clinical test-
ing.

1 INTRODUCTION

The journey of a new drug candidate from discovery to clinical trials is beset by numerous chal-
lenges, including staggering R&D costs and high attrition rates (Kola & Landis, 2004; |Simoens &
Huys, [2021). Many promising small-molecule active pharmaceutical ingredients (APIs) suffer from
unfavorable physicochemical properties, such as low solubility or permeability, which in turn reduce
their bioavailability and efficacy (Lipinski et al.l |1997; |/ Amidon et al.| [1995)). In many cases, these
limitations can be mitigated by using suitable formulation approaches. A substantial body of liter-
ature describes the various factors impacting API formulations and outlines potential strategies to
address them (Zhang et al., | 2020; Florence & Attwood, 2015; Nair et al.;,2020). One notable exam-
ple is the Developability Classification System (DCS) (Butler & Dressman, 2010), closely related
to the Biopharmaceutics Classification System (BCS) (Amidon et al.,|1995) and the Biopharmaceu-
tics Drug Disposition Classification System (BDDCS) (Benet, [2013). These frameworks categorize
drug candidates by their solubility and permeability profiles, offering an initial guide to identify-
ing APIs with potential oral bioavailability issues, and assist in making informed decisions about
clinical formulation and development strategies. Despite these systematic approaches, formulation
remains time- and resource-intensive, requiring extensive experimentation, expert knowledge, and
careful consideration of multiple physicochemical parameters (Yul 2008)).

Meanwhile, machine learning (ML) has emerged as a powerful enabler in drug development (Lange
et al., [2024a; Komissarov et al., [2024; |Atz et al, |2024), with demonstrated potential for accelerat-
ing tasks like solubility and permeability prediction and reducing the need for direct experimental
validation (Sliwoski et al.l [2014; |Chen et al. 2018} [Vamathevan et al., 2019} [Lange et al.| [2024bj
Hornick et al.l [2024). Nevertheless, formulation scientists must still weave together disparate data
streams, ranging from experimental measurements to predictive modeling, best practice documents,
and laboratory standard operating procedures (SOPs) into an effective “first-time-right” formulation
strategy. Managing such diverse information is time-consuming and prone to human error, espe-
cially at a stage where efficiency and speed are paramount.
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To address these challenges, we introduce APPA, an agentic workflow designed to guide preformula-
tion design. APPA integrates established ML models for solubility and permeability prediction with
the reasoning capabilities of a large language model (LLM), enabling automated analysis of limited
(experimental) data — such as an API’s structure and initial solubility measurements — while pro-
viding case-specific recommendations informed by the broader scientific literature. By unifying key
decision-making processes and suggesting the most promising experimental pathways, APPA aims
to substantially reduce the time, costs, and risks associated with preformulation in drug discovery.

2 APPA

APPA is an LLM-based agent powered by GPT-40 (OpenAl et al., 2024), designed to guide pre-
formulation workflows by analyzing and predicting drug candidate properties. A typical process
begins with the user providing at least one compound identifier, which APPA uses to retrieve the
corresponding chemical structure of an API. From there, the user can query the agent about exist-
ing experimental results, request comparisons between multiple compounds, or investigate specific
questions, such as proposing a suitable formulation approach for a specific oral drug dose.

In this work, we center our approach on deriving the Developability Classification System (DCS)
class of a drug candidate, but the same workflow can be easily adapted to other classification frame-
works (e.g. , BCS or preclinical dose number (PDo) (Wuelfing et al), |2015)). Depending on the
resulting classification, APPA recommends the most promising next steps in the experimental cas-
cade, supporting these suggestions with quantitative reasoning. A high-level example of the APPA
workflow is shown in Figure|[T}
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Figure 1: Example diagram of an APPA workflow. A user can make a request to the agent regarding
their compound of interest (here presented as an internal code-name). The tool will consult its
system prompt and Laboratory’s SOPs to define the perimeter of the answer. Depending on the
nature of the request, a chain of tools will be called to achieve the desired answer - here shown
in full color. Outputs from tools that are depicted early in the execution order (XO) can serve as
inputs for interconnected tools depicted later in the XO. APPA uses pretrained ML models based on
internal experimental data and empirical models to impute relevant preformulation parameters. The
output of the query is a structured formulation recommendation.

To achieve this functionality, APPA leverages the Langchain framework (Chase, [2022) and is
equipped with a set of specialized “tools.” We categorize these tools into two main groups:

1. Databases, which retrieve the chemical structure and any available experimental data.
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2. Calculators, which require computational resources to produce an output. This includes
data-driven (ML-based) and empirical (rule-based) models.

In addition, we provide relevant scientific context via an appropriate system prompt and retrieval-
augmented generation (Lewis et al.l 2020) of laboratory standard operating procedures (see Ap-
pendix [A.2] for more details).

When a user query cannot be answered solely by referencing experimental data, APPA seamlessly
invokes its predictive tools to estimate or impute missing information. Specifically, we integrate
models capable of predicting a wide range of physicochemical properties and assay outcomes, in-
cluding melting point, glass transition temperature, aqueous solubility (Lovric et al., |2021), sol-
ubility in fasted state simulated intestinal fluid (FaSSIF) (Dressman et al., [1998]), human intestinal
permeability (P s), and DCS class. The machine learning models deployed here implement largely
the models presented by |Lange et al.| (2024b).

Notably, APPA can chain the outputs of multiple tools to address more complex questions. For
instance, estimating the solubility of a compound in FaSSIF may require combining its chemical
structure with predicted aqueous solubility and melting point. By orchestrating these predictive and
database tools in a single agentic interface, APPA provides a streamlined path toward more efficient
and informed decision-making in the preformulation stage.

3 RESULTS

We evaluate APPA against its ability to accurately predict the class of a compound based on the
Developability Classification System (DCS) (Butler & Dressman, [2010). In a first quantitative eval-
uation we generate 500 virtual data points by randomly selecting drug-like compounds from the
ChEMBL database [Zdrazil et al.| (2024)) and assign each a melting point and dose in the range of
(80,400) °C and (5, 800) mg, respectively. For each point we manually compute DCS class and use
it as the ground truth when evaluating the performance of an LLM-based application. We compare
APPA to a non-agentic instance of GPT-40 where the relevant literature for the DCS classification
has been made available through a context. The following prompt is used to generate the responses:

User: What is the DCS class of SMILES [SMILES] at a dose of [DOSE] mg and a melting point of [
MELTINGPOINT] degC?

Where the items in square brackets symbolize variable user input. This purely theoretical exercise
aims to establish a baseline LLM-performance, the ability of an agent to understand and use the
provided tools in the correct order, as well as test for potential hallucinations. We report the results,
expressed through the balanced accuracy and F1-micro scores in Table[l]

Table 1: Balanced accuracy and Fl-micro scores on the ChEMBL data set of virtual compounds
comparing APPA to a baseline GPT-40 instance.

Method Accuracy Fl-micro
APPA 0.895 0.938
GPT-40 + Context 0.156 0.186

The poor performance of the GPT-4o0 instance, which is likely due to a lack of chemical understand-
ing, highlights the importance of setting where domain knowledge is required.

As a second exercise, in a more end-to-end fashion, we evaluate APPA by asking it for the the DCS
class of a number of marketed drugs and check whether it is in line with the results published by
Butler & Dressman|(2010). The same prompt as above is used, however, SMILES is replaced with
an internal compound ID when querying APPA in order to additionally test the retrieval of data from
databases. We report the results in Table [2]

Not only does APPA correctly classify all four example compounds, but also provides meaningful
next steps with regards to the formulation of the compound with a given class. As an example of
followup suggestion, APPA could recommend a specific choice of molecular vehicle to facilitate the
preformulation task, based on the available tools. For example, in presence of a class IIb compound,
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Table 2: DCS Classification of four marketed drugs with APPA, GPT-40, and their reference class as
reported by Butler & Dressman| (2010). APPA additionally provides suggestions for the next viable
formulation steps based on the predicted class. Dose and melting point (77,,) reported in mg and °C,
respectively.

Drug Dose T,, Ref. APPA GPT-40 APPA Suggestions
Paracetamol 500 170 I I Ila a
Nitrendipine 80 158 ITa ITa IIb b, ¢
Griseofulvin 500 220 1IIb b IIb d,e, f
Aciclovir 400 257 1 1 v a, g, h

“Immediate release dosage form, *Particle-size reduction
“Co-crystallization or salt formation “pH modification (if ionisable), “Complexation
¥ Amorphous solid dispersions, ¢Prodrugs, "Mucoadhesive delivery system

a lipid based formulation could be followed. APPA in this case would aptly call the ML models to
predict solubility in medium-chain triglyceride and olive oil (which are implemented in the current
version) and compare their theoretical performances to recommend which vehicle to try first. This
example is further shown in[A.3] The accuracy of the results rests on the quantitative evidence inte-
grated in the tools: The model can defend its recommendations with numerical evidence - as shown
in Section [A:4] of the Appendix. We furthermore report that by casting the available tools into an
agentic framework, users are no longer bound by a potentially limiting static user interface. As such,
we can report additional successful experiments that would allow for an easy comparison of multi-
ple compounds at once, or a parameter sweep in search of the optimal conditions (e.g. finding the
maximum dose while staying DCS Class I or III). We can for example summon a direct comparison
of aqueous solubility between multiple compounds:

T

‘User: Which one is more soluble in water: RO-1 or RO-27?

Appa: The compound RO-1 is more soluble in water with an aqueous solubility of 10.35 mg/mL
compared to RO-2 which has an aqueous solubility of 0.61 mg/mL.

A user can ask which maximum dose we could achieve without complicating the formulation strat-
egy for a given compound:

User: Calculate what is the maximal dose in mg that compound RO-3 can be administered while
still classify as a DCS class 1. Be precise to the single digit. Assume a melting
temperature of of 170 degC. Explain why.

Appa: The maximal dose in mg that compound RO-3 can be administered while still classifying as
a DCS class 1 is 23 mg. The dose number for a 1 mg dose was found to be 0.043, which
means the dose can be increased to approximately 23 mg to still be within the DCS class
criteria.

Notably, APPA will automatically combine the tools at hand to adapt to the user queries, making the
design of a static user interface with hard-coded workflows redundant.

4  DISCUSSION

Initial results from integrating access to experimental data with predictive models through an LLM
agent are highly promising. In particular, we do realize the potential of such agents as one-stop
shops that can query and meaningfully combine various otherwise fragmented tools. Reducing
the need for context switching and manual integration of data from multiple sources is especially
impactful in the pharmaceutical industry, where the need to develop drugs efficiently is key. Agents
are also attractive from a developer’s or data scientist’s perspective, as fewer individual workflows
need to be written manually. On the other hand, issues typical to large language models, such
as hallucination (Huang et al.l |2023) need to be properly addressed before LLM agents can be
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fully adapted by the scientific community. For example, an area where APPA currently struggles
is the detection of missing input, where instead of stopping the reasoning chain and asking for
user input, the agent would proceed with ’invented’ values. Particularly in the natural sciences,
where domains of expertise can be very deep, building user trust in automated workflows can be
challenging. For this reason we are considering a human-in-the-loop approach where the agent
would list the individual tools it would like to use at each step and ask for user confirmation before
proceeding. Large research organizations will naturally produce a variety of digital tools — we
believe that once the above issues related to LLM agents are addressed, there is ample potential
for them to become a generic interface, promoting integration and ease of access and multi-modal
reasoning.

5 CONCLUSION

APPA represents a viable solution to a fragmented tool and information landscape, common in sci-
entific discovery. By meaningfully combining predictive machine learning models and database
access with large language models, APPA provides a novel, easily-accessible approach to the devel-
opability assessment of new drug candidates and preformulation design, which has the potential to
significantly accelerate the development of new drugs. The use of agentic frameworks enables the
creation of a flexible and adaptable workflows, which can be easily customized to different APIs and
experimental settings. Future work will be focusing on extending APPA to act on the information
provided by the DCS classification: Various additional data and models can be integrated to all fol-
lowing up on the specific formulation suggestions, further highlighting the most promising route to
pursue. Moreover, additional as validation of the performance on a wider range of APIs is ongoing.
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A APPENDIX

A.1 TooLs

APPA has access to the following tools, categorized by their level of complexity and dependencies:

Level 0: Basic Compound Information Retrieval

* code_to_smiles (code): Converts a compound code to its corresponding SMILES
string.

* fetch_exp_data (code): Retrieves physicochemical data for a given compound code
from a database API.

* is.smiles_valid (smiles): Checks the validity of a given SMILES string. Crucial
for ensuring subsequent tools operate on correct molecular representations.

Level 1: Developability Classification System (DCS)

* get_dcs._class (sol_fassif, peff, dose): Classifies acompound according to
the DCS based on its solubility in FaSSIF, effective permeability (peff), and dose.

Level 2: Key Property Predictions

* calculate_fassif_solubility(smiles, melting_point,
sol buffered): Predicts solubility in FaSSIF. Requires melting point and aque-
ous solubility.

* calculate_peff (smiles): Calculates human effective permeability (peff) from a
SMILES string.

Level 3: Advanced Solubility Predictions These predictive tools are based on machine learning
models built on internal data. They all combine cheminformatic fingerprints with additional experi-
mental input (€.g. Tr, Ty, Spusr ..€tc) and 3-D structural information.

* calculatemeltingpoint (smiles, Tg): Predicts melting point. Requires the
glass transition temperature (Ty).

* calculate._aqueous_solubility (smiles): Predicts aqueous solubility.

* calculate_sol_inmct (smiles, Ty): Predicts solubility in medium chain triglyc-
erides (MCT). Requires melting point (Ty,).

* calculate_sol in olive_oil (smiles, T,): Predicts solubility in olive oil. Re-
quires melting point (Tp,).

* calculate_sol_in propylene_glycol (smiles, T,): Predicts solubility in
propylene glycol. Requires melting point (Thy,).

e calculate_sol_in_polysorbate (smiles, T,, sol_buffered): Predicts
solubility in Polysorbate 80. Requires melting point (Ty,) and buffered solubility.

* calculate_sol_in_cyclodextrine (smiles, T,, sol buffered): Pre-
dicts solubility in cyclodextrines. Requires melting point (Ty,) and buffered solubility.
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A.2 SYSTEM PROMPTS

The system prompt we used for our example contains a description of the workflow our agent uses.
The basic system prompt is as follows:

You are a virtual formulation assistent with several tools at hand.

You always answer questions using these tools.

Carefully check the following at every step:

If you are missing input data to use a tool you stop the reasoning process and inform the
human about the missing data.

If you can not answer a question you do not hypothesize but inform the human about the missing
data.

Your final answer will include a list of tools that you used to arrive at the conclusion and a

short reason why the tool was used.
Ensure the above rules are followed strictly.

After classifying it with DCS, always try to use the correct followup tools to suggest a
specific strategy before returning the final result.

The system prompt is used to provide the agent a minimal guardrail and structure its textual output.
We noted that introducing halting mechanisms such as requesting users inputs in case of missing
data (or after a failed calculation) is sufficient in alerting the user of its incomplete output.

We further introduce the DCS publication (Butler & Dressman), [2010) and a follow-up action plan
depending on the DCS class outcome as a simple PDF guidelines which are consulted via a RAG
step. This rather simple collection of examples serves the purpose of showing the degree of control
one can ensure the tool to follow by mixing RAG and prompt.

A.3 FOLLOWING UP WITH ADDITIONAL TOOLS

User: What is the DCS [ APPA:

class of RO-1 at a dose Toolchain The compound RO-1 is classified as
of 500 mg and a melting ecution or B> DCS class IIb, which means it is
point of 170 degC? What solubility limited

could I use to formulate
it?

The recommended formulation
strategies for class two_b compounds

Suggested Dose
include pH-modification
) complexation, lipid-based systems, or
Experiment retrieval DCS Classifier amorphous solid dispersions

Based on the lipid solubility
predictions:

- Solubility in MCT: 2.53 mg/ml

- Solubility in Olive 0il: 1.74 mg/ml

Given these results, the solubility
Lipid Solvents in MCT is higher than in olive 0il
making MCT a more suitable
lipid-based system for this compound

V

Complexations

surfactants | |

Preformulation Context

e

[ i
( Des ] ‘
( |

* System prompt
* scientific literature
* Laboratory SOPs

Compound validation
A Rule-based tool )
T compound retrieval |———J | A

Figure 2: The workflow can be extended with additional steps and tools, depending on the formula-
tion path which is recommended. In this example, after having determined a compound being class
IIb, lipid based formulation is identified as a potential way forward. APPA fetches all the models it
has available to compare which vehicle is appearing to be best suited to test as additional step.

In a practical scenario, after identifying the probable DCS class of a compound, a formulator would
be faced with the task of selecting which vehicles would be best suited to facilitate its development.
This entails choosing a class of excipient from the pool of available ones, based on how they modify
a compound’s solubility in a potential route of administration. APPA automates this step by dynam-
ically selecting the machine learning models for the classes of vehicles which are compatible with
the classification’s needs, and based on their results, recommends a specific compound choice. This
extended workflow is depicted in figure [A.3] and showcases a potential multi-step process in the
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workflow. We note how our current implementation has currently only a few examples of enabling
formulation models, and as a result its presentation serves mostly as a proof of concept.

A.4 RESULTS : THE COMPLETE CONVERSATION

The examples shown in the result sections focus on the immediate answers offered in response to
users’ queries. This effectively masks the chain of actions the agent carries out - and how these
are finally displayed to the users. We report in this section the complete conversation displayed by
APPA in the delivery of the results presented in the main text. We have edited the output by hiding
chemical structures in the SMILES string.

User: Which one is more soluble in water: RO-1 or RO-27?

Al Message
Tool Calls:
code_to_smiles (call_mabgbd7Cgvf4YiQ74GcamtUH)
Args:
code: RO-1

Tool Message
Name: code_to_smiles

SMILESTRINGL

Ai Message
Tool Calls:
is_smiles_valid (call_dyIR78Q57wBkm6gg2kTfxYZE)
Call ID: call dyIR78Q57wBkmb6gg2kTfxYZE
Args:
smiles: SMILESTRING1

Tool Message
Name: is_smiles_valid

true

Al Message ====
Tool Calls:
code_to_smiles (call_h7u570U866LetVaAlWCtthFv)
Call ID: call_h7u570U866LetVaRlWCtthFv
Args:
code: RO-2

Tool Message
Name: code_to_smiles

SMILESTRING2

Al Message
Tool Calls:
is_smiles_valid (call_OBCOlF6Quj6E9ftUImAorfpP)
Call ID: call OBCOlF6Quj6E9ftUImAorfpP
Args:
smiles: SMILESTRING2

Tool Message
Name: is_smiles_valid

true

Al Message
Tool Calls:
calculate_aqueous_solubility (call_50DVgHIf4s1KwRB11J5LSqgfy)
Call ID: call_50DVgHIf4sl1KwRB11J5LSqfy
Args:
smiles: SMILESTRING1
calculate_aqueous_solubility (call_Bpf8rR0O4QabxlmfrXDsd38Df)
Call ID: call Bpf8rRO4QabxlmfrXDsd38Df
Args:
smiles: SMILESTRING2

Tool Message
Name: calculate_aqueous_solubility

10.349786144139605

Tool Message
Name: calculate_aqueous_solubility

0.6067265461374582

Ai Message

RO-1 is more soluble in water with a solubility of 10.35 mg/ml compared to RO-2 which has a
solubility of 0.61 mg/ml.

10
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### Tools Used:

1. xxfunctions.code_to_smiles*xx: To retrieve the SMILES strings for both compounds.

2. xxfunctions.is_smiles_valid*x: To ensure the retrieved SMILES strings are valid.

3. xxfunctions.calculate_aqueous_solubility*x: To predict the aqueous solubility of both
compounds .

A more complicated example is to propose APPA a request which is not directly provided by the
tools themselves. In this second case we asked it to return the maximal dose in mg a compound
can be administered while staying in Class I. To address this request, APPA needs to understand the
variables underlying the DCS categorization.

User: Calculate what is the maximal dose in mg that compound RO-3 can be administered
while still classify as a DCS class 1. Assume a melting temperature of of 170 degC.
Explain why.

Ai Message
Tool Calls:
fetch_exp_data (call_PBQzT8kev2PPkyNVAiTB9iD8)
Call ID: call PBQzT8kev2PPkyNVAiTB9iD8
Args:
code: RO-3

Tool Message
Name: fetch_exp_data

(LIST_OF_VALUES}

Ai Message
Tool Calls:
code_to_smiles (call_XO0x47HeD6atH673zhQMQYXdS)
Call ID: call_X0x47HeD6atH673zhQMQYXdS
Args:
code: RO-3

Tool Message
Name: code_to_smiles

SMILESTRING

Ai Message
Tool Calls:
is_smiles_valid (call_CVXg2bUjOwrgO03F23fLP10yS)
Call ID: call_CVXg2bUjOwrgO3F23fLP10yS
Args:
smiles: SMILESTRING

Tool Message
Name: is_smiles_valid

true

Al Message
Tool Calls:
calculate_aqueous_solubility (call_5CxQ3UInFA7MOSFyFvpXiOXK)
Call ID: call_5CxQ3UInFA7MOSFyFvpXiOXK
Args:
smiles: SMILESTRING

Tool Message
Name: calculate_aqueous_solubility

0.007315910121087895

Al Message
Tool Calls:
calculate_fassif_solubility (call_sCUomCidRDyTGSZeGU27a02q)
Call ID: call_sCUomCidRDyTGSZeGU27a02q
Args:
smiles: SMILESTRING
melting_point: 170
sol_buffered: 0.007315910121087895
Tool Message
Name: calculate_fassif_solubility

0.04648209417216417

Ai Message
Tool Calls:
calculate_peff (call_9SIYRwt4NGhLHsw5B07jUIEA)
Call ID: call_ O9SIYRwt4NGhLHsw5B07jUIEA
Args:
smiles: SMILESTRING

Tool Message
Name: calculate_peff

0.00039492970516104465

Ai Message

11
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Tool Calls:
get_dcs_class (call_5m8FmlIxdMiWlvsAw6I6Atin)
Call ID: call 5m8FmlIxdMiWlvsAw6I6Atin
Args:
sol_fassif: 0.04648209417216417
peff: 0.00039492970516104465
dose: 1

Tool Message
Name: get_dcs_class

{"dcs_class": "one", "dose_number": 0.04302732128617606, "absorption_number":
4.012169860672085}

Ai Message

The maximal dose in mg that compound RO-3 can be administered while still classifying as a DCS
class 1 is 23 mg.

Here is the reasoning and tools used:

1. »+xfetch_exp_data*x: Retrieved physicochemical data for RO-1.

2. *xxcode_to_smilesxx: Converted the code to a SMILES string.

3. xxis_smiles_valid#*: Verified the validity of the SMILES string.

4. xxcalculate_aqueous_solubilityx*: Predicted the aqueous solubility.

5. x*xcalculate_fassif_ solubilityx*: Predicted the solubility in FaSSIF.

6. x+calculate_peff+x: Calculated the human effective permeability.

7. xxget_dcs_classxx: Classified the compound according to the DCS system and determined the
dose number.

The dose number for a 1 mg dose was found to be 0.043, which means the dose can be increased
to approximately 23 mg to still be within the DCS class 1 criteria.
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