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Abstract
Robust Federated Graph Learning (FGL) provides an effective decentralized frame-
work for training Graph Neural Networks (GNNs) in noisy-label environments.
However, the subtlety of noise during training presents formidable obstacles for
developing robust FGL systems. Previous robust FL approaches neither adequately
constrain edge-mediated error propagation nor account for intra-class topological
differences. At the client level, we innovatively demonstrate that hyperspheri-
cal embedding can effectively capture graph structures in a fine-grained manner.
Correspondingly, our method effectively addresses the aforementioned issues
through fine-grained hypersphere alignment. Moreover, we uncover undetected
noise arising from localized perspective constraints and propose the geometric-
aware hyperspherical purification module at the server level. Combining both
level strategies, we present our robust FGL framework, HYPERION, which oper-
ates all components within a unified hyperspherical space. HYPERION demon-
strates remarkable robustness across multiple datasets, for instance, achieving a
29.7% ↑ F1-macro score with 50%-pair noise on Cora. The code is available at:
https://github.com/GuanchengWan/HYPERION.

1 Introduction

Federated Learning (FL) [20, 34] has recently emerged as a key area in decentralized machine
learning. FL enables multiple clients to collaboratively train a shared global model while preserving
data privacy [65, 20]. To leverage graph-structured data from diverse participants, Graph Neural
Networks (GNNs) [22, 13, 31] have been integrated into FL, giving rise to Federated Graph Learning
(FGL) [59, 49, 16, 45]. FGL combines two paradigms, effectively ensuring privacy[17, 19, 50] while
enabling efficient distributed graph learning through neural message-passing mechanisms, which
propagate node features and hidden representations in graph data.

As shown in Figure 1, although FGL offers numerous benefits [12, 2], it also introduces new
vulnerabilities. Prior studies demonstrate that even minor structural or semantic perturbations can lead
to misclassification in GNNs [7, 57, 68, 72]. These subtle differences may obscure critical information
that defines node relationships and class boundaries. In FGL, coarse-grained representations of nodes
within the same class can forcibly smooth out local topological differences, impeding the effective
filtering of subtle noise and hindering the accurate capture of real semantic information and the
underlying graph structure. Hence, we pose the following question: I) How can we learn class
representations that are robust to noise while capturing subtle structural differences between
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similar nodes? Such noise is not only inherently difficult to detect but also pervasive in graph data.
Studies show that existing datasets can easily contain over 30% label errors [23, 41]. Recent FL
methods address label noise via label correction [47, 60] and self-supervised learning [10, 58, 8],
but these methods do not explicitly model the complex topological characteristics of graph data.
Therefore, when dealing with graph data exhibiting complex topological structures, these approaches
typically aggregate neighbor features indiscriminately, mixing noise with valid signals and degrading
both alignment level and generalization performance. This leads to the question: II) How can we
adaptively identify and select high-confidence, stable nodes in each client’s noisy graph data?

Nevertheless, it is extremely difficult to completely remove noisy nodes solely relying on the client.
The federated framework’s privacy constraints limit each client’s view to its local subgraph, preventing
a global perspective. As a result, client models learn only local semantics and limited topological
context, causing certain abnormal nodes to appear "normal" locally and evade detection. The
limitation of this local perspective indirectly damages the generalization ability of the global model.
Therefore, we ask: III) How can we robustly refine semantic and topological knowledge during
global aggregation and transfer it efficiently to the global model?
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Figure 1: Problem Illustration. We describe the chal-
lenges FGL encounters under noisy labels: I) The coarse-
grained representation method leads to ineffective dif-
ferentiation between similar nodes, resulting in the cou-
pling of noise and valid information. II) The edges
between nodes in a graph facilitate the propagation of
noise. III) The restricted view of individual clients leads
to missed detection of certain noise.

To holistically address these challenges,
we propose HYPERION: a Hyperspherical-
Embedding-Centric Framework for Robust
Federated Graph Learning, where all compo-
nents operate on a unified hyperspherical space.
To address issue I), we introduce Topolog-
ical Prototypes Hyperspherical Learning
(TP-HSL) to fully capture the rich topological
differences between nodes of the same class.
Our method projects training node samples
onto a hyperspherical embedding space. On the
one hand, it maximizes the minimum spherical
angle between different class prototype clusters,
actively amplifying inter-class differences and
enhancing the discriminability of decision
boundaries. On the other hand, it minimizes
the average spherical angle between nodes of
the same class and their prototype centers to
ensure tight intra-class clustering and strengthen
structural correlations. Compared to conven-
tional one-class-one-prototype approaches
[46, 18, 51], TP-HSL provides finer structural
modeling capabilities and heightened topological sensitivity. To address problem II), we propose
Hyperspherical Consistency Noise Calibration (HS-CNC), which constructs a perturbed view of
the graph. We retain only high-confidence nodes that consistently map to the same prototype cluster
across views and filter out potential noisy nodes with unstable mappings. This process explicitly
exposes the potential perturbation-sensitive areas through the "amplification of noise shifts" effect,
ensuring information purity while effectively strengthening the correlation between nodes and the
true topological structure. To solve issue III), we propose Geometric-Aware Hyperspherical
Purification (GA-HSP). Driven by the Wasserstein distance, we distill, refine, and aggregate local
prototype knowledge into robust global prototypes, constructing a well-defined global hypersphere.
Then, by leveraging the covariance structure between the client hyperspheres and the global
hypersphere, we apply the Mahalanobis distance to assess each node’s outlier risk and eliminate
drifting nodes biased by noise. To summarize, we make the following key contributions:

❶ Problem Identification. We study a challenging problem: overcoming the label noise in FGL.
Our focus is on mitigating the negative influence of the label noise while overcoming several key
limitations of existing solutions, including reliance on coarse-grained representations, neglect of
the graph data’s topological structure, and the absence of re-correction from a global perspective.

❷ Practical Solution. We introduce HYPERION, a novel and effective methodology that disentangles
complex topological structures and mitigates malicious noise in FGL through hyperspherical
representation. With the help of several technical innovations, HYPERION significantly enhances
the model’s ability to distinguish subtle structural differences while maintaining strong robustness.
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❸ Experimental Validation. We conducted extensive experiments on five mainstream datasets under
different noise types and ratios. The results demonstrate that our approach outperforms the state-of-
the-art methods in multiple FGL environments. For instance, under the 50%-pair noise setting on
the Cora dataset, our method achieves an impressive F1-macro score of 51.15%, outperforming the
second-best method of 39.41% by a significant margin.

2 Preliminaries

Notations. Following the typical FGL framework, M participants (indexed by m) collabora-
tively train a shared global model using their private graph data. Participant m holds a graph
Gm = (Vm,Am,Xm), where Vm = {vi}Nm

i=1 is the node set containing |Vm| = Nm nodes,
Am ∈ {0, 1}Nm×Nm is the adjacency matrix with Aij = 1 if there is an edge between nodes
vi and vj (and 0 otherwise), and Xm = {xi}Nm

i=1, xi ∈ Rd is the node feature set of dimension d.
Moreover, Ym ∈ {0, 1}Nm×C is the label matrix, where each label yi ∈ {0, 1}C is a one-hot vector
over C classes. See Appendix A for detailed notation.

Problem Formulation. We focus on the semi-supervised node classification problem. Only a small
set of nodes VL

m is labeled for training, denoted as VL
m = Vm \ VU

m, where NL
m is the number of

labeled nodes. The remaining nodes are unlabeled and denoted as VU
m. Given Xm and Am, the goal

of node classification is to train a classifier fθm : (Xm,Am)→ ŶL
m, where the model parameters are

optimized by minimizing the following objective:
min
θm

L(fθm(Xm,Am),YL
m), (1)

where L is a loss function that measures the discrepancy between predictions and ground-truth labels.
In this way, according to the Empirical Risk Minimization (ERM) principle, the well-trained classifier
fθm can generalize effectively to unseen nodes VU

m.

However, in real-world scenarios, the available labels YL
m may be corrupted, which degrades the

generalization ability of the m-th client’s classifier fθm . We denote these noisy labels as YN
m =

{ỹ1, . . . , ỹl}, where YL
m represents their corresponding ground-truth labels. To realistically model

label noise in multi-source data, we consider two common types of label noise, defined as follows:

Uniform noise [44]: This noise model assumes that the true label has a probability ∈ (0, 1) of being
uniformly flipped to any of the other classes with equal probability. Formally, for all j ̸= i,

p(yN
m = j | yL

m = i) =
ϵ

d− 1
. (2)

Pair noise [63]: This noise model assumes that the true label can only be flipped to a specific paired
class with a fixed probability ϵ, while remaining unchanged with probability 1− ϵ.

The optimization objective is to learn a generalizable global model through the federated learning
process that performs well under noisy conditions while maintaining strong robustness.

3 Methodology

3.1 Framework Overview

Inspired by our observations in Sec. 1 that FGL is sensitive to label noise, we propose HYPERION
to finely enhance the model’s ability to capture subtle structural differences among similar nodes
and thereby improve robustness to noise. HYPERION comprises three key components: I) on each
client, we extract local graph knowledge in a hyperspherical embedding space, where multiple
class-specific prototype clusters capture fine-grained structural patterns; II) we select nodes whose
embeddings remain consistently stable relative to their prototype clusters under perturbed views to
ensure reliability; III) after the aggregation, we employ Wasserstein-driven prototype distillation
and Mahalanobis-guided node purification at the server to refine and transfer complex structural
knowledge. The detailed description of HYPERION is illustrated in Figure 2.
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Figure 2: Architecture illustration of HYPERION. HYPERION comprises Topological Prototypes Hyperspherical
Learning (TP-HSL), Hyperspherical Consistency Noise Calibration (HS-CNC) and Geometric-Aware Hyper-
spherical Purification (GA-HSP). Best viewed in color and zoom in for details.

3.2 Topological Prototypes Hyperspherical Learning (TP-HSL)

Motivation. Existing methods suffer from noise amplification due to their reliance on coarse
Euclidean representations that fail to capture multiple structural variations among intra-class nodes.
We address this limitation by introducing prototype clusters on the hypersphere, which reveal and
mitigate noise propagation through fine-grained topological modeling.

Hyperspherical Modeling with Topological Prototypes. Each client projects its node features Xmi

and adjacency Ami into a unit hypersphere via an independent feature projector θpm:

z′mi
= θpm(Xmi ,Ami), zmi =

z′mi∥∥z′mi

∥∥
2

. (3)

The hyperspherical embedding representation zmi
can be modeled using the von Mises–Fisher

(vMF) distribution [35, 55]. The vmF distribution is well-suited for accurately measuring the
angular differences between embeddings, especially in high-dimensional spaces. In graph data,
node embeddings are typically high-dimensional, and the vmF distribution, through its concentration
parameter, effectively quantifies the similarity and dissimilarity between node embeddings [55, 21].
This geometric property makes the model more sensitive to meaningful semantic relationships while
being less susceptible to noise and feature magnitude variations. Compared to traditional Euclidean
spaces, the hyperspherical projection offers superior noise robustness by encoding semantic similarity
in angular relationships rather than absolute positions, which is particularly crucial for handling label
noise and structural variations in decentralized graph data. This approach allows the model to better
capture fine-grained topological differences while maintaining strong generalization across clients.

However, prototype-based modeling with a single center suffers from inherently limited expressive-
ness [32], which fails to capture all the underlying topologies adequately. To solve the issue, we
allocate a prototype cluster of shape [M,C,K], defined as P = {pc,k

m |c ∈ [C], k ∈ [K],m ∈ [M ]},
which partitions the entire hyperspherical space into multiple topology-aware subspaces, each
centered around a different prototype:

viewsp(zmi ;w
c
m,Pc

m;κ) =

K∑
k=1

wc,k
m ZD(κ) exp(κpc,k

m · zmi), (4)

where pc,k
m denotes the centroid prototype in the k-th topological subspace for class c on the m-th

client, ωc,k
m denotes the corresponding prototype weight, and κ is the concentration parameter.

This approach ensures that the node embeddings within each class are better aligned with the
corresponding prototypes, thereby improving both intra-class cohesion and inter-class distinction.
By doing so, we can finely capture the structural differences within each class. For the input vector
zi, we further compute its prediction probability as follows:

p(y = yi | zmi ; {w
c
m,Pc

m}Cc=1) =

∑K
k=1 w

yi,k
m exp(κpyi,k

m · zmi)∑C
c=1

∑K
k=1 w

c,k
m exp(κpc,k

m · zmi)
. (5)
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Topological Prototypes Regularization Learning. To strengthen inter-class separability and
intra-class cohesion, we introduce several regularization terms based on the aforementioned class
prediction probabilities. First, we maximize the minimal spherical angle among different class
prototypes to optimize the distribution of inter-class prototypes further. Specifically, we calculate
the cosine similarity matrices to measure the similarity between prototypes in Equation (6):

Sm[i, j] = exp

(
(pci,ki

m )⊤p
cj ,kj
m

∥pci,ki
m ∥2 · ∥p

cj ,kj
m ∥2

)
, ∀i ∈ [1, C], j ∈ [1,K], (6)

where Sm[i, j] quantifies the pairwise similarity between prototype i and prototype j within the
hyperspherical space. As shown in Equation (7), we apply binary masks Γpos

m and Γneg
m to further

categorize intra- and inter-class similarity:
Spos
m = Sm ⊙ Γpos

m , Sneg
m = Sm ⊙ Γneg

m , (7)

where Γpos
m activates entries corresponding to prototype pairs from the same class (excluding

self-pairs), and Γneg
m identifies prototypes pairs from different classes. The symbol ⊙ represents the

Hadamard product. Finally, we arrive at the following regularization term:

LSTR = − 1

N

N∑
i=1

log


N∑

j=1

S
pos
m [i, j]

N∑
j=1

S
pos
m [i, j] +

N∑
j=1

S
neg
m [i, j] + ε

 . (8)

Here, ε is a small smoothing factor used to prevent division by zero. This regularization term serves
two key purposes: on the one hand, it boosts inter-class separability, thereby sharpening the decision
boundaries; on the other hand, it ensures intra-class similarity, reinforcing the class semantic features.

To prevent global shifts in the semantic space formed by multiple prototypes, it is also essential to
regulate the spherical angular relationship between embeddings and their associated prototypes. To
this end, we encourage the minimization of the average spherical angle between node embeddings
and their corresponding prototype cluster centers. This reinforces semantic consistency within each
class. This regularization term can be modeled as:

LSEM = − 1

N

N∑
i=1

log

∑K
k=1 w

yi,k
m exp(κpyi,k

m · zmi)∑C
c=1

∑K
k=1 w

c,k
m exp(κpc,k

m · zmi)
. (9)

3.3 Hyperspherical Consistency Noise Calibration (HS-CNC)

Motivation. Due to the unique neighborhood diffusion mechanism in graph data, noisy labels tend to
propagate along the edges. Therefore, it is crucial to design a noise node filtering mechanism that
considers both structural and semantic aspects.

Hyperspherical Robust Node Selection. To effectively filter out potential noisy nodes whose
mapping trajectories exhibit significant fluctuations, we assess the stability of nodes across different
augmented graph views. Specifically, inspired by previous works [71, 27], we introduce data
augmentation techniques: edge dropping and feature masking. These techniques randomly drop
edges and certain feature values in the graph Gm(Xm,Am):

Ãm = Am ⊙ ΓA
m, X̃m = Xm ⊙ ΓX

m, (10)

where ΓA
m ∈ {0, 1}Nm∗Nm is the randomly generated edge mask matrix, and ΓX

m ∈ {0, 1}Nm∗d is
the randomly generated feature mask matrix.

By applying the two mask matrices, the augmented graph G̃m(X̃m, Ãm) contains perturbed structural
and semantic information. We assess the stability of each node by calculating the consistency of
its representation across different views. Nodes that exhibit high consistency across both views are
considered "clean nodes" because they maintain stable and consistent semantic representations under
different perturbation conditions. We train using the subset of stable nodes X ′

m, which fundamentally
ensures that learned representations are grounded in meaningful:

LCNC =
∑

vi
m∈Vm

1

(
fm(Gm, vim) = fm(G̃m, vim)

)
· L
(
fm(Gm, vim),Ym(vim)

)
, (11)
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where 1 is an indicator function that outputs 1 if the predicted results for node vim in both graphs
are consistent, and 0 otherwise. The loss function L computes the discrepancy between the node’s
predicted value and its true label and then calculates the gradient to update the parameters.

This design naturally connects to two theoretical perspectives. From the information bottleneck
viewpoint, random edge dropping acts as compression: by pruning away connections, the model
must retain relationships that consistently survive perturbations, which more likely reflect the task-
relevant core structure [5, 15]. From the generalization under noise viewpoint, these augmentations
inject structured noise that preserves global characteristics but prevents overfitting to fragile details.
Consequently, the model is nudged toward flatter minima in the loss landscape, leading to improved
robustness and generalization. Such principles align with findings in graph contrastive learning
[62, 53]. As an example, HYPERION algorithm is shown in Algorithm 1.

Algorithm 1 HYPERION Framework
Communication rounds T , participant scale M , m-th client private model θm, m-th client local data
Gm, m-th client prototype cluster Pm and loss weight α, β
The final global model θglobal
for t = 1, 2, · · · , T do

Client Side: for m = 1 to M in parallel do
LCNC ← HypersphericalNoiseCalibration(Gm,Pm)by Equation (11) // Select robust
nodes and train with them
Sm ← CalculateSimilarity(Pm)by Equation (6) // Calculate prototypes similarity metrix
LSTR ← StructLoss(Sm)by Equation (8) // Calculate loss with inter- and intra-class proto-
types
LSEM ← SemanticLoss(Pm)by Equation (9) // Calculate loss with embedding vector and
prototypes
θt+1
m ← LocalUpdating(θtm,LCNC + αLSTR + βLSEM ) // Backward propagation

Server Side:
θpos, θneg ← GMM(P) // Client classification by prototypes
Gnegm

′ = NeighborhoodSparsification(θnegm ,Gm),∀m by Equation (18) // pruning with Maha-
lanobis distance
θglobal,Pglobal ← Aggregate(θposm ,Ppos),∀m // Clean clients hyperspherical aggregation
P ′
global ← ServerDistillation(Pneg

m ,Pglobal),∀m by Equation (13) // Wassertein distance Server
Distillation
θm ← θglobal,∀m // Distribute parameters to clients

return θglobal

3.4 Geometric-Aware Hyperspherical Purification (GA-HSP)

Motivation. It is exceptionally challenging to entirely remove noisy nodes relying only on the
client-side. Due to the non-IID distribution, each client has a limited perspecitve, meaning that some
noisy nodes are detected as normal locally, but are considered anomalous when viewed globally. To
address this issue, we propose GA-HSP, which performs knowledge purification on the server side.

Prototype-based Client Classification. Existing research suggests that, in practical scenarios, the
data noise ratio at each client may vary to some extent [60]. To effectively identify noisy clients, we
design an unsupervised detection method that fully exploits the global distribution characteristics of
local prototypes on the client side, distinguishing between benign and malicious clients.

After training on each client, the local prototype clusters P are uploaded to the server, where the
server computes the Gaussian Mixture Model (GMM) of the prototype clusters P from all M clients.

p(P) =

2∑
l=1

πl · N (P | µl,Σl), (12)
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where πl,µl and Σl represent the weight, mean, and covariance matrix of the l-th Gaussian com-
ponent, respectively. The client set ϕ is partitioned into two subsets: clean clients ϕpos and ma-
licious clients ϕneg. To ensure the reliability of the global knowledge, we apply GMM to re-
aggregate the prototypes from the clean clients ϕpos. For each class, we aim to aggregate the
prototypes into K clusters and take the center of each cluster as the global prototype for that class:
Pglobal = {pc,k|c ∈ [C], k ∈ [K]}. Through this unsupervised approach, we can not only effectively
filter out malicious clients, but also integrate the local information from all clean clients, thereby
constructing a more precise global prototype cluster Pglobal.

Wasserstein-based Server Distillation. To further filter out erroneous information in the prototypes,
inspired by recent work on negative distillation [33], we adopt a "negative distillation" strategy:
each malicious client prototype cluster Pneg

m serves as the teacher, while the global prototype cluster
Pglobal functions as the student. The core of this distillation is to constrain the angular distance
between the teacher and the student in the hyperspherical space, thereby suppressing and correcting
anomalous representations in the global prototype cluster.

Traditional distillation methods fail to capture cross-dimensional similarities, leading to the underuti-
lization of dimensional information. To address this issue, we propose a Wasserstein distance-driven
prototype negative distillation method, which deploys the discrete Wasserstein distance to compre-
hensively measure the distributional differences between the teacher and student models. For the
m-th teacher prototype cluster Pneg

m , we define the discrete Wasserstein distance DWAS as follows:

DWAS(Pneg
m ,Pglobal) = min

γij

(∑
i,j

γijc
ij
m + λ

∑
i,j

γij log γij

)
, (13)

where γij represents the mass transferred from the teacher prototype cluster’s dimension qi to the
student prototype cluster’s dimension qj , subject to the constraints:∑

j

γij = Pneg
m,i ,

∑
i

γij = Pglobal,j , γij ≥ 0, (14)

where λ is a hyperparameter controlling the entropy regularization term. A key component of this
formulation is the cost matrix cm, which encapsulates the dissimilarity between prototype dimensions:

cijm = 1−
Pneg

m,i · Pglobal,j

∥Pneg
m,i ∥∥Pglobal,j∥

. (15)

The higher the similarity between prototype dimensions, the lower the transfer cost. Conversely, when
there is a significant difference in the direction of the dimensions, the cost increases considerably. By
minimizing DWAS , the probability mass is effectively reallocated between proximate dimensions
in the feature space, thereby naturally reinforcing the correlation of benign features between global
prototypes, while effectively diminishing the impact of anomalous features.

Mahalanobis-Based Neighborhood Sparsification. Building on the negative distillation from
malicious clients, we attempt to incorporate data pruning to purify them. Our out-of-distribution
(OOD) detection method is based on Mahalanobis distance [32, 42], which is equivalent to the
Euclidean distance scaled by the eigenvalues in the feature space. By introducing the inverse of
the covariance matrix, the Mahalanobis distance can automatically adjust the importance of each
dimension, avoiding certain dimensions dominating the distance calculation due to scale differences.
In geometry, Mahalanobis distance transforms the data space into a standardized space, making
distance calculations more equitable. We identify and remove noise nodes that deviate from the
normal distribution by calculating the Mahalanobis distance between node embeddings and the global
prototype distribution (as shown in Equation (18)). This method effectively filters out noise that is not
detected by clients due to local perspective limitations. Inspired by the work [1], we simultaneously
measure both inter-class and intra-class distances of prototype clusters to comprehensively assess the
outlier risk of nodes. The inter-class prototype distance is defined as:

dinter(zmi) =
1

|C| − 1

∑
c̸=yi

 1

mink

(
(zmi − pc,km )⊤Λ−1

c (zmi − pc,km )
)
+ ε

 , (16)
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Table 1: Comparison with the state-of-the-art methods on five selected real-world datasets.
For each dataset, we report accuracy (%) and F1-macro (%) (with red/green markers indicating
regression/improvement over FedAvg). The noise type is set to 50%-uniform (upper) and 50%-pair
(lower). The best and second-best results are highlighted with bold and underline, respectively.
Additional experimental results on more settings can be found in Appendix D.

Category Methods Cora CiteSeer PubMed Physics Amazon_ratings

Metrics ACC F1-macro ACC F1-macro ACC F1-macro ACC F1-macro ACC F1-macro

FL

FedAvg [ASTAT17] 32.91↑0.00 30.47↑0.00 28.15↑0.00 26.98↑0.00 59.39↑0.00 57.19↑0.00 70.69↑0.00 39.21↑0.00 33.65↑0.00 25.07↑0.00

FedProx [MLSys20] 34.64↑01.73 33.12↑02.65 26.67↓01.48 25.84↓01.14 61.31↑01.92 58.77↑01.58 72.53↑01.84 57.80↑18.59 35.86↑02.21 24.94↓00.13

FedNova [NeurIPS20] 37.48↑04.57 35.33↑04.86 31.56↑03.41 30.46↑03.48 63.49↑04.10 61.61↑04.42 57.37↓13.32 26.80↓12.41 36.61↑02.96 24.18↓00.89

MOON [CVPR21] 33.64↑00.73 31.86↑01.39 27.26↓00.89 26.78↓00.20 70.14↑10.75 58.89↑01.70 59.06↓11.63 13.46↓25.75 38.49↑04.84 20.67↓04.40

FGL

FGSSL [IJCAI23] 36.65↑03.74 34.43↑03.96 32.74↑04.59 32.21↑05.23 65.92↑06.53 71.59↑14.40 50.76↓19.93 13.78↓25.43 38.43↑04.78 20.49↓04.58

FedGTA [VLDB24] 31.54↓01.37 29.84↓00.63 28.44↑00.29 27.40↑00.42 57.41↓01.98 56.63↓00.56 60.48↓10.21 25.93↓13.28 33.71↑00.06 24.46↓00.61

FedTAD [IJCAI24] 31.26↓01.65 29.53↓00.94 28.59↑00.44 26.56↓00.42 58.81↓00.58 56.56↓00.63 57.12↓13.57 28.24↓10.97 32.12↓01.53 24.60↓00.47

Robust FL

FedNoRo [IJCAI23] 32.27↓00.64 30.31↓00.16 28.44↓00.29 27.09↑00.11 60.25↓00.86 56.85↓00.34 70.74↑00.05 39.59↑00.38 33.78↑00.13 24.16↓00.91

FedNed [AAAI24] 32.82↓00.09 29.83↓00.64 30.52↑02.37 28.87↑01.89 57.41↓01.98 55.78↓01.41 64.48↓06.21 32.09↓07.12 34.00↑00.35 25.23↑00.16

FedCorr [CVPR22] 34.37↑01.46 28.44↓02.03 22.20↓05.95 24.08↓02.90 57.36↓02.03 56.12↓00.69 60.73↓09.96 25.12↓14.09 35.22↑01.57 24.02↓01.05

Robust GL

CRGNN [NN24] 44.61↑11.70 39.41↑08.94 39.55↑11.40 36.21↑09.23 73.66↑14.27 72.33↑15.14 55.45↓15.24 22.73↓16.48 36.41↑02.76 10.68↓14.39

RTGNN [WWW23] 47.81↑14.90 38.72↑08.25 41.93↑13.78 36.33↑09.35 67.33↑07.94 44.09↓13.10 66.29↓04.40 29.05↓10.16 36.65↑03.00 21.52↓03.55

CLNode [WSDM23] 35.10↑02.19 33.13↑02.66 30.37↑02.22 30.40↑03.42 54.73↓04.66 52.14↓05.05 66.29↓04.40 29.61↓09.60 31.35↓02.30 24.43↓00.64

Robust FGL HYPERION 53.56↑20.65 51.15↑20.68 47.11↑18.96 40.25↑13.27 74.85↑15.46 73.74↑16.55 75.21↑04.52 45.71↑06.50 38.96↑05.31 22.77↓02.30

Category Methods Cora CiteSeer PubMed Physics Amazon_ratings

Metrics ACC F1-macro ACC F1-macro ACC F1-macro ACC F1-macro ACC F1-macro

FL

FedAvg [ASTAT17] 33.27↑00.00 31.97↑00.00 30.67↑00.00 30.23↑00.00 49.75↑00.00 49.39↑00.00 49.93↑00.00 33.81↑00.00 34.94↑00.00 21.69↑00.00

FedProx [MLSys20] 37.02↑03.75 34.76↑02.79 33.04↑02.37 32.42↑02.19 50.10↑00.35 48.76↓00.63 53.54↑03.61 41.90↑08.09 31.76↓03.18 20.99↓00.70

FedNova [NeurIPS20] 36.11↑02.84 34.30↑02.33 32.44↑01.77 32.21↑01.98 53.16↑03.41 51.93↑02.54 46.76↓03.17 31.77↓02.04 35.57↑00.63 21.20↓00.49

MOON [CVPR21] 32.63↓00.64 31.47↓00.50 29.48↓01.19 29.32↑00.91 51.90↑02.15 50.60↓01.21 50.80↑00.87 35.27↑01.46 35.37↑00.43 22.17↑00.48

FGL

FGSSL [IJCAI23] 36.29↑03.02 34.30↑02.33 32.59↑01.92 32.30↑02.07 56.65↑06.90 55.75↑06.36 38.35↓11.58 19.18↓14.63 37.57↑02.63 19.62↓02.07

FedGTA [VLDB24] 32.54↓00.73 30.82↓01.15 28.59↓02.08 28.82↓01.41 50.00↑00.25 50.82↑01.43 49.15↓00.78 31.57↓02.24 34.73↓00.21 21.24↓00.45

FedTAD [IJCAI24] 31.44↓01.83 30.36↓01.61 31.70↑01.03 29.41↓00.82 51.80↑02.05 51.43↑02.04 44.75↓05.18 33.44↓00.37 35.73↑00.79 21.08↓00.61

Robust FL

FedNoRo [IJCAI23] 33.18↓00.09 32.01↑00.04 30.81↑00.14 30.88↑00.65 49.09↓00.66 49.54↑00.15 49.93↑00.00 33.81↑00.00 35.57↑00.63 22.41↑00.72

FedNed [AAAI24] 35.74↑02.47 33.20↑01.23 32.00↑01.33 31.87↑01.64 46.38↓03.37 44.94↓04.45 53.38↑03.45 37.86↑04.05 32.82↓02.12 21.37↓00.32

FedCorr [CVPR22] 33.91↑00.64 28.59↑03.38 28.00↓02.67 29.52↑00.71 51.52↑01.77 20.39↓29.00 50.73↑00.80 13.46↓20.35 37.96↑03.02 17.27↓04.42

Robust GL

CRGNN [NN24] 37.29↑04.02 35.87↑03.90 37.48↑06.81 34.87↑04.64 63.59↑13.84 58.58↑09.19 47.08↑02.85 41.74↑07.93 35.35↑00.41 21.40↓00.29

RTGNN [WWW23] 32.91↓00.36 28.21↓03.76 36.44↑05.77 32.83↑02.60 46.89↓02.86 47.82↓01.57 29.36↓20.57 14.64↓19.17 35.88↑00.94 21.34↓00.35

CLNode [WSDM23] 35.47↑02.20 33.41↑01.44 31.41↑00.74 32.10↑01.87 49.60↓00.15 48.98↓00.41 52.72↑02.79 37.96↑04.15 34.12↓00.82 21.96↑00.27

Robust FGL HYPERION 41.50↑08.23 36.16↑04.19 43.11↑12.44 41.11↑10.88 74.85↑25.10 74.04↑24.65 70.10↑20.17 49.85↑16.04 39.65↑04.71 21.72↑00.03

where Λ−1
c represents the inverse of the covariance matrix of all prototypes in class c, and ε is used

to avoid division by zero errors. The intra-class prototype distance is calculated as:

dintra(zmi) =
1

|Pyi | − 1

|Pyi
|−1∑

k=1

[
1

(zmi − pyi,km )⊤Λ−1
yi (zmi − pyi,km ) + ε

]
. (17)

Finally, we calculate the comprehensive outlier score and rank all nodes based on their outlier risks,
pruning the top η% of the high-risk samples in each training round:

Score(zmi) =
dinter(zmi)

dinter(zmi) + dintra(zmi)
−→ Vt+1

m =
{
zmi ∈ Vt

m | rank(zmi) > ⌊η ∗ |Vt
m|⌋
}
, (18)

where Vt
m represents the sample nodes in the t round, and η denotes the pruning ratio. Further

discussion and limitations can be found in Appendix E and Appendix F.

4 Experiment

In this section, we comprehensively evaluate HYPERION through four key axes: Q1 (Superiority), Q2
(Resilience), Q3 (Effectiveness), and Q4 (Sensitivity).

4.1 Experimental Setup

Datasets. To effectively evaluate the performance of our approach, we utilize five benchmark
graph datasets of various scales and distributions with different characteristics, including Cora [36],
CiteSeer [11], PubMed [3], Physics[43], and Amazon_ratings. These datasets represent a wide range
of domains and are commonly used in graph-based machine learning tasks. Detailed descriptions
and dataset splits for these datasets can be found in Appendix C.1. Furthermore, the implementation
details and parameter settings can be found in Appendix C.3.
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Figure 3: We report the performance of different methods at various noise ratios, with datasets including
Cora, Citeseer, and Pubmed, and noise types of uniform and pair. The red color represents the performance of
HYPERION. (First): 20% mild noise. (Second): 70% severe noise. (Third): We compare HYPERION with several
FL and FGL methods on the Cora dataset under uniform noise, as the number of clients ranges from 5 to 20.

Counterparts. We compare HYPERION against several traditional FL methods: (1) FedAvg [AS-
TAT17] [37], (2) FedProx [MLSys20] [25], (3) FedNova [NeurIPS20] [54], (4) MOON [CVPR
21] [24]; four popular FGL approaches: (5) FGSSL [IJCAI23] [16]; (6) FedTAD [IJCAI24] [70],
(7) FedGTA [VLDB24] [28]; three Robust FL methods: (8) FedNoRo [IJCAI23] [58], (9) FedNed
[AAAI24] [33], (10) FedCorr [CVPR22] [60];three Robust GraghLearning methods: (11) CRGNN
[NN24] [27], (12) RTGNN [WWW23] [40], (13) CLNode [WSDM23] [56]. Detailed descriptions
of all the baselines can be found in Appendix C.2.

4.2 Superiority

To answer Q1, we conducted systematic evaluations in a variety of noise environments, including two
typical noise types (uniform noise and pair noise) and three noise intensity levels (0.2 for low noise
ratio, 0.5 for medium noise ratio, and 0.7 for high noise ratio). The perfmance results are presented
in Tab. 1, and Figure 3. Several observations from these experiments are summarized (Obs.):

Obs. ❶ Existing approaches exhibit suboptimal performance in FGL scenarios with noisy
labels. For instance, in the uniform noise mode with a 50% noise ratio, most previous methods
achieve accuracy rates below 40% on the Cora dataset. Notably, under a 70% noise ratio, the
performance of most of these methods deteriorates significantly, worsening with average accuracy
rates consistently dropping below 25%. Moreover, the existing robust methods do not demonstrate
substantial improvements in noisy FGL scenarios, with the performance of most approaches being
comparable to that of traditional FL and FGL methods.

Obs. ❷ HYPERION demonstrates remarkable robustness across various noise scales. Under
moderate noise conditions (0.5), HYPERION shows a clear and significant advantage. As shown in
Tab. 1 (upper), HYPERION consistently outperforms both FL and FGL baselines across various datasets
and noise types. In the Citeseer-uniform setting, it achieves an accuracy of 47.11%, surpassing the
best baseline, RTGNN (41.93%), by 5.18 percentage points. Additionally, as shown in Figure 3
(Second), HYPERION consistently outperforms both FL and FGL baselines across various noise scales.
It is evident that, under a noise scale of 0.2, HYPERION achieves varying degrees of performance
improvement over all baselines. In high-noise environments, HYPERION also demonstrates an average
performance gain of 8.1% to 10.1% compared to the baselines, including RTGNN.

4.3 Resilience

To address Q2, we evaluate the performance of each method on the Cora dataset under the 0.5 uniform
noise setting, across different client scales. Figure 3 (Third) illustrates that HYPERION consistently
achieves robust performance gains across varying client numbers (5-20), outperforming FedAvg by at
least 13.69% while maintaining a minimum 6% advantage over the top-performing baseline method.
This demonstrates that HYPERION effectively identifies noise and maintains stable performance, even
under challenging conditions with varying client populations.
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4.4 Effectiveness

To address Q3, we conduct an ablation study on the key components of our method, both at the
client-side and server-side, under a noise scale of 0.5. Tab. 2 reports the performance of HYPERION
and its variants by removing specific components from the TP-HSL and HS-CNC modules-namely,
the structural loss, robust node selection, and semantic loss. Tab. 3 presents the results for HYPERION
and its variants derived from the GA-HSP module, where we ablate server-side distillation (SD),
node pruning (NP), and client classification with server distillation (CC+SD). Individually, both
TP-HSL and HS-CNC contribute significantly to improving model accuracy. Moreover, GA-HSP
demonstrates substantial effectiveness in integrating global reliable information, thereby reinforcing
the robustness of our design in mitigating label noise in FGL settings.

Table 2: Ablation study of TP-HSL and HS-CNC
on the client-side of HYPERION. All results are re-
ported under 0.5 noise ratio and 10-client scale.

Cora Citeseer
Client

uniform pair uniform pair

w/o LSTR 50.27 36.93 42.37 42.07
w/o LCNC 50.82 35.28 43.56 38.37
w/o LSEM 50.09 36.20 40.29 41.04
HYPERION 56.31 41.50 47.11 43.11

Table 3: Ablation study of GA-HSP on the server-
side of HYPERION. w/o CC+SD means SD depends
on CC, so without CC, SD is also removed.

Cora Citeseer
Server

uniform pair uniform pair

w/o SD 49.18 37.11 39.85 38.67
w/o NP 37.29 34.83 30.07 31.26

w/o CC+SD 44.66 36.40 36.07 35.70
HYPERION 56.31 41.50 47.11 43.11

4.5 Sensitivity

To address Q4, we perform sensitivity analyses on hyperparameters of HYPERION. Specifically, we
examine the model’s performance under varying values of λ, η, α, and β, as illustrated in Figure 4,
where these hyperparameters are fixed at different scales and values. We systematically vary the
hyperparameters λ and η within the ranges [0.01, 0.05] and [0.90, 0.98], respectively, to evaluate
the stability of GA-HSP under different settings. For TP-HSL, we vary α and β with in the ranges
[0.4, 0.6] and [0.6, 0.8], using a step size of 0.05. The results indicate that the choice of λ and η has a
minimal impact on the performance of HYPERION. However, when α is within the range of [0.55, 0.6]
and β is within the range of [0.7, 0.75], HYPERION achieves the best performance across all datasets.

(a) GA-HSP Parameter λ (b) GA-HSP Parameter η (c) TP-HSL Parameter α (d) TP-HSL Parameter β

Figure 4: Analysis on hyper-parameter in HYPERION. Node classification results under varying values of λ,
η, α, and β. The colors green, blue, and yellow correspond to performance on the Cora, Amazon_ratings, and
Citeseer datasets, respectively. All experiments are conducted using 50%-uniform noise.

Figure 5: Performance across varying K values
under different noise ratios.

20% 50% 70%K
ACC F1-M ACC F1-M ACC F1-M

1 59.41 52.13 38.81 36.78 20.48 20.53
2 59.56 52.24 39.70 37.92 21.33 21.39
3 61.93 56.58 43.11 41.11 24.59 24.48
4 61.04 55.96 38.07 36.02 24.65 25.02

We investigate the impact of the hyperparam-
eter K on the performance and efficiency
of HYPERION. Specifically, we vary K ∈
{1, 2, 3, 4} in the Citeseer-pair setting and ob-
serve the corresponding changes in performance.
As shown in Figure 5, setting K = 1 results in
under-learning of hypersphere, leading to consis-
tently lower performance. In contrast, increas-
ing K to 3 or 4 yields marginal performance im-
provements. In all experiments, we set K = 3.

10



5 Conclusion

In this work, we propose an innovative exploration of robust FGL in noisy environment. To achieve
this goal, we project nodes onto hyperspherical embedding space, thereby introducing a novel
framework, HYPERION. For robust representation, TP-HSL is employed to project nodes onto hyper-
spherical space, effectively addressing the coupling problem associated with complex topologies
and malicious noise. Leveraging hyperspherical representations, we also introduce HS-CNC, which
filters out potential noisy nodes by considering both structural and semantic factors. Specifically, for
effective global collaboration, we further design GA-HSP to facilitate knowledge purification. By
integrating these three strategies, HYPERION outperforms various state-of-the-art methods in node
classification tasks across different noisy scenarios.
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A Notations

We present a comprehensive review of the commonly used notations and their definitions in Tab. 4.

Notation Definition
Gm Graph data for the m-th client .
Nm The number of nodes for the m-th client.
Vm The node set of Gm.
Xm The feature matrix of Gm.
Am The adjacency matrix of Gm.
Ym The one-hot label matrix of Gm.
Xmi The feature of node i in Gm.
Ami The edges of node i in Gm.
M The number of clients.
d The dimension of the node feature.
C The number of node classes.
K The number of prototypes in each class per client.
VL
m The labeled node set of Gm.
VU
m The unlabeled node set of Gm.
NL

m The number of labeled nodes for the m-th client.
NU

m The number of unlabeled nodes for the m-th client.
fθm The classifier of the m-th client.
Ŷm The prediction matrix of Gm.
ŶN
m The noisy label matrix of Gm.
L The loss function.
ϵ The fixed probability that the true label is flipped to a specific paired class.
zmi The hyperspherical embedding representation of node i in Gm.
pc,k
m The k-th prototype of the c-th class of the m-th client.

ωc,k
m The k-th prototype weight of the c-th class of the m-th client.

κ The concentration parameter.
Sm The similarity metrix between prototypes in the m-th client.
Spos
m The similarity matrix between intra-class prototypes in the m-th client

Sneg
m The similarity matrix between inter-class prototypes in the m-th client

Λc The covariance matrix of all prototypes in class c.
η The pruning ratio of detected nodes.
ϕpos The clean clients set.
ϕneg The malicious clients set.
α The struct loss weight.
β The semantic loss weight.
λ The hyperparameter controlling the entropy regularization term.

Table 4: Notation and Definitions.

B Related work.

Federated Graph Learning(FGL). FGL enhances Federated Learning (FL) by extending it to
graph-structured data, facilitating decentralized training while safeguarding raw graph data, thereby
bolstering privacy protection[14, 19, 30, 4, 53, 52]. Current research primarily focuses on addressing
the non-IID data problem in FGL. For instance, FedGCN [61] employs an attention mechanism to
dynamically reweight local model parameters, mitigating the impact of data distribution heterogeneity.
FGSSL [16] further decomposes the Non-IID issue into node-level semantic divergence and graph-
level structural discrepancy, calibrating them separately. However, these approaches overlook a
critical practical challenge: label noise caused by annotator negligence or bias may extensively exist
in local data, significantly degrading the global model’s generalization performance. To address this
limitation, we propose a robust FGL framework grounded in hypersphere representation learning,
which enhances the model’s capacity to capture subtle structural differences in graph data, thereby
maintaining stable classification performance under label noise.
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Robust Federated Learning and Graph Learning. The existing solutions to the noisy label
problem in FL can be broadly classified into two categories: label correction and self-supervised
learning. The first category involves label correction mechanisms, which reassign noisy labels based
on representations extracted from the training data. These include methods like nearest neighbors
in the embedding space [48] and predictions from the global model [60]. The second category
leverages self-supervised learning to obtain more robust representations, as seen in methods such as
RoFL [10] and FedNed [33]. For instance, FedNed [33] reduces the risk of propagating incorrect
information by using noisy client negative distillation, while FedDPCont [8] promotes robust learning
by randomly selecting contrastive labels and sharing them with the server. Analogous challenges are
also prevalent in the domain of graphs, where noisy labels and structural complexities similarly hinder
model performance. In recent years, a growing body of research has focused on developing GNN
methods tailored for robust graph learning under label noise. Some methods have achieved significant
success by incorporating techniques such as loss modulation [39, 66, 29, 9], robust training strategies
[56], graph structure augmentation [6, 40, 67], and contrastive learning [64, 27]. However, all these
methods are not conducive to a more fine-grained structural learning, leading to the mixing of valid
signals and noise components in the feature space, and our method is the first attempt at leveraging
hypersphere learning for robust federated graph learning.

C Experimental Details.

C.1 Dataset Details

To assess the effectiveness of HYPERION, we conduct experiments on eight real-world graph datasets:
Cora, CiteSeer, PubMed, Physics, and Amazon-ratings. Each dataset is split into training, validation,
and test sets in a fixed 20%/40%/40% ratio. The key statistics of these datasets are summarized in
Tab. 5. A detailed description is provided below:

• Cora, CiteSeer, and PubMed. These three citation network datasets are standard benchmarks in
graph-based machine learning, especially for tasks like node classification and link prediction. In
these datasets, nodes correspond to academic papers, while edges represent citation links. Each
node is assigned a class label, and its feature vector is constructed from textual information such as
words in the title or abstract. These datasets exhibit sparsity and high dimensionality, making them
well-suited for evaluating the effectiveness and scalability of graph neural networks (GNNs).

• Amazon-ratings. This dataset is derived from the Amazon product co-purchasing network metadata
in the SNAP repository. Nodes represent products (books, music CDs, DVDs, VHS tapes), and
edges connect products that are frequently purchased together. The task is to predict the average
rating given to a product by reviewers. The authors categorize the possible rating values into five
classes. For node features, they use the average of fastText embeddings of the words in the product
descriptions. To reduce the size of the graph, only the largest connected component of the 5-core
subgraph is considered.

• Coauthor-Physics. Coauthor-Physics is an academic network containing co-authorship relation-
ships based on the Microsoft Academic Graph. Nodes in the graph represent authors and edges
represent co-authorship relationships. In the dataset, authors are categorized into five classes
based on their research areas, and the nodes are characterized as bag-of-words representations of
keywords of papers.

Dataset #Nodes #Edges #Classes #Features
Cora 2,708 5,278 7 1,433

Citeseer 3,327 4,552 6 3,703
Pubmed 19,717 44,324 3 500

Amazon-ratings 24,492 97,050 5 300
Coauthor-Physics 34,493 530,417 5 8,415

Table 5: Statistics of datasets used in experiments.

C.2 Counterpart Details

This section provides a comprehensive overview of the baseline approaches employed in our study.
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• FedAvg [ASTAT17]. A foundational algorithm in Federated Learning, FedAvg operates by allowing
clients to independently train models on their local datasets and subsequently transmit their model
updates to a central server. The server performs a weighted aggregation of these updates to
refine the global model, which is then redistributed to the clients for further local training. By
transmitting only model parameters instead of raw data, FedAvg reduces communication costs and
enhances privacy. However, it struggles with performance degradation in scenarios where client
data distributions are highly non-IID [26, 38].

• FedProx [MLSys20]. As an enhancement of FedAvg, FedProx is specifically designed to address
the challenges posed by statistical heterogeneity in federated learning. It introduces an additional
regularization term that constrains local updates, preventing excessive divergence from the global
model. This proximal term mitigates the impact of local data distribution shifts, leading to more
stable convergence. By ensuring consistency in updates across clients, FedProx demonstrates
improved robustness in non-IID settings.

• FedNova [NeurIPS20]. FedNova refines the FedAvg framework by introducing normalization to
local updates before aggregation. Unlike standard averaging methods, FedNova ensures that each
client’s contribution to the global model is proportional to the amount of data it possesses. This
approach addresses the issue of unequal client influence, leading to more balanced and efficient
convergence. FedNova is particularly beneficial in federated environments where data distributions
are skewed across clients.

• FGSSL [IJCAI23]. FGSSL addresses local client distortion caused by both node-level semantics
and graph-level structures. It improves discrimination by contrasting nodes from different classes,
aligning local nodes with their global counterparts of the same class while pushing them away
from different classes. To handle structural information, it transforms adjacency relationships
into similarity distributions and distills relational knowledge from the global model into local
models. This approach preserves both structural integrity and discriminability, achieving superior
performance on multiple graph datasets.

• FedTAD [IJCAI24]. FedTAD addresses subgraph heterogeneity in FL by decomposing local
graph variations into label and structural differences, preventing inconsistent model aggregation. It
enhances knowledge transfer via topology-aware distillation, boosting FL reliability and efficiency.

• FedGTA [VLDB24]. FedGTA is tailored for large-scale graph federated learning, tackling issues of
slow convergence and suboptimal scalability. Unlike prior methods that focus on either optimization
strategies or complex local models, FedGTA integrates topology-aware local smoothing with mixed
neighbor feature aggregation to improve learning efficiency [69]. By leveraging graph structures in
aggregation, it enhances scalability and performance in federated graph learning.

• MOON [CVPR21]. MOON adopts a model-contrastive approach to address data heterogeneity
in federated learning. The framework utilizes similarities between model representations to
correct local training through model-level contrastive learning, providing an effective solution for
collaborative training with deep learning models on image datasets while preserving data privacy.

• FedNoRo [IJCAI23]. FedNoRo adopts a two-stage framework to address class-imbalanced global
data with heterogeneous label noise in federated learning. The method first identifies noisy clients
through per-class loss indicators and Gaussian Mixture Modeling, then performs noise-robust
federated updates via joint knowledge distillation and distance-aware aggregation, specifically
designed for realistic medical scenarios with data imbalance and complex noise patterns.

• FedNed [AAAI24]. FedNed adopts a negative distillation framework to effectively leverage
extremely noisy clients in federated learning. The method first identifies noisy clients, then inno-
vatively utilizes them as ’bad teachers’ through a dual-training approach: one model trained on
original noisy labels for reverse knowledge distillation, and another on global model-generated
pseudo-labels for conditional participation in aggregation. This approach transforms noisy clients
from detrimental elements into valuable contributors while progressively enhancing their trustwor-
thiness through pseudo-label refinement

• FedCorr [CVPR22]. FedCorr adopts a multi-stage framework to address heterogeneous label
noise in federated learning while preserving data privacy. The method first dynamically identifies
noisy clients through model prediction subspace analysis and per-sample loss evaluation, then
employs an adaptive local proximal regularization to handle data heterogeneity. After fine-tuning
on clean clients and correcting labels for noisy ones, FedCorr performs final training across all
clients to fully utilize available data, effectively handling varying noise levels without requiring
prior assumptions about client noise models.

• CRGNN [NN24]. CRGNN addresses label noise in GNNs by combining neighborhood-based
label correction and contrastive learning. It utilizes message passing neural networks to update
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Category Methods 20% Label Noise 70% Label Noise

Cora CiteSeer PubMed Cora CiteSeer PubMed

Uniform Pair Uniform Pair Uniform Pair Uniform Pair Uniform Pair Uniform Pair

FL

FedAvg [ASTAT17] 48.00↑00.00 48.41↑00.00 48.57↑00.00 45.00↑00.00 80.18↑00.00 77.08↑00.00 18.34↑00.00 21.31↑00.00 23.24↑00.00 23.53↑00.00 24.56↑00.00 19.29↑00.00

FedNova [NeurIPS20] 53.50↑05.50 53.47↑05.06 44.15↓04.42 49.05↑04.05 81.71↑01.53 79.86↑02.78 21.89↑03.55 18.12↓03.19 23.45↑00.21 22.03↓01.50 24.24↓00.32 17.43↓01.86

FedProx [MLSys20] 52.25↑04.25 53.76↑05.35 39.64↓08.93 46.20↑01.20 79.61↓00.57 78.00↑00.92 21.05↑02.71 23.26↑01.95 24.04↑00.80 25.28↑01.75 24.11↓00.45 18.81↓00.48

MOON [CVPR21] 48.51↑00.51 49.29↑00.88 38.75↓09.82 45.12↑00.12 79.33↓00.85 78.34↑01.26 18.28↓00.06 20.62↓00.69 22.43↓00.81 21.81↓01.72 21.64↓02.92 19.05↓00.24

FGL

FedGTA [VLDB24] 49.00↑01.00 48.60↓00.19 37.32↓11.25 45.16↑00.16 79.69↓00.49 76.59↓00.49 18.93↑00.59 21.75↑00.44 22.18↓01.06 23.20↓00.33 26.43↑01.87 19.46↑00.17

FedTAD [IJCAI24] 47.72↓00.28 47.61↓00.80 38.02↓10.55 44.36↓00.64 79.97↓00.21 78.04↑00.96 20.29↑01.95 21.14↓00.17 21.10↓02.14 22.30↓01.23 19.07↓05.49 19.40↑00.11

FGSSL [IJCAI23] 54.70↑06.70 53.33↑04.92 45.71↓2.86 48.54↑03.54 84.81↑04.63 83.35↑06.27 21.75↑03.41 20.04↓01.27 22.25↓00.99 20.42↓03.11 11.51↓13.05 13.60↓05.69

Robust FL

FedNoRo [IJCAI23] 47.86↓00.14 48.37↓00.04 38.79↓09.78 44.88↑00.12 80.12↓00.06 77.44↑00.36 18.34↑00.00 21.30↓00.01 22.77↓00.47 23.35↓00.18 25.01↑00.45 18.87↓00.42

FedNed [AAAI24] 51.63↑03.63 48.30↓00.11 43.19↓05.38 48.99↑03.99 78.86↓01.32 79.60↑02.52 19.05↑00.71 21.26↓00.05 24.48↑01.24 23.71↓00.18 25.06↑00.50 18.44↓00.85

FedCorr [CVPR22] 35.94↓12.06 38.78↓09.63 47.55↓01.02 37.32↓07.68 70.45↓09.73 71.80↓05.28 19.70↑01.36 18.70↓02.61 20.21↓03.03 24.51↑00.98 11.27↓13.29 21.59↑02.30

Robust GL

CRGNN [NN24] 58.15↑10.15 61.98↑13.57 48.30↓00.27 53.42↑08.42 84.41↑04.23 82.81↑05.73 24.81↑06.47 22.99↑01.68 26.11↑02.87 22.95↓00.58 11.27↓13.29 12.07↓07.22

RTGNN [WWW23] 50.14↑02.14 43.06↓05.35 53.48↑04.91 53.53↑08.53 83.35↑03.17 82.59↑05.51 18.99↑00.65 14.68↓06.63 19.30↓03.94 14.50↓09.03 11.82↓12.74 26.15↑06.86

CLNode [WSDM23] 49.62↑01.62 49.95↑01.54 43.64↓04.93 48.51↑03.51 78.33↓01.85 78.58↑01.50 20.47↑02.13 19.78↓01.53 22.22↓01.02 22.91↓00.62 25.83↑01.27 17.85↓01.44

Robust FGL HYPERION 62.18↑14.18 64.67↑16.26 53.10↑04.53 54.47↑09.47 85.35↑05.17 85.47↑08.39 29.73↑11.39 23.05↑01.74 27.19↑03.95 24.59↑01.06 30.67↑06.11 31.12↑11.83

Table 6: Comparison with the state-of-the-art methods on three selected real-world datasets.
The noise is set to 20% and 70%, and the number of clients M is set to 10 throughout all experiments.
The best and second-best results are highlighted with bold and underline, respectively.

node representations, integrating graph contrastive learning for consistent representations across
augmented graph views. Finally, CGNN employs an MLP for prediction distributions and iteratively
corrects noisy labels by comparing them with their neighbors and choosing the most labels.

• RTGNN [WWW23]. RTGNN proposes a noise governance framework that combines self-
reinforcement supervision for noisy label correction and consistency regularization to prevent
overfitting. The method categorizes labels into clean and noisy types, then applies adaptive supervi-
sion by rectifying inaccurate labels and generating pseudo-labels for unlabeled nodes, enabling
effective learning from clean labels while mitigating noise impact.

• CLNode [WSDM24]. CLNode adopt a curriculum learning strategy to mitigate the impact of label
noise. To be specific, it first utilize a multi-perspective difficulty measurer to accurately measure
the quality of training nodes. Then employ a training scheduler that selects appropriate training
nodes to train GNN in each epoch based on the measured qualities. The authors demonstrated this
method enhances the robustness of backbone GNN to label noise.

C.3 Implementation Details.

The experiments are conducted using NVIDIA GeForce RTX 4090 GPUs as the hardware platform,
coupled with Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz. The deep learning framework
employed was Pytorch, version 2.5.1, alongside CUDA version 12.2. Our network features a four-
layer GCN backbone with uniform 384-dimensional hidden layers throughout the first three layers,
each employing symmetric normalization (normalize=True) and ReLU activation, followed by 0.2
dropout for regularization. The final GCN layer produces compact 32-dimensional graph embeddings
without activation. These embeddings are processed through a two-layer MLP head with ReLU
activation in the hidden layer. The architecture optionally incorporates prototype learning with
configurable parameters: each class maintains multiple 32-dimensional prototype vectors, and the
prototype contrastive loss operates with a temperature parameter τ = 0.07 to control the similarity
distribution sharpness. All GCN layers implement symmetric normalization (normalize=True), and
consistent dropout (p = 0.2) is applied after each intermediate layer to prevent overfitting. TP-HSL
parameter α is set in the range {0.40, 0.50, 0.60}, β Is set in the range {0.65, 0.70, 0.75}.As for
GA-SHP parameter λ and η, we set λ in the range {0.03, 0.04}, η in the range {0.92, 0.94, 0.96}.
The number of communication rounds is 100 for all methods. The number of clients M is set to 10
throughout all experiments, except for Figure 3 (Third).

D Additional Experimental Results.

We place additional F1-macro score results under 0.2 and 0.7 noisy label ratios in Tab. 6.

E Broader Impact.

Our work is an important step in overcoming the widespread and imperceptible labeling noise in
FGL. This approach can effectively enhance the topological attention of the model to discriminate the
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noise. This could lead to more robust and trustworthy graph learning systems in real-world federated
environments, where data quality and consistency are often difficult to guarantee.

F Discussion on Limitations.

Although HYPERION has demonstrated significant success in efficiently capturing subtle topological
differences between nodes of the same class and mitigating malicious noise through a hyperspherical
representation, it still faces some limitations. Specifically, our current formulation primarily addresses
class label noise, while other noise types (e.g., feature noise or adversarial edge perturbations) may
require additional mechanisms beyond the proposed purification framework.
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