
Exchangeable Models in Meta Reinforcement Learning

Iryna Korshunova♥ 1 Jonas Degrave♥ 2 Joni Dambre * 1 Arthur Gretton * 3 Ferenc Huszár * 3

Abstract
One recent approach to meta reinforcement learn-
ing (meta-RL) is to integrate models for task infer-
ence with models for control. The former compo-
nent is often based on recurrent neural networks,
which do not directly exploit the exchangeable
structure of the inputs. We propose to use a
lightweight, yet an expressive architecture that
accounts for exchangeability. Combined with an
off-policy reinforcement learning algorithm, it re-
sults in a meta-RL method that is sample-efficient,
fast to train and able to quickly adapt to new test
tasks as demonstrated on a couple of widely used
benchmarks.

1. Introduction
Meta-learning intends to bridge the gap between machine
and human learning by designing algorithms that acquire
prior knowledge from a multitude of training tasks and use
these priors for a rapid adaptation to new tasks. In rein-
forcement learning (RL), this goal is translated into building
agents that can adjust their policies to new environment
settings after a handful of environment interactions and with
little or no retraining.

One popular group of methods in meta-RL separates the
algorithm into inference and acting modules. The former is
responsible for inferring the task from a sequence of interac-
tions, while the latter needs to choose actions conditionally
on the results of inference. This approach is motivated by
the formulation of the meta-RL problem as solving a spe-
cial type of a partially observed Markov decision process
called Bayes-adaptive MDP (BAMDP): one in which the
task specification is hidden from the agent (Duff & Barto,
2002). Each task on its own, however, can be described by a
Markov decision process (MDP). As in most meta-RL prob-
lems, we assume that the MDPs have the same action and

*Equal contribution 1Ghent University, Belgium 2Deepmind,
UK 3Gatsby Computational Neuroscience Unit, UCL, UK. Corre-
spondence to: Iryna Korshunova <iryna.korshunova@ugent.be>.

4th Lifelong Learning Workshop at the 37 th International Con-
ference on Machine Learning, Vienna, Austria, 2020. Copyright
2020 by the author(s).

state spaces but different transition functions T = p(s′|s,a)
and/or reward functionsR = p(r|s,a, s′).

As we mentioned, the goal of the inference module is
to maintain a belief state over what the underlying MDP
might be, or equivalently, the MDP’s transition and re-
ward functions. At any given step t, this belief is a pos-
terior distribution p(T ,R|s1:t,a1:t, r1:t, s

′
1:t), where we

condition on previously observed transitions within a tra-
jectory. Alternatively, we can reason in terms of beliefs
p(θ|s1:t,a1:t, r1:t, s

′
1:t) over a latent variable θ that encap-

sulates task specification and thus determines which MDP
we are in, i.e. T = p(s′|s,a,θ) and R = p(r|s,a, s′,θ).
In either case, the posterior is often intractable.

Variational inference as implemented in variational autoen-
coders (VAEs) (Kingma & Welling, 2014) has been previ-
ously used to approximate the belief state (Zintgraf et al.,
2020). In this paper, we explore possibly better ways
of doing so without the help of VAE’s. A model called
BRUNO (Korshunova et al., 2019), which was originally
designed for few-shot image generation in a classical meta-
learning scenario, is the alternative we are interested in.
BRUNO has a number of appealing properties, among
which is the exact computation of the posterior predictive
distribution and the existence of recurrent updates for its
parameters. In this model, the predictive distribution is
constructed without a reference to the posterior, so we
will derive it before BRUNO can become a full-fledged
replacement to VAEs in meta-RL. With the addition of mi-
nor architectural changes, we use BRUNO in conjunction
with a soft actor-critic (SAC) RL algorithm (Haarnoja et al.,
2018) to get a competitive meta-RL algorithm, which we
will refer to as BrunoSAC. Based on a couple of bench-
marks, we show that our method is sample efficient, fast
and easy to train, and it can adapt to the test tasks given
a small number of observations. Our code is available at
github.com/IraKorshunova/bruno-sac.

2. Method
2.1. Posterior computation

Before we focus on problem of computing the posterior
distribution p(θ|s1:t,a1:t, r1:t, s

′
1:t), let us revise the con-

cept of exchangeability – the main modelling assumption

http://github.com/IraKorshunova/bruno-sac

Exchangeable Models in Meta Reinforcement Learning

we are going to make. Consider a stochastic process
yx1 , yx2 , yx3 , . . . , where random variables y are indexed
by xi from some infinite set X . If we denote p(yxi) as
p(yi|xi), then the exchangeability property amounts to:

p(y1, . . . , yt|x1, . . . , xt) = (1)

p
(
yπ(1), . . . , yπ(t)|xπ(1), . . . , xπ(t)

)
,

which holds for any finite t and any permutation π of
{1, . . . , t}.

In MDPs, we deal with sequences of state-action-reward-
state transitions (s1,a1, r1, s

′
1), (s2,a2, r2, s

′
2), . . . , and it

is reasonable to assume that they form a conditionally ex-
changeable process with xi = (si,ai) and yi = (ri, s

′
i) if

we use the notation from Eq. 1.

How can exchangeability help us to find the posterior
p(θ|s1:t,a1:t, r1:t, s

′
1:t) we are after? The answer is given

by de Finetti’s theorem, which relates exchangeability to
Bayesian inference. It justifies the existence of a latent vari-
able θ underlying the exchangeable stochastic process, thus
the following holds:

p(rt+1,s
′
t+1|st+1,at+1, τ1:t) = (2)∫
p(rt+1, s

′
t+1|st+1,at+1,θ)p(θ|τ1:t)dθ,

with τ1:t = {(s1,a1, r1, s
′
1), . . . , (st,at, rt, s

′
t)} denoting

all observed transitions up to step t ≥ 0 either in their
natural or in a permuted order. The former assumes that
s′t = st+1, while this is not necessarily true for the latter.

Using de Finetti’s theorem, we can reason out why con-
ditional exchangeability of (r, s′) given (s,a) is a valid
assumption. This theorem allows to think about exchange-
able processes as sequences of random variables that are
independent and identically-distributed (i.i.d.) conditionally
on an underlying latent factor, which we denoted by θ. In
our case, θ encapsulates the knowledge of the MDP with
its reward and transition functions. Then, given θ, and con-
ditionally on (s,a), (r, s′) become i.i.d., while without θ,
they are correlated. This conditional independence might
still seem unintuitive, especially since we often think of
(s,a, r, s′) transitions in the order they appear within a tra-
jectory. Therefore, it is important to additionally remember
the Markov property and note that the current state s is
always the conditioning event.

If we wish to model the distributions involved in Eq. 2 using
VAE-based models, e.g. neural processes (Garnelo et al.,
2018), we need to approximate the posterior p(θ|τ1:t) and
derive a lower bound on log p(rt+1, s

′
t+1|st+1,at+1, τ1:t).

BRUNO, on the other hand, can directly model this pre-
dictive distribution by constructing a suitable exchangeable
process while ignoring the integral on the right hand side.

We do, however, need the posterior p(θ|τ1:t) for the meta-
RL algorithm, so let us deal with it after a brief explanation
of the BRUNO model.

BRUNO combines Gaussian processes (GPs) with a deep
bijective Real NVP mapping (Dinh et al., 2017). GPs are
defined in the feature space Z of the Real NVP, where di-
mensions z1, . . . zD are modelled independently. BRUNO
uses the simplest type of GPs: for every finite n, the as-
sumption is that zd1 , . . . , z

d
t ∼ N (0,Σ) with Σii = vd

and Σij = ρd. This simplicity allows to derive recurrent
updates for parameters of p(zt+1|z1:t). Predictive distri-
bution in the input space Y can then be evaluated using
the change of variables formula, which gives p(yt+1|y1:t)
or p(yt+1|y1:t,x1:t+1) if we condition Real NVP on some
extra input x. Training of BRUNO amounts to maximum
likelihood estimation with optimizing variances and covari-
ances of GPs and parameters of the Real NVP.

By setting yt = (rt, s
′
t) and xt = (st,at), we get

BRUNO to model the predictive distribution in Eq. 2. How-
ever, we also need the posterior p(θ|τ1:t) or, equivalently,
p(θ|y1:t,x1:t). This posterior is not mentioned in the
derivation of BRUNO, still it exists. The use of a bijec-
tive mapping and independent dimensions in Z implies
that p(θ|y1:t,x1:t) = p(θ|z1:t) =

∏D
d=1 p(θ

d|zd1:t). Thus,
we only need an expression for the univariate posterior
p(θd|zd1:t). Further, we will drop the index d since the same
equations hold for every dimension in Z , but note that a GP
associated with a d-th dimension has its own values of v and
ρ parameters. For the type of GPs used in BRUNO, the like-
lihood p(zi|θ) = N (θ, v−ρ) and the prior p(θ) = N (0, ρ).
The conjugate analysis concludes that the posterior is also
Gaussian (Murphy, 2007): p(θ|z1:t) = N (µt, σ

2
t). Its pa-

rameters can be updated recursively starting from µ0 = 0
and σ2

0 = ρ as:

µt+1 = (1− bt)µt + btzt

σ2
t+1 = (1− bt)(σ2

t − v + ρ),
(3)

with bt = ρ
v+ρ(t−1) .

2.2. The bottleneck problem

There remains one more obstacle before we can success-
fully use BRUNO to model p(rt+1, s

′
t+1|st+1,at+1, τ1:t)

and p(θ|τ1:t): its inefficiency when dealing with complex
low-dimensional inputs and its apparent inability to handle
1D inputs. This is the result of having to use a bijective map-
ping such as Real NVP. An existing solution is to augment
the inputs with extra dimensions whose values are drawn
from N (0, 1). Introduction of these dimensions allows for
more expressive models, however, we will no longer be
able to compute the predictive posterior exactly during train-
ing. Instead, we will maximize its lower bound. Huang
et al. (2020) refer to this as augmented maximum likeli-

Exchangeable Models in Meta Reinforcement Learning

hood (AMLE). While there is a connection to the VAE’s
objective, AMLE training is still neater as, for instance, we
do not have to deal with a two-part loss function or the
reparameterization trick.

In addition, we will replace Real NVP with a more flexi-
ble bijective architecture called masked autoregressive flow
(MAF) (Papamakarios et al., 2017),

2.3. BrunoSAC

We can now combine the modified BRUNO model with
a soft actor-critic into a meta-RL algorithm. Most of our
choices resemble those used in VariBAD (Zintgraf et al.,
2020), PEARL (Rakelly et al., 2019) and Belief (Humplik
et al., 2019) – methods that will be discussed in the next
section.

The crux of BrunoSAC is to have the SAC policy depend
on parameters of the posterior distribution p(θ|τ1:t) given
by BRUNO. As we showed, this posterior is a multivari-
ate Gaussian with independent dimensions, so it can be
described by its mean and variance parameters: mθ

t =
{µt,σ2

t }. Having observed t transitions, the agent can sam-
ple an action from a stochastic policy conditioned on a state
s and current posterior parametersmθ

t , i.e. a ∼ π(s,mθ
t).

We train BRUNO separately from the actor and critics, al-
though all these components use the same replay buffer with
off-policy data. Training sequences τ are constructed from
(s,a, r, s′) transitions that come from the same MDP, i.e.
not necessarily the same trajectory. Knowledge of how to
group transitions according to which MDP they belong is
privileged information. However, since the design of the
meta-training stage is under the researchers’ control, this
information comes for free.

Given a sequence τ of T transitions, the objective of
BRUNO is to maximize the likelihood of each observed
(rt, s

′
t) given (st,at) and τ1:k – a part of the sequence be-

fore step k. In other words, the goal is to ‘decode’ both past
and future transitions with respect to k. In this case, our loss
can be written as:

L = − 1

T

T∑
t=1

log p(rt, s
′
t|st,at, τ1:k). (4)

Ideally, one would sample a random k for every training
sequence, however, we found that sampling k per batch of
sequences or even choosing a fixed k works well in practice.
Moreover, there is flexibility in choosing what to model. For
example, if we know that MDPs differ only with respect
to their reward function R, then we can safely withhold
from modelling the next state distribution T since it does
not contribute any relevant information to our posterior.
However, once we are left with predicting scalar rewards, it
becomes important to use the augmented input space as we

described in the previous section.

Training of the actor and critics in BrunoSAC remains un-
changed in comparison to the original SAC algorithm except
for the following few modifications. Firstly, we adapted
SAC to work with recurrent policies. Evidently, this is the
case for us since π(s,mθ

t) depends onmθ
t that we compute

using recurrent updates in Eq. 3 for every step t. Secondly,
we condition the critics on the true task specification, e.g.
the target direction or velocity of a robot. In all the prob-
lems we can think of, this information is available, so not
using it makes the training needlessly harder. In either case,
whether we condition on the true task specification or on
mθ
t parameters, the critics are discarded at test time.

3. Related work
In this section, we will not try to review the vast num-
ber of methods from areas of meta-learning, meta-RL,
Bayesian RL, POMDPs, etc. that are related to BrunoSAC.
Instead, we will focus on the most relevant ones: Be-
lief (Humplik et al., 2019), PEARL (Rakelly et al., 2019)
and VariBAD (Zintgraf et al., 2020). Like BrunoSAC, these
three methods implement the approach of conditioning the
policy on results of the task inference. Their main differ-
ences can be identified by asking the following: 1) how is
privileged information, i.e. task IDs or specifications, used
during meta-training? 2) what type of model is used to pro-
cess sequences of transitions? 3) what information from the
inference module is passed on to the policy and, optionally,
to the value functions? 4) which RL algorithm is used? We
will answer these questions next.

Belief uses a supervised approach to learn the belief state.
Namely, the inference network is trained to directly pre-
dict the task description or its ID given a trajectory. To
process the trajectories, Belief uses an LSTM-based archi-
tecture (Hochreiter & Schmidhuber, 1997). Features from
the penultimate layer of this model are passed to the actor
and critics of an off-policy SVG(0) (Heess et al., 2015) or
an on-policy PPO (Schulman et al., 2017) RL algorithms.
The off-policy method is concluded to be preferable for its
sample efficiency.

PEARL is identical to BrunoSAC with respect to how it
groups transitions according to their tasks. Moreover, it
makes similar exchangeability assumptions and constructs
a permutation-invariant inference network for p(θ|τ1:t),
though based on VAEs. While PEARL allows for a decoder
that could predict future states and rewards, the authors pre-
fer to predict q-values instead. The policy is trained with
SAC, where both policy and the critics are conditioned on
samples from the VAE’s posterior. Using samples is perhaps
the reason why PEARL needs a lot more transitions before
converging to a reasonable behaviour at test time, while

Exchangeable Models in Meta Reinforcement Learning

others adapt after very few steps.

VariBAD uses no privileged information during training and
works based on trajectories. To process them, VariBAD
applies VAEs with a recurrent neural network as an encoder
and an MLP decoder that predicts past and future rewards
r and states s′. Parameters of the posterior distribution are
supplied to the policy and critics of PPO. Since PPO is an
on-policy method, VariBAD is relatively sample-inefficient.
Combined with a slow recurrent encoder, this increases the
training time of VariBAD in comparison, for instance, to
PEARL.

To conclude, each of these methods makes different design
choices, whose compatibility, in our opinion, is sometimes
unjustified. The reason is that they trade off some desirable
properties such as simplicity of the implementation, sample
efficiency, fast adaptation at test time or short training times.
BrunoSAC is, therefore, our attempt in combining elements
that we think are most sensible with respect to the listed
criteria.

4. Experiments
We applied BrunoSAC to two popular meta-RL benchmarks
introduced by Finn et al. (2017): Cheetah-Dir and Cheetah-
Vel. In the first one, the simulated cheetah robot (Todorov
et al., 2012) needs to run as fast as possible either forward or
backwards. These two directions are the only tasks, so we
use them both during training and testing. While such setup
is not ideal in terms of estimating the agent’s ability to adapt
to the unseen tasks, Cheetah-Dir is still a difficult problem
that cannot be solved by RL algorithms with non-recurrent
policies. Cheetah-Vel, on the other hand, does have a dif-
ferent set of tasks for training and testing. Here, the task is
to run with a certain velocity. There are 100 train and 30
test tasks with a target velocity sampled once from U(0, 3).
Such settings were previously used in PEARL and VariBAD.
However, we will not directly compare these methods to
BrunoSAC since a fair comparison is only possible if all
three methods run under the same conditions. In either case,
we will try to relate our results to those of PEARL and
VariBAD when it is meaningful to do so.

Before we look at the results of BrunoSAC, let us discuss
several hyperparameter choices. During training, we roll out
the trajectories of length 200, however, it does not oblige us
to train BRUNO on sequences of the same length (parameter
T in Eq. 4). In our experiments, we used sequences of 100
transitions, and for every batch of sequences, we sampled
k from U(25, 75) to compute the loss in Eq. 4. Since in
Cheetah-Dir and Cheetah-Vel the states transition function
is the same across all tasks, we train BRUNO to predict only
the rewards. In order to use MAF, we add 4 extra Gaussian
noise dimensions, which results in having a 5-dimensional

latent space for θ.

In Figures 1 and 2 we plot learning curves of BrunoSAC
and the oracle SAC. The latter has its policy conditioned
on the true task specification, i.e. one-hot encoding of the
forward-backward direction for Cheetah-Dir and a scalar
target velocity for Cheetah-Vel. For the latter problem, the
oracle is trained on 30 test tasks. Figures 3 and 4 plot the
rewards obtained by our trained models when we roll out
policies on the test tasks. Similarly to VariBAD, but unlike
PEARL, our model requires a handful of observations to
infer what the task is and to adapt its behaviour accordingly.

One finding we would like to highlight is that we get similar
performance regardless of whether we condition the policy
on the posterior mean and variance or on the mean alone.
The redundance of variance indicates that cheetah bench-
marks are not suited for exploring the role of uncertainty
over tasks. We also admit that the variance we have in our
model is inadequate since it does not depend on the data. In
future, Student-t processes should be used instead of GPs as
suggested by Korshunova et al. (2018).

5. Discussion and conclusion
We presented a meta-RL method that relies on an exchange-
able BRUNO architecture suitably repurposed for doing task
inference. The latter ability stems from trying to model the
reward and transition functions of multiple MDPs. This also
makes BRUNO appropriate for model-based RL in meta-
learning settings, similar to how GPs or neural processes
are used (Sæmundsson et al., 2018; Galashov et al., 2019).
For instance, one could use planning algorithms based on
predictive probabilities of rewards and next states given by
BRUNO. In this paper, however, we focused on a different
approach in which both BRUNO and the policy are trained
during the meta-training stage, and no changes are made at
test time.

Our BrunoSAC advocates in favour of exchangeable archi-
tectures for task inference in meta-RL. Sometimes, they are
seen as being more restrictive compared to recurrent neural
networks (Zintgraf et al., 2020). However, this a sensible
restriction since it directly encodes the basic property of the
processes we wish to model, as we argued in Section 2.1.
The preliminary results of BrunoSAC on the two common
benchmarks support our claim, though we admit that any
definite conclusions can only be made after an extensive
ablation study.

An interesting application of BrunoSAC could be sim2real:
a domain adaptation task addressing the simulation to reality
gap (Higgins et al., 2017). In this problem, we want to find
a policy to apply to a plant, for instance, a robot, if we
only have an imperfect model of the plant available in the
simulation. It is a common issue that policies which work

Exchangeable Models in Meta Reinforcement Learning

well on the simulator, fail to perform on the plant because of
the imperfections in the simulator. In this case, the meta-RL
setup is useful: we train BrunoSAC on the distribution of
simulators and then test its policy on the plant, where the
agent autonomously narrows down its beliefs over θ and
adjusts its control accordingly.

From the sim2real perspective, we are sceptical that com-
mon meta-RL benchmarks give an indication of how per-
formant the algorithms might be in reality. For instance,
Cheetah-Dir and Cheetah-Vel use the same transition func-
tion T , while only changing the reward functionR across
MDPs. This the less useful case for sim2real, where usually
T varies and R is fixed. Moreover, the meta-RL problem
with different reward functions is substantially simpler com-
pared to when the MDP’s state transition graph defined by
T changes from one task to another. Only in this latter case,
the set of possible trajectories in the environment changes.

BrunoSAC follows the approach of VariBAD and Belief,
which use the BAMDPs theory to justify their methods.
However, we are uncertain whether theoretical results ex-
tend to what is implemented in practice. Namely, BAMDPs
assume there exists a Bayes-optimal policy that optimizes
the expected return in an MDP whose original states are
extended with the belief states. In meta-RL, we train on a
number of tasks and, given a sufficiently powerful model,
we can find an optimal policy for each of them. But what
happens when test tasks are different from the ones we
trained on? The theory does not help us here, so we can
only hope that the policy makes good use of the unfamiliar
belief states that it sees at test time. How far such policy
is from the optimal is a difficult question to answer. This
problem does not appear to be illustrated appropriately in
the commonly used locomotion benchmarks.

There is another argument against the approach of separat-
ing inference and acting modules as BrunoSAC, VariBAD,
PEARL and Belief do. While task inference is based on
Bayesian principles, the policy that uses outputs of the
Bayesian model to select actions is implemented as a black-
box neural network. In many cases, we cannot guarantee a
neural network to behave reasonably when presented with
far-out inputs. This leads to a natural question whether the
policy itself can be made Bayesian while encapsulating task
inference procedures in a principled way. We consider this
to be an interesting future line of research, where exchange-
able models might play an important role.

Figure 1. Cheetah-Dir test returns versus the number of environ-
ment interactions during training. Returns are averaged over 10
trajectories per task. Shaded areas represent minimum and max-
imum returns for BrunoSAC. Each trajectory is 200 steps long.
Returns from the two tasks are plotted separately to illustrate
the asymmetry between learning how to run forward and back-
wards. We see that after ∼500K collected transitions, BrunoSAC
approaches the oracle’s performance, which could only mean that
tasks are inferred correctly. To our best estimate, this is at least
an order of magnitude fewer steps than required for PEARL and
VariBAD, which respectively need to train for 24 hours and 48
hours as reported by Zintgraf et al. (2020). For comparison, it
takes about 8 hours to train BrunoSAC on a laptop CPU.

Figure 2. Cheetah-Vel test returns averaged over 150 trajectories
(5 trajectories per test task) with each trajectory having 200 steps.
We can see that BrunoSAC closely approaches the performance of
the oracle which was trained directly on the test tasks. VariBAD
requires twice as many environment steps to catch up with the
oracle, while PEARL needs a bit more than a million steps, which
is surprising since it amounts to learning only from 50 trajectories
per training task.

Exchangeable Models in Meta Reinforcement Learning

Figure 3. Cheetah-Dir test rewards for every environment step.
Rewards are averaged over 20 trajectories (10 per task). Shaded re-
gions represent minimum and maximum rewards. Average returns
of BrunoSAC and the OracleSAC are 5645 and 6319 respectively.
Our results are incomparable to those of VariBAD or PEARL,
where the maximum return is ∼2000. This is likely due to using
different versions of RL toolkits.

Figure 4. Cheetah-Vel average rewards for each step. Rewards are
averaged over 300 trajectories (10 per test task). Average returns
of BrunoSAC and the OracleSAC are -83 and -66 respectively.

References
Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-

mation using Real NVP. In International Conference on
Learning Representations, 2017.

Duff, M. O. and Barto, A. Optimal Learning: Computa-
tional procedures for Bayes-adaptive Markov decision
processes. PhD thesis, Univ of Massachusetts at Amherst,
2002.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-

ings of the 34th International Conference on Machine
Learning, 2017.

Galashov, A., Schwarz, J., Kim, H., Garnelo, M., Saxton, D.,
Kohli, P., Eslami, S. M. A., and Teh, Y. W. Meta-learning
surrogate models for sequential decision making. ArXiv,
abs/1903.11907, 2019.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S. M. A., and Teh, Y. W. Neural
processes. Theoretical Foundations and Applications of
Deep Generative Models, ICML workshop, 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,
Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and
Levine, S. Soft actor-critic algorithms and applications.
ArXiv, abs/1812.05905, 2018.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., and
Tassa, Y. Learning continuous control policies by stochas-
tic value gradients. In Advances in Neural Information
Processing Systems 28. 2015.

Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C.,
Pritzel, A., Botvinick, M., Blundell, C., and Lerchner,
A. Darla: Improving zero-shot transfer in reinforcement
learning. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 1480–1490.
JMLR. org, 2017.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Comput., 9(8):1735–1780, 1997. ISSN 0899-
7667.

Huang, C., Dinh, L., and Courville, A. C. Augmented
normalizing flows: Bridging the gap between generative
flows and latent variable models. ArXiv, abs/2002.07101,
2020.

Humplik, J. F., Galashov, A., Hasenclever, L., Ortega, P. A.,
Teh, Y. W., and Heess, N. Meta reinforcement learning
as task inference. ArXiv, abs/1905.06424, 2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations, 2014.

Korshunova, I., Degrave, J., Huszar, F., Gal, Y., Gretton,
A., and Dambre, J. BRUNO: a deep recurrent model for
exchangeable data. In Advances in Neural Information
Processing Systems 31. 2018.

Korshunova, I., Gal, Y., Gretton, A., and Dambre, J. Con-
ditional BRUNO: a neural process for exchangeable la-
belled data. In Proceedings of the 27th European Sympo-
sium on Artificial Neural Networks, 2019.

Murphy, K. P. Conjugate bayesian analysis of the gaussian
distribution. Technical report, 2007.

Exchangeable Models in Meta Reinforcement Learning

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. In Advances
in Neural Information Processing Systems 30. 2017.

Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen,
D. Efficient off-policy meta-reinforcement learning via
probabilistic context variables. In Proceedings of the 36th
International Conference on Machine Learning, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
ArXiv, abs/1707.06347, 2017.

Sæmundsson, S., Hofmann, K., and Deisenroth, M. P. Meta
reinforcement learning with latent variable gaussian pro-
cesses. In Conference on Uncertainty in Artificial Intelli-
gence (UAI), 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In IROS, 2012.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hof-
mann, K., and Whiteson, S. Varibad: A very good method
for bayes-adaptive deep rl via meta-learning. In Interna-
tional Conference on Learning Representations, 2020.

