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ABSTRACT

Graph neural networks (GNNs) are powerful tools for relational data, but their ap-
plication is often limited by data silos and privacy concerns, as real-world graphs
are frequently distributed across multiple clients. While federated learning (FL)
offers a privacy-preserving training paradigm, existing federated GNN approaches
suffer from a critical flaw: they either ignore the crucial links between clients,
sacrificing accuracy, or require impractically high communication overhead. We
introduce CE-FedGNN, a communication-efficient federated GNN framework for
such coupled graphs. Instead of sharing raw data or per-iteration embeddings,
CE-FedGNN infrequently transmits only aggregated, high-level embeddings, pre-
serving critical structural context while minimizing privacy leakage and commu-
nication costs. Despite the challenges of optimization under multi-layer compo-
sition and coupled data, we establish a convergence rate of O(1/

√
T ) to a sta-

tionary point while the communication complexity is O(T 3/4). We further derive
bounds for injecting Gaussian noise that provide formal differential privacy. Our
experiments on a synthetic interbank anti-money laundering task show that the ef-
fectiveness of CE-FedGNN, which can be preserved even with injected Gaussian
noise for differential privacy.

1 INTRODUCTION

Graph neural networks (GNNs) have become a leading paradigm for learning from relational data,
achieving state-of-the-art results in areas such as social network analysis, traffic forecasting, and
financial fraud detection (Shu et al., 2019; Derrow-Pinion et al., 2021; Egressy et al., 2024). By
propagating and aggregating information through graph structures, GNNs capture complex depen-
dencies and emergent patterns that are invisible to traditional methods. However, most existing
approaches assume centralized access to the entire graph, which is an assumption that is rarely valid
in practice due to strict privacy regulations (e.g., GDPR, CCPA) and competitive business barriers.
For example, in cross-bank money laundering detection, financial institutions each observe only a
fragment of the global transaction graph and cannot share raw data with others.

Federated learning (FL) provides a natural framework for collaborative model training without cen-
tralizing sensitive data. Standard FL methods such as FedAvg (Konečnỳ et al., 2016; McMahan
et al., 2017) are designed for independent local datasets, where the global objective is simply the
average loss across clients. Graph data violates this assumption: edges connect nodes across clients,
and a node’s neighborhood often spans multiple institutions. This cross-client coupling makes neigh-
borhood aggregation, which is a core GNN operation, dependent on external information. Ignoring
cross-client edges leads to incomplete and inaccurate models, while simply sharing the necessary
embeddings at every iteration introduces prohibitive communication costs. Moreover, the multi-
layer compositional structure of GNNs amplifies noise and bias from partial information, further
complicating optimization. These challenges are especially acute in applications such as financial
crime detection, where malicious behaviors such as laundering cycles or “smurfing” schemes are
emergent properties of the global graph. No single bank can detect such patterns in isolation, un-
derscoring the need for communication-efficient, privacy-preserving methods that faithfully capture
cross-institutional dependencies. An illustration has been presented in Figure 1(a).

Existing federated GNN methods present a stark trade-off between modeling accuracy and commu-
nication efficiency. One line of work simplifies the problem by entirely ignoring cross-client edges
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(a) Illustration of the challenge in FedGNN: a cycle
that cannot be seen by either client alone.

(b) When the edge (v, u2) is sampled on client a, it
uses recent shared embedding node u2 from client b.

Figure 1: Illustration of the challenge in FedGNN and our algorithmic design.

(Du et al., 2022; Peng et al., 2022; Scardapane et al., 2020; He et al., 2021; Pan et al., 2023; Hu et al.,
2022), sacrificing the model’s ability to capture critical global graph properties. Conversely, meth-
ods that do account for these edges (Chen et al., 2021; Wu et al., 2022; 2021) typically require the
costly exchange of node embeddings in every training iteration. A middle-ground approach shares
embeddings only once at initialization (Yao et al., 2023), but this fails to adapt to representation
drift during training, leading to suboptimal accuracy. Sharing embeddings only once at initialization
fails to track representation drift and degrades accuracy. (Du & Wu, 2022) reduces communication
by infrequently sharing node embeddings. However, this approach overlooks nodes not sampled in
the most recent global round and requires feature sharing, which raises privacy concerns. More-
over, its theoretical guarantees only ensure convergence to a neighborhood of the solution. Another
method (Qiu et al.) uses global connections infrequently but relies primarily on local graphs, which
may still obscure important global patterns. (Guo et al., 2023) addresses cross-client coupling in
federated compositional optimization via decomposing the gradient into active/passive parts, where
active parts depend on local data and passive parts depend on other clients. The summary statistics
are shared every K steps. While provably communication-efficient, their framework cannot apply to
GNNs, which have a multilayer compositional structure and interdependence between inner data and
outer. What is more, the above methods lack a formal privacy guarantee. In federated GNNs, sharing
aggregated embeddings is less sensitive than sharing individual embeddings Yao et al. (2023), how-
ever, recent work has shown that sharing intermediate embeddings in GNNs can still leak sensitive
information (Zhang et al., 2024; Duddu et al., 2020; Zhang et al., 2022; Li et al., 2020).

To this end, we design a communication-efficient FedGNN algorithm and analyze the communi-
cation and iteration complexity with and without differential privacy. We study a realistic setting
where an edge between two clients is visible to both parties (i.e., edge attributes are shared), while
node attributes remain private. For example, when a transaction occurs between two banks, both
banks observe its attributes (e.g., time, amount), but each retains only its own node features. Our
contributions are as follows.

• Decomposition framework for federated GNNs. We design a tailored decomposition scheme
that maintains a moving-average estimator of node embeddings to mitigate the variance and bias
from mini-batch updates. Crucially, this mechanism is applied only to nodes (not edges), as
edges can vastly outnumber nodes in practice. When a neighbor lies on another client, we use
its most recently shared moving-average embedding. We prove this provides sufficiently accurate
estimates by explicitly accounting for the resulting latency error. This allows us to restrict cross-
client interactions to 1-hop neighbors and avoid multi-hop sampling. The framework, illustrated
in Figure 1(b), further reduces privacy risks by transmitting only high-level embeddings instead
of intermediate representations from every layer. We also extend the moving-average strategy to
gradients. With T iterations, our algorithm achieves a convergence rate of O(1/

√
T ) toward a

stationary point while requiring only O(T 3/4) communication rounds.

• Differential privacy mechanisms. In addition to conventional noise injection into model pa-
rameters and gradients, we introduce Gaussian noise into shared embeddings. We analyze the
convergence rate under the injected noise.
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• Empirical evaluation. Experiments on a synthetic anti–money laundering task demonstrate the
effectiveness and communication efficiency of our method. Furthermore, with Gaussian noise in-
jection, we provide differential privacy, and our experiments confirm that strong utility is retained
even under significant noise levels.

2 RELATED WORK

Graph Neural Networks. Unlike images or text, many real-world problems involve entities con-
nected by complex relationships that cannot be naturally represented in Euclidean space. Graph
neural networks (GNNs) provide a principled way to handle such data by propagating and aggre-
gating information across graph structures. They have shown remarkable success in domains such
as social networks (Badrinath et al., 2025; Hou et al., 2025), transportation systems (Derrow-Pinion
et al., 2021; Zheng et al., 2023), simulation (Sanchez-Gonzalez et al., 2020; Jain et al., 2025), and
biological systems (Bongini et al., 2021). Beyond these, GNNs are particularly advantageous for
reasoning tasks that require capturing structural dependencies, including combinatorial optimiza-
tion (Dudzik & Veličković, 2022; Bevilacqua et al., 2023) and financial fraud detection (Egressy
et al., 2024; Lin et al., 2024), highlighting scenarios where expressive GNN architectures are partic-
ularly crucial. More discussion of recent advances of GNN can be found in Appendix A.

Communication-Efficient Federated Learning. A primary challenge in Federated Learning (FL)
is communication overhead. A vast body of work addresses this for problems where the global
objective is a separable average of individual client losses (Konečnỳ et al., 2016; McMahan et al.,
2017; Stich, 2018; Yu et al., 2019a;b; Yang, 2013; Karimireddy et al., 2020; Kairouz et al., 2021;
Khaled et al., 2020; Woodworth et al., 2020b;a; Haddadpour et al., 2019; Deng & Mahdavi, 2021;
Deng et al., 2020; Liu et al., 2020; Sharma et al., 2022; Li et al., 2022; Huang et al., 2022; Tarzanagh
et al., 2022; Xing et al., 2022).

However, these conventional FL algorithms struggle with coupled objectives where client data is
interdependent. Some works address specific forms of coupling: Yuan et al. (2021); Guo et al.
(2020) study AUC maximization by reformulating it into a decomposable minimax problem, though
this approach lacks generality. Gao et al. (2022) provides convergence analysis for compositional
problems but ignores cross-client coupling. Guo et al. (2023) propose a communication-efficient
method for a general pairwise objective using an active-passive gradient decomposition. While a
step forward, their two-level compositional setup assumes inner and outer data are independent,
making it inapplicable to the complex dependencies in federated GNNs. Overall, many existing
solutions are largely ad hoc and lack strong theoretical foundations (Han et al., 2022; Zhang et al.,
2020; Wu et al., 2022; Li & Huang, 2022).

Particularly for federated GNNs, which are subject to the challenge of cross-client edges, most
existing approaches either ignore these edges, (Du et al., 2022; Peng et al., 2022; Scardapane et al.,
2020; He et al., 2021). or incur prohibitive communication costs by requiring clients to share node
embeddings every training iteration (Wu et al., 2022; 2021). Some works attempt to reduce this cost
by heuristics utilizing global information sparsely Yao et al. (2023); Qiu et al..

Privacy in Federated Learning. While the above methods on federated compositional problems
aim to reduce communication overhead, they largely overlook the privacy implications of sharing
high-dimensional embeddings. Differential privacy (DP) has become the dominant formal approach
for limiting information leakage in FL (Abadi et al., 2016; McMahan et al., 2018; Truex et al.,
2020; Wei et al., 2020). In federated GNNs, very few formally analyze privacy guarantee, while
intermediate representations can encode sensitive information about nodes and their neighborhoods,
especially in financial or social domains.

3 METHOD

We now formalize the problem, introduce our communication-efficient federated GNN algorithm,
and extend it with Gaussian perturbations to ensure differential privacy.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 PROBLEM STATEMENT

A large class of modern GNNs is formulated under the Message Passing framework (Wu et al.,
2020). The central mechanism is to iteratively aggregate information from neighbors and update
node representations. Consider a graph G = (V,E) with node set V and edge set E. In each layer l,
a node v aggregates messages from its neighbors N (v) and updates its representation:

h(l)(v) = UPDATE(l)
(
h(l−1)(v),AGGREGATE(l)({h(l−1)(u) : u ∈ N (v)})

)
(1)

where the AGGREGATE function is typically permutation-invariant (e.g., summation or mean).

In this work, we focus on a common setup in which the aggregation function is chosen from
GCN(Kipf & Welling, 2017), GraphSAGE-mean(Hamilton et al., 2017), or GIN(Xu et al., 2018),
and the update function sums the node’s previous embedding with the aggregated message, followed
by a learnable transformation (e.g., a linear layer and nonlinearity). Without loss of generality, we
adopt GraphSAGE-mean, which can be written as:

h(l)(v) = ϕ

(
W(l) · 1

|N (v) ∪ v|
∑

u∈N (v)∪v

h(l−1)(u)

)
, (2)

where ϕ denotes a nonlinear activation function. We let ĥl(v) :=
∑

u∈N (v)∪v h
(l−1)(u), h̃l(v) :=

W(l)ĥl(v) and thus h(l)(v) = ϕ(h̃l(v)). We simplify the notation N (v) ∪ v to N (v) when the
context is clear. The formulations of GCN and GIN are provided in Appendix A.

For node- or edge-level prediction, a linear layer is applied to the final embeddings:

ŷx = F (WL+1;h(x)), L(x) = ℓ(ŷx, yx), x ∈ X , (3)

where X = V for the node classification task and X = E for the edge classification task, and
edge representations are further computed via mean aggregation of their endpoints. For an edge
e = (u, v), we have

h(e) = ϕ
(
We · h

(L)(u) + h(L)(v)

2

)
. (4)

In federated learning, with W denoting the model of all layers, the formulation is

F (W) =
1

N

N∑
i=1

Fi(W), where Fi(W) =
1

|Xi|
∑
x∈Xi

L(x). (5)

3.2 A COMMUNICATION-EFFICIENT ALGORITHM

To illustrate the challenge, consider computing gradients on a given client. For instance, the gradient
of Fi(W) with respect to We for an edge e = (u, v), where node v lies outside client i, is

∂Fi(W; e)

∂We
=

(
∂Fi(W; e)

∂h(e)
ϕ′

We ·
h(L)(u) + h(L)(v)

2

 h(L)(u) + h(L)(v)

2

)
. (6)

The highlighted term depends on the embedding of a cross-client neighbor. This leads to several
challenges: 1) Cross-client dependency. Local clients cannot compute the neighbor embedding
h(L)(v) on their own; 2) High communication cost. Naively exchanging embeddings at every it-
eration incurs prohibitive communication overhead; 3) Gradient backpropagation. By the chain
rule, gradients must also flow through the cross-client embedding h(L)(v), which further compli-
cates local updates. 4) Biased gradients. Even with embedding exchange, estimating h(l−1)(u)
from minibatches produces bias due to the nonlinear composition of ϕ(·) and ϕ′(·).
We propose to maintain moving averages of both (i) intermediate embeddings and (ii) gradient
estimators, which provide low-variance approximations. Let subscript r, i, k denote round r on
client i at iteration k. For clarity, we first assume that a node’s neighbors are restricted to those
residing in the same client, while cross-client interactions occur only through inter-client edges. (In
Appendix F, we extend the discussion to cases where neighbors of nodes may span multiple clients.)

4
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The forward pass for a node v with a moving-average update is defined as

H̃
(l)
r,i,k(v) = (1− γ)H̃

(l)
r,i,k−1(v) + γ

1

nr,i,k(v)
W

(l)
r,i,k−1 ·

∑
u∈Nr,i,k(v)

H
(l−1)
r,i,k (u),

H
(l)
r,i,k(v) = ϕ(H̃

(l)
r,i,k(v)),

(7)

where nr,i,k(v) = |Nr,i,k(v)|, Nr,i,k(v) are local neighbors in the batch, and the input embeddings
satisfy H(0)(·) = h(0)(·). We further denote Wr,k := 1

N

∑
i Wr,i,k.

The behavior of this estimator is captured by the following lemma:
Lemma 3.1. Under appropriate conditions, with p being the smallest probability for a node to be
sampled, the Algorithm 1 ensures that

1

RK

∑
R

∑
k

∥H(l)
r,i,k(u)− h(l)(u)∥2 ≤ O(

1

γpRK
+

γ

p
+ γ2K2 +

∥Wr,k −Wr,k−1∥2

γ2
). (8)

Remark. By appropriately choosing parameters γ and K, the first three error terms decrease with
the number of rounds R. To control the final term, we next introduce a gradient estimator that
ensures model updates are computed from low-variance estimates. Consequently, the variance of the
embedding estimator H converges along with the gradient estimator and true gradient. Importantly,
only 1-hop node embeddings need to be communicated across clients, since each node maintains
a moving average of its embeddings. This design eliminates the need for multi-hop cross-client
sampling.

The batch stochastic gradient over We is

∇̂Fi(W
e
r,i,k;Br,i,k) =

(
∂Fi(W

e
r,i,k; e;Br,i,k)

∂h(e)
ϕ′
(
We

r,i,k · ĥr,i,k(e)
)
ĥr,i,k(e)

)
. (9)

where

ĥr,i,k(e) =
h
(L)
r,i,k(u) + h

(L)
r−1,c(v),K(v)

2
,

(10)

with c(v) denoting the host client of node v. Here, Br,i,k denotes a minibatch sampled on client
i, and the subscript H of F indicates that moving-average estimators are applied in the forward
pass. The key difficulty is that the gradient depends on late-layer embeddings from other clients
(highlighted in blue). By the chain rule, backpropagation requires differentiating through this term,
which a local client cannot perform.

We resolve this issue by observing that the edge e = (u, v) also exists in client c(v). Without loss
of generality, we assume e is sampled with equal probability on both c(u) and c(v); otherwise, one
can reweight the sampling or explicitly instruct c(v) to sample e in the next round. The gradient
decomposition on client c(v) is symmetric, therefore, client c(v) can compute gradients through
the blue term, while client c(u) only needs to provide embeddings of u. As a result, although each
client computes only part of the gradient, their aggregated contributions, 1

N

∑
i ∇̂Fi(W

e
r,i,k;Br,i,k),

recover the full global gradient.

Then we apply a moving average for the gradient estimation:

G
(l)
r,i,k = (1− β)G

(l)
r,i,k + β∇̂Fi(W;Br,i,k), (11)

whose behavior is analyzed in the following lemma:
Lemma 3.2. Under appropriate conditions, with Ḡr,k = 1

N

∑
i Gr,i,k the Algorithm 1 ensures that

E∥Ḡr,k −∇F (Wr,k)∥2 ≤ O

(
1

βRK
+

1

γpRK
+

β

N
+

γ

p
+ β2K2 +

η2

β2
∥∇F (Wr,k−1)∥2

)
.
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Algorithm 1 CE-FedGNN

On Server:
Initialization: W(l), ∀l, global buffer of embeddingsH
for r ∈ [1, 2, .., R] do

Collect requests of neighbor embeddings from all clients, and route them to corresponding
clients, collect those embeddings from those banks, and send them to clients.
Clients in parallel do:

Wr,i,Hr,i ← LocalUpdate(wr,i)

Wr = 1
N

∑
i∈[N ]

Wr,i,K , G(l))
r = 1

N

∑
i∈[N ]

G
(l)
r,i,K

Wr,i,0 = Wr, Gr,i,0 = Gr

FlushH withHr,i

end for
Output: w(E+1,0).

On Local Client W:
Initialization: Receive Wl

r,i,0 from the server. Received updated node embeddings from neigh-
bors.
for k ∈ [K] do

Locally sample a mini-batch B as 0-hop seeds, then sample L-hop.
Update edge and node embeddings using (40)
Update gradient estimator using (11)
Update model:

Wr,i,k = Wr,i,k−1 − ηGr,i,k. (12)
end for
Return wr,i,k, and updated margin node embeddingsHr,i to the server.

Remark. With proper parameter setting, the estimator G becomes accurate as the model converges.

Finally, the theorem of overall convergence analysis is

Theorem 3.3. Under appropriate conditions, the Algorithm 1 ensures that

1

R

∑
r

∥∇F (Wr−1)∥2 ≤ O(
1

ηRK
+

1

βRK
+

1

γpRK
+

β

N
+

γ

p
+ β2K2). (13)

Remark. By setting γ = O( 1
R2/3 ), β = O( 1

R2/3 ), η = O( 1
R2/3 ) and K = O(R1/3), we have

1
R

∑
r ∥∇F (Wr−1)∥2 ≤ 1

R2/3 , i.e. 1
R

∑
r ∥∇F (Wr−1)∥2 ≤ 1

T 1/2 , where T = RK and R =

T 3/4. To get E[ 1R
∑R

r=1 ∥∇F (w̄r)∥2] ≤ α2, we just set R = O( 1
α3 ), η = O(α2), γ = O(α2),

β = O(α2) and K = 1
α to yield iteration complexity of O(1/α4) and communication complexity

of O(1/α3). We also observe that more clients can speed up the convergence by reducing the term
β
N and also by increasing p compared to a centralized setting. In the best case, it could provide a
linear speed-up, in which case by setting R = O( 1

α3 ), η = O(Nα2), γ = O(Nα2), β = O(Nα2)

and K = 1
Nα , the total iteration complexity becomes O(1/Nα4).

At the end of each round r, clients communicate their model parameters Wr,i,K , gradient esti-
mator Gr,i,K and update embeddings H of boundary node (i.e., those needed by other clients) to
neighboring clients connected via edges. The overall procedure is summarized in Algorithm 1. For
intermediate embeddings H̃ , each client transmits only the updated embeddings of its local nodes,
yielding communication cost O(Kd), where K is the number of local steps and d is the embedding
dimension. It is noticeable that the number of shared nodes is typically far smaller than the number
of edges. If not updated, stale embeddings from previous rounds are reused, but moving averages
ensure they are accurate in expectation. Unlike (Guo et al., 2023), our method requires no auxiliary
data for shared statistics; this efficiency stems from the GNN sampling strategy and the fact that
each node maintains its own moving average of embeddings.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.3 DIFFERENTIAL PRIVACY EXTENSION AND ANALYSIS

We now extend our algorithm to incorporate differential privacy (DP) and analyze its convergence
properties. While DP for shared models/gradients has been well studied in standard federated learn-
ing, existing analyses do not account for the compositional dependencies unique to GNNs. In our
setting, the local updates of H and G remain unchanged, but Gaussian noise is added to H , G, and
w whenever they are communicated across clients.

Specifically, when an external neighbor is required, the update of H on a client is perturbed by
Gaussian noise, and the forward pass of an edge is modified if one of its endpoints belongs to
another client:

∇̂Fi(W
e
r,i,k;Br,i,k) =

(
∂Fi(W

e
r,i,k; e;Br,i,k)

∂h(e)
ϕ′
(
We

r,i,k · ĥr,i,k(e)
)
ĥr,i,k(e)

)
. (14)

where

ĥr,i,k(e) =
h
(L)
r,i,k(u) + h

(L)
r−1,c(v),K(v) + G(0, σ2

0I)

2

(15)

Local updates of W and G remain the same as in the previous subsection, but during communication
rounds, Gaussian noise is injected into their aggregated forms:

Wr+1,i,0 =
1

N

N∑
i=1

Wr,i,K + G(0, σ2
1I), (16)

Gr+1,i,0 =
1

N

N∑
i=1

Gr,i,K + G(0, σ2
2I). (17)

Their behavior can be bounded by the following lemmas, respectively.
Lemma 3.4. Under appropriate conditions, DP version of Algorithm 1 ensures that

∥H(l)
r,i,k(e)− h(l)(e)∥2 ≤ O(

1

pγRK
+ γ + β2K2 +

∥W(l)
r,k −W

(l)
r,k−1∥2

γ
+ σ2

0). (18)

Lemma 3.5. Under appropriate conditions, DP version of Algorithm 1 ensures that

∥ 1
N

∑
i

Gr,i,k −∇F (W)∥2 ≤ O(
1

γRK
+ γ + β2K2 +

∥W(l)
r,k −W

(l)
r,k−1∥2

γ
+ σ2

0 + σ2
1 + σ1/β).

The overall convergence behavior is
Theorem 3.6. Under appropriate conditions, by setting η = Θ(β) = Θ(γ), DP version of Algo-
rithm 1 ensures

1

R

∑
r

∥∇F (Wr−1)∥2 ≤ O(
1

ηRK
+ β + β2K2 + σ2

0 + σ2
1 + σ1/β + σ2

2 + σ2/β). (19)

Remark. By (McMahan et al., 2018; Abadi et al., 2016), to ensure (ϵ, δ)-differential privacy, the
added noise should be∝ 1

M , where M is the number of contributing data entries. For model updates
and gradient estimator, all nodes and edges in the batch are possible to contribute, therefore, only
a small noise needs to be added, but for the shared node embedding, only neighboring nodes can
contribute, thus σ0 should be much bigger than σ1 and σ2. Fortunately, the convergence has a much
better dependence on σ0 compared to σ1 and σ2.

4 EXPERIMENTS

We conduct experiments to assess the effectiveness, utility under differential privacy, and communi-
cation efficiency of the proposed algorithm.

7
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Data. Due to regulatory constraints, real-world anti–money laundering (AML) transaction data are
not publicly available. We therefore adopt the realistic simulator from Altman et al. (2023), which
generates financial transaction networks by modeling agents such as banks and individuals, while
injecting illicit activity through well-established laundering patterns. The reliance on synthetic data
underscores the need for studying federated learning in this domain, where direct access to financial
data is inherently limited.

We evaluate on two small, two medium, and two large datasets, each provided in two variants: a
high illicit ratio (HI) and a low illicit ratio (LI). For example, *HI-Small* refers to the small-scale
dataset with a high fraction of illicit transactions. Following Altman et al. (2023), we use a temporal
train–validation–test split by transaction timestamp. To simulate federated deployment, data are par-
titioned across 4–32 clients. For cross-client edges, each client retains a copy of the corresponding
edge features, reflecting the realistic setting of inter-bank transactions. Detailed dataset statistics are
reported in Appendix D.

Setup. While the proposed method can be applied to message-passing GNNs with different aggre-
gation functions as discussed in Section 3.1, in the experiments we focus on GIN (Xu et al., 2018)
(a message-passing GNN with provably maximum expressive power) and PNA (Veličković et al.)
(employing multiple aggregators in parallel), both augmented with edge updates, reverse messag-
ing, Ego ID, and port numbering as described by Egressy et al. (2024). Each model consists of two
message-passing layers followed by a classification head.

We compare against the following baselines: 1) Single Client (SC) that trains on each client in-
dependently, 2) FedAVG (McMahan et al., 2017) that only communicates the model weights, 3)
Swift-FedGNN (Qiu et al.) that trains on global graph infrequently while only using local graphs
mostly, and 4) FedGCN (Hu et al., 2022) which shares node embedding only once at the beginning.

Hyperparameters are kept consistent across methods: local seed batch size is 1k for HI datasets
and 2k for LI datasets; hop-1 and hop-2 neighbor sampling sizes are both set to 100; local update
steps per round are fixed to 32, unless otherwise specified. All algorithm are run for 20k iterations.
Performance is measured by average F1 score across all clients.

Primary results. Tables 1 and 2 summarize results on HI and LI datasets. On the high-illicit
(HI) datasets, our method consistently outperforms all baselines across dataset scales. In particular,
Ours-PNA achieves the best overall performance—for example, on HI-Large, it improves F1 from
0.6235 (FedAVG-GIN) to 0.7114.

All methods experience performance degradation under the low-illicit (LI) setting, as expected due
to stronger class imbalance. Nevertheless, our method maintains a clear advantage: Ours-PNA
achieves 0.3158 F1 on LI-Large, significantly outperforming alternatives. These results suggest our
approach is more robust to class imbalance, likely due to its ability to exploit structural patterns by
sharing node embeddings even when illicit transactions are rare.

Table 1: Results for High Illicit Ratio Datasets.

HI-Small HI-Medium HI-Large

SC-GIN 0.1526 ± 0.0157 0.3572 ± 0.0305 0.2416 ± 0.0266
SC-PNA 0.4409 ± 0.0294 0.5305 ± 0.0311 0.5744 ± 0.0182
FedAVG-GIN 0.4103 ± 0.0335 0.5421 ± 0.0273 0.6235 ± 0.0310
Swift-GIN 0.3873 ± 0.0306 0.5689 ± 0.0282 0.6339 ± 0.2205
FedGCN-GIN 0.4152 ± 0.0291 0.5538 ± 0.0310 0.5817 ± 0.0338
FedAVG-PNA 0.5427 ± 0.0288 0.5037 ± 0.0341 0.5958 ± 0.0299
Swift-PNA 0.5746 ± 0.0302 0.5722 ± 0.0258 0.6144 ± 0.0372
FedGCN-PNA 0.5653 ± 0.0365 0.6292 ± 0.0283 0.6028 ± 0.0324
CE-FedGNN-GIN 0.4916 ± 0.0218 0.6024 ± 0.0314 0.6461 ± 0.0306
CE-FedGNN-PNA 0.6623 ± 0.0273 0.6517 ± 0.0322 0.7114 ± 0.0251

Communication Efficiency We show results of varying communication interval K for training
CE-FedGNN-PNA in Figure 2. It is clear that skipping a lot of communication does not degrade
the performance, even with K = 1024, our method still maintains a great advantage over other
baselines shown in Table 1.
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Table 2: Results for Low Illicit Ratio Datasets.

LI-Small LI-Medium LI-Large

SC-GIN 0.1238 ± 0.0101 0.0746 ± 0.0153 0.0080 ± 0.0143
SC-PNA 0.1396 ± 0.0148 0.2472 ± 0.0200 0.1262 ± 0.0198
FedAVG-GIN 0.0000 ± 0.0000 0.0068 ± 0.0012 0.0000 ± 0.0000
Swift-GIN 0.0000 ± 0.0000 0.0061 ± 0.0016 0.1294 ± 0.0246
FedGCN-GIN 0.1702 ± 0.0316 0.0647 ± 0.0083 0.0000 ± 0.0000
FedAVG-PNA 0.1556 ± 0.0131 0.2614 ± 0.0225 0.0000 ± 0.0000
Swift-PNA 0.1995 ± 0.0206 0.2001 ± 0.0280 0.0000 ± 0.0000
FedGCN-PNA 0.1726 ± 0.0239 0.1821 ± 0.0197 0.0000 ± 0.0000
CE-FedGNN-GIN 0.1630 ± 0.0155 0.0828 ± 0.0127 0.1917 ± 0.0147
CE-FedGNN-PNA 0.2655 ± 0.0199 0.2918 ± 0.0106 0.3158 ± 0.0215

Figure 2: Ablation Study: Varying K

Differential Privacy Finally, we study the effect of differential privacy by adding Gaussian noise
N (0, σ2I). Since the effect of noise on model/gradient are well studied, we focus on the noise on
the shared embeddings, by fixing σ1 = σ2 = 3 × 10−3 and vary σ0. We bound the Euclidean
norm of embedding to 10, and set K = 1024 to reduce sharing frequency. The (ϵ, δ) coefficient of
differential privacy is computed using moments accountant of (Abadi et al., 2016; McMahan et al.,
2018). Details are discussed in Appendix C. Results are shown in Figure 3.

We observe a clear privacy-utility tradeoff: moderate noise levels have little effect on performance,
but as σ0 increases, F1 scores degrade significantly. Interestingly, our method remains competitive
with FedAVG even under stronger noise, indicating better resilience to DP perturbations.

Figure 3: Performance under different σ0. The red dashed line represents the performance of Fe-
dAVG without injected Gaussian noise.

5 ETHICS STATEMENT

This work introduces CE-FedGNN, a communication-efficient federated graph neural network
framework for collaborative learning across distributed and privacy-sensitive graph data. All ex-
periments are conducted on synthetic datasets simulating financial transaction networks; no pro-
prietary, personal, or confidential real-world data were used. Our method is designed to reduce
privacy risks by limiting cross-client data exchange and incorporating formal differential privacy
guarantees. We acknowledge that real-world deployment in domains such as financial crime de-
tection raises broader ethical considerations, including fairness, transparency, and potential misuse.
We emphasize that further interdisciplinary research and stakeholder oversight are required before
applying these techniques in operational financial or regulatory systems.
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A GRAPH NEURAL NETWORK

GCN: h(l)
v = ϕ

( ∑
u∈N (v)∪{v}

1√
d̃vd̃u

W(l)h(l−1)
u

)
, Ã = A+ I, d̃v =

∑
u

Ãvu.

GIN: h(l)
v = ϕ

W(l)
(
(1 + ε)h(l−1)

v +
∑

u∈N (v)

h(l−1)
u

) , ε(l) is fixed or learnable.

GraphSAGE-mean: h(l)
v = ϕ

(
W(l) · 1

|N (v) ∪ {v}|
∑

u∈N (v)∪{v}

h(l−1)
u

)
.

(20)

We denote h
(l)
v = ϕ(h̃

(l)
v ) = ϕ(W(l)ĥ

(l)
v ).

Recent advances in GNN research have explored how aggregation functions (Xu et al., 2018)
and spectral perspectives (Wang & Zhang, 2022) influence expressivity, enabling models to bet-
ter capture higher-order dependencies and subtle structural cues. To enhance expressive power,
various techniques have been proposed, including reverse message passing, port numbering, and
ego IDs (Jaume et al., 2019; Sato et al., 2019; You et al., 2021). Financial crime detection pro-
vides a concrete example where such expressivity is indispensable, as transaction networks natu-
rally form directed multigraphs with multiple transactions between the same entities (Cardoso et al.,
2022; Kanezashi et al., 2022; Weber et al., 2018; 2019; Nicholls et al., 2021). Building on these
adaptations, Egressy et al. (2024) demonstrates both theoretically and empirically that expressive
GNN architectures substantially improve the detection of money laundering patterns in transaction
graphs. However, in realistic scenarios where data is privacy-sensitive, training such expressive
GNNs in a federated setting remains a critical and largely unexplored challenge, particularly in
privacy-sensitive domains such as cross-institution financial networks.

B ANALYSIS

We first establish the assumptions we need and then present analysis in this section. A function f
is said to be C0-Lipschitz continuous if for all x,x′ in its domain, ∥f(x)− f(x′)∥ ≤ C0∥x− x′∥.
A differentiable function f is C1-smooth if its gradient is Lipschitz continuous, meaning ∥∇f(x)−
∇f(x′)∥ ≤ C1∥x − x′∥ for all x,x′. Let superscript H denote computing forward and backward
propagation using the embedding estimator H , while superscript h denotes replacing H estimator
with true embeddings of sampled data. We make the following assumption throughout this paper.

Assumption B.1.

i) f, g, h are C0-Lipschitz and C1-smooth over W, and ϕ(·) is also C0-Lipschitz and C1-
smooth.

ii) Over a batch B, E
∥∥∥∥∇̂Fh

i (w;B)− ∇̂Fi(w)

∥∥∥∥2 ≤ σ2, and also ∥∇̂FH
i (w;B)∥ ≤ D2.

iii) There exists W∗ such that F (W) ≥ F (W∗) > −∞,∀W.

iii) ∥W∥2 ≤ C2
W , ∥H(·)∥2 ≤ C2

H ,

B.1 PROOF OF LEMMA 3.1

Let pi(v) denote the probability for a node v to be sampled in client i, then we know that pi(v) >
B0/|Ei| for edge based tasks, where B0 is the number of seed edges, while Ei is the total number
of edges on client i. Let h̃(l)

r,k(v) be the l-th layer’s determnistic pre-activation embedding computed
using model Wr,k := 1

N

∑
i Wr,i,k and all neighbors. Let c(v) denote the hosting client of node v.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

For the l-th layer with l > 1, we have

E∥H̃(l)
r,i,k(v)− h̃

(l)
r,k(v)∥

2

= p(v)E
∥∥∥∥(1− γ)H̃

(l)
r,i,k−1(v) + γ

1

nr,i,k(v)

(
W

(l)
r,i,k−1 ·

∑
u∈Nr,i,k(v)

H
(l−1)
r,i,k−1(u)

)

− h̃
(l)
r,k−1(v) + h̃

(l)
r,k−1(v)− h̃

(l)
r,k(v)

∥∥∥∥2 + (1− p(v))E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k(v)

∥∥∥2
= p(v)E

∥∥∥∥(1− β)(H̃
(l)
r,i,k−1(v)− h̃

(l)
r,k−1(v))

+ γ

(
W

(l)
r,i,k−1 ·

1

nr,i,k

( ∑
u∈Nr,i,k(v)

H
(l−1)
r,i,k−1(u)

)
− h̃

(l)
r,k−1(v)

)

+ h̃
(l)
r,k−1(v)− h̃

(l)
r,k(v)

∥∥∥∥2 + (1− p(v))E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k(v)

∥∥∥2
≤ (1 +

γ

4
)p(v)E

∥∥∥∥(1− β)(H̃
(l)
r,i,k−1(v)− h̃

(l)
r,k−1(v))

+ γ

(
W

(l)
r,i,k−1 ·

1

nr,i,k(v)

( ∑
u∈Nr,i,k(v)

H
(l−1)
r,i,k−1(u)

)
− h̃

(l)
r,k−1(v)

)∥∥∥∥2

+ (2 +
4

γ
+

4

γp(v)
)p(v)

∥∥∥∥h̃(l)
r,k−1(v)− h̃

(l)
r,k(v)

∥∥∥∥2 + (1− p(v))(1 +
γp(v)

4
)E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k−1(v)

∥∥∥2
(21)

which then leads to

E∥H̃(l)
r,i,k(v)− h̃

(l)
r,k(v)∥

2 ≤ (1 +
γ

4
)p(v)E

∥∥∥∥(1− γ)(H̃
(l)
r,i,k−1(v)− h̃

(l)
r,k−1(v))

+ γ

(
W

(l)
r,i,k−1 ·

(
1

nr,i,k(v)

∑
u∈Nr,i,k(v)

H
(l−1)
r,i,k−1(u)−

1

ni(v)

∑
u∈Ni(v)

H
(l−1)
r,i,k−1(u)

))

+ γ

(
W

(l)
r,i,k−1 ·

(
1

ni(v)

∑
u∈Ni(v)

H
(l−1)

r,c(u),k−1(u)− h̃
(l)
r,k−1(v)

))∥∥∥∥2

+
5

γ

∥∥∥∥h̃(l)
r,k−1(v)− h̃

(l)
r,k(v)

∥∥∥∥2 + (1− p(v))(1 +
γp(v)

4
)E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k−1(v)

∥∥∥2 .

(22)

Then noting

Er,k−1

(
1

nr,i,k(v)

∑
u∈Nr,i,k(v)

H
(l−1)
r,i,k−1(u)−

1

ni(v)

∑
u∈Ni(v)

H
(l−1)

r,c(u),k−1(u)

)
= 0, (23)
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we have

E∥H̃(l)
r,i,k(v)− h̃

(l)
r,k(v)∥

2

≤ (1 +
γ

4
)p(v)E

∥∥∥∥(1− γ)(H̃
(l)
r,i,k−1(v)− h̃

(l)
r,k−1(v))

+ γ

(
W

(l)
r,i,k−1 ·

1

ni(v)

∑
u∈N (v)

H
(l−1)
r,i,k−1(u)− h̃

(l)
r,k−1(v)

)∥∥∥∥2

+ γ2G2 +
5

γ

∥∥∥∥h̃(l)
r,k−1(v)− h̃

(l)
r,k(v)

∥∥∥∥2 + (1− p(v))(1 +
γp(v)

4
)E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k−1(v)

∥∥∥2
≤ (1 +

γ

4
)2(1− γ)2p(v)E

∥∥∥H̃(l)
r,i,k−1(u)− h̃

(l)
i,k−1(u)

∥∥∥2
+ (1 +

4

γ
)γ2∥

(
W

(l)
r,i,k−1 ·

1

ni(v)
(
∑

u∈N (v)

H
(l−1)
r,i,k−1(u)− h̃

(l)
r,k−1(v))

)
∥2 + γ2G2

+
5

γ

∥∥∥∥h̃(l)
r,k−1(v)− h̃

(l)
r,k(v)

∥∥∥∥2 + (1− p(v))(1 +
γp(v)

4
)E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k−1(v)

∥∥∥2
≤ (1− γp(v)

4
)E
∥∥∥H̃(l)

r,i,k−1(u)− h̃
(l)
i,k−1(u)

∥∥∥2 + 8γC2
W

1

ni(v)

∑
u∈N (v)

∥H̃(l−1)
r,i,k−1(u)− h̃

(l−1)
r,k−1(u)∥

2)

+ γ2C2
WC2

H +
8

γ
C2∥Wr,k −Wr,k−1∥2.

(24)

where C is a Lipschitz constant of h̃(l)
r,k over W, depending on the constants in Assumption B.1. Rearranging

the terms, we have

E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k−1(v)

∥∥∥2 ≤ 4

(
E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k−1(v)

∥∥∥2 − E
∥∥∥H̃(l)

r,i,k(v)− h̃
(l)
i,k(v)

∥∥∥2)
γp(v)

+
32C2

W

p(v)ni(v)

∑
u∈N (v)

∥H̃(l−1)
r,i,k−1(u)− h̃

(l−1)
r,k−1(u)∥

2) +
4

p(v)
γC2

WC2
H +

32

γ2p(v)
C2∥Wr,k −Wr,k−1∥2.

(25)

Note that H̃(l)
r,i,0 = H̃

(l)
r−1,i,K , and h̃

(l)
r,0 = h̃

(l)
r−1,K . Let p := min

u∈V
p(u). Taking the telescoping sum,

we have

1

RK

∑
r

∑
k

E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k−1(v)

∥∥∥2 ≤ O

(
4(L+ 1)C2

γpRK

+
4

p
γ(L+ 1)G2 +

32

γ2p
(L+ 1)C2∥Wr,k −Wr,k−1∥2

)
.

(26)

And thus using Lipschitz of ϕ(·), we obtain

1

RK

∑
r

∑
k

E
∥∥∥H(l)

r,i,k−1(v)− h
(l)
i,k−1(v)

∥∥∥2 ≤ O

(
4(L+ 1)C2

γpRK

+
4

p
γ(L+ 1)G2 +

32

γ2p
(L+ 1)C2∥Wr,k −Wr,k−1∥2

)
.

(27)

B.2 PROOF OF LEMMA 3.2

Let superscript H denote computing forward and backward propagation using the embedding esti-
mator H , while superscript h denotes replacing H estimator with true embeddings of sampled data.
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By the update rule of the gradient estimator, we have that

∥Ḡr,k −∇F (Wr,k)∥2

≤ (1 +
β

4
)

∥∥∥∥(1− β)Ḡr,k−1 + β
1

N

N∑
i=1

(
∇̂Fi(Wr,i,k−1;Br,i,k)

)
−∇F (Wr,k−1)

∥∥∥∥2
+ (1 +

4

β
)C2∥Wr,k−1 −Wr,k∥2

= (1 +
β

4
)

∥∥∥∥(1− β)(Ḡr,k−1 −∇F (Wr,k−1))

+ β
1

N

N∑
i=1

(
∇̂FH

i (Wr,i,k−1;Br,i,k)− ∇̂Fh
i (Wr,i,k−1;Br,i,k)

)

+ β
1

N

N∑
i=1

(
∇̂Fh

i (Wr,i,k−1;Br,i,k)−∇F (Wr,k−1)

)∥∥∥∥2 + (1 +
4

β
)C2∥Wr,k−1 −Wr,k∥2

= (1 +
β

4
)

∥∥∥∥(1− β)(Ḡr,k−1 −∇F (Wr,k−1))

+ β
1

N

N∑
i=1

(
∇̂Fh

i (Wr,i,k−1;Br,i,k)−∇F (Wr,k−1)

)∥∥∥∥2

+ (1 +
4

β
)β2 1

N

N∑
i=1

∥∥∥∥(∇̂FH
i (Wr,i,k−1;Br,i,k)− ∇̂Fh

i (Wr,i,k−1;Br,i,k)

)
∥2

+ (1 +
4

β
)C2∥Wr,k−1 −Wr,k∥2

≤ (1 +
β

4
)2
∥∥∥∥(1− β)(Ḡr,k−1 −∇F (Wr,k−1))

+ β
1

N

N∑
i=1

(
∇̂Fh

i (Wr,k−1;Br,i,k)−∇F (Wr,k−1)

)∥∥∥∥2 + (1 +
4

β
)β2 1

N

N∑
i=1

∥Wr,k−1 −Wr,i,k−1∥2

+ (1 +
4

β
)β2 1

N

N∑
i=1

∥∥∥∥(∇̂FH
i (Wr,i,k−1;Br,i,k)− ∇̂Fh

i (Wr,i,k−1;Br,i,k)

)
∥2

+ (1 +
4

β
)C2∥Wr,k−1 −Wr,k∥2

≤ (1− β

4
)∥Ḡr,k−1 −∇F (Wr,k−1)∥2 +

β2σ2

N
+ C25βη2K2D2

+ 5β
1

N

N∑
i=1

∥∇̂FH′

i (Wr,i,k−1;Br,i,k)− ∇̂Fh
i (Wr,i,k−1;Br,i,k)∥2 + β3K2C2

H

+
5C2η2

β
∥Ḡr,k−1∥2,

(28)

where superscript H ′ denoting plugging all H estimators at iteration (r, i, k). For remote nodes, the
difference between current estimator and previous estimator is bounded by β2K2C2

H . And

∥∇̂FH
i (Wr,i,k−1;Br,i,k)− ∇̂Fh

i (Wr,i,k−1;Br,i,k)∥2 ≤
∑

u∈Br,i,k

C2m(u, l)∥H̃(l)r,i,k(u)− h̃
(l)
r,i,k(u)∥

2,

(29)

with m(u, l) is the weight for node u at layer l satisfying
∑

u∈Br,i,k

m(u, l) = 1.
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Rearranging terms, applying telescoping sum and plugging Lemma 3.5,

1

RK

∑
r

∑
k

∥(Ḡr,k−1 −∇F (Wr,k−1))∥2 ≤ O

(
1

βRK
+

1

γpRK

+
β

N
+

γ

p
+ β2K2 + γ2K2 +

8C2η2

β2
∥Ḡr,k−1∥2

)
.

(30)

With η = O(β), we have

1

RK

∑
r

∑
k

∥(Ḡr,k−1 −∇F (Wr,k−1))∥2 ≤ O

(
1

βRK
+

1

γpRK

+
β

N
+

γ

p
+ β2K2 +

γ2K2

p
+

η2

β2
∥∇F (Wr,k−1)∥2

)
.

(31)

B.3 PROOF OF THEOREM 3.3

Using C1-smooth of F , we have

F (Wr) ≤ F (Wr−1) + ⟨∇F (Wr−1),Wr −Wr−1⟩+
C1

2
∥Wr −Wr−1∥2

= F (Wr−1)− ⟨∇F (Wr−1), η
1

N

∑
i

∑
k

Gr,i,k(Wr,i,k)⟩+
C1

2
∥Wr −Wr−1∥2

= F (Wr−1)− ⟨∇F (Wr−1), η
1

N

∑
i

∑
k

∇̂Fi(Wr−1)⟩+
C1

2
∥Wr −Wr−1∥2

− ⟨∇F (Wr−1), η
1

N

∑
i

∑
k

Gr,i,k − η
1

N

∑
i

∑
k

∇̂Fi(Wr−1)⟩

= F (Wr−1)− ηK∥F (Wr−1)∥2 +
η

2
K∥∇F (Wr−1)∥2

+
η

K

∥∥∥∥∥ 1

N

∑
i

∑
k

Gr,i,k −
1

N

∑
i

∑
k

∇̂Fi(Wr−1)

∥∥∥∥∥
2

+
ηK

NK

∑
i

∑
k

∥Wr−1 −Wr,i,k∥2 +
C1

2
η2

∥∥∥∥∥ 1

N

∑
i

∑
k

Gr,i,k

∥∥∥∥∥
2

.

(32)

Thus, plugging Lemma 3.2, we have

1

R

∑
r

E∥∇F (Wr−1)∥2

≤ O

(
F (W0)− F (W∗)

ηRK
+

1

RK

∑
r

∑
k

∥(Ḡr,k−1 −∇F (Wr,k−1))∥2 + η2K2D2

)

≤ O(
1

ηRK
+

1

βRK
+

1

γpRK
+

β

N
+

γ

p
+ β2K2).

(33)
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C ANALYSIS UNDER DIFFERENTIAL PRIVACY

The analysis of Lemma 3.4 is based on Lemma 3.1. Within a round r, we have

E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k−1(v)

∥∥∥2 ≤ 4

(
E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k−1(v)

∥∥∥2 − E
∥∥∥H̃(l)

r,i,k(v)− h̃
(l)
i,k(v)

∥∥∥2)
βp(v)

+
32C2

W

p(v)ni(v)

∑
u∈N (v)

∥H̃(l−1)
r,i,k−1(u)− h̃

(l−1)
r,k−1(u)∥

2) +
4

p(v)
βC2

WC2
H +

32

β2p(v)
C2∥W(l)

r,k −W
(l)
r,k−1∥

2.

(34)

Due to the noise to W at the global communication round, we have

E∥H̃(l)
r,i,K(v)− h̃

(l)
r,i,K(v)∥2

= E∥H̃(l)
r,i,K(v)− h̃

(l)
r+1,i,0(v) + h̃

(l)
r+1,i,0(v)− h̃

(l)
i,K(v)∥2

≤ E∥H̃(l)
r,i,K(v)− h̃

(l)
r+1,i,0(v)∥

2 + CHσ1 + σ2
1 .

(35)

As a result, taking the telescoping sum yields

1

RK

∑
r

∑
k

E
∥∥∥H̃(l)

r,i,k−1(v)− h̃
(l)
i,k−1(v)

∥∥∥2
≤ O(

1

γRK
+ γ + γ2K2 +

∥Wr,k −Wr,k−1∥2

γ2
+

σ1 + σ2
1

γ
),

(36)

which concludes Lemma 3.4.

Similarly, based on the analysis of Lemma 3.2, we can have Lemma 3.5. Besides the noise in W
as we handled above, it also depends on noise to H , which would add a σ2

0 to (29). Also, gradient
estimator G is added a noise of G(0, σ2

2). Therefore,

1

RK

∑
r

∑
k

∥(Ḡr,k−1 −∇F (Wr,k−1))∥2 ≤

O

(
1

βRK
+

1

γRK
+ β + γ + β2K2 +

η2

β2
∥∇F (Wr,k−1)∥2 + σ2

0 + σ2
1 + σ1/β + σ2

2 + σ2/β

)
(37)

Then Theorem 3.6 follows as
1

R

∑
r

E∥∇F (Wr−1)∥2 ≤ O(
1

ηRK
+ β + β2K2 + σ2

0 + σ2
1 + σ1/β + σ2

2 + σ2/β). (38)

Noise Level in Differential Privacy We focus on the differential privacy guarantee of shared em-
beddings. Following the common practice of clipping McMahan et al. (2018), we clip the Euclidean
norm each shared embedding to be less than 10 by and only share node embeddings when there are
at least 20 neighbor data points have been involved to update its embedding. Then we set δ in (ϵ, δ)
to be 0.01, thus the corresponding upper bound of ϵ regarding to σ0 is as follows in the 20 commu-
nication rounds (each round has 1024 iterations): σ0 = 1e − 2 : ϵ ≤ 50004, σ0 = 0.1 : ϵ ≤ 505,
σ0 = 0.3 : ϵ ≤ 61, σ0 = 0.5 : ϵ ≤ 25, σ0 = 0.7 : ϵ ≤ 15, σ0 = 0.9 : ϵ ≤ 11, σ0 = 2 : ϵ ≤ 5.

D DATA STATISTICS

Data statistics is summarized in Table 3. L/S denotes the ratio of the number of data on the largest
client over that on the smallest client.

For the two small datasets, training days are 0-7, validation day is 8, and testing days are 9-13. For
the two medium datasets, training days are 0-13, validation day is 14, and testing days are 15-26.
For the two large datasets, training days are 0-94, validation day is 95, and testing days are 96-162.
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Table 3: Statistics of the Datasets

# of Edges # of Nodes # of Clients L/S
HI-Small 5,078,345 515,088 4 1.37
HI-Medium 31,898,238 2,077,023 6 1.52
HI-Large 179,702,229 2,116,168 32 3.47
LI-Small 6,924,049 705,907 4 1.28
LI-Medium 31,251,483 2,032,095 6 1.55
LI-Large 179,702,229 2,070,980 16 3.15

Figure 4: AIA attack under different hop-1 and hop-2 size. Legends are in the form of (hop-1, hop-
2).

E EXPERIMENTS ON ATTRIBUTE INFERENCE ATTACK

In this subsection, we focus on the HI-Small dataset to study attribute inference attacks (AIA) on our
methods. We concentrate on AIA because it represents a realistic privacy threat in federated GNNs.
Unlike MIA or GSR Zhang et al. (2024), AIA better models adversaries in financial networks who
may access partial embeddings and aim to recover sensitive node attributes. We assume the attacker
knows a node’s membership in the targeted bank, along with a subset of nodes and connections in
other banks. Leveraging this information together with shared embeddings, the attacker attempts to
reconstruct the remaining unknown features. Reconstruction quality is evaluated using the following
loss function.

argmin
x′
∥h(L)(x′;B ∪ {x})− h(L)(x;B ∪ {x})∥2. (39)

We then measure the reconstruction quality using the Mean Squared Error (MSE) between the true
features x and the reconstructed features x′.

The results, shown in Figure 4, indicate that embeddings computed with more neighbors are harder
to reconstruct. Additionally, we benchmarked the average distance to the top 1% nearest neighbors
in the dataset. The attribute inference attack (AIA) fails to reconstruct raw features within this 1%
threshold, verifying that sharing aggregated embeddings provides strong robustness against privacy
attacks.

F USING EXTERNAL NEIGHBORS FOR NODE EMBEDDING AGGREGATION

Let the subscript r, i, k denote round r at machine i and iteration k. The forward pass for a node
using a moving average is defined as:

H̃
(l)
r,i,k(v) = (1− γ)H̃

(l)
r,i,k−1(v) + γ

1

nr,i,k(v)
W

(l,n)
r,i,k−1 · (

∑
u∈Nr,i,k(v)

H
(l−1)
r,i,k (u) +

∑
u∈N ′

r,i,K
(v,l)

H
(l−1)

r−1,c(u),K(u) ),

H
(l)
r,i,k(v) = ϕ(H̃

(l)
r,i,k(v)),

(40)

Here, Nr,i,k(v) denotes the local neighbors in the current batch, while N ′
r,i,K(v, l) corresponds

to neighbors from other clients whose embeddings were previously shared. Note that N ′
r,i,K(v, l)
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depends on l since that we define a node’s neighbors varying with respect to layers to utilize only
high level embeddings from remote client to save communication time and reduce privack risk. The
embeddings H(l−1)r − 1, c(u),K(u) are retrieved from other clients since u is a remote node. And
nr,i,k(v) = |Nr,i,k(v) ∪N ′r, i,K(v, l)|. Input embeddings are set as H(0)(·) = h(0)(·).
In addition to sharing W,G,H as described in the main text, we also share portions of the chain
rule with other clients to enable gradient computation. These shared components can similarly use
a moving average estimator to control variance, though in practice sharing them is optional.
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