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ABSTRACT

The task of video prediction and generation is known to be notoriously difficult,
with the research in this area largely limited to short-term predictions. Though
plagued with noise and stochasticity, videos consist of features that are organised
in a spatiotemporal hierarchy, different features possessing different temporal dy-
namics. In this paper, we introduce Dynamic Latent Hierarchy (DLH) — a deep
hierarchical latent model that represents videos as a hierarchy of latent states that
evolve over separate and fluid timescales. Each latent state is a mixture distri-
bution with two components, representing the immediate past and the predicted
future, causing the model to learn transitions only between sufficiently dissimi-
lar states, while clustering temporally persistent states closer together. Using this
unique property, DLH naturally discovers the spatiotemporal structure of a dataset
and learns disentangled representations across its hierarchy. We hypothesise that
this simplifies the task of modeling temporal dynamics of a video, improves the
learning of long-term dependencies, and reduces error accumulation. As evidence,
we demonstrate that DLH outperforms state-of-the-art benchmarks in video pre-
diction, is able to better represent stochasticity, as well as to dynamically adjust its
hierarchical and temporal structure. Our paper shows, among other things, how
progress in representation learning can translate into progress in prediction tasks.

1 INTRODUCTION

Video data is considered to be one of the most difficult modalities for generative modelling and
prediction, characterised by high levels of noise, complex temporal dynamics, and inherent stochas-
ticity. Even more so, modelling long-term videos poses a significant challenge due to the problem of
sequential error accumulation, largely restricting the research in this topic to short-term predictions.

Deep learning has given rise to generative latent-variable models with the capability to learn rich
latent representations, allowing to model high-dimensional data by means of more efficient, lower-
dimensional states (Kingma & Welling| 2014} |Higgins et al., 2022} |Vahdat & Kautz| 2020} Rasmus
et al., 2015). Here, of particular interest are hierarchical latent models, which possess a higher de-
gree of representational power and expressivity. Employing hierarchies has so far proved to be an
effective method for generating high-fidelity visual data, as well as concurrently producing more
meaningful and disentangled latent representations in both static (Vahdat & Kautz| [2020)) and tem-
poral (Zakharov et al.|[2022) datasets.

Unlike images, videos possess a spatiotemporal structure, in which a collection of spatial fea-
tures adhere to the intrinsic temporal dynamics of a dataset — often evolving at different and fluid
timescales. For instance, consider a simplistic example shown in Figure[I] in which the features of
a video sequence evolve within a strict temporal hierarchy: from the panda continuously changing
its position to the background elements being static over the entire duration of the video.

Discovering such a temporal structure in videos complements nicely the research into hierarchical
generative models, which have been shown capable of extracting and disentangling features across a
hierarchy of latent states. Relying on this notion of inherent spatiotemporal organisation of features,
several hierarchical architectures have been proposed to either enforce a generative temporal hier-
archy explicitly (Saxena et al.| [2021), or discover it in an unsupervised fashion (Kim et al., 2019;
Zakharov et al.| [2022). In general, these architectures consist of a collection of latent states that
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Figure 1: Videos can be viewed as a collection of features organised in a spatiotemporal hierarchy.
This graphic illustrates a sequence of frames, in which the components of the video possess different
temporal dynamics (white circles indicate feature changes). Notice the irregularities in their dynam-
ics — the panda continuously changes its position, the airplane is seen only for a few timesteps, while
the background remains static throughout. Similar to this, our model learns hierarchically disentan-
gled representations of video features with the ability to model their unique dynamics.

transition over different timescales, which has been shown to benefit long-term predictions (Saxena
et al.,[2021}; Zakharov et al., |[2022)).

Building upon these notions, we propose an architecture of a hierarchical generative model for
long-horizon video prediction — Dynamic Latent Hierarchy (DLH). The principle ideas underly-
ing this work are two-fold. First, we posit that learning disentangled hierarchical representations
and their separate temporal dynamics increases the model’s expressivity and breaks down the prob-
lem of video modelling into simpler sub-problems, thus benefiting prediction quality. As such, our
model is capable of discovering the appropriate hierarchical spatiotemporal structure of the dataset,
seamlessly adapting its generative structure to a dataset’s dynamics. Second, the existence of a
spatiotemporal hierarchy, in which some features can remain static for an arbitrary period of time
(e.g. background in Fig.[I), implies that predicting the next state at every timestep may introduce
unnecessary accumulation of error and computational complexity. Instead, our model learns to
transition between states only if a change in the represented features has been observed (e.g. air-
plane in Fig. [I). Conversely, if no change in the features has been detected, the model clusters
such temporally-persistent states closer together, thus building a more organised latent space. Our
contributions are summarised as follows:

* A novel architecture of a hierarchical latent-variable generative model employing temporal
Gaussian mixtures (GM) for representing latent states and their dynamics;

* Incorporation of a non-parametric inference method for estimating the discrete posterior
distribution over the temporal GM components;

* The resulting superior long-horizon video prediction performance, emergent hierarchical
disentanglement properties, and improved stochasticity representation.

2 DYNAMIC LATENT HIERARCHY

We propose an architecture of a hierarchical latent model for video prediction — Dynamic Latent
Hierarchy. DLH consists of a hierarchy of latent states that evolve over different and flexible
timescales. Each latent state is a mixture of two Gaussian components that represent the immediate
past and the predicted future in a single belief state. Using this formalisation, the model dynamically
assigns every newly inferred posterior state to one of these clusters, and thus implicitly learns the
temporal hierarchy of the data in an unsupervised fashion.

2.1 GENERATIVE MODEL

We consider sequences of observations, {01, ..., 07}, modelled by a hierarchical generative model
with a joint distribution in the form (Fig. [2)),

T T N
Hp9(0t7§t7€t) = Hp9(0t|§t) H po(sy| e , sZ, . s{" )pa(e}lst,), (D
t=1 t=1 ~ ~ ~

n=1 indicator temporal hierarchical
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Figure 2: (a) Generative model of DLH. (b) Inference models of DLH. (¢) Architectural components
of DLH, showing the deterministic variables that correspond to bottom-up, top-down, and temporal
information. (d) Example of a two-level DLH model rolled-out over three timesteps.

where s ~ N(+,-) is a diagonal Gaussian latent state, e} ~ Ber(-) is the corresponding Bernoulli
variable at a hierarchical level n and timestep t, § = {s!,....;s} and € = {e!,...,e"} denote
collections of all variables in a hierarchy, and 6 are the parameters of the model. Notice that each
state s}’ is conditioned on all of the hierarchical states above, past states in the same level, and an
indicator variable e}'.

One of the key features of DLH is the representation of a latent state as a temporal mixture of Gaus-

sians (MoG). In particular, variables s} and e}’ together define a MoG, p(sy’, ) = p(sy|e})p(e} [}

with just two components such that,

ny = p(sy_q) if e = 0, (previous state: static prior) 2)
~ \po(sp|s?,) ifel =1, (predicted state: change prior).

As such, at every timestep, DLH holds two prior beliefs over the state of the world: (1) it can
remain static, or (2) it can progress through time and thus change. In this view, variable e;’ can
be informally described as the probability of whether state s}* should be updated or remain fixed at
timestep ¢ (Fig. [3). This property allows DLH to model data as a collection of hierarchical latent
states that evolve over different and flexible timescales, determined by the indicator variable e".

2.2 INFERENCE

In order to train the model using a variational lower bound, we must estimate the posterior distri-
bution ¢(s}, e}'|o;), for which we assume a mean-field factorisation ¢(s}")q(e}'); therefore, the two
distributions are approximated separately (Fig. [2b).

Estimating ¢(s) In DLH, posterior ¢(s}') is assumed to be a diagonal Gaussian, amortised using a
neural network g, (s’|s;"", 0;) with parameters 1/, conditioned on hierarchical states above and the
latest data point o;. In line with the established procedure, the approximate posterior is trained using
the reparametrisation trick (Kingma & Welling}, 2014).

Estimating ¢(e) Using reparametrisation tricks for discrete latent variables poses a significant
challenge for a stable training procedure of deep learning models, which can be further exacerbated
in hierarchical models (Falck et al.,[2021). To avoid this, we estimate ¢(e) using a non-parametric
method.

Inferring distribution g(e™) can be conceptualised as a clustering problem of ¢(s™) with respect to
the static and change priors of the model, with the central question being: under which temporal
mixture component in Eq. [2]is the inferred state most likely? Has the state of the world changed or
has it remained the same? As such, we formulate the approximation of p(e™|s™) as model selection
using expected likelihood ratio, where the two components of the MoG (Eq. [2) are the competing

!Stripping away the hierarchical and temporal conditioning for clarity.
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models. Under the inferred state, ¢'(s}) = gy (s*[s7"", 0,), the expected log-likelihood ratio is,

p'(stlef =0)
E[log A(sy Ey (spy log ———= 3
[Og (St)] q(s ) Og (nle _1) ( )
where p/(s?'|e}') = po(s}|e},s,,s;") from the definition of the generative model. Assuming

the selection of the most likely component under the inferred posterior, we come to the following
selection criterion (see full derivation and further clarifications in Appendix B),

=1
Dxw[q'(s7)|1p'(s¢'lef' = 1) e§ Dy [ (s7)|p'(si' lef" = 0)], )

where the most likely component ¢ is approximated to have a probability ¢(e} = i) = 1. This
approximation relates to the VaDE trick, which is similarly a non-parametric method of estimating
the posterior component variable of a MoG (Jiang et al., 2017} |[Falck et al.l 2021). In particular, our
method can be viewed as taking a sample from the most likely component of the VaDE-estimated
g(e™) under the assumption of equal prior probabilities (see Appendix . Though this method
introduces bias, in practice, we found that it performs better than the VaDE trick. We hypothesise
that this relates to a relatively fast convergence of the parametrised prior pg(e}’|-) model, which
becomes overly confident in its predictions (even before any video features have been learned), thus
irreversibly skewing the approximation of g(e}'). Nevertheless, we believe this direction of future
work may merit further investigation.

2.3 NESTED TIMESCALES

We add a constraint on the hierarchical temporal structure of the generative model similar to|Saxena
et al.| (2021); Zakharov et al. (2022). In particular, g(e"*! = 1]|e® = 0) = 0. Enforcing this
constraint has been shown to be an effective method to promote spatiotemporal disentanglement of
features in hierarchical models, encouraging the representation of progressively slower features in
the higher levels of the model. Furthermore, to reduce the computational complexity of the model,
we block any further inference above the hierarchical level where e™ = 0 is inferred, such that:

ife’”! =0, thene’ = 0 and ¢(s?) < q(s? ). 5)

Lastly, to model continuously changing videos, we assume g(e! = 1) = 1, which allows for the
bottom level of DLH to always be in use. It is worth noting that the proposed model constraints may
be relaxed in different implementations of DLH, which could be explored in future work.

2.4 LOWER BOUND ESTIMATION

To train the model, we derive a variational lower bound (ELBO), for which we introduce an approx-
imate posterior distribution q(§ €) so that

;09 Otast»gt)
E log p(o 10 /E (St, €) (6)
gP t g t, €t St7et)

T
> Z q(5t,€t) 10gp9(0t|st) + ]Eq(st €:) IOg

Po(St |§t){)9 (€) } . %)
q(St, €)
Assuming posterior factorisation of g(s’, e') = gy (s?'[s7™, 0;)q(e}|e} "), we write the complete
formulation of the ELBO,
T
Lerso = D [Ey, ) logpo(ouls)] (82)
t=1
T N
3N [Baeranion i Dt lav(st s 00llpo(s7ef sts7™] | (8b)
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Figure 3: Sampling MoG components can be seen as changing the generative structure of the model.
The diagram shows a two-level DLH unrolled over three timesteps — each box indicating a temporal
MoG. Bold arrows indicate the sampled component of a MoG. At n,t = 2, the model samples the
static component 0 ~ p(e3), thus state s7 remains fixed before being updated to s3 (indicated by the
‘Pruned’ label on the right).

To better understand the optimisation objective and the role of a temporal Gaussian mixture from
Eq.[2] it is useful to break the down the three components of the ELBO. First, component [8a]is the
likelihood of the data under the inferred posteriors ¢(S; ), which improves the quality of frame recon-
structions. Second, component [8c|is the KL divergence between the posterior and prior Bernoulli
distributions over e, allowing the parametrised prior model to learn the evolution of static and change
priors over time. Lastly, component [8b] regularises the latent belief space by bringing the posterior
either closer to the static or to the change component of a prior MoG. This can be seen more clearly
if we expand the expectation,

= q(ef' = 0) Dy, [¢'(s7)|1p'(s7'ef' = 0)] +q(ef' = 1) Dycw, [¢'(s7)]1P' (s lef = D)] . (9)

posterior < static prior posterior <+ change prior

Depending on the inferred posterior distribution ¢(e}'), the model will employ the appropriate part
of Eq. in the optimisation. For example, if inferred that state s} has not changed (e}’ = 0), the
model will bring the new posterior and the static prior closer together, and vice versa. Ultimately,
this allows the model to naturally cluster similar temporal states together, while learning to transition
between states that are sufficiently separated in the belief space.

2.5 MODEL COMPONENTS

DLH’s architectural implementation is similar to that of NVAE (Vahdat & Kautz, 2020) and VPR
(Zakharov et al.| 2022}, which employ deterministic variables for propagating information through
the model. More specifically, DLH consists of the following model components,

Encoder, ot = fn () (10) Posterior state, gy (st |z}, cf) (13)
Decoder, ct = fiec(st,ct) (11) Prior state, po(st'|di, ci’) (14)
Temporal, di'v 1 = fem(sy,dy) (12) Prior factor, po(er|dy) 15)

where deterministic variables z7, ct, dy correspond to the bottom -up, top-down, and temporal
variable transformations, as shown in F1gure t and 2? and ¢ correspond to the output image o;.
Variables ¢} and d}' are non-linear transformations of samples from s;" and s”,, respectively. We
use a GRU model (Cho et al.,|2014) for the transition and prior factor models, convolutional layers
for the encoder and decoder, and fully-connected MLP layers for all other models.

3 RELATED WORK

Video prediction Early works in video prediction largely focused on different variants of deter-
ministic models (Oh et al., 2015} |[Finn et al.l 2016} Byravan & Fox|, |2017; Vondrick & Torralba,
2017); however, it has been widely suggested that these models are poorly suited for capturing
stochasticity that is often present in video datasets.
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Figure 4: Open-loop video prediction given 30 context frames (not shown). GT: ground-truth se-
quence, DLH: our model’s prediction. DLH maintains the important contextual information about
the video, without significant degeneration in the reconstruction quality.

The problem of stochastic video prediction has been addressed using a variety of generative ar-
chitectures. Models autoregressive in image space (Babaeizadeh et al. 2021}, [Reed et all, 2017}
[Weissenborn et all, 2020; [Kalchbrenner et al., 2016} [Denton & Fergus), 2018) demonstrate good
results but suffer from high computational complexity, particularly for long-term predictions. GAN-
based (Goodfellow et al,[2014) approaches have been popular due to their ability to produce sharp
predictions (Clark et al., 2019; /Arr; Mathieu et al.| 2016} [Lee et al.,[2018). More recently, transform-

ers (Vaswani et al.,|2017) have been used to model video datasets, both in latent (Rakhimov et al.]

[2020}, [Yan et al.,[2021)) and pixel space (Weissenborn et al.} [2020). A fairly large category of video
architectures is based on using Variational Autoencoders (Kingma & Welling), [2014), which have

been shown to produce meaningful latent representations on image (Vahdat & Kautz, 2020 [Higgins|

[2022)) and video data (Zakharov et al.l [2022). Variational autoencoders (VAE)-based models
that attempt to learn temporal dependencies in the latent space (Wu et al., 2021} [Villegas et al., 2019}

Castrejon et all,[2019; [Franceschi et al] 2020} [Saxena et al 2021} Yan et al., 2021} [Zakharov et al.

2022) generate good performance but generally suffer from blurry predictions, referred to as the “‘un-
derfitting problem’ (Babaeizadeh et all 2021} Wu et al., 2021}, [Villegas et all, 2019). Nevertheless,
these models benefit from computational efficiency since the learning of temporal video dynamics
commonly happens in a lower-dimensional latent space. Most recently, diffusion models have been

shown to produce great performance on both short (Yang et al., 2022 [H6ppe et al] [2022) and long
(Harvey et al [2022) videos.

Hierarchical generative models Hierarchical generative models have been shown to be an ef-
fective way of modelling high-dimensional data, including images (Rasmus et al., 2015} [Sgnderby

et al. Maalge et al 2020 and videos (Saxena et al.|
2021} [Kim et al.} 2019} [Pertsch et al.} [2020; [Hsu et al.,[2019; [Zakharov et al }[2022), producing rich

latent representations and demonstrating strong representational power.

Temporal abstraction The topic of learning temporal abstractions from sequential data has been
harmoniously rising in popularity alongside the progress in deep and hierarchical latent models.
Temporal abstraction models often operate a number of hierarchical latent variables updating over
different timescales, with the goal of capturing the temporal features of a dataset (Chung et al.l 2017}
Mujika et al, 2017} [Kim et al., [2019; [Saxena et al., 2021} [Fountas et al [2022; [Zakharov et al.

2022), though other models learn the relevant prediction timescales without resorting to hierarchical

methods (Chung et al, [2017; [Neitz et al 2018} [Tayaraman et all, 2018} [Shang et all, 2019} [Kipf
let all 2019} [Pertsch et al.l [2020; Zakharov et al., [2021)).

Gaussian Mixtures in VAEs Our work similarly touches on the topic of VAEs with Gaussian
Mixture latent states. Generally, these models are aimed at producing meaningful structure of the
latent space, in which data points are clustered in an unsupervised fashion (Dilokthanakul et al.,
[2016}, Tiang et al 2017 [Falck et al},[2021). Though highly relevant conceptually, these works deal
with non-temporal data and therefore have fundamentally different formulations.
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Figure 5: Hierarchical disentanglement in DLH. (A): Random samples independently drawn from
the different hierarchical levels while keeping all other levels fixed. They qualitatively illustrate
what information is contained within a particular level. In KTH, L1 and L2 tend to encode motion;
L3 encodes the general context of the frame. In M-MNIST, L1 encodes slight variations in the
position and digits; L2 represents position; L3 contains both style and digit types. (B): Rolling out
hierarchical levels in the DML Mazes under all other levels being fixed. L1 includes minor variations
in the view angle; L2 changes the position of the observer and wall shape; L3 predicts transitions
to the different parts of the maze. (C): Inferred components of the temporal MoGs at every level of
the model. Black circles indicate e” = 1 (change component) inferred by DLH. L2 infers the static
component when the person’s arms are not moving (green ellipse). Similarly, L3 is static throughout
the duration of the video.

4 EXPERIMENTS

In this section, we showcase the representational properties of DLH, and their resulting impact on the
performance of the model for long-term video prediction. In particular, we demonstrate that DLH:
(a) outperforms benchmarks in long-term video prediction, (b) produces an organised hierarchical
latent space with spatiotemporal disentanglement and temporal abstraction, (c) generates coherent
videos even in datasets characterised by temporal stochasticity, and (d) dynamically regulates its
structural complexity. In the analysis probing DLH’s expressivity and representations, we emphasise
how the presented formulation of the generative model, in particular the use of temporal MoG,
naturally results in the emergent properties of the model.

4.1 DATASETS AND BENCHMARKS

Datasets To test the model’s ability in long-term video prediction, we use Moving MNIST
vastava et al [2016) with 300 timesteps, KTH Action (Schuldt et al., 2004) with 300 timesteps, and
DeepMind Lab (DML) Mazes (Eslami et al.,[2018) with 200 timesteps. For a more detailed analysis
of the model’s properties, we use a toy Moving Ball dataset (Zakharov et al, 2022).

Benchmarks Clockwork Variational Autoencoder (CW-VAE) (Saxena et al.l[2021)) is a hierarchical
VAE for video prediction, in which latent variables operate over fixed-temporal schedules, similarly
subject to nested timescales. CW-VAE demonstrated state-of-the-art performance in long-term video
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prediction, indicating the merit of the slower-evolving context states. VTA (Kim et al.| [2019) is a
two-level hierarchical model for video prediction that employs a parametrised boundary detector to
learn sub-sequences of a video and generate temporally-abstracted representations. LMC-Memory
(Lee et al} [2021) learns and stores long-term motion context for better long-horizon video predic-
tion, which has been shown to outperform other RNN-based approaches.

Metrics  To evaluate stochastic video prediction, we em-  Table 1: Open-loop video prediction.
ploy the standard procedure of sampling 100 condition- Stars denote <5% standard deviation.
ally generated sequences and picking the best one to re-
port (Denton & Fergus, 2018). For metrics, we use Struc- ~ M-MNIST | SSIMT | PSNR?
tural Similarity (SSIM) and Peak Signal-to-Noise Ratio - *
(PSNR) to test the performance of a model with respect to B\];VI:I\;ISEHS) 8;2* EZI*
the ground-truth videos. VTA 0.58 12.18

LMC-Memory | 0.75% 13.73%

4.2 VIDEO PREDICTION AND GENERATION

KTH Action | SSIMT | PSNR?T
Table [l shows the evalua}tlon of DLH anq its benchmarks DLH (Ours) 0.84* | 247
in the task of long-horizon video prediction. As evi-

CW-VAE 0.80 22.0
dent, DLH outperforms other models across the presented VTA 0.77 99 41
datasets. Figure [] shows some examples of long-horizon LMC-Memor 0' 83 23' 44
open-loop rollouts. For Moving MNIST, DLH maintains Yy = :

the information about the digits throughout the sequence, DML Mazes | SSIMT | PSNR?
while also accurately predicting their positions. For DML

Mazes, DLH correctly predicts the colours and wall po- ~ DLH (Ours) 0.59 14.3
sitions, without switching to a configuration of another CW-VAE 0.44 13.71%
maze. Similarly, for KTH, our model preserves the im- VTA 0-55 13.51%
portant contextual knowledge (e.g. background) and ac- Parameter count: DLH (7TM),
curately predicts the long sequence of arm swings. Ap- CW-VAE (12M), VTA (3M),
pendices and include qualitative comparisons of LMC-Memory (34M).

the models and the per-frame metric plots.

4.3 HIERARCHICAL ABSTRACTION AND DYNAMIC STRUCTURE

DLH exhibits characteristics of a model that learns temporally-abstracted and hierarchically dis-
entangled representations. Figure [5h demonstrates reconstructed frames retrieved by sampling the
different hierarchical levels of the model. Here, we observe the variations in the samples that corre-
spond to meaningful and interpretable spatiotemporal features of the videos. In Figure [5p, we show
rollouts of the model’s levels (other levels being fixed) using DML Mazes, which indicate that DLH
learns to transition between progressively slower features in the higher levels of its hierarchy.

Figure Sk demonstrates another telling qualitative evalua-  Taple 2: Average number of employed
tion of DLH and its representations — the inferred compo-  |evels (L) and the total KL loss in the

nents of e” (static or change) for a given video. In par- jpstances of DLH with different num-
ticular, it shows that the model continuously detects fea-  per of hierarchical levels (Moving Ball)
ture changes in the second level of its hierarchy (L2) when _
the person is moving their arms, and conversely when the ~ Levels \ L \ KL loss
person’s are motionless. Furthermore, it can be seen that

the the top level (LL3) remains static throughout. Notably, 1;2 i 882 i;g i (1):1))
these results are in agreement with the random samples 1:32 1 0'12 41:1 T 1:0
shown above, and more clearly illustrate the property of 138 + 0'07 431+ 2.1
hierarchical disentanglement present in the model. ; i ; i

DB W

The capacity of DLH to learn the spatiotemporal representation of features along its hierarchy is
largely driven by the dynamic manipulation of its hierarchical and temporal structure (Figure[3). In-
terestingly, we observe that DLH consistently converges to similar structures even when possessing
different number of levels. Table [2] shows the average hierarchical depth employed by the model
(L = % Zthl ZnN:1 e}’) over a video length given the total number of hierarchical levels it has
(trained using the Moving Ball dataset). As evident, the models converge to similar values despite
their size differences, indicating that DLH naturally simplifies its structure and does not employ



Under review as a conference paper at ICLR 2023

T
|
° IS NNGD
: AR aSaE
z
> | G O I A I
(&)

Figure 6: Two randomly-selected open-loop rollouts in a stochastic Moving Ball dataset using DLH
(top) and CW-VAE (bottom) models. DLH successfully produces realistic rollouts, while CW-VAE
struggles to produce rollouts with sharp and random colour changes (frames highlighted in red).

more resources than necessary. This is similarly substantiated by the comparable magnitudes of the
total KL loss, which is commonly used to indicate the amount of information stored in the latent
states (see Appendix [C.3]for a more in-depth analysis).

4.4 TEMPORAL STOCHASTICITY

Videos often contain temporal stochasticity, where features Table 3: Average predicted proba-
may change at seemingly random times. How would a gener-  bility of pg(e? = 1) under the dif-
ative model represent such uncertainty? In the context of em-  ferent levels of temporal stochastic-
ploying a Gaussian latent state, the uncertainty about the next ity ()) in the Moving Ball dataset
state would have to be reflected in the higher variance, in or-

der to cover both possible outcomes; however, this necessarily (€2 =1)
increases the chance of sampling areas of the latent space that A ‘ pet€ = .

: . change |  static
do not correspond to any meaningful states, harming the pre-
diction performance. In DLH, by virtue of the temporal MoG, 0.0 | .97 £0.01 | .007 £ .003
such stochasticity can be effectively captured by variable e”, 0.1 | .82+ 0.02 | .074 & .007
which decides whether the latent state s” should be updated 0.3 | .73 +£0.02 | .167 & .011

or remain fixed, alleviating the need to sample from degener-
ate regions of the latent space. To demonstrate this, we modify the Moving Ball dataset to include
random colour changes that can occur at every timestep with a probability of A and train a two-level
DLH using it. Figure[6]shows a comparison of open-loop rollouts generated by DLH and CW-VAE,
trained on the stochastic Moving Ball with A = 0.1. While CW-VAE struggles to generate rollouts
with consistent and sharp colour changes, DLH faces no such problems, producing sequences with
both deterministic and random colour switches. This experiment shows the important role of MoGs
in representing temporal stochasticity, and highlights the superior representational capacity of DLH.

Similarly, the behaviour of prior py(e?|-) under temporal stochasticity can be more clearly under-
stood using the results in Table [3] which shows the average predicted probability of the change
component, at level 2, under the inferred posterior q(e?) being either change (€ = 1) or static
(e? = 0). More stochasticity necessarily implies the reduced ability to predict when the observed
video features would change (as would be signalled by the inferred posterior component), which
should be reflected in the average probabilities predicted by the prior component model. Indeed,
in Table [3| we observe that as the stochasticity of the dataset, A, rises, the model becomes more
cautious in its predictions.

5 DISCUSSION

Our work demonstrates that building generative models with better representational properties, such
as spatiotemporal and hierarchical disentanglement, translates to better predictive capabilities in
long and complex time series. Furthermore, we believe that improving the quality of latent rep-
resentations is of high importance for model-based reinforcement learning agents, where accurate
predictions of the future lead to better planning and offline credit assignment, while a hierarchical
and nested treatment of time could allow for temporally-abstract reasoning. Nevertheless, one of
the limitations facing VAE-based models, and by extension our own, is the lack of sharpness in
the predictions. Though significant progress has been made in the recent years (Babaeizadeh et al.,
2021 (Wu et al., [2021)), addressing this problem in DLH can be a significant next step for further
improving the performance of the model.
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A TRAINING AND ARCHITECTURAL DETAILS

A.1 IMPLEMENTATION AND TRAINING

For all datasets, DLH was trained with video sequences of length 100 and batch 100. We used
Adam optimiser (Kingma & Bal, [2015) with a learning rate of 0.0005 and ¢ = 0.0001. We also
find that it is beneficial to multiply the KL loss with a parameter 3, which is slowly increased to
the value of 1.0 over the course of the first 10k training iterations. This promotes the model to
learn good reconstructions before being severely restricted in increasing its latent complexity. The
image reconstruction model predicts the means of a Gaussian with fixed standard deviation, which
is optimised separately for each dataset.

For this paper, we used a three-level DLH for all datasets (except for Moving Ball, where we used
just two levels). Each level possesses deterministic variables, for which we set |2 = |d"| =
|¢™| = 200, and random variables, where |s™| = 20. For encoding and decoding image data, we use
4 convolutional and 4 transposed-convolutional layers, respectively. Table ] shows the architectural
details of all other model components, including the sizes of neural networks. The total number of
parameters of a three-level DLH is 7M, and its training takes ~3 days on a single Tesla V100.

Table 4: Architecture of models from Eq

Model | Hidden layers
Encoder, {7, (z}) MLP [200]
Decoder, ff..(s7, ¢}) MLP [200]
Temporal, 2 (s}, d}) GRU [200]

Posterior, qq (s} |z”,s7™) | MLP [40, 40, 40]
Prior state, pg(s}'[s™,,s;™) | MLP [40, 40, 40]
Prior factor, pg(e}[s”,) GRU [200]

A.2 PSEUDOCODE

Algorithm 1: Pseudocode of DLH
for {OI:T}i ~ Ddo
fort =1to T do

forn =1to N do
> Compute the log-likelihood ratio under approximate posterior
By (677 jezm=0) @ (57|87, 04) using
D gy (s7)[p'(s7le} = 1)] and D gy (si)|[p' (s |ef" = 0)].
> Approximate the posterior ¢(e}|e/' ') using Eq. E] and the nested timescales
constraint, ¢(e} = 1le}'"! = 0) = 0.
if 0 ~ g(e}’) then
> Approximate g(e;” = 1]-) = 0 and ¢'(s7") < ¢'(s7"})
>K +n
break

forn =K to I do
L > Compute the state posterior gy, (s}'[s;"™, 0;)

—

> Compute the ELBO (Eq. [8) using the inferred posteriors gy, (S;|0:)g(€)
| > Apply a gradient step on 6, 1.
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B APPROXIMATION OF THE POSTERIOR COMPONENT OF MOG

B.1 EXPECTED LOG-LIKELIHOOD RATIO

In Section[2.2] we propose an approximation of the posterior g(e}) using the expected log-likelihood
ratio in Eq.[3] We can arrive at this formulation via either (a) considering the log-likelihood ratio of
the two components of the MoG, or (b) the VaDE trick from the Gaussian Mixture VAE literature
(Appendix [B.3). In this section, we briefly explain the former perspective.

We start by considering the two components in the prior MoG as competing models. Their log-
likelihood ratio is defined as,

o A" — 1og TTZGHE"=0) _ S~ p/(s7]e" = 0) 6
e ) =le |1 o=t = 2 e =1 1o

1=

where s ~ ¢'(s"), D is the number of posterior samples, and A(s™) = Hio %. By
applying the Law of Large numbers, taking D — oo, we can write this as an expectation with
respect to the posterior ¢’ (s™),

p'(s"e” = 0)

—_ 17
p(sh]en =1)° an

E[log A(s™)] = Eg (sny log
where the static and prior components, p’(s™|e” = 0) and p/(s™|e”™ = 1), are viewed as the compet-
ing models under the inferred posterior ¢’(s™). This expected likelihood ratio can be computed in
terms of KL divergences, if we add and subtract the entropy of ¢’ (s™),

E[log A(s™)] = Eg/(sn) log p’(s"]e" = 0) — Eq (s log ¢'(s™) (18)
— Eg(sn) log p'(s"|e" = 1) + Eg (s log ¢'(s") (19)
= Dxu[q'(s")[|p'(s"|e" = 1)] — Dxrlq'(s")[Ip'(s"|e" = 0)]. (20)

Assuming minimum probability of error test, the selection of the most likely component is realised
via

n

=1
Dxrlq'(s")I1p'(s"le" = 1)] — Dkr[q'(s”)[[p'(s"|e” = 0)] < 0. 2D

e =0
B.2 EXPECTED LOG-LIKELIHOOD RATIO WITH HIERARCHICAL DEPENDENCIES

In DLH, posteriors are factorised hierarchically, such that

N
q(5:) = ] aw(stlss™, 00). (22)
n=0

In turn, this implies that the expected log-likelihood ratio must be computed with respect to the
hierarchical posteriors,

p/ (sn |en — 0)

Ellog A(s")] = Eq,) log =%
log A(s™)] = Eqs,) 8 (sTlen = 1)

(23)
p'(s"|e" =0)
= E /(st>n) Eq’(s?) log p/

hierarchical context

However, this estimation implies that all hierarchical posteriors, ¢’ (s;”"™), must first be inferred in a
top-down process, which may be computationally expensive, especially for large V. To resolve this,
we approximate the hierarchical posteriors, above the level at which the posterior component ¢(e}')
is being estimated, using the static priors,

N N
g7~ [[ Pl =0= T[ ¢(s1-0) (25)
Jj=n+1 Jj=n+1
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which are already known. This simple assumption alleviates the need to infer all hierarchical poste-
riors before the estimation of ¢(e}') and has been shown to work well in practice.

More specifically, the computational savings come from the combination of two factors: (1) approx-
imating hierarchical context using Eq. during the inference of g(e}’), and (2) the nested timescales
assumption in Eq. [5] that blocks any further inference beyond the level at which e} = 0. As such,
the computations pertaining to the inference procedure are required only up to some level k, where
el = 0 s first inferred.

B.3 RELATIONSHIP TO VADE TRICK

VaDE trick is a non-parametric technique for estimating posterior p(e|s) in Gaussian Mixture VAE
models (Jiang et al., 2017} [Falck et al., 2021). In particular, [Falck et al| (2021)) proved that an
approximate posterior distribution ¢(e) that minimises the KL divergence to the true posterior p(e|s)
will take the form,

. exp(Eqs) log p(e[s))
arg min Dxy[q(e)|[p(e|s)] = 7
q(e) > ek ©XP(Ey(s) log p(e[s))

(26)

where K = |E| is the number of components in a Gaussian mixture p(s, e), and ¢(s) is an approxi-
mate posterior over s.

In DLH, the number of components in a MoG is limited to K = 2. Using Eq.[26l we can compute
the posterior odds and solve for one of the two components (e.g. (e = 0)),

Q(e = O) . eXp(IElq(s) Ing(e = 0|S))

dle=1) ~ xplBy logple = 1)) 7
=exp | Eqs) logp(e = 0[s) — Eq ) log p(e = 1|s)] (28)
= exp Eys) log W — Eys) log Ze@%é;/(/j)} 29)
= exp { q(s) log p(s|e = 0)p(e = 0) — Ey(s) logp(sje = 1)p(e = 1)} (30)
= exp :Eq(s) log p(sle = 0) — E,s) log p(s|e = 1) + log PE: i (1);} 31)
Adding and subtracting ) log q(s) inside the exponent,
— exp | Dice[a(9)][p(sle = 1)] — Dicela(s)l[p(sle = 0)] + log jjgzjm. (32)

Finally, we use the fact that ) . g(e) = 1 to get g(e = 0),

q(e =0)

P22 = e [Dala®)lptsle = D] = Dicfas) (e = 0) +1og e =] 53

and solving for ¢(e = 0) yields,

exp [ Dicula(s) [p(sle = 1)) ~ Dict[a(s)]p(sle = 0)] + log =)
1+ exp | Dicla(s)][p(sle = 1)] — D la(s)][p(sle = 0)] + log =5}

Equation [34] shows the formulation of distribution ¢g(e) in terms of the VaDE trick. We note that
under the assumption that p(e = 0) = p(e = 1) = 0.5, the formulation is a softmax function of the
difference between the KL divergences indicated in Eq. {4} As such, the proposed estimation of ¢(e)
may be seen as taking a sample from the most likely component in the VaDE-based distribution in
Eq.[34] under the assumption of equal prior probabilities.
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C EXTRA RESULTS

C.1 QUALITATIVE COMPARISONS

CWVAE

LMC-M
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Figure 7: Qualitative comparisons of open-loop predictions using Moving MNIST. All models are
given 30 context frames (36 for CW-VAE). The figures show the first 50 and last 45 timesteps in the
produced rollouts. The context frames are not shown here. GT denotes the ground-truth sequence.
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Figure 8: Qualitative comparisons of open-loop predictions using KTH. All models are given 30
context frames (36 for CW-VAE). The figures show the first 50 and last 45 timesteps in the produced
rollouts. The context frames are not shown here. GT denotes the ground-truth sequence.
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C.2 PER-FRAME PREDICTION EVALUATION
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Figure 9: Per-frame video prediction performance against the benchmarks on the Moving MNIST
and KTH datasets. They y-axes correspond to the SSIM?T, PSNR*, and LPIPS| metrics. The x-axes
correspond to the number of open-loop prediction steps.

C.3 SELECTION OF THE NUMBER OF LEVELS

We demonstrate in more detail the ability of DLH to converge its structure and employ only the
necessary amount of resources in processing data. In Section 2.3, using the Moving Ball dataset,
we showed that irrespective of the number of levels the model possesses, it only partially uses its
latent hierarchy. In particular, we reported two metrics: the average number of levels used by the
model and the average total KL divergence. For both metrics, we reported similar values across the
instances of DLH with different total number of levels.

Table 5: Per-level KL divergences of DLH (Moving Ball dataset)

Levels ‘ KL (L1) ‘ KL (L2) ‘ KL (L3) ‘ KL (L4) ‘ KL (L5)

2 35.1 6.8 - - -
3 34.7 7.8 0.3 - -
4 34.3 6.5 0.2 0.1 -
5 36.1 6.6 0.1 0.1 0.2

Notably, the KL divergence is often used as a measure of the amount of information stored in the
latent variables of the model. By breaking down the contributions of each latent level to the total
value of the KL loss, we can get a glimpse into how DLH employs the different hierarchical levels.
Table 5] shows the average per-level KL loss of DLH. As can be observed, levels > 2 are signifi-
cantly lower, suggesting that no information is being stored in those levels, as the model naturally
‘collapses’ them. More visually, we can sample from these low-KL levels (> 2), while keeping
high-KL levels fixed (< 2), and vice versa, in order to see if these levels contribute to the variations
in the reconstructed images. Figures [I0]and [LT]show that, indeed, samples from the low-KL levels
exhibit minimum variations, while high-KL levels seem to encode most of the important informa-
tion. These results once again illustrate how DLH naturally tends to use the minimum amount of
resources necessary for modelling the data. Furthermore, this property hints at a potential method
for selecting the appropriate number of levels — by monitoring the values of the KL for models with
different number of hierarchical levels.
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(a) 3-level DLH (b) 4-level DLH (c) 5-level DLH
Samples from levels: 3 Samples from levels: 3, 4 Samples from levels: 3, 4, 5
Fixed levels: 1, 2 Fixed levels: 1, 2 Fixed levels: 1, 2

Figure 10: Samples from levels > 2. As can be seen, there are no variations in the observed
reconstructions, indicating that no information is stored in these levels. This is corroborated by the

low values of the KL divergence associated with the hierarchical levels.

(a) 3-level DLH (b) 4-level DLH (c) 5-level DLH
Samples from levels: 1, 2 Samples from levels: 1, 2 Samples from levels: 1, 2
Fixed levels: 3 Fixed levels: 3, 4 Fixed levels: 3,4, 5

Figure 11: Samples from levels < 2. In contrast to samples in Figure we now observe high
variation in the reconstructed images, indicating that the data is primarily modelled by the bottom
two levels. This is in line with the high values of the KL divergences associated with these levels.
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