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Abstract
While reinforcement learning can learn effective policies for
maximizing reward, it remains difficult to encode complex
behavioral preferences through reward engineering alone, es-
pecially for safety-critical applications. We present State-wise
Constrained Policy Shaping (SCPS), a general-purpose algo-
rithm for steering agent behavior at runtime that guarantees
state-wise safety constraint satisfaction when feasible and
encourages compliance with behavioral norms. SCPS mini-
mizes the expected norm violation cost within a trust region
around the original policy, balancing task performance with
norm compliance at runtime. Behavioral norms are specified
post-training as soft constraints, enabling the agent to adapt
to evolving requirements without relearning its base policy.
We evaluate SCPS in the HighwayEnv autonomous driving
environment using a Deep Q-Network, where it reduces the
collision rate by 97% and the norm violation cost rate by 89%
in-distribution relative to the base policy. SCPS also general-
izes robustly under zero-shot evaluation, achieving significant
improvements in safety and norm compliance.

Code — https://github.com/thowell332/state-wise-
constrained-policy-shaping

1 Introduction
In reinforcement learning (RL), an agent learns by trial and
error to maximize reward through interactions with its en-
vironment. In practice, reward functions are often misspeci-
fied or incomplete, giving rise to the value alignment prob-
lem (Gabriel 2020). As a result, agents may learn to exploit
loopholes in the reward or behave undesirably in scenar-
ios not foreseen during training, which is especially acute
in safety-critical domains (Amodei et al. 2016; Skalse et al.
2022). Addressing value alignment requires methods that go
beyond optimizing task performance to explicitly promote
compliance with behavioral norms and safety constraints.

A growing body of work in safe RL aims to enforce hard
constraints with provable safety guarantees at runtime (Gu
et al. 2024; Brunke et al. 2022). Among this category of ap-
proaches, we focus on non-learned methods for constraint
set certification, which offer two key advantages: (i) they can
provide explicit and interpretable justifications for safety-
critical decisions, and (ii) they offer greater flexibility in
adapting to evolving norms and constraints.
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This paper presents State-wise Constrained Policy Shap-
ing (SCPS), a principled, learning-free method for runtime
policy augmentation that enforces state-wise safety con-
straints and steers agent behavior to comply with behavioral
norms. SCPS operates entirely post-training to support dy-
namic requirements with a closed-form policy adjustment.
At each timestep, SCPS guarantees safety constraint satis-
faction when feasible and minimizes the expected norm vi-
olation cost within a trust region around the original policy,
balancing task performance with the post-training objective
of norm compliance. We demonstrate our approach using a
Deep Q-Network (DQN) in the HighwayEnv autonomous
driving environment (Leurent 2018). SCPS is deployed as a
supervisor module that modifies the DQN agent’s action dis-
tribution at each step. We report significant improvements in
safety and norm compliance both in-distribution and under
zero-shot evaluation in a more complex scenario that sub-
sumes the training environment.

2 Related Work
Much of the prior work on enforcing norms and constraints
in RL can be grouped into three methodological categories:
approaches that modify the training procedure (Achiam et al.
2017; Yang et al. 2020; Zhao et al. 2024), approaches
grounded in control theory (Dalal et al. 2018; Ames et al.
2019; Hobbs et al. 2023), and formal methods-based ap-
proaches that derive runtime enforcement layers from sym-
bolic specifications (Alshiekh et al. 2018; Shalev-Shwartz,
Shammah, and Shashua 2016; Neufeld et al. 2021). These
methods often require retraining, rely on system dynamics,
or filter actions without regard for the original objective.

Fine-tuning and residual learning methods adapt pre-
trained policies to new objectives through continued opti-
mization. A notable class of fine-tuning approaches intro-
duces regularized control objectives that constrain updates
to remain close to the base policy while improving align-
ment with new goals (Jaques et al. 2017; Ziegler et al. 2019).
Residual approaches instead keep the base policy fixed and
train a residual function to augment the base behavior for
improved performance or policy customization. (Johannink
et al. 2019; Li et al. 2023). In contrast, SCPS explicitly sep-
arates hard safety constraints from soft normative costs and
requires no additional training.



3 Preliminaries
The agent’s environment is modeled as a constrained
Markov decision process (CMDP), with state space S and
action space A, where the set of allowable policies is re-
stricted by a set of hard constraints. These constraints are
specified as cost functions C = {c1, . . . , cm}, where each
ci : S × A → R≥0 defines the immediate cost associ-
ated with constraint i. We focus on the state-wise CMDP,
as formalized by Zhao et al. (2023), where constraints are
enforced at every step rather than cumulatively or in expec-
tation. The set of feasible stationary policies is therefore:

ΠC = {π ∈ Π | ∀(s, a) ∼ τ, ∀i, ci(s, a) ≤ di} (1)
where Π is the set of all stationary policies and di is the
threshold for constraint i. The objective is to maximize the
performance measure J subject to these constraints.

Beyond safety constraint satisfaction, many applications
require agents to exhibit behavior aligned with domain-
specific norms or ethical guidelines. We formalize these con-
siderations as a norm base, defined as a set of cost functions
N = {n1, . . . , nk}, where each nj : S ×A → R≥0 defines
the immediate cost associated with norm j. Each norm nj is
assigned a non-negative weight wj ≥ 0 reflecting its relative
importance. We define the overall norm violation cost with
respect to a norm base N as the weighted sum of costs:

ϕN (s, a) =

k∑

j=1

wj · nj(s, a). (2)

For a stationary policy π : S → P(A), which maps states
to probability distributions over actions, we denote the ac-
tion distribution at state s under policy π as πs := π(· | s).
We define the state-wise norm-centric performance measure
as the total norm violation cost in expectation over actions:

JN (πs) = −Ea∼πs
[ϕN (s, a)] (3)

where the negative sign ensures that maximizing JN corre-
sponds to minimizing expected norm violations at each state.

4 State-wise Constrained Policy Shaping
The goal of SCPS is to augment an agent’s action distri-
bution at runtime, ensuring state-wise safety constraint sat-
isfaction while improving compliance with domain-specific
norms. Given a policy πs at each step, we seek to derive a
shaped policy π′

s guided by three criteria:
1. Constraint Satisfaction: π′

s ∈ ΠC , where ΠC is the set
of feasible policies under the safety constraint set.

2. Norm Compliance: π′
s steers behavior toward higher

state-wise norm-centric performance JN .
3. Objective Retention: π′

s retains competency in maxi-
mizing the original objective J .

To retain the original objective, the shaped policy must
preserve information from the original policy about reward-
maximizing behaviors. To limit the amount of information
discarded from the original policy, we formalize SCPS as
the solution to a constrained optimization problem:

max
π′
s∈ΠC

JN (π′
s)

subject to D (π′
s∥πs) ≤ δs

(4)

where D is a generic distance measure between probabil-
ity distributions, and the state-wise threshold δs controls the
trade-off between pursuing the original objective and the
post-training norm-centric objective. In our approach, we in-
stantiate D as the Kullback–Leibler (KL) divergence, which
is formalized in Section 4.2. Bounding the divergence be-
tween the shaped and unshaped policies constrains the ex-
tent to which π′ can deviate from behaviors which were
learned to maximize the original objective, preserving the
task-relevant competencies of π.

4.1 Permissible Action Filtering
SCPS enforces safety constraint satisfaction by filtering the
action set at each timestep, only retaining the actions that
satisfy all of the hard constraints. We denote the state-wise
permissible action space under the constraint set C as:

AC(s) := {a ∈ A | ∀i, ci(s, a) ≤ di} . (5)

The filtered policy π̄s is constructed by renormalizing the
original policy πs over the permissible action set, operating
under Assumption 1. For cases where AC(s) = ∅, the de-
fault behavior of SCPS is to retain the actions which min-
imize constraint violations; however, in some domains, it
may be more appropriate to fall back on a known safe policy
or terminate the agent.
Assumption 1. At every state s, the base policy πs assigns
nonzero probability to at least one action in AC(s).
Remark 1. SCPS guarantees that π̄s ∈ ΠC by construction
of the permissible action filter under Assumption 1, given
AC(s) ̸= ∅.

4.2 Trust Region Policy Shaping
It follows from Remark 1 that the permissibility constraint
π̄ ∈ ΠC is satisfied for all filtered policies π̄ if a feasible
solution exists. We reduce the remaining problem to maxi-
mizing norm-centric performance measure within a trust re-
gion around the filtered policy, operationalizing the distance
constraint with the KL divergence, denoted as DKL:

max
π′
s∈ΠC

JN (π′
s)

subject to DKL (π
′
s ∥ π̄s) ≤ δ̄.

(6)

where δ̄ is a state-invariant threshold which is related to the
earlier δs by the log-probability mass assigned by πs to im-
permissible actions. The direction of the KL constraint is
chosen to penalize the shaped policy for overweighting ac-
tions deemed unlikely by the base policy, while allowing it to
suppress norm-violating actions without prohibitive penalty.
This reduced problem admits the closed-form solution:

π′
s(a) ∝ π̄s(a) · exp

(
− 1

β
ϕ̂N (s, a)

)
. (7)

where ϕ̂N (s, a) is the normalized cost, scaled for numerical
stability, and the parameter β > 0 is numerically computed
to satisfy the KL constraint. The remainder of this section
establishes the global optimality and uniqueness of this so-
lution, with degenerate cases addressed in the next section.



Theorem 1. The shaped policy π′
s as defined in Equation 7

is globally optimal for some β > 0 if the resulting policy
satisfies DKL (π

′
s ∥ π̄s) = δ̄ with δ̄ > 0.

Proof. Let f(π′
s) = JN (π′

s) be the maximization objective
function g(π′

s) = DKL (π
′
s ∥ π̄s) − δ̄ ≤ 0 be the inequal-

ity constraint. Solving the Karush–Kuhn–Tucker (KKT) sta-
tionary condition yields the closed-form solution provided
in Equation 7. This solution is only defined for β > 0, ensur-
ing that the dual feasibility condition β ≥ 0 is satisfied. The
primal feasibility condition g(π′

s) ≤ 0 is satisfied by choos-
ing β such that the KL constraint is active. The complemen-
tary slackness condition holds by construction: g(π′

s) = 0.
These conditions are necessary and sufficient for global op-
timality, since f(π′

s) is differentiable and concave, g(π′
s) is

differentiable and convex, and Slater’s condition holds be-
cause the constraint set admits the reference policy π′

s = π̄s,
which strictly satisfies g(π̄s) = −δ̄ < 0 for δ̄ > 0.

Theorem 2. Any globally optimal solution for a given state
s, satisfying the conditions specified by Theorem 1, is unique
if Varπ̄s (ϕN (s, a)) > 0.

Proof Sketch. Let D(β) := DKL (π
′
s ∥ π̄s) where π′

s is de-
fined by Equation 7. Differentiating D(β):

d

dβ
D(β) = − 1

β3
Varπ′

s
(ϕN (s, a)) .

Therefore, Varπ′
s
(ϕN (s, a)) > 0 is a sufficient condition

to guarantee that D(β) is strictly decreasing for all β > 0.
Since π′

s matches the support of π̄s, Varπ̄s
(ϕN (s, a)) > 0

is also a sufficient condition. Hence, any solution β > 0 for
which D(β) = δ̄ must be unique.

Method Variants The primary formulation of the SCPS
algorithm is referred to as the adaptive-β method, where β
is computed using a root-finding algorithm, like bisection or
Brent’s method, such that DKL (π

′
s ∥ π̄s) = δ̄.

An alternative formulation uses a fixed parameter βfixed

instead of solving the state-wise KL divergence constraint.
This method, referred to as the fixed-β method, does not
guarantee that the KL constraint is satisfied, but is included
for comparison with the adaptive-β method. The fixed-β
method is executed with slight modifications to Algorithm 1,
where the KL constraint is ignored at step 9 and βfixed is
used directly at step 13 without using a solver.

4.3 Cost-optimal Projection
In this section, we derive the optimal solution for cases not
covered by the previous section. Specifically, we address the
case where DKL (π

′
s ∥ π̄s) < δ̄ for all β > 0, and the case

where Varπ̄s (ϕN (s, a)) = 0. We begin by defining the cost-
optimal permissible action set:

AN (s) :=

{
a ∈ AC(s)

∣∣∣∣ ϕN (s, a) = min
a′∈AC(s)

ϕN (s, a′)

}

(8)
where AC(s) is the permissible action set in state s under the
constraint set C. The cost-optimal projection πproj

s is then
constructed by renormalizing the filtered policy π̄s over the

Algorithm 1: Adaptive-β SCPS

Require: π, C, N , δ̄ > 0, s ∈ S
1: Filter the permissible action set AC(s) (Eq. 5)
2: Renormalize πs over AC(s) to obtain π̄s

3: Compute the cost vector ϕN (·|s) over AC(s) (Eq. 2)
4: if ϕN (s, a) is uniform over AC(s) then
5: return π̄s

6: end if
7: Identify the minimum cost action set AN (s) (Eq. 8)
8: Renormalize π̄s over AN (s) to obtain πproj

s
9: if DKL(π

proj
s ∥ π̄s) ≤ δ̄ then

10: return πproj
s

11: end if
12: Normalize ϕN (·|s) s.t.

∑
a∈AC(s)

ϕN (s, a) = 1

13: Estimate β > 0 via root-finding to satisfy the active KL
divergence constraint (Eq. 6)

14: Shape π̄s using the estimated β and renormalize over
AC(s) to obtain π′

s (Eq. 7)
15: return π′

s

cost-optimal permissible action set. The remainder of this
section justifies the use of the cost-optimal projection in the
adaptive-β method to handle the aforementioned degenerate
cases with provable guarantees under Assumption 2. These
cases correspond to steps 4-6 and 9-11 in Algorithm 1.

Assumption 2. At every state s, the filtered policy π̄s as-
signs nonzero probability to at least one action in AN (s).

Theorem 3. If DKL

(
πproj
s ∥ π̄s

)
≤ δ̄, then πproj

s is the
unique KL-minimizing cost-optimal solution.

Proof Sketch. The policy which minimizes the KL diver-
gence to π̄s over the cost-minimizing action set AN (s)
must be proportional to π̄s, since any deviation from this
weighting would increase the KL divergence. Therefore, if
DKL

(
πproj
s ∥ π̄s

)
≤ δ̄, then πproj

s is feasible and by con-
struction the unique cost-optimal solution that minimizes the
KL divergence to π̄s.

Corollary 1. If no β > 0 exists such that DKL (π
′
s ∥ π̄s) =

δ̄, then πproj
s is the unique KL-minimizing cost-optimal solu-

tion by Theorem 3 under Assumption 2.

Proof Sketch. As β → 0+, the shaped policy π′
s converges

to πproj
s , and as β → ∞, it converges to π̄s. Let D(β) :=

DKL (π
′
s ∥ π̄s). In the limits of β:

lim
β→0+

D(β) = DKL

(
πproj
s ∥ π̄s

)
, lim

β→∞
D(β) = 0.

Thus, if no β yields D(β) = δ̄, since D(β) is continu-
ous for β > 0, Intermediate Value Theorem requires that
DKL(π

proj
s ∥ π̄s) ≤ δ̄.

Remark 2. If Varπ̄s(ϕN (s, a)) = 0, then ϕN (s, a) is uni-
form over AN (s) = AC(s), and πproj

s = π̄s trivially satis-
fies the KL divergence constraint with DKL(π

proj
s ∥ π̄s) = 0.

By Theorem 3, πproj
s is therefore the unique KL-minimizing

cost-optimal solution if Varπ̄s
(ϕN (s, a)) = 0.



5 Experimental Setup
We evaluate our approach using the HighwayEnv simula-
tor for autonomous driving (Leurent 2018) using a Stable-
Baselines3 DQN model (Raffin et al. 2021) for the ego ve-
hicle (EV) with the hyperparameters and reward structure
described in Appendix A. All non-ego vehicles are con-
trolled by the Intelligent Driver Model (Treiber, Hennecke,
and Helbing 2000). The base model is trained in a four-lane
highway environment with 20 vehicles, shown in Figure 1.
At test time, we evaluate in-distribution performance in the
same environment used for training, as well as zero-shot per-
formance in a more complex environment with six lanes and
50 vehicles. All results are reported as the mean and standard
error of the mean (SEM) aggregated over 5 independent ex-
periments with 100 episodes each.

5.1 State Space and Action Space
The state space of the agent is defined by kinematic obser-
vations of the EV and surrounding vehicles, describing po-
sition, velocity, and orientation. We use a discrete high-level
action space for controlling the EV, comprised of Slower,
Idle, Faster, Lane Change Right, and Lane Change Left.

5.2 Behavior Profiles and Constraints
To demonstrate runtime behavior steering, we construct cau-
tious and efficient behavior profiles, which reflect conserva-
tive and permissive driving preferences, respectively. Both
profiles instantiate the same set of hard constraints, and vari-
ants of the same norm base. For both behavior profiles, the
constraint set C prohibits actions which violate a one sec-
ond threshold for the time-to-collision (TTC), which is de-
fined as the amount of time it would take for a vehicle to
collide with another object on their current trajectories. The
norm base N consists of six boolean-valued cost functions
of equal weight, described in Appendix B, which encour-
age the agent to comply with a maximum speed, minimum
following distance, minimum TTC, and lane keeping behav-
ior. For lane change actions, TTC and following distance are
evaluated in the target lane between the EV and its leading
vehicle, and between the following vehicle and the EV. The
configured values for each profile are given in Table 1.

Norm Cautious Efficient
Speed Limit 25 m/s 30 m/s
Following Distance 3L 2L
Minimum TTC 3 seconds 2 seconds
Lane Preference Right Left

Table 1: Profile thresholds. L represents one car length.

5.3 Baselines
In addition to adaptive-β and fixed-β SCPS, we evaluate the
unsupervised base policy, the cost-optimal projection, and
a naive policy augment method that reweights the filtered
policy inversely proportionally to the normalized norm vio-
lation cost, using the state-wise scaling factor: 1

1+ϕ̂N (s,a)
.

Figure 1: Screenshot from the HighwayEnv environment.

The cost-optimal projection represents the behavior of
adaptive-β SCPS with an inactive KL divergence constraint,
while the naive augment method isolates the effect of simple
cost-based policy shaping within the permissible action set
without controlling the divergence from the base policy.

6 Results & Discussion
Our results demonstrate safe and effective behavior steering
across behavior profiles in-distribution, along with improved
safety and norm compliance in the zero-shot environment.
Ablation studies to isolate the effect of the permissible ac-
tion filter are provided in Appendix C.

6.1 In-Distribution Safety and Norm Compliance
Performance metrics for safety, norm compliance, and effi-
ciency across methods and behavior profiles are summarized
in Table 2. To represent the adaptive-β and fixed-β meth-
ods, we report results for δ̄ = 0.1 and β = 0.1, respectively.
Both SCPS variants achieve significant reductions in colli-
sions and norm violations compared to base policy, reducing
the collision rate by 97% and the norm violation cost rate by
at least 89% under the cautious profile. The naive method
shows marked improvement over the other baselines, but
consistently underperforms SCPS. The cost-optimal projec-
tion achieves a lower cost rate than the adaptive-β method,
but, notably, a slightly higher collision rate under the cau-
tious profile. This tradeoff highlights the role of the KL bud-
get as an optimization parameter: a looser budget is guaran-
teed to reduce norm violations, but may also limit the super-
visor’s ability to preserve safety-critical behaviors from the
base policy (Appendix D). In these experiments, the permis-
sible action filter only marginally improved safety relative to
the base policy, suggesting that the agent already learned to
avoid constraint-violating actions when possible.

Across behavior profiles, SCPS exhibits behavior consis-
tent with the specified norms. Table 2 shows that, while both
profiles significantly improve safety relative to the base pol-
icy, the cautious profile yields a lower collision rate whereas
the efficient profile maintains higher vehicle speeds. To bet-
ter understand how these high-level differences emerge from
local decision-making, Figure 2 shows action selection rates
for adaptive-β SCPS and the base policy in low-TTC states.
Under both profiles, SCPS is significantly more likely to
choose Slower than the unsupervised model, contributing to
improved safety. Between profiles, SCPS favors Faster and
Idle when conditioned on the efficient profile, reflecting a
more aggressive driving style that prioritizes speed. Under
the cautious profile, SCPS displays a lower risk tolerance,
consistently choosing Slower or Lane Change actions.



Cautious Profile Efficient Profile

Method
Collision Rate(

hr−1
) Cost Rate(

102 · hr−1
) Speed

(m/s)
Collision Rate(

hr−1
) Cost Rate(

102 · hr−1
) Speed

(m/s)

Unsupervised 33.07± 2.62 62.90± 0.21 29.71± 0.01 33.07± 2.62 17.43± 0.24 29.71± 0.01
Filter-Only 31.54± 2.57 62.37± 0.29 29.67± 0.02 31.54± 2.57 17.00± 0.34 29.67± 0.02
Naive Augment 10.20± 1.53 23.01± 0.76 26.32± 0.06 32.80± 2.60 7.65± 0.22 29.24± 0.05
Adaptive

(
δ̄ = 0.1

)
0.96± 0.48 6.51± 0.47 24.35± 0.02 11.98± 1.66 3.37± 0.37 27.81± 0.07

Fixed (β = 0.1) 0.96± 0.48 4.44± 0.45 24.02± 0.04 11.19± 1.61 2.94± 0.28 27.70± 0.09
Projection 1.21± 0.54 4.44± 0.45 24.03± 0.05 11.19± 1.61 2.97± 0.27 27.69± 0.09

Table 2: In-distribution performance metrics across methods and behavior profiles, reported as the mean and SEM across
experiments. Note that the unsupervised and filter-only methods are unaffected by the profile, but incur different costs under
each norm base. Bolded values are within one SEM of the minimum collision rate for each profile.

6.2 Zero-Shot Generalization

We evaluate SCPS for zero-shot generalization to a more
complex environment by deploying the pre-trained model
in a highway with six lanes and 50 vehicles. Table 3 reports
performance across methods under the cautious profile. Both
SCPS variants significantly improve safety and norm com-
pliance relative to the base policy, achieving a 99% reduc-
tion in collision rate and at least an 82% reduction in norm
violation cost rate. This improvement reflects the influence
of the cautious norm base, which explicitly promotes safe
driving practices. Compared to the in-distribution case, the
permissible action filter has a greater impact in the com-
plex environment, suppressing unsafe behaviors that emerge
more frequently under the distribution shift. The naive pol-
icy augment method significantly improves safety and norm
compliance over the other baseline methods, but again un-
derperforms SCPS on both metrics.
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Figure 2: In-distribution action selection rates across behav-
ior profiles for TTC < 3 s. The cautious and efficient pro-
files are represented by adaptive-β SCPS with δ̄ = 0.10.
Error bars represent one standard error.

Method Collision Rate(
hr−1

) Cost Rate(
102 · hr−1

)
Unsupervised 93.95± 3.69 63.60± 0.60
Filter-Only 56.64± 3.21 61.86± 0.70
Naive Augment 14.49± 1.81 28.73± 1.05
Adaptive

(
δ̄ = 0.1

)
1.20± 0.54 11.46± 0.77

Fixed (β = 0.1) 0.96± 0.48 8.76± 0.82
Projection 0.96± 0.48 8.62± 0.77

Table 3: Zero-shot performance under the cautious profile,
reported as the mean and SEM across experiments. Bolded
values are within one SEM of the minimum collision rate.

7 Limitations & Future Work
While SCPS provides formal guarantees for runtime con-
straint satisfaction and norm compliance, it relies on a com-
petent base policy and assumes a feasible action exists
at each step. Extending SCPS to handle infeasible states,
continuous action spaces, and partial observability would
broaden its applicability. Future work should also explore
integrating SCPS with learned or symbolic representations
of norms to enable adaptive, preference-aligned supervision.

8 Conclusion
In this work, we introduce SCPS, a runtime behavior steer-
ing method that provides formal guarantees on safety con-
straint satisfaction and expected norm violations within a
trust region. Empirical results in an autonomous driving
domain show that SCPS significantly improves safety and
norm compliance both in-distribution and under zero-shot
generalization, all without additional training.

Unlike methods that only filter or override unsafe ac-
tions, SCPS reshapes the full policy distribution at run-
time. Through its trust region formulation, SCPS preserves
competencies from the learned policy, balancing the origi-
nal objective with norm compliance. SCPS supports post-
training specifications for norms and constraints, enabling
runtime adaptation to behavior preferences. As safety and
value alignment become increasingly critical for RL systems
in high-stakes domains, SCPS offers a flexible and princi-
pled framework for runtime control of agent behavior.



A Training Details
We used the Stable-Baselines3 default hyperparameter val-
ues for the underlying DQN model, shown in Table 4.

Parameter Value
net arch [256, 256]
learning rate 0.0005
buffer size 15000
learning starts 200
batch size 32
gamma 0.8
train freq 1
gradient steps 1
target update interval 50
total timesteps 100000

Table 4: Hyperparameters for the DQN model.

During training, the agent received a scalar reward at each
timestep: r =

∑
i wi · Ri, where Ri is the value of each

reward component and wi is its corresponding weight. We
used the following reward components from HighwayEnv:

• Collision penalty (w = 1.0): Evaluates to −1 if the ego
vehicle crashes, 0 otherwise.

• High-speed reward (w = 0.4): Encourages maintaining a
velocity v in the target range: Rspeed = clip

(
v−20
10 , 0, 1

)
.

B Safety Constraints and Norms
We define norms and constraints as binary cost functions
f : S × A → [0, 1]. LaneChange variants evaluate whether
the lane change is feasible and penalize the action if it would
result in a violation for the EV with respect to its leading
vehicle or for the following vehicle with respect to the EV.

B.1 Constraints
1. CollisionConstraint: Prohibits actions that produce or

fail to mitigate a violation of the TTC threshold to the
leading vehicle, set to one second for our experiments.

2. LaneChangeCollisionConstraint: Prohibits actions that
cause a lane change and a CollisionConstraint violation
for the EV or following vehicle in the target lane.

B.2 Norms
1. SpeedNorm (w = 1.0): Discourages actions that produce

or fail to mitigate a violation of the speed threshold.
2. TailgatingNorm (w = 1.0): Discourages actions that

produce or fail to mitigate a violation of the configured
threshold for following distance to the leading vehicle.

3. BrakingNorm (w = 1.0): Discourages actions that pro-
duce or fail to mitigate a violation of the configured
threshold for TTC to the leading vehicle.

4. LaneChangeTailgatingNorm (w = 1.0): Discourages ac-
tions that cause a lane change and a TailgatingNorm vio-
lation for the EV or following vehicle in the target lane.

5. LaneChangeBrakingNorm (w = 1.0): Discourages ac-
tions that cause a lane change and a BrakingNorm vio-
lation for the EV or following vehicle in the target lane.

6. LaneKeepingNorm (w = 1.0): Discourages actions that
cause a lane change outside of the configured preference.

C Ablation Studies
To isolate the effect of the action filter, we tested all policy
augment methods without hard constraints. Table 5 shows
results under the cautious profile for the in-distribution and
complex zero-shot scenarios. In-distribution, removing the
action filter significantly increased collisions for the naive
method, but had negligible impact on SCPS. Combined with
Table 2, which shows that the base policy naturally avoids
constraint-violating actions in-distribution when feasible,
this suggests that SCPS preserved the relevant competencies
of the base policy whereas the naive method disrupted them.
In the zero-shot environment, where Table 3 shows that the
base policy frequently selects constraint-violating actions
even when safer alternatives exist, Table 5 confirms that the
permissible action filter plays a critical role in SCPS’s abil-
ity to steer behavior safely, particularly for the adaptive-β
method which enforces the trust region constraint.

Notably, the fixed-β and projection methods are less re-
liant on the action filter for safe behavior under the distribu-
tion shift. This suggests that enforcing the trust region con-
straint can hinder safe adaptation when the reference policy
fails to prioritize safe actions. SCPS addresses this limitation
by shaping around the filtered policy, constructing the trust
region around a distribution that systematically suppresses
impermissible actions while preserving a meaningful notion
of proximity to the original policy.

Method Collision Rate (%) Cost Rate (%)

In-Distribution

Naive Augment +15.00 +1.84
Adaptive

(
δ̄ = 0.1

)
0.00 +0.04

Fixed (β = 0.1) 0.00 −0.01
Projection 0.00 0.00

Complex Zero-Shot

Naive Augment +29.84 −1.36
Adaptive

(
δ̄ = 0.1

)
+67.03 −0.41

Fixed (β = 0.1) 0.00 +2.62
Projection 0.00 0.00

Table 5: Effect of removing the permissible action filter un-
der the cautious profile, reported as percent change.

D KL-Budget Sensitivity Analysis
Figure 3 shows trends in collision and cost rates as the pa-
rameter δ̄ varies for adaptive-β SCPS. As δ̄ increases, the
shaped policy deviates further from the base policy to reduce
norm violations until convergence to the cost-optimal pro-
jection. Importantly, the collision rate reaches a minimum
before this convergence, illustrating how appropriate tuning
of δ̄ balances safety with improved norm compliance.
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Figure 3: Collision and cost rates as functions of the KL
budget δ̄ for the cautious profile in-distribution. The shaded
region indicates convergence to the cost-optimal projection.
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