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Abstract

Visual localization relies on local feature detectors and
descriptors to establish reliable correspondences across
views. However, existing pipelines typically assume sym-
metry: the same backbone and feature extractor are used
for both queries and maps. This assumption is imprac-
tical for real-world deployment. Query-side models must
be lightweight to run in real time on constrained devices,
whereas map construction can exploit arbitrarily heavy
models offline. This asymmetric setting calls for cross-
model compatibility between features, rather than uniform
processing. While recent works have explored asymme-
try for global image retrieval, the local detector–descriptor
pipeline remains completely unexplored. We propose Asym-
Loc, the first framework for asymmetric visual localiza-
tion. AsymLoc couples detectors and descriptors through a
matching-based consistency loss. Rather than distilling de-
tectors and descriptors separately, AsymLoc supervises the
student with the teacher by enforcing agreement on which
keypoints across views should match. This cross-model
matching supervision jointly aligns detection and descrip-
tion, ensuring that the student learns features that remain
compatible with the teacher during asymmetric localiza-
tion.

Experiments on standard localization benchmarks
demonstrate that with AsymLoc, we can deploy a model
that is 20× smaller at inference time while achieving near-
teacher accuracy at a fraction of the compute cost, substan-
tially outperforming symmetric lightweight baselines.

1. Introduction
Visual localization is fundamental for applications such as
augmented and virtual reality (AR/VR), robotics, mapping,
and SLAM. Its success hinges on reliable local feature de-
tectors and descriptors to establish correspondences across
views. Recent years have witnessed substantial progress in
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Figure 1. Our proposed AsymLoc enables a lightweight stu-
dent model to remain fully compatible with teacher-derived
map features, achieving near-teacher accuracy at a fraction of
the compute cost.

learned local features, including SuperPoint [3], R2D2 [8],
SILK [5] and LoFTR [10]. However, deploying these mod-
els on edge devices (e.g., smart glasses) remains difficult:
models must be extremely compact to satisfy tight limits
on GPU memory, battery capacity, and heat dissipation. In
practice, FLOPs and GPU utilization are strongly correlated
with power draw and battery life [13], making smaller mod-
els a first-class requirement for such edge devices.

Most pipelines implicitly assume a symmetric setup in
which the same backbone and feature extractor process both
the reference map and incoming queries. Real-world lo-
calization, however, is asymmetric: map construction can
be performed offline with heavy models, while query pro-
cessing must run online under real-time constraints on con-
strained hardware. This deployment reality calls for cross-
model compatibility—features extracted by a lightweight
query model should remain highly matchable to features
produced by a heavier map model.



One might attempt to bridge model differences at infer-
ence with learned matchers such as SuperGlue [9] or Light-
Glue [6]. While effective, these methods add substantial
matcher networks atop the underlying features, which is
impractical on the edge; in fact, the matcher can rival or
exceed the parameter count of the detector/descriptor stack
itself [6]. What we need instead are lightweight detectors
and descriptors that are natively compatible with heavier
map features—without incurring extra matcher overhead.

We introduce AsymLoc, the first framework explicitly
targeting asymmetric visual localization with local features.
A compact query model is trained to remain compatible
with a stronger map model via a matching-based consis-
tency objective, enforcing agreement on which keypoints
should correspond across views and models. While asym-
metry has been explored in global image retrieval [2, 4, 11,
12], local feature matching is inherently different as it re-
quires coupling detectors and descriptors, making prior ap-
proaches inapplicable. AsymLoc is the first to address this
setting, where cross-model agreement must capture both
where to detect and how to describe, yielding student fea-
tures that remain highly matchable to teacher features while
keeping inference lightweight for edge devices.

On standard benchmarks (HPatches, IMC2022, etc.),
AsymLoc attains near-teacher accuracy at a fraction
of the compute, substantially outperforming symmetric
lightweight baselines. By explicitly modeling detec-
tor–descriptor asymmetry, AsymLoc establishes a new
paradigm for efficient visual localization.

Our main contributions are as follows:
1. We formalize asymmetric visual localization for local

features matching.
2. We propose a cross-model, matching-based training

objective that aligns detectors and descriptors end-to-
end, yielding native compatibility without additional
inference-time matcher parameters.

3. We provide a family of lightweight, compatibility-
trained detector–descriptor models spanning accu-
racy–efficiency trade-offs, and demonstrate strong re-
sults on standard localization benchmarks.

2. Methodology
2.1. Problem Formulation
Let Im denote a reference map image and Iq a query im-
age. We consider two models: a high-capacity teacher T
used offline to process map images, and a lightweight stu-
dent S deployed online to process queries under real-time
constraints.

Teacher features. Applying T to Im yields a set of key-
points (detectors) and associated descriptors:

FmT = {(pT
i ,d

T
i )}

Nm
i=1,

where pT
i ∈ R2 denotes the image coordinates of the i-th

keypoint and dT
i ∈ RD its descriptor.

Student features. Applying S to Iq yields

FqS = {(pS
j ,d

S
j )}

Nq

j=1,

with pS
j query keypoints and dS

j the associated descriptors.

Pose estimation. Feature correspondences C ⊆ FqS ×
FmT are used to estimate the relative pose of the query with
respect to the map:

TqS→mT ∈ SE(3).

If both query and map are processed by the teacher T , we
obtain the reference transformation

TqT→mT ∈ SE(3).

Asymmetry. The student model S is significantly smaller
than the teacher T , enabling efficient inference on edge de-
vices. Our goal is to ensure that the transformation esti-
mated in the asymmetric case, TqS→mT , closely approx-
imates the transformation TqT→mT obtained when both
images are processed by the teacher. This ensures that
lightweight query features remain fully compatible with
teacher-derived map features for robust localization.

2.2. Matching-Based Consistency Objective
The core idea of AsymLoc is to enforce that lightweight
query features remain matchable to heavy teacher map fea-
tures. Rather than regressing descriptors directly, we op-
erate at the level of correspondences, where both detector
scores and descriptor similarities contribute to a probabilis-
tic matching objective.

Similarity matrix. Given descriptors from a teacher-
processed image a, {dT

i (a)}
Na
i=1, and from a student-

processed image b, {dS
j (b)}

Nb
j=1, we compute a similarity

matrix

Sij =
⟨dT

i (a),d
S
j (b)⟩

τ
,

where τ is a temperature parameter.

Probability matrix. Let σT
i (a) denote the detector confi-

dence of keypoint i in image a (from the teacher), and σS
j (b)

the detector confidence of keypoint j in image b (from the
student). We construct the match probability matrix as

P aT→bS

ij = σT
i (a)σ

S
j (b)σr(S)ij σc(S)ij ,

where σr(·) and σc(·) denote row- and column-wise soft-
max normalizations, respectively. This formulation yields a



soft bi-stochastic assignment weighted by detector scores,
ensuring that only reliable keypoints contribute to matches.
The same construction applies when roles are swapped,
yielding P bT→aS

ij .

Cross-model matching loss. Given ground-truth corre-
spondences Mab from the known homography between im-
ages a and b, we supervise the probability matrix using a
cross-entropy objective:

Lmatch = −
∑

(i,j)∈Mab

logP aT→bS

ij −
∑

(i,j)∈Mba

logP bT→aS

ij .

This term enforces agreement between teacher–student cor-
respondences and geometry-derived ground truth, in both
asymmetric directions.

Self-consistency loss. To further align the student with
the teacher, we enforce consistency when both process the
same image. For an image a, let σT (a) and σS(a) de-
note the detector confidence maps predicted by the teacher
and student, respectively, using the same notation as in
the matching objective. We minimize a soft binary cross-
entropy (equivalently, a KL-style divergence) between these
confidence maps:

Lself(a) = BCEsoft
(
σT (a), σS(a)

)
,

and analogously for image b. This encourages the student
to approximate the teacher’s detector distribution, ensuring
that both models focus on similar salient keypoints.

Overall objective. The final AsymLoc training objec-
tive combines the cross-model matching loss with the self-
consistency loss:

LAsymLoc = Lmatch + Lself(a) + Lself(b).

By supervising both cross-model correspondences and
within-image distributions, AsymLoc learns compact
query-side features that remain natively compatible with
teacher map features, without the need for additional
matcher parameters at inference.

2.3. Training Pipeline
Given image pairs (a, b) with known homographies, the
teacher T extracts reliable keypoints and descriptors to form
ground-truth correspondences Mab. The student S pro-
cesses the same images: in asymmetric mode, one image
is handled by T and the other by S; in self-consistency
mode, both process the same image. Training combines
a cross-model matching loss Lmatch, enforcing correspon-
dence agreement across teacher–student features, with a

self-consistency loss Lself, aligning detector distributions on
identical inputs. The final objective

LAsymLoc = Lmatch + Lself(a) + Lself(b)

drives the student to remain compatible with the teacher for
robust asymmetric localization.

Model Asym? Asymmetry
Technique Teacher HE Acc

VGG
1M Params

✗ – – 0.603

VGG Small
0.2M Params

✗ – – 0.552

VGG Small
0.2M Params

✓
Hard BCE

with InfoNCE
VGG

1M Params
0.562

VGG Small
0.2M Params

✓
Soft BCE

with InfoNCE
VGG

1M Params
0.584

VGG Small
0.2M Params

✓
LAsymLoc

(ours)
VGG

1M Params
0.591

Table 1. Homography estimation results on HPatches using a
VGG Small (0.2M) student. Our asymmetric pipeline substan-
tially recovers performance compared to the symmetric student
baseline and closely matches the 1M-parameter teacher, outper-
forming all other asymmetric distillation strategies.

Model Asym? Asymmetry
Technique Teacher HE Acc

VGG
1M Params

✗ – – 0.603

VGG Mini
0.05M Params

✗ – – 0.534

VGG Mini
0.05M Params

✓
Hard BCE

with InfoNCE
VGG

1M Params
0.541

VGG Mini
0.05M Params

✓
Soft BCE

with InfoNCE
VGG

1M Params
0.558

VGG Mini
0.05M Params

✓
LAsymLoc

(ours)
VGG

1M Params
0.577

Table 2. Homography estimation results on HPatches using
a VGG Mini (0.05M) student. AsymLoc achieves near-teacher
accuracy while enabling a 20× smaller model, with only a 2.3%
drop compared to the oracle teacher.

3. Experiments
3.1. Experimental Setup
Datasets. We evaluate our asymmetric localization frame-
work on two standard benchmarks. HPatches [1] contains
planar scenes with known homographies, enabling eval-
uation of homography estimation accuracy under varying
geometric and photometric transformations. IMC2022 [7]



Model Asym? Asymmetry
Technique Teacher Mean Loc.

Accuracy

VGG
1M Params

✗ – – 0.561

VGG Small
0.2M Params

✗ – – 0.466

VGG Small
0.2M Params

✓
Hard BCE

with InfoNCE
VGG

1M Params
0.499

VGG Small
0.2M Params

✓
Soft BCE

with InfoNCE
VGG

1M Params
0.530

VGG Small
0.2M Params

✓
LAsymLoc

(ours)
VGG

1M Params
0.548

Table 3. Mean localization accuracy on IMC2022 using a
VGG Small (0.2M) student. Our asymmetric training en-
ables the lightweight student to achieve performance close to the
teacher while significantly outperforming the symmetric student-
only baseline.

Model Asym? Asymmetry
Technique Teacher Mean Loc.

Accuracy

VGG
1M Params

✗ – – 0.561

VGG Mini
0.05M Params

✗ – – 0.422

VGG Mini
0.05M Params

✓
Hard BCE

with InfoNCE
VGG

1M Params
0.484

VGG Mini
0.05M Params

✓
Soft BCE

with InfoNCE
VGG

1M Params
0.500

VGG Mini
0.05M Params

✓
LAsymLoc

(ours)
VGG

1M Params
0.525

Table 4. Mean localization accuracy on IMC2022 using a VGG
Mini (0.05M) student. AsymLoc maintains high accuracy de-
spite the extreme size reduction, showing that even very compact
students remain compatible with teacher-derived map features.

is a large-scale outdoor localization benchmark where the
task is to register query images with known poses against a
database of reference images. Following the official proto-
col, we report mean localization accuracy. In both settings,
we process one image with the teacher model and the other
with the student, reflecting the asymmetric deployment sce-
nario.

Teacher model. Throughout the experiments we use
SILK [5] as our teacher network. SILK provides a clean
and lightweight detector–descriptor framework that inte-
grates recent advances in feature distillation, and has been
shown to outperform SuperPoint while using fewer param-
eters. Moreover, SILK follows a VGG-style backbone with
sequential 3×3 convolutions and ReLU activations, making
it a simple and well-controlled base model for evaluating
our asymmetric pipeline. Without loss of generality, our
approach is not restricted to SILK and can be applied to any

detector–descriptor model.
Comparison baselines. We compare the following se-

tups:
• Teacher only: Both query and map are processed by the

teacher (oracle performance).
• Student only: Both query and map are processed by the

student.
• Asymmetric: One image is processed by the teacher and

the other by the student. We evaluate three asymmet-
ric training strategies: (1) Hard BCE + InfoNCE: top-k
teacher detections are used as positives for the student,
and descriptors are trained with an InfoNCE objective.
(2) Soft BCE + InfoNCE: detector logits are distilled with
a soft BCE loss (KL-like) instead of hard labels, descrip-
tors trained as above. (3) AsymLoc (ours): the matching-
based consistency framework described in Sec. 2.
Architecture. We use three backbone scales: VGG-

style models with 1M (teacher), 0.2M, and 0.05M parame-
ters, each with detector and descriptor heads consistent with
SILK. The 0.2M student closely approximates the teacher’s
accuracy in asymmetric mode, while the 0.05M student
demonstrates that even very small models can retain high
localization accuracy. All models use two-layer CNN heads
for both detector and descriptor branches.

3.2. Results

Table 1 reports homography estimation accuracy on
HPatches using the VGG 0.2M student. The 1M-parameter
teacher achieves the highest accuracy when applied sym-
metrically. The 0.2M student alone underperforms, but un-
der asymmetric training our method substantially recovers
performance, achieving results close to the teacher while re-
quiring an order of magnitude fewer parameters. AsymLoc
outperforms both hard and soft BCE distillation baselines.

Table 2 shows results for the 0.05M student. Despite
being 20× smaller than the teacher, our asymmetric training
yields only a 2.3% drop in homography estimation accuracy
compared to the oracle teacher setup, again outperforming
all alternative asymmetric training strategies.

We observe similar trends on IMC2022. Table 3 reports
mean localization accuracy for the 0.2M student. As in
HPatches, AsymLoc nearly matches teacher-only accuracy
while significantly outperforming the symmetric student-
only baseline. Table 4 presents results for the 0.05M stu-
dent, where our method again delivers strong performance
with minimal loss relative to the much larger teacher model.

These results collectively demonstrate that AsymLoc
provides a general and scalable solution to edge-device lo-
calization: lightweight query models remain fully com-
patible with heavy teacher-derived map features, achieving
near-teacher performance at a fraction of the runtime and
memory cost.
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