
Trade-offs in Data Memorization via Strong Data Processing Inequalities

Vitaly Feldman 1 Guy Kornowski 2 Xin Lyu 3 1

Abstract

Recent research demonstrated that training large
language models involves memorization of a sig-
nificant fraction of training data. Such memoriza-
tion can lead to privacy violations when training
on sensitive user data and thus motivates the study
of data memorization’s role in learning. In this
work, we develop a general approach for prov-
ing lower bounds on excess data memorization,
that relies on a new connection between strong
data processing inequalities and data memoriza-
tion. We then demonstrate that several simple and
natural binary classification problems exhibit a
trade-off between the number of samples avail-
able to a learning algorithm, and the amount of
information about the training data that a learn-
ing algorithm needs to memorize to be accurate.
In particular, Ω(d) bits of information about the
training data need to be memorized when O(1)
d-dimensional examples are available, which then
decays as the number of examples grows at a
problem-specific rate. Further, our lower bounds
are generally matched (up to logarithmic factors)
by simple learning algorithms. We also extend our
lower bounds to more general mixture-of-clusters
models. Our definitions and results build on the
work of Brown et al. (2021) and address several
limitations of the lower bounds in their work.

1. Introduction
The machine learning (ML) methodology is traditionally
thought of as constructing a model by extracting patterns
in the training data. Theoretical understanding of machine
learning focuses on understanding how to ensure that the
constructed model generalizes well from the training data
to the unseen instances. In this context, memorization of

1Apple. 2Weizmann Institute of Science, research done while
at Apple. 3UC Berkeley. Correspondence to: Guy Kornowski
<guy.kornowski@weizmann.ac.il>.

Published at ICML 2025 Workshop on the Impact of Memorization
on Trustworthy Foundation Models, Vancouver, Canada. PMLR
267, 2025. Copyright 2025 by the author(s).

training data is typically thought of as antithetical to gener-
alization. Yet, it has been empirically demonstrated that a
variety of modern LLMs memorize a significant portion of
training data (Carlini et al., 2021; 2023; Nasr et al., 2025).
Specifically, (Nasr et al., 2025) demonstrate an attack allow-
ing them to estimate that at least 0.852% of the training data
used by ChatGPT (gpt-3.5-turbo used in production
by OpenAI as of 2023) can be extracted from the model.
Importantly, this includes information such as personal ad-
dresses and URLs that appears to be both highly sensitive
and not particularly relevant to the task of modeling lan-
guage. In many applications training data includes either
personally sensitive information or copyrighted works. This
makes such data memorization highly concerning and mo-
tivates the research into the role of data memorization in
learning.

Explicit data memorization is known to be a crucial part of
some learning algorithm, most notably those based on the
nearest neighbor classifier. Further, a significant number of
classical and modern works establish theoretical generaliza-
tion guarantees for such methods (e.g. Cover & Hart, 1967;
Biau & Devroye, 2015). It is less clear how data memo-
rization emerges when training NNs and how the resulting
models encode training data (Radhakrishnan et al., 2020;
Zhang et al., 2020). However, in this work we focus not on
the mechanics of memorization by specific algorithms, but
on the question of whether data memorization is necessary
for solving natural learning problems, as opposed to just
being an artifact of the choice of the learning algorithm.

This question was first addressed by (Brown et al., 2021),
who proposed to measure “irrelevant” training data memo-
rization as the mutual information between the model and
the dataset I(A(X1:n);X1:n),1 where A is the learning al-
gorithm and X1:n is the dataset which consists of n i.i.d.
samples from a data distribution. For this notion, they
demonstrated existence of a simple multi-class classification
problem over {0, 1}d, where each accurate learner needs to
memorize a constant fraction of all training data, namely
satisfies I(A(X1:n);X1:n) = Ω(nd).

1A crucial step in the study of data memorization is capturing
the intuitive notion using a formal definition. We discuss some
alternative approaches in Section A. We also note that the measure
I(A(X1:n);X1:n) was previously used in the context of general-
ization and we describe work done in this context in Section A.

1

Trade-offs in Data Memorization via Strong Data Processing Inequalities

The results of (Brown et al., 2021) rely on two components,
which we briefly recall to motivate our work. The first is the
focus on the accuracy for classes that only have a single ex-
ample present in the dataset (referred to as singletons). This
is motivated by the “long-tail” view of the data distribution
proposed in (Feldman, 2020), where it was shown that for
data distributions that are long-tailed mixtures of clusters,
the accuracy of the learning algorithm on the tail of the data
distribution is determined by the accuracy on singletons.
The second component is a memorization lower bound for
a cluster identification problem, when given only a single
example of that class. Each cluster in (Brown et al., 2021)
is distributed uniformly over examples satisfying a Õ(

√
d)-

sparse boolean conjunction, and the clusters are sufficiently
different so that each cluster can be accurately classified
using a single example. However, as shown therein, doing
so requires Ω(d) bits of information about the single exam-
ple, most of which is “irrelevant” to the learning problem.
Overall, this suggests that data memorization is necessary
for learning in high-dimensional Boolean settings with just
a single relevant sample.

In this work we aim to develop a more general understanding
of data memorization in learning. In particular, we address
two specific limitations of the lower bounds in (Brown et al.,
2021). The key limitation is that lower bounds in (Brown
et al., 2021) are tailored to a specific sparse Boolean cluster-
ing problem in which clusters are defined by uniform distri-
butions over Boolean conjunctions. Such data distribution
are not directly related to the real-valued data representa-
tions typically manipulated by neural networks. Thus we
aim to develop techniques that apply to large classes of data
distribution that include natural data distributions over Rd.

The second limitation is the fragility of the lower bound:
it applies only to a single example (per cluster). Empiri-
cally, it is observed that gathering more data can mitigate
memorization, eventually allowing models to forget specific
samples (Jagielski et al., 2023). Thus going beyond a sin-
gle example and understanding the trade-off between the
number of available examples and memorization for a given
data distribution is an important question.

1.1. Our Contribution

In this work, we develop a general technique for proving
lower bounds on data memorization. Our technique focuses
on simple binary classification problems in which the goal
is to distinguish points coming from a “cluster” from those
coming from some fixed “null” distribution given a small
number of examples. We argue that a complex learning
problem over a natural data distribution implicitly involves
solving many such classification problems (see Section 1.2
for more details).

Our technique relies on establishing a tight connection be-

tween our binary classification setting and strong data pro-
cessing inequalities (SDPIs), an important tool in informa-
tion theory dating back to (Ahlswede & Gács, 1976). As
such SDPIs are known for a relatively limited number of
pairs of jointly distributed random variables (referred to as
channels in the context of SDPIs), we develop an approach
based on approximate reductions that enables applying them
in the context of learning from datasets.

We then use our general framework to analyze three natural
problem instances: Gaussian cluster identification, Boolean
cluster identification and sparse Boolean hypercube identi-
fication. The first problem is particularly simple and fun-
damental: classify an example as either sampled from an
isotropic Gaussian around the origin or an isotropic Gaus-
sian around a different point (sufficiently far from the origin).
For the first two problems we prove an excess memorization
lower bound of Ω̃(d/n) for any learning algorithm (and, in
the Boolean case, n ≲

√
d). We further show that this lower

bound is tight up to logarithmic factors. The third problem
is the one defined in (Brown et al., 2021), for which we
show a lower bound of Ω(d/22n) for n ≲ log d, and we
again match with a tight upper bound.

Problem setting and excess memorization. We now de-
scribe our approach and results in more detail starting with
some more formal definitions and notation. We study bi-
nary classification problems in which an algorithm A is
given training data X1:n = X1, . . . , Xn

iid∼ Pθ sampled
from some distribution Pθ over X parameterized by some
parameter θ. To make our lower bounds stronger, following
(Feldman, 2020; Brown et al., 2021) we state them for av-
erage case problems, namely, we think of θ as itself being
chosen from a known meta-distribution θ ∼ Ψ. For a given
data distribution Pθ and algorithm A, we measure training
data memorization of A by the mutual information between
the model and the dataset drawn i.i.d. from Pθ:

memn(A,Pθ) := I (A(X1:n);X1:n) ,

where X1:n ∼ Pn
θ . Notably, in this definition Pθ is fixed,

and therefore memn(A,Pθ) does not count any information
about the unknown data distribution θ. To emphasize this
property we refer to memn(A,Pθ) as excess data memo-
rization. We further denote the average excess memorization
for A on an average-case problem P = (Pθ)θ∼Ψ by

memn(A,P) := E
θ∼Ψ

[memn(A,Pθ)] = I (A(X1:n);X1:n | θ)

= I (A(X1:n);X1:n)− I (A(X1:n); θ) .

Note, again, that conditioning on θ ensures that we are not
counting the information that A learns about θ which is
necessary for learning, but rather measuring excess memo-
rization of the dataset. Moreover, the latter equality (which
holds by the chain rule for mutual information) provides an

2

Trade-offs in Data Memorization via Strong Data Processing Inequalities

intuitive interpretation of this quantity: it is information the
model has about the training data, after subtracting the “rel-
evant” information about θ, thus leaving the purely excess
memorization.

Strong Data Processing Inequalities (SDPIs) imply mem-
orization (Theorem C.7): We establish a direct connec-
tion between SDPIs and excess data memorization. We
recall that the (regular) data processing inequality states
that mutual information cannot increase as a result of post-
processing, that is, in a Markov chain A → B → C,
I(A;C) ≤ I(B;C). Strong data processing inequality
holds when for a pair of jointly distributed random variables
(A,B), the step A → B necessarily reduces the mutual
information by some factor ρ < 1, referred to as the SDPI
constant for (A,B).

In our context, for a randomly chosen θ ∼ Ψ, a dataset
X1:n ∼ Pn

θ , and an additional fresh test sample X ∼ Pθ,
we have a Markov chain X → X1:n → A(X1:n) since the
only information A has about X is through X1:n. Thus we
can deduce that I(A(X1:n);X) ≤ ρ · I(A(X1:n);X1:n),
where ρ is the SDPI constant for (X,X1:n). As is well-
known, accurate binary prediction requires information,
namely I(A(X1:n);X) = Ω(1) for any A with error that
is ≤ 1/3. As a result of applying the SDPI, we get that
I(A(X1:n);X1:n) = Ω(1/ρ).

As discussed, when θ is a random variable,
I(A(X1:n);X1:n) also counts the information that
A(X1:n) contains about θ. To obtain a lower bound on ex-
cess data memorization we need to subtract I(A(X1:n); θ)
from I(A(X1:n);X1:n). To achieve this, we consider the
Markov chain θ → X1:n → A(X1:n) and denote by τ
the SDPI constant of the pair (θ,X1:n). Applying the
SDPI to A(X1:n) and combining it with the lower bound
on I(A(X1:n);X1:n) then gives us the summary of the
connection between SDPIs and memorization:

memn(A,P) = Ω

(
1− τn
ρn

)
,

where we emphasize the fact τ and ρ depend on n. We
remark, that for n = 1, the first SDPI coefficient ρ1 is
related to the proof technique of (Brown et al., 2021) who
reduce their learning problem to a variant of the so-called
Gap-Hamming communication problem and then give an
SDPI-based lower bound adapted from (Hadar et al., 2019).

Approximate SDPIs via dominating variables (The-
orem C.8): Our framework reduces memorization to
computation of SDPI constants for pairs (X1:n, X) and
(X1:n, θ). However, known SDPIs deal primarily with in-
dividual samples from several very specific distributions
(most notably, Bernoulli and Gaussian), and not datasets
that appear to be much more challenging to analyze directly.

We bypass this difficulty via a notion of a dominating ran-
dom variable for the dataset. Specifically, if there exists
a random variable Ztrain

θ and post-processing Φ such that
Φ(Ztrain

θ) ≈ X1:n (as distributions), then it suffices to prove
SDPIs for the pair (Ztrain

θ , X). For our applications, it is
crucial to allow Φ(Ztrain

θ) to approximate X1:n and thus our
reduction incorporates the effects of approximation error in
both SDPIs. Our reduction also allows using a dominating
variable Ztest

θ for the test point X , but in our applications
X is simple enough and this step is not needed.

Applications: memorization trade-offs and matching
upper bounds (Theorem D.1, Theorem D.3 and The-
orem D.4): We apply the techniques we developed to
demonstrate that several natural learning problems exhibit
smooth trade-offs between excess memorization and sam-
ple size. The first problem we consider is Gaussian clus-
tering. In this problem, negative examples are sampled
from N (0d, Id), while positive examples are sampled from
N (λθ, (1− λ2)Id) for some scale λ. Our lower bounds are
for θ ∼ N (0d, Id). We pick λ = Θ(1/d1/4), ensuring that
accurate learning is possible with just a single positive sam-
ple (by using either nearest neighbor or linear classifier). At
the same time, our analysis demonstrates that any learning
algorithm A for this problem that achieves non-trivial error
satisfies

memn(A,P) = Ω

(
d

n

)
.

Moreover, for this problem we show that a matching (up to
log factors) upper bound can be achieved by simple learning
algorithms whenever n ≤

√
d. Hence, we overall establish

that memorization can be reduced by using more data, and
that is the only way to it (while maintaining accuracy).

We next consider a Boolean clustering problem. In this
problem θ ∈ {±1}d, negative examples are sampled from
the uniform distribution over {±1}d, whereas positive ex-
amples are sampled from a product distribution over {±1}d
with mean λ · θ. Thus for θ chosen uniformly from {±1}d,
a random positive example from Pθ is coordinate-wise λ-
correlated with θ. The problem can be thought of as a
Boolean analogue of the Gaussian setting above, and we ob-
tain nearly tight (up to a log factor) upper and lower bounds
for this problem. The bounds are similar to those in the
Gaussian case for n ≤

√
d but almost no memorization

is needed when n ≥
√
d log d. We note however that the

analysis of the approximately dominating variable is more
involved in this case and is derived from composition results
in differential privacy.

Finally, we consider a sparse Boolean hypercube clustering
problem introduced in (Brown et al., 2021). In this setting,
the data distribution is defined by a pair θ = (S, Y), where
S ⊆ [d] is a subset of coordinates and Y ∈ {±1}S are the

3

Trade-offs in Data Memorization via Strong Data Processing Inequalities

values assigned to these coordinates. In the data distribution
Pθ negative examples are uniform over {±1}d, whereas
the positive examples are uniform over the hypercube of
all the points x whose values in coordinates in S are ex-
actly Y : namely x ∈ {±1}d that satisfy the conjunction∧

i∈S(xi = Yi). To sample θ we include each index in
S with probability ≈ 1/

√
d independently at random, and

then assign to each coordinate a uniformly random value in
Y ∈ {±1}S . As noted in (Brown et al., 2021), when n = 1
this problem is identical to the Boolean clustering problem
defined above. However, for larger n, we show it requires
much less memorization. Specifically, we give a lower and
upper bound (tight up to log factors) that are:

memn(A,P) = Θ̃

(
d

22n

)
.

We remark that in these example applications, we chose
parameters so as to ensure that each problem is learnable
from a single positive example, but requires Ω(d) bits to
be memorized to do so. Beyond this extreme case, our
techniques easily extend to show lower bounds in terms
of correlation between samples, which also determines the
smallest n and d that would be required for the learnability.

1.2. From cluster classification to LLMs

We now briefly discuss how lower bounds for the simple
classification problems we consider are related to the data
memorization by LLMs. We first note that while LLMs are
often used as generative models, underlying the sampler
is a (soft) predictor of the next token given the preceding
context. Thus an LLM is also a multiclass classifier. Sec-
ond, LLMs (and many other ML models) either explicitly or
implicitly rely on semantic data embeddings of the context,
that is, embeddings in which semantically similar contexts
are mapped to points close in Euclidean distance (or cosine
similarity). In particular, nearby points are typically classi-
fied the same. As a result, when viewed in the embedding
space, natural data distributions correspond to mixtures of
(somewhat-disjoint) clusters of data points where points in
the same cluster typically have the same label (cf. Reif et al.,
2019; Cai et al., 2021; Radford et al., 2021).

As has been widely observed (and discussed in (Feldman,
2020)), for natural data distributions in many domains, the
frequencies of these clusters tend to be long-tailed with a
significant fraction of the entire data distribution being in
low-frequency clusters. Such low frequency clusters have
only few representatives in the training dataset (possibly
just one). Accurate classification of a point from a low-
frequency cluster requires being able to classify whether a
test point belongs to the same cluster based on just a few
examples of that cluster.

This shows that classifying points as belonging to some

cluster or not is a subproblem that arises when learning
from natural data. This raises the question of how to model
such “clusters”. While in practice cluster distributions will
depend strongly on the representations used and may not
have a simple form, one prototypical and widely studied
choice is the Gaussian distribution. This distribution is
known to be prevalent in natural phenomena (earning it the
name “normal”). The ubiquity of mixtures of Gaussian-like
distributions is also the reason for the utility of techniques
such as Gaussian Mixture Models for distribution modeling
(cf. Reynolds et al., 2009).

Putting these insights together, we get to the key application
of our techniques: the problem of distinguishing a point
from a Gaussian distribution from some null distribution
given few samples, as a subproblem when the data distribu-
tion is a long-tailed mixture of Gaussian clusters.

Lower bounds for mixtures of clusters (Theorem E.5):
Finally, in Section E we discuss how our techniques can
be extended to a more detailed mixture-of-clusters model
of data. Specifically, we consider data models based on a
prior distribution over frequencies of clusters, as studied in
(Feldman, 2020). The lower bound by Brown et al. (2021)
is given in this model, but only clusters from which a sin-
gle example was observed contribute to the memorization
lower bound. We show that our more general lower bound
approach extends to this mixture-of-clusters setting, with
each cluster contributing to the total memorization lower
bound according to the number of examples of that cluster in
the training dataset. In particular, our results demonstrate a
smooth trade-off in which clusters with less representatives
in the training data contribute more to the excess memoriza-
tion of the learned model.

2. Discussion
All in all, our proof techniques and lower bounds for spe-
cific problem instances support the following intuition for
the phenomenon of data memorization observed in practice:
The tail of real-world data distributions contains many sub-
problems for which relatively little data is available. Non-
trivial accuracy on these subproblems can be achieved by
exploiting all the relatively weak correlations present be-
tween points in the dataset and unseen points from the same
subproblem. This however, requires memorizing (almost)
all the features of the available data points. More data
allows the learning algorithm to average out some of the
inherent randomness (or “noise”) in the features of the given
examples, and thus increase the correlations with the fea-
tures of an unseen point. In turn, this allows the learning
algorithm to memorize fewer features of the training data
on that subpopulation, specifically those with the strongest
correlations.

4

Trade-offs in Data Memorization via Strong Data Processing Inequalities

Acknowledgements
GK is supported through an Azrieli Foundation graduate
fellowship. XL is supported by a Google fellowship.

Impact Statement
This paper presents work whose goal is to develop a the-
ory that explains and quantifies the phenomenon of data
memorization in modern ML. In particular, our theoretical
framework reveals trade-offs between inherent quantities of
the learning problem such as correlation between different
samples, cluster sizes, and the amount of excess memo-
rization required for learning. As data memorization is a
widespread phenomenon with important consequences, we
believe our work has potential impact, none of which we
feel must be specifically highlighted here.

References
Ahlswede, R. and Gács, P. Spreading of sets in product

spaces and hypercontraction of the markov operator. The
annals of probability, pp. 925–939, 1976.

Attias, I., Dziugaite, G. K., Haghifam, M., Livni, R., and
Roy, D. M. Information complexity of stochastic convex
optimization: Applications to generalization, memoriza-
tion, and tracing. In Forty-first International Conference
on Machine Learning, 2024.

Bassily, R., Moran, S., Nachum, I., Shafer, J., and Yehuday-
off, A. Learners that use little information. In Algorithmic
Learning Theory, pp. 25–55. PMLR, 2018.

Biau, G. and Devroye, L. Lectures on the nearest neighbor
method, volume 246. Springer, 2015.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth,
M. K. Occam’s razor. Information processing letters, 24
(6):377–380, 1987.

Brown, G., Bun, M., Feldman, V., Smith, A., and Talwar,
K. When is memorization of irrelevant training data
necessary for high-accuracy learning? In Proceedings of
the 53rd annual ACM SIGACT symposium on theory of
computing, pp. 123–132, 2021.

Bu, Y., Zou, S., and Veeravalli, V. V. Tightening mutual
information-based bounds on generalization error. IEEE
Journal on Selected Areas in Information Theory, 1(1):
121–130, 2020.

Cai, X., Huang, J., Bian, Y., and Church, K. Isotropy in
the contextual embedding space: Clusters and manifolds.
In International conference on learning representations,
2021.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song,
D. The secret sharer: Evaluating and testing unintended
memorization in neural networks. In 28th USENIX se-
curity symposium (USENIX security 19), pp. 267–284,
2019.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and
Tramer, F. Membership inference attacks from first prin-
ciples. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 1897–1914. IEEE, 2022.

Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag,
V., Tramer, F., Balle, B., Ippolito, D., and Wallace, E.
Extracting training data from diffusion models. In 32nd
USENIX Security Symposium (USENIX Security 23), pp.
5253–5270, 2023.

Cover, T. and Hart, P. Nearest neighbor pattern classification.
IEEE transactions on information theory, 13(1):21–27,
1967.

Cover, T. M. and Thomas, J. A. Elements of information
theory. John Wiley & Sons, 2nd edition, 1999.

Dwork, C., Rothblum, G. N., and Vadhan, S. P. Boosting and
differential privacy. In FOCS, pp. 51–60. IEEE Computer
Society, 2010.

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O.,
and Roth, A. Generalization in adaptive data analysis and
holdout reuse. Advances in neural information processing
systems, 28, 2015.

Feldman, V. Does learning require memorization? a short
tale about a long tail. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, pp.
954–959, 2020.

Feldman, V. and Steinke, T. Calibrating noise to variance
in adaptive data analysis. In Conference On Learning
Theory, pp. 535–544. PMLR, 2018.

Hadar, U., Liu, J., Polyanskiy, Y., and Shayevitz, O. Com-
munication complexity of estimating correlations. In Pro-
ceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pp. 792–803, 2019.

Jagielski, M., Thakkar, O., Tramer, F., Ippolito, D., Lee, K.,
Carlini, N., Wallace, E., Song, S., Thakurta, A. G., Paper-
not, N., et al. Measuring forgetting of memorized training
examples. In The Eleventh International Conference on
Learning Representations, 2023.

5

Trade-offs in Data Memorization via Strong Data Processing Inequalities

Kairouz, P., Oh, S., and Viswanath, P. The composition
theorem for differential privacy. In ICML, volume 37 of
JMLR Workshop and Conference Proceedings, pp. 1376–
1385. JMLR.org, 2015.

Littlestone, N. and Warmuth, M. Relating data compression
and learnability. 1986.

Livni, R. Information theoretic lower bounds for informa-
tion theoretic upper bounds. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Livni, R. and Moran, S. A limitation of the pac-bayes
framework. Advances in Neural Information Processing
Systems, 33:20543–20553, 2020.

McAllester, D. A. Some pac-bayesian theorems. In Proceed-
ings of the eleventh annual conference on Computational
learning theory, pp. 230–234, 1998.

Nachum, I., Shafer, J., and Yehudayoff, A. A direct sum
result for the information complexity of learning. In
Conference On Learning Theory, pp. 1547–1568. PMLR,
2018.

Nasr, M., Carlini, N., Hayase, J., Jagielski, M., Cooper,
A. F., Ippolito, D., Choquette-Choo, C. A., Wallace, E.,
Tramèr, F., and Lee, K. Scalable extraction of training
data from aligned, production language models. In The
Thirteenth International Conference on Learning Repre-
sentations, 2025.

Polyanskiy, Y. and Wu, Y. Strong data-processing inequal-
ities for channels and bayesian networks. In Convexity
and Concentration, pp. 211–249. Springer, 2017.

Polyanskiy, Y. and Wu, Y. Information theory: From coding
to learning. Cambridge university press, 2024.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PmLR, 2021.

Radhakrishnan, A., Belkin, M., and Uhler, C. Overparame-
terized neural networks implement associative memory.
Proceedings of the National Academy of Sciences, 117
(44):27162–27170, 2020.

Raginsky, M. Strong data processing inequalities and Φ-
sobolev inequalities for discrete channels. IEEE Transac-
tions on Information Theory, 62(6):3355–3389, 2016.

Raginsky, M., Rakhlin, A., Tsao, M., Wu, Y., and Xu, A.
Information-theoretic analysis of stability and bias of
learning algorithms. In 2016 IEEE Information Theory
Workshop (ITW), pp. 26–30. IEEE, 2016.

Reif, E., Yuan, A., Wattenberg, M., Viegas, F. B., Coenen,
A., Pearce, A., and Kim, B. Visualizing and measuring
the geometry of bert. Advances in neural information
processing systems, 32, 2019.

Reynolds, D. A. et al. Gaussian mixture models. Encyclo-
pedia of biometrics, 741(659-663):3, 2009.

Russo, D. and Zou, J. How much does your data explo-
ration overfit? controlling bias via information usage.
IEEE Transactions on Information Theory, 66(1):302–
323, 2019.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy
(SP), pp. 3–18. IEEE, 2017.

Steinke, T. and Zakynthinou, L. Reasoning about general-
ization via conditional mutual information. In Conference
on Learning Theory, pp. 3437–3452. PMLR, 2020.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Xu, A. and Raginsky, M. Information-theoretic analy-
sis of generalization capability of learning algorithms.
Advances in neural information processing systems, 30,
2017.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. In ICLR, 2017.

Zhang, C., Bengio, S., Hardt, M., Mozer, M. C., and Singer,
Y. Identity crisis: Memorization and generalization under
extreme overparameterization. In International Confer-
ence on Learning Representations, 2020.

6

Trade-offs in Data Memorization via Strong Data Processing Inequalities

Contents

1 Introduction 1
1.1 Our Contribution . 2
1.2 From cluster classification to LLMs . 4

2 Discussion 4

A Related Work 8

B Formal Problem Setting 8

C General Framework: SDPIs and Memorization 9
C.1 SDPIs imply Memorization . 10

C.2 Proving SDPIs via Dominating Variables . 11

D Applications 13
D.1 Gaussian Clustering . 13

D.2 Boolean Clustering . 14

D.3 Sparse Boolean Hypercube . 15

E Lower Bounds for Mixtures of Clusters 15
E.1 Memorization Lower Bound . 16

F Proofs for Section C 18
F.1 Proof of Proposition C.5 . 18

F.2 Completing the Proof of Theorem C.7 . 20

G Proof of Gaussian Clustering Application 20

G.1 Gaussian sample complexity (n = 1) . 20

G.2 Gaussian memorization lower bound . 21
G.3 Gaussian memorization upper bound . 22

H Proof of Boolean Clustering Application 23

H.1 Boolean sample complexity (n = 1) . 23

H.2 Boolean memorization lower bound . 24
H.3 Boolean memorization upper bounds . 26

I Proof of Sparse Boolean Hypercube Application 27

I.1 Sparse Boolean sample complexity (n = 1) . 27

I.2 Sparse Boolean memorization lower bound . 28

I.3 Sparse Boolean memorization upper bound . 28

J Proofs for Section E 29
J.1 Proof of Theorem E.3 . 29
J.2 Proof of Theorem E.5 . 30

7

Trade-offs in Data Memorization via Strong Data Processing Inequalities

A. Related Work
A fundamental theme in learning theory is that “simple” learning rules generalize (Blumer et al., 1987). In particular, there
is a long line of work studying generalization bounds which provide various formalizations of the intuition that learners who
use little information about their dataset must generalize. Classical such notions include compression schemes (Littlestone
& Warmuth, 1986) and the PAC-Bayes framework (McAllester, 1998). This theme is also the basis for the more recent
use of mutual information (MI) between the dataset and the output of the algorithm to derive generalization bounds. The
approach was first proposed in the context of adaptive data analysis by Dwork et al. (2015), who used max-information
to derive high-probability generalization bounds. Building on this approach, Russo & Zou (2019) proposed using the
classical notion of MI to derive (in expectation) generalization bounds, with numerous subsequent works strengthening and
applying their results (Raginsky et al., 2016; Xu & Raginsky, 2017; Feldman & Steinke, 2018; Bu et al., 2020). More recent
developments in this line of work rely on the notion of conditional mutual information (CMI). Here, the conditioning is over
a ghost sample which is different from the conditioning over the data distribution (i.e. θ) considered in this work (Steinke &
Zakynthinou, 2020). The CMI roughly measures identifiability of the samples in the dataset given the model. It is closely
related to membership inference attacks (Shokri et al., 2017; Carlini et al., 2022; Attias et al., 2024).

To demonstrate limitations of generalization methods based on MI, Livni (2024) considers the setting of stochastic convex
optimization (SCO). In this setting, he proves a lower bound on the MI of learners achieving asymptotically optimal error,
which scales as d/nC for some constant C. While superficially this lower bound is similar to our result, the goal of the
problem therein is to estimate an unknown d-dimensional parameter. Moreover, the coordinates of this parameter are chosen
independently and thus the estimation problem requires effectively solving d independent one-dimensional problems. This
is in contrast to our setting, in which the problem is binary classification, and we make no assumptions on the representation
of the model. We also remark that the trade-off in (Livni, 2024) appears to be mostly an artifact of the proof, with natural
algorithms achieving nearly-optimal rates requiring excess memorization of Ω(d) bits for any n. Attias et al. (2024) recently
proved lower bound on CMI in the SCO setting demonstrating that CMI cannot be used to recover known generalization
bounds for SCO. By the nature of the definition, the CMI is at most n and thus the lower bounds of the CMI are incomparable
to the trade-offs in our work.

Several works study lower bounds on the MI in the context of distribution-independent PAC learning of threshold functions
establishing lower bounds which, at best, only scale logarithmically with the description length of examples (which in our
instances corresponds to the dimension) (Bassily et al., 2018; Nachum et al., 2018; Livni & Moran, 2020).

The literature on phenomena related to memorization relies on a large variety of mostly informal notions. In the context of
data extraction attacks, the definitions rely on the success of specific attacks that either feed a partial prompt (Carlini et al.,
2021) or examine the relative likelihood of training data under the model (Carlini et al., 2019). Such definitions are useful
for analyzing the success of specific attacks but are sensitive to the learning algorithms. In particular, minor changes to the
algorithm can greatly affect the measures of memorization. They also do not distinguish between memorization of data
relevant to the learning problem (e.g. memorization of capitals of countries in the context of answering geographic queries)
from the irrelevant one.

Another related class of definitions considers memorization resulting from fitting of noisy data points (e.g. Zhang et al.,
2017). Such memorization is referred to as label memorization and does not, in general, require memorization of data points
that we study here. The known formal definition is not information-theoretic but rather directly examines the influence of
the data point on the label (Feldman, 2020). At the same time, both label memorization and excess data memorization
appear to be artifacts of learning from long-tailed data distributions.

On a technical side, SDPIs have a number of important applications in machine learning (and beyond), most notably, in the
context of privacy preserving and/or distributed learning and estimation. We refer the reader to the book of (Polyanskiy &
Wu, 2024) for a detailed overview. These applications of SDPIs are not directly related to our use.

B. Formal Problem Setting
Notation. We abbreviate a sequence X1, . . . , Xn by X1:n. Id denotes the d × d identity matrix, 0d denotes the d-
dimensional zero vector, and we occasional omit the subscript when the dimension is clear from the context. Given a finite
set S, we denote by ∆(S) the set of all distributions over S, and by U(S) the uniform distribution over S. We denote X ⊥⊥ Y
when X,Y are independent random variables. ∥ · ∥ denotes the Euclidean norm, and dTV(·, ·) denotes the total variation
distance (which when applied to random variables, is the distance between their corresponding distributions). For x ∈ {±1}d,

8

Trade-offs in Data Memorization via Strong Data Processing Inequalities

Binp(x) denotes the product distribution over {±1}d in which for Y ∼ Binp(x), Pr[Yi ̸= xi] = 1 − Pr[Yi = xi] = p
independently for every i ∈ [d]. The mapping from x to Y is usually referred to as the binary symmetric channel (BSC) in
the context of data processing inequalities. Given random variables X,Y, Z, we denote by H(X) the entropy of X ,2 by
I(X;Y) := H(X)−H(X |Y) the mutual information between X and Y , and by I(X;Y |Z) := EZ [I(X |Z;Y |Z)] the
conditional mutual information. We denote the binary entropy function H2(p) := p log2(1/p) + (1− p) log2(1/(1− p)).

Formal setting. We now formalize the problem setting we consider throughout this work, outlined in the introduction.
The learning algorithm’s goal is binary classification of a point drawn from a mixture distribution in which with probability
1/2 a (positive) point is drawn from the parameter dependent “cluster” distribution Pθ over X , and with probability 1/2 a
(negative) point is drawn from a fixed “null” distribution P0. Formally, for a problem parameter θ, let (Xtest, Y test) ∼ Ptest

θ

be the mixture distribution over X × {0, 1} such that with probability 1
2 : Xtest ∼ Pθ and Y test = 1; otherwise with

probability 1
2 : Xtest ∼ P0 and Y test = 0. The algorithm returns a classifier h : X → {0, 1}, aiming at minimizing the

classification error:
err(h) := Pr (Xtest,Y test)∼Ptest

θ

[
h(Xtest) ̸= Y test

]
.

Note that P0 is fixed and therefore negative examples do not carry any information about the learning problem (and can be
generated by the learning algorithm itself). Therefore, without loss of generality, we can assume that the training dataset
given to a learning algorithm A consists of n positive data points X1, . . . , Xn

iid∼ Pθ.

In our problems, the parameter θ will be sampled from a known meta-distribution θ ∼ Ψ and we denote the resulting
(average-case) learning problem by P = (Pθ)θ∼Ψ. Further, the null distribution P0 will always be equal to the marginal
distribution of X ∼ Pθ for θ ∼ Ψ and thus we do not specify it explicitly. The loss of a learning algorithm A on the problem
P = (Pθ)θ∼Ψ is defined accordingly as

err(A,P) := E
θ∼Ψ

X1,...,Xn∼Pθ

h←A(X1:n)

[err(h)] .

We also recall the definition of excess data memorization for an algorithm A and data distribution Pθ (Bassily et al., 2018;
Brown et al., 2021):

memn(A,Pθ) := I (A(X1:n);X1:n) ,

where X1:n ∼ Pn
θ . For an average case problem P = (Pθ)θ∼Ψ excess memorization for A is defined as

memn(A,P) := E
θ∼Ψ

[memn(A,Pθ)] = I (A(X1:n);X1:n | θ) .

We also denote the minimal (i.e., necessary) memorization for algorithms with error of at most α by

memn(P, α) := inf
A: err(A,P)≤α

memn(A,P) ,

and let memn(P) := memn(P, 1/3).

C. General Framework: SDPIs and Memorization
In this section, we will introduce the main machinery that allows us to derive excess memorization lower bounds via strong
data processing inequalities (SDPIs). We start by recalling the definition of an SDPI.

Definition C.1. Given a pair of jointly distributed random variables (A,B), we say that A,B satisfy ρ-SDPI if for any M
such that A ⊥⊥ M |B : I(M ;A) ≤ ρI(M ;B).

Recall that all random variables satisfy the definition above for ρ = 1, which is simply the “regular” data processing
inequality (DPI). A strong DPI refers to the case ρ < 1. This means that any M which is a post-processing of B (i.e.,
A ⊥⊥ M |B), has strictly less information about A than it does about B. Equivalently, any post-processing of B must have

2We slightly abuse information theoretic notation by using it both for discrete and continuous random variables. In the latter case,
definitions are with respect to the differential entropy.

9

Trade-offs in Data Memorization via Strong Data Processing Inequalities

ρ−1-times more information about B. This observation will serve as the basis of our results, and accordingly, we will aim to
prove SDPIs with a small SDPI constant ρ.

SDPIs constitute a fundamental concept in information theory dating back to Ahlswede & Gács (1976), and their study
remains an active area of research (Raginsky, 2016; Polyanskiy & Wu, 2017; 2024). Here we recall two canonical examples
of SDPI in which the coefficient ρ results from weak correlation between the marginals.

Fact C.2 (Polyanskiy & Wu, 2024, Example 33.7+Proposition 33.11). Suppose (A,B) is a 2d-dimensional Gaussian
distribution such that marginally A,B ∼ N (0d, Id) and for each coordinate i ∈ [d] : E[Ai ·Bi] =

√
ρ. Then A,B satisfy

the ρ-SDPI.

Fact C.3 (Polyanskiy & Wu, 2024, Example 33.2). Suppose (A,B) are
√
ρ-correlated uniform Boolean vectors, namely

A ∼ U({±1}d), B = Bin 1−√
ρ

2

(A). Then A,B satisfy the ρ-SDPI.

In some applications, using “approximate” SDPIs appears to be crucial for achieving meaningful lower bounds, so we
introduce the following approximate version of this notion.

Definition C.4. Given a pair of jointly distributed random variables (A,B), we say that A,B satisfy (ρ, δ)-approximate-
SDPI, or simply (ρ, δ)-SDPI, if they can be coupled with a random variable B̃ such that: (1) A and B̃ satisfy ρ-SDPI, and
(2) for every a ∈ supp(A), we have dTV(B̃ | A = a,B | A = a) ≤ δ.

Clearly, the definition above reduces to the standard notion of SDPI when δ = 0, with B̃ = B. Its main utility is through the
following result, which quantifies how the δ-approximation results in an additive factor to the standard SDPI setting.

Proposition C.5. Suppose (A,B) are joint random variables satisfying (ρ, δ)-SDPI. Let A : B → M be a (possibly
randomized) post-processing of B, where B denotes the support of B. Then

I(A(B);A) ≤ ρI(A(B);B) + 8δ log(|M|/δ) .

Remark C.6. Throughout the paper, we use the convention δ log(|M|/δ) = 0 when δ = 0, |M| = ∞.

The proof of Proposition C.5 is provided in Appendix F.1. The rest of this section is structured as follows. In Section C.1
we show how to bound the quantity of interest memn(A,P) whenever certain SDPIs are present in the learning problem.
Subsequently, in Section C.2, we will address the issue of when we should expect the required SDPIs to hold, and how to
compute their corresponding coefficients via an approximate reduction.

C.1. SDPIs imply Memorization

We now present the main result that relates excess memorization to SDPIs. Recalling that the problem definition involves
the distributions Pθ and the parameter distribution Ψ, the next theorem shows that memorization is necessary whenever
certain SDPIs hold in the learning problem.

Theorem C.7. Let P = (Pθ)θ∼Ψ be a learning problem satisfying the following:

1. (Data generation SDPI) The variables (θ,X1:n) for θ ∼ Ψ and X1:n ∼ Pn
θ satisfy (τn, ϵn)-SDPI.

2. (Test/train SDPI) The variables (X,X1:n) for θ ∼ Ψ, X ∼ Pθ and X1:n ∼ Pn
θ satisfy (ρn, δn)-SDPI.

Then any algorithm A : Xn → M for P satisfies the excess memorization bound:

memn(A,P) ≥ 1− τn
ρn

I(A(X1:n);X)− negn ,

where negn := 8δn
1−τn
ρn

log(|M|/δn) + 8ϵn log(|M|/ϵn). Moreover, for any α < 1
2 :

memn(P, α) ≥ 1− τn
ρn

Cα − negn , where Cα := (1− 2α) log

(
1− α

α

)
.

10

Trade-offs in Data Memorization via Strong Data Processing Inequalities

θ
X

X1:n !(X1:n)ALGτn

ρn

Figure 1. Illustration for Theorem C.7. Given θ ∼ Ψ, X1:n ∼ Pn
θ , X ∼ Pθ , the orange arrows represent two SDPIs, which together

necessitate excess memorization on the order of (1− τn)/ρn.

Proof of Theorem C.7. Note that the data generation SDPI implies by Proposition C.5 that

I(A(X1:n); θ) ≤ τnI(A(X1:n);X1:n) + 8ϵn log(|M|/ϵn) . (data gen SDPI)

Similarly, the test/train SDPI implies by Proposition C.5, after rearrangement, that

I(A(X1:n);X1:n) ≥
1

ρn
I(A(X1:n);X)− 8(δn/ρn) log(|M|/δn) . (test/train SDPI)

We therefore see that

memn(A,P) = I(A(X1:n);X1:n | θ)
= I(A(X1:n);X1:n, θ)− I(A(X1:n); θ) [chain rule]
= I(A(X1:n);X1:n)− I(A(X1:n); θ) [A(X1:n) ⊥⊥ θ |X1:n]

≥ (1− τn)I(A(X1:n);X1:n)− 8ϵn log(|M|/ϵn) (data gen SDPI)

≥ (1− τn)

(
1

ρn
· I(A(X1:n);X)− (8δn/ρn) log(|M|/δn)

)
(test/train SDPI)

− 8ϵn log(|M|/ϵn) .

This establishes the first claim. To further prove the second claim, it remains to show that if err(A,P) ≤ α then
I(A(X1:n);X) ≥ Cα, namely that a non-trivial error bound implies a mutual information lower bound. This Fano-type
argument is rather standard, and we defer its proof to Appendix F.2.

Before continuing, we discuss the typical use of Theorem C.7. Our aim is to show that problems of interest satisfy
SDPI with τn, ρn ≪ 1, and to quantify these SDPI constants as a function of n. In our results ϵn, δn will be negligible,
resulting in a negligible term negn. Temporarily ignoring this negligible additive term, as long as τn ≤ 1/2 we see that
Theorem C.7 implies for any learning algorithm A : memn(A,P) = Ω(1/ρn). In some of the applications, we will see
that ρn = Θ(nρ1), which is closely related to “advanced composition” from the differential privacy (Dwork et al., 2010).
Intuitively, this means that the dataset X1:n becomes more correlated with θ and X ∼ Pθ as the number of samples grows,
hence having more information about test. Finally, in the simplest setting of interest in which the inner product between two
independent samples scales as

√
d, even a single sample suffices to achieve low (expected) classification error, yet in this

setting of parameters, memn(A,P) ≳ 1/ρn ≳ 1/nρ1 ≳ d/n.

Overall, Theorem C.7 reduces proving memorization lower bounds to proving two SDPIs, and quantifies memorization via
the coefficients τn, ρn. We remark that the data generation SDPI can be bypassed whenever it is easy (or easier) to prove
an explicit upper bound on I(A(X1:n); θ) instead of relating it to I(A(X1:n);X1:n), as we do in our third application in
Section D.3. The next section addresses the question of computing these coefficients.

C.2. Proving SDPIs via Dominating Variables

Having established in Theorem C.7 that memorization follows from SDPIs in the process that generates the data, we address
the computation of the corresponding SDPI coefficients. Our derivation of excess memorization lower bounds proceeds by
reducing memorization to implicit variables that dominate the learning problem. The following theorem formalizes this, as
illustrated in Figure 2.

11

Trade-offs in Data Memorization via Strong Data Processing Inequalities

θ

Ztrain
θ

Ztest
θ X

X1:n !(X1:n)ALG

Φtest
ρn

Φtrain
τn

ρn

τn

Figure 2. Illustration of Theorem C.8. The blue variables dominate the learning problem, and each blue SDPI implies an (approximate)
SDPI in orange, resulting in excess memorization.

Theorem C.8. Let P = (Pθ)θ∼Ψ be a learning problem, and suppose (Ztrain
θ , Ztest

θ) are jointly distributed random
variables parameterized by θ so that Ztrain

θ ⊥⊥ Ztest
θ | θ, and that there are mappings Φtrain,Φtest such that for all θ,

dTV(Φ
train(Ztrain

θ),Pn
θ) ≤ δn, and Φtest(Ztest

θ) ∼ Pθ. Then:

1. (Data generation SDPI) If the marginal pair (θ, Ztrain
θ) for θ ∼ Ψ satisfies τn-SDPI, then (θ,X1:n) for θ ∼ Ψ,

X1:n ∼ Pn
θ satisfy (τn, δn)-SDPI.

2. (Test/train SDPI) If the marginal pair (Ztest
θ , Ztrain

θ) satisfies ρn-SDPI, then (X,X1:n) for X ∼ Pθ and X1:n ∼ Pn
θ

satisfies (ρn, δn)-SDPI.

Proof of Theorem C.8. To prove the first item, recall that for all θ it holds that dTV(Φ
train(Ztrain

θ),Pn
θ) ≤ δ, so by definition

it suffices to show that (θ,Φtrain(Ztrain
θ)) satisfy τn-SDPI. Indeed, for any M such that θ ⊥⊥ M |Φtrain(Ztrain

θ) :

I(M ; θ) ≤ τnI(M ;Ztrain
θ) ≤ τnI(M ; Φtrain(Ztrain

θ)) ,

where the first inequality follows from the data generation SDPI assumption, and the second inequality follows from the
DPI since Ztrain

θ ⊥⊥ M |Φtrain(Ztrain
θ).

To prove the second item, we first note that it suffices to show that (Φtest(Ztest
θ),Φtrain(Ztrain

θ)) satisfy ρn-SDPI. This is
true since Φtest(Ztest

θ) is distributed as X (according to Pθ) and Ztrain
θ ⊥⊥ Ztest

θ | θ. By our assumption, this means that
conditioned on any value of Φtest(Ztest

θ), the distribution of Φtrain(Ztrain
θ) is δn close in TV distance to Pn

θ . Thus for every
θ a pair (X,X1:n) ∼ Pθ ×Pn

θ can be seen as a sample from Φtest(Ztest
θ) and an independent sample from a distribution

close in TV distance to the distribution of Φtrain(Ztrain
θ)).

Now, for any M such that Φtest(Ztest
θ) ⊥⊥ M |Φtrain(Ztrain

θ) :

I(M ; Φtest(Ztest
θ))

(1)

≤ I(M ;Ztest
θ)

(2)

≤ ρnI(M ;Ztrain
θ)

(3)

≤ ρnI(M ; Φtrain(Ztrain
θ)) ,

where (1) is the DPI, (2) follows from the test/train SDPI assumption since Φtrain(Ztrain
θ) ⊥⊥ Ztest

θ |Ztrain
θ and therefore

M ⊥⊥ Ztest
θ |Ztrain

θ , and (3) follows from the DPI since M ⊥⊥ Ztrain
θ |Φtrain(Ztrain

θ).

The theorem above shows that if a pair of variables Ztrain
θ , Ztest

θ simulate the train and test data (up to some approximation),
then we can reduce the computation of the data generation coefficient τn and test/train coefficient ρn to these dominating
variables with only (presumably small) additive loss.
Remark C.9. The dominating variables may appear related to the concept of “sufficient statistics” (cf. Cover & Thomas,
1999; Polyanskiy & Wu, 2024) of the sample and test data. The main difference is that the discussed variables need not be
statistics of the data, i.e. computable from it.

12

Trade-offs in Data Memorization via Strong Data Processing Inequalities

D. Applications
In this section, we describe several applications of our framework. Our focus here will be on problems where high accuracy
can be achieved given a single (positive) example. This setting is the closest to our motivating problem of memorization of
entire data points. However, by appropriately choosing the parameters, the trade-off can be shown in problems with higher
sample complexity.

D.1. Gaussian Clustering

We consider a Gaussian clustering problem. Formally, given λ ∈ (0, 1) to be fixed later, the problem PG = (Pθ)θ∼Ψ is
defined as

Pθ = N (λθ, (1− λ2)Id) , θ ∼ Ψ = N (0d, Id) .

Note that the null distribution, namely the marginal of Pθ over θ ∼ Ψ, equals P0 = N (0d, Id). Hence, the problem
corresponds to classifying between samples that are λ-correlated with an unknown parameter θ, and samples that have zero
correlation with θ.

Our main result for this problem instance is the following:

Theorem D.1. In the Gaussian clustering problem PG, assume λ = Cd−1/4 for some sufficiently large absolute constant
C > 0. Then the following hold:

• There exists an algorithm A, that given a single sample (i.e. n = 1) satisfies err(A,PG) ≤ 0.01.

• Any algorithm A with constant err(A,PG) ≤ α < 1
2 satisfies

memn(A,PG) ≥
1− λ2

λ4n
· (1− 2α) log

(
1− α

α

)
= Ω

(
d

n

)
.

• As long as n ≤ c
√
d for some sufficiently small absolute constant c > 0, the lower bound above is nearly-tight: There

is a learning algorithm A such that err(A,PG) ≤ 0.01 and memn(A,PG) = O(d · log(dn)/n).

Remark D.2. For our upper bounds, we focus on small constant error chosen as 0.01 for simplicity. More generally, if the
correlation is set λ = Cd−1/4 for C = Θ(

√
log(1/α)), the same statements hold for learners with error at most α, affecting

only logarithmic terms in the resulting excess memorization.

We provide here a sketch of the proof of Theorem D.1, which appears in Appendix G.

Proof sketch of Theorem D.1. The first item follows from standard Gaussian concentration bounds, since for a single
sample X1 ∼ Pθ = N (λθ, (1 − λ2)Id), it holds that on one hand for X ∼ Pθ : ⟨X,X1⟩ ≳ λ2d = C2

√
d with high

probability, while on the other hand for X ∼ P0 = N (0d, Id) : ⟨X,X1⟩ ≲
√
d. Therefore, for a sufficiently large C > 0, a

linear classifier will have small error.

To prove the second item, we rely on the ideas presented in Section C. Particularly, we note that the information about θ
contained in the dataset X1, . . . , Xn ∼ N (λθ, (1 − λ2)Id) is dominated by the empirical average X̂ := 1

n

∑
i∈[n] Xi ∼

N (λθ, 1−λ2

n Id). Noting that λθ ∼ N (0d, λ
2Id), we see that the variance of X̂ in every direction is λ2+ 1−λ2

n = 1+λ2(n−1)
n .

Therefore, by rescaling X̂ by
√
n/(1 + λ2(n− 1)), we get a Gaussian with unit variance Ztrain

θ =
√

n/(1 + λ2(n− 1))·X̂
which is a dominating variable for the dataset, whose coordinate-wise correlation with a fresh sample X ∼ N (λθ, (1−λ2)I)
is λ2

√
n/(1 + λ2(n− 1)). By Fact C.2, this gives us a test/train SDPI with ρn = λ4n/(1+λ2(n−1)). The same dominating

variable also proves a data generation τn-SDPI by computing the coordinate-wise correlation between θ and Ztrain
θ as

λ
√
n/(1 + λ2(n− 1)), and therefore τn = λ2n/(1+ λ2(n− 1)) once again by Fact C.2. Plugging these SDPI coefficients

into Theorem C.7, we see that memn(A,PG) ≳ (1− τn)/ρn = 1−λ2n/(1+λ2(n−1))
λ4n/(1+λ2(n−1)) = 1−λ2

λ4n ≈ d/n.

To prove the last item, we provide a simple low error algorithm that returns a low error classifier which is describable using
Õ(d/n) bits, by using projections. To that end, considering once again the empirical average X̂ ∼ N (λθ, 1−λ2

n Id), we
project it onto Rℓ for ℓ ≈ d/n, obtain X̂ [1:ℓ], and consider the linear classifier that projects onto Rℓ and takes the inner product

13

Trade-offs in Data Memorization via Strong Data Processing Inequalities

with X̂ [1:ℓ]. The idea here is that Gaussian concentration arguments ensure that on one hand for X ∼ Pθ : ⟨X [1:ℓ], X̂ [1:ℓ]⟩ ≳
λ2ℓ ≈ C2d1/2/n with high probability, while on the other hand for X ∼ P0 = N (0d, Id) : ⟨X [1:ℓ], X̂ [1:ℓ]⟩ ≲

√
ℓ/n ≈

d1/2/n. Therefore the classifier achieves low error, and moreover, requires roughly ℓ bits to fully describe (ignoring
logarithmic terms due to quantization). In particular, the classifier cannot contain more than Õ(ℓ) bits of information about
the dataset, proving the claimed memorization upper bound.

D.2. Boolean Clustering

We consider a Boolean clustering problem, which is the Boolean analogue of the previously discussed Gaussian mean
estimation problem. Formally, given λ ∈ (0, 1) to be chosen later, the problem PB = (Pθ)θ∼Ψ corresponds to

Pθ = Bin 1−λ
2
(θ) , θ ∼ Ψ = U({±1}d) .

Note that the null distribution is uniform P0 = U({±1}d). Namely, given samples correlated with θ (which can be thought
of as cluster around θ), the problem corresponds to classifying between fresh samples that are λ-correlated coordinate-wise
with some θ, and uniformly generated samples. Our main result for this problem instance is the following:

Theorem D.3. In the Boolean clustering problem PB, assume λ = Cd−1/4 for some sufficiently large absolute constant
C > 0. Then the following hold:

• There exists an algorithm A, that given a single sample (i.e. n = 1) satisfies err(A,PB) ≤ 0.01.

• Any algorithm A : Xn → M with err(A,PB) ≤ α < 1
2 satisfies

memn(A,PB) = Ω

(
1− λ2n log log |M|d

λ4n log log |M|d
(1− 2α) log

(
1− α

α

))
.

In particular, as long as n ≤ c
√
d for some sufficiently small absolute constant c > 0, and |M| ≤ exp(dC̃) for some

absolute constant C̃ > 0, then

memn(A,PB) = Ω̃

(
1− λ2n

λ4n
(1− 2α) log

(
1− α

α

))
= Ω̃

(
d

n

)
.

• The lower bound above, as well as the sample size condition, are both nearly-tight: On one hand, if n ≤
√
d then

there is a learning algorithm A such that err(A,PB) ≤ 0.01 and memn(A,PB) = O(d/n). On the other hand,
there is a learning algorithm A such that err(A,PB) ≤ 0.01 and memn(A,PB) = O(d2 exp(−n/

√
d)), and so if

n ≳
√
d log d then memn(A,PB) ≤ 1/poly(d).

The theorem shows that up to n ≈
√
d samples the excess memorization decays as Θ̃(d/n), and that afterwards it drops to

nearly zero. We note that the extremely mild condition that |M| ∈ exp(poly(d)), namely the hypothesis class size is not
super-exponential in the dimension, is likely just an artifact of the proof technique which is based on the approximation
strategy introduced in Section C.2.

The proof of Theorem D.3 is similar in spirit to that of Theorem D.1 as we previously sketched, yet the technical details in
the proof of the memorization lower bound (second item) are more challenging. This follows from the fact that, as opposed
to the Gaussian case, the boolean dataset X1:n ∼ Bin 1−λ

2
(θ)n does not have a simple dominating variable. Instead, we use

arguments related to advanced composition from the differential privacy literature, to argue that X1:n is statistically close to
a post-processing of Ztrain

θ ∼ Bin 1−ξ
2
(θ) for ξ ≈

√
nλ, namely a single variable which is

√
n-times more correlated with θ.

We can then invoke Fact C.3 and use our approximate reduction in Theorem C.8 to obtain the required SDPIs, by noting
that the coordinate-wise correlation of θ and Ztrain

θ is
√
τn = ξ, whereas that of Ztrain

θ and X ∼ Bin 1−λ
2
(θ) is

√
ρn = ξλ.

Consequently, up to negligible additive factors, we obtain memn(A,PB) ≳
1−ξ2
λ2ξ2 ≈ 1−λ2n

λ4n , and under the assignment of λ

and assumption that n ≪
√
d, the latter simplifies to d/n.

The nearly-matching upper bounds are realized by an algorithm that computes the bit-wise majority vote over the sample.
For the regime n ≲

√
d, the algorithm only computes the majority along the first ℓ ≈ d/n coordinates, and returns a linear

14

Trade-offs in Data Memorization via Strong Data Processing Inequalities

classifier in the projected space, similarly to the Gaussian case. Concentration arguments ensure that the algorithm has small
error, while clearly requiring at most ℓ bits of memory, thus in particular no more than ℓ ≈ d/n bits from the training set can
be memorized. When n ≳

√
d log(d), computing the majority vote in each coordinate reconstructs the parameter θ with

very high confidence, so in this regime, accurate learning is possible with nearly zero excess memorization. The full proof
appears in Appendix H.

D.3. Sparse Boolean Hypercube

Finally, we apply our framework to the sparse Boolean hypercube clustering problem defined by Brown et al. (2021).
Given ν > 0 to be chosen later, the problem PsB = (Pθ)θ∼Ψ is defined as follows. The parameter θ = (S, y) is sampled
by choosing S ⊆ [d] to be a random subset that includes each i ∈ S independently with probability ν, and picking
yj ∼ U({±1}) independently for every j ∈ S. The distribution Pθ is defined to be the distribution of X such that for j ∈ S,
Xj = yj with probability 1, and Xj ∼ U({±1}) independently for every j /∈ S.

This problem can be seen as learning a sparse Boolean conjunction since positive samples x satisfy the conjunction∧
j∈S(xj == yj). Our next result characterizes the memorization trade-off for this problem, establishing a faster

memorization decay compared to the previous problems:

Theorem D.4. In the sparse Boolean hypercube clustering problem PsB, assume ν = Cd−1/2 for some sufficiently large
absolute constant C > 0, and that n ≤ c log d for some sufficiently small absolute constant c > 0. Then the following hold:

• There exists an algorithm A, that given a single sample (i.e. n = 1) satisfies err(A,PsB) ≤ 0.01.

• Any algorithm A with err(A,PsB) ≤ α < 1
2 satisfies

memn(A,PsB) = Ω

(
(1− 2α) log

(
1−α
α

)
ν222n

)
−O(

√
d log d) = Ω

(
d

22n

)
.

• The lower bound above is nearly-tight: there is a learning algorithm A such that err(A,PsB) ≤ 0.01 and
memn(A,PsB) = O(d log(d)/22n).

The proof of Theorem D.4 appears in Appendix I. To prove the memorization lower bound, we establish a test/train ρn-SDPI
for ρn ≈ ν222n. To do so, we introduce a dominating variable Ztrain

θ ∼ Bin 1
2+ξ(X) for X ∼ Pθ, ξ ≈ ν2n, and show that

processing it into X̃1:n by fixing each coordinate with some suitable probability, or else drawing each sample independently
along that coordinate, results in a training set which is identically distributed as X1:n. Then, we avoid the need of a data
generation SDPI by directly upper bounding the entropy of θ by H(θ) ≲

√
d log d, hence obtaining by the chain rule

memn(A,PsB) ≥ I(A(X1:n);X1:n)−H(θ) ≳ 1
ρn

−
√
d log d = Ω

(
d

22n

)
, the latter holding under our assumptions on

ν and n. The nearly-matching upper bound follows by considering an algorithm which only stores a subset of O(d/22n)
coordinates in which the sample is constant, and arguing that sufficiently many of them are indeed in S with high probability,
which suffices for generalization via standard concentration bounds.

E. Lower Bounds for Mixtures of Clusters
We now consider “mixture-of-clusters” generalization of our learning setting similar to that defined in (Feldman, 2020;
Brown et al., 2021). In this setting, data is sampled from some unknown mixture of clusters. The learner however has a
prior over the distribution of frequencies of the clusters. More formally, let P = (Pθ)θ∼Ψ denote a problem in the binary
classification setting defined in Section B. Recall, that in this setting a distribution Pθ is drawn from a meta-distribution
θ ∼ Ψ. The learning algorithm is then given a number of examples X1:n ∼ Pn

θ and needs to classify a fresh example as
coming from Pθ or the “null” distribution P0 (defined as the marginal of X ∼ Pθ′ where θ′ ∼ Ψ).

For a natural number k ∈ N representing the number of clusters, we model the prior information about frequencies of
clusters using a meta-distribution Π over ∆([k]) (i.e., Π is a distribution over distributions on [k]). We define a multi-cluster
version of P, denoted by Pmult = ({Pθ}θ∼Ψ,Π, k) as follows. First, k random cluster parameters θ1:k = (θ1, . . . , θk) are
drawn i.i.d. from Ψ and a frequency vector π is drawn from Π. Then, let Pθ1:k,π be the mixture distribution of Pθi ’s where
Pθi has weight πi. Namely, Pθ1:k,π is the distribution of X ∼ PθI where I ∼ π. The learning algorithm is then given

15

Trade-offs in Data Memorization via Strong Data Processing Inequalities

training data X1, . . . , Xn ∼ Pn
θ1:k,π

, and needs to distinguish samples coming from Pθ1:k,π from those coming from P0.
Formally, let (X,Y) ∼ Ptest

θ,π be a distribution such that Y ∼ {0, 1} is uniformly random. Conditioning on Y , we have
X ∼ Pθ1:k,π if Y = 1 and X ∼ P0 otherwise. The error of a predictor h : X → {0, 1} is then defined as

err(h) := Pr
(X,Y)∼Ptest

θ1:k,π

[h(X) ̸= Y].

Suppose A is a learning algorithm operating on n samples. We define its (average-case) error as

err(A,Pmult) := E
θ1,...,θk∼Ψk,π∼Π

X1:n∼Pn
θ1:k,π

h←A(X1:n)

[err(h)].

As in (Feldman, 2020; Brown et al., 2021), we will only consider product priors Π in which frequencies of clusters are
chosen independently up to a normalization constant. Specifically for a distribution p over [0, 1], the product prior Πk

p is
defined by independently sampling p1, . . . , pk ∼ pk, and defining πi =

pi∑
i′ pi′

.

Note that this setting is slightly different from the setting considered by (Brown et al., 2021). There, the algorithm gets
labeled data (X, I) where I ∼ π and X ∼ PθI . Then, given a test example X ∼ Pθ,π, the algorithm is tasked to label
which cluster was X sampled from (i.e., this is a multi-class classification problem). As we demonstrate below, the two
versions of the problems are subject to the same memorization phenomenon up to a factor logarithmic in k. Here, we present
the result for the binary classification setting (i.e., the algorithm needs to tell whether a point is from any one cluster, or is
from P0), noting that essentially the same proof works for the multi-class clustering setting.

E.1. Memorization Lower Bound

Given a learning problem Pmult, we would like to understand the amount of memorization required to achieve a close-to-
optimal error. Let us first consider the natural upper bound of memorization. To ease our discussion, we assume that the
learner gets the additional knowledge of the cluster ID of its examples. Namely, the learners gets i.i.d. examples from
the distribution P̃θ,π, where an element (X, i) ∼ P̃θ,π is sampled by first drawing i ∼ π and then X ∼ Pθi . We note
that this assumption only makes our lower bounds stronger since a learning algorithm can always ignore the cluster index
information. To solve the multi-cluster problem it suffices to be able to distinguish each of the clusters Pθ1 , . . . ,Pθk from
P0 with low error. Let π ∼ Π be a random frequency vector. For each i ∈ [k], the number of examples from Pθi is expected
to be n · πi. Consequently, the amount of memorization is roughly memnπi

(A,P), where A is the algorithm we use on
each cluster. By adding up the memorization from different clusters we get

∑
i∈[k] memnπi

(A,P) as an upper bound. We
show that any nearly-optimal algorithm is subject to a lower bound of essentially the same form.

Before proceeding we will need the following property of product priors from (Feldman, 2020).
Lemma E.1 (Feldman, 2020, Lemma 2.1). For a distribution p over [0, 1] let Πk

p be the product prior and denote by p̄ the
marginal distribution of the frequency of (any) element, namely the distribution of π1 where π ∼ Πk

p . Consider the random
variable (π, i1, . . . , in) where π ∼ Πk

p and (i1, . . . , in) ∼ πn. For any sequence of indices (j1, . . . , jn) that includes
u ∈ [k] exactly ℓ ∈ [0, n] times, it holds that

E
π∼Πk

p,(i1,...,in)∼πn
[πu | (i1, . . . , in) = (j1, . . . , jn)] = τℓ :=

Eα∼p̄[α
ℓ+1(1− α)n−ℓ]

Eα∼p̄[αℓ(1− α)n−ℓ]
.

To interpret Lemma E.1, suppose a learner has the prior knowledge of p and sees a sequence of examples
(X1, i1), . . . , (Xn, in) in which the cluster u appears exactly ℓ times. Lemma E.1 tells us that the expectation of the
posterior value of the frequency of u is τℓ. Therefore, it is natural to guess that if the learner does not perform well on the
u-th cluster, it will translate into an error of τℓ for the learner. We will show next that the previously described intuition is
indeed correct.

To simplify the discussion, we focus here on the problem settings that are learnable with vanishing error. Namely, we make
the following assumption:
Assumption E.2. Let P = {Pθ}θ∼Ψ be a learning problem. We assume that P is such that, there exists an algorithm that
given a single example X ∼ Pθ, with probability 1− neg(n, k, d) over θ ∼ Ψ and X ∼ Pθ, achieves classification error of
o(1

k2).

16

Trade-offs in Data Memorization via Strong Data Processing Inequalities

We remark that Assumption E.2 is not too restrictive: for all applications we have investigated in this paper (i.e. Gaussian
clustering, Boolean clustering, and Sparse Boolean clustering), the assumption can be satisfied by increasing the correlation
parameter by a factor logarithmic in k (see Remark D.2).

From sub-optimality to memorization: To count the error for clusters of specific sizes we introduce some notation. Let
S = ((X1, i1), . . . , (Xn, in)) be a sequence of examples. Having observed S, this induces a posterior distribution on θ1:k
and π1:k. Furthermore, it is easy to observe that θ1:k and π1:k are independent. Let θ1:k | S and π1:k | S be the posterior
distributions. For any ℓ ∈ [0, n], let In#ℓ(S) ⊆ [k] be the set of clusters i that appear exactly ℓ times in the sequence. For
any model h : X → {0, 1}, we define its expected error on the set of clusters i that appear exactly ℓ times in S by

errn(h, θ1:k, S, ℓ) :=
1

2

 ∑
i∈In#ℓ(S)

Pr
X∼Pθi

[h(X) = 0] + Pr
X′∼P0

[h(X ′) = 0]

 ,

and the expectation of this error on the posterior distribution θ1:k | S as

errn(h, S, ℓ) := E
θ1:k|S

[errn(h, θ1:k, S, ℓ)] .

Similarly for an algorithm A, we define

errn(A, θ1:k, S, ℓ) := E
h∼A(S)

[errn(h, θ1:k, S, ℓ)] .

and

errn(A, S, ℓ) := E
θ1:k|S

[errn(A, θ1:k, S, ℓ)] .

One can observe that these two definitions do not depend on the prior Πk
p . We also define opt(Pmult | S) (resp. opt(Pmult))

to be the minimum of err(A,Pmult, S) (resp. err(A,Pmult)).

The following theorem shows that the sub-optimality of any learning algorithm can be expressed in terms of its expected
error on posterior distributions.

Theorem E.3. Let Pmult = ({Pθ}θ∼Ψ,Πk
p, k) be a learning problem where P is subject to Assumption E.2. For any

learning algorithm A, with high probability over a data set S ∈ (X × [k])n, it holds that

err(A,Pmult | S) ≥ opt(Pmult | S) +
∑

1≤ℓ≤n

τℓ · errn(A, S, ℓ)−O(1/k).

In particular, it follows that

err(A,Pmult) ≥ opt(Pmult) + E
θ1:k∼Ψk,π∼Πk

p,S∼P̃θ,π

 ∑
1≤ℓ≤n

errn(A, θ1:k, S, ℓ)

−O(1/k).

Theorem E.3 says that, if an algorithm A is sufficiently close to being optimal, then errn(A, S, ℓ) must be small on average.
We next show that low average errn(A, S, ℓ) implies memorization lower bounds. For this, we will rely on the fact that
memorization lower bounds for the problems we consider scale at least linearly with the advantage over random guessing
(namely, 1/2− err).

Assumption E.4. Let P be a (binary) classification problem. We assume that there exists a constant cP such that
memℓ(P, α) ≥ cP · (1− 2α) ·memℓ(P) for every α ∈ (0, 1/2).

This assumption is satisfied (up to the lower order terms) by all the learning problems we have investigated (see Theorem C.7).
We remark that for this assumption to hold in the case of approximate SDPIs we additionally need to constrain the size of
the model output by the algorithm.

17

Trade-offs in Data Memorization via Strong Data Processing Inequalities

The following theorem is our main lower bound. It expresses the memorization for the multi-cluster problem Pmult as the
sum of memorization lower bounds for individual clusters. As in the case of lower bounds for a single cluster classification
problem P, the lower bound is scaled by the advantage over random guessing that the algorithm achieves for clusters of
each size. Specifically, for clusters of size ℓ, the average advantage over random guessing of A when given S is equal to
|In#ℓ(S)|/2− errn(A, θ1:k, S, ℓ).

Theorem E.5. Let Pmult = ({Pθ}θ∼Ψ,Πk
p, k) be a learning problem where P is subject to Assumptions E.2 and E.4. Let

S = (X1, in), . . . , (Xn, in) be a dataset of n i.i.d. examples from P̃θ1:k,π for θ1:k ∼ Ψk, π ∼ Πk
p . For every algorithm A,

memn(A,Pmult) = I(A(S);S | θ1:k, π) satisfies

memn(A,Pmult) ≥ cP · E
θ1:k∼Ψk,π∼Πk

p,S∼P̃θ1:k,π

 ∑
1≤ℓ≤n

(|In#ℓ(S)| − 2 · errn(A, θ1:k, S, ℓ)) ·memℓ(P)

 .

Application Example. Theorem E.5 generalizes prior works (Feldman, 2020; Brown et al., 2021) by allowing us to reason
about memorization of larger clusters (instead of only singleton clusters) in the multi-cluster context. We will now briefly
describe a scenario where our new lower bounds offer a significantly better understanding of memorization. Take P to be
a binary classification task (e.g., Gaussian/Boolean clustering, or the sparse Boolean clustering as considered by (Brown
et al., 2021)). Let Πk

p be a product prior induced by the singleton distribution p that always outputs 1. We consider the
multi-cluster learning task of Pmult = (P,Πk

p, k).

The lower bound in (Brown et al., 2021) is demonstrated for the training sample size n = O(k), in which case we expect to
observe many clusters with only a single example (singleton clusters). In order to achieve a close-to-optimal accuracy,3

a learning algorithm must perform well on the singleton clusters and thus needs to memorize Ω(dn) bits. Our general
technique recovers this lower bound (up to a logarithmic factor needed to ensure that Assumption E.2 holds). However, if
one just slightly increases n from k to k log k, the probability of observing a singleton cluster quickly approaches zero and
thus the results in (Brown et al., 2021) do not lead to a meaningful memorization lower bound.

In the latter regime, we will observe Ω(k) (i.e., most) clusters of size on the order log k. As we have already described in
Section D, for several canonical clustering problems (such as Gaussian/Boolean clusters), with do(1) training examples,
the memorization remains significant, roughly d/ℓ for each cluster of size ℓ. Thus in this regime Theorem E.5 implies that
algorithms that achieve (positive) constant advantage over random guessing will need to memorize Ω̃(kd/ log k) = Ω̃(nd)
bits.

F. Proofs for Section C
F.1. Proof of Proposition C.5

Note that the statement for δ = 0 is simply the definition of an SDPI, so without loss of generality we can assume that δ > 0.
Thus, we can further assume that |M| < ∞, since otherwise the statement trivially holds. We start the proof by proving two
information theoretic results, which intuitively, show that if two random variables are statistically close, then (1) they have
roughly the same Shannon entropy, and (2) any fixed randomized algorithm/channel extracts roughly the same amount of
information from either source.

Lemma F.1. Suppose P,Q are two random variables with pmfs p, q respectively, supported on a finite domain M such that
dTV(p, q) ≤ δ. Then, we have |H(P)−H(Q)| ≤ 2δ log

(
|M|
δ

)
.

Proof of Lemma F.1. For brevity, write py = Pr[P = y] and qy = Pr[Q = y]. Since the function x 7→ x log(1/x) is

3Note that when n < O(k), with high probability there will be some clusters not present in the training data. Therefore, no algorithm
can achieve a vanishing classification error.

18

Trade-offs in Data Memorization via Strong Data Processing Inequalities

monotone in (0, 1), we define sets L = {y : py > qy} and R = {y : qy > py} and deduce that

|H(P)−H(Q)| ≤ max

∑
y∈L

py log(1/py)− qy log(1/qy),
∑
y∈R

qy log(1/qy)− py log(1/py)


≤ max

∑
y∈L

(py − qy) log(1/py),
∑
y∈R

(qy − py) log(1/qy)

 . (1)

We show how to upper bound the first term
∑

y∈L(py − qy) log(1/py). The bound for the second term can be analogously
established. Consider the set SP = {y ∈ L : py < δ

|M|}. We have∑
y∈L

(py − qy) log(1/py) ≤
∑

y∈L\SP

(py − qy) log(1/py) +
∑
y∈SP

py log(1/py)

≤
∑

y∈L\SP

(py − qy) log

(
δ

|M|

)
+
∑
y∈SP

py log(1/py)

≤ δ log

(
|M|
δ

)
+
∑
y∈SP

py log(1/py).

By the monotonicity of x 7→ x log(1/x), the bound of py < δ
|M| , and the cardinality bound of |SP |, we obtain

∑
y∈SP

py log(1/py) ≤
∑
y∈SP

δ

|M|
· log

(
|M|
δ

)
≤ δ log

(
|M|
δ

)
.

Overall, we conclude that
∑

y∈L(py−qy) log(1/py) ≤ 2δ log
(
|M|
δ

)
. The bound for the second term of (1) can be similarly

established, concluding the proof.

Lemma F.2. Let B1, B2 be two random variables over some space B such that dTV(B1, B2) ≤ δ, and suppose A : B → M
is some randomized algorithm. Then

|I(A(B1);B1)− I(A(B2);B2)| ≤ 4δ log(|M|/δ).

Proof of Lemma F.2. It holds that

|I(A(B1);B1)− I(A(B2);B2)| ≤ |H(A(B1))−H(A(B2))|+ |H(A(B1) | B1)−H(A(B2) | B2)| .

By Lemma F.1 and the observation dTV(A(B1),A(B2)) ≤ dTV(B1, B2) ≤ δ, we obtain

|H(A(B1))−H(A(B2))| ≤ 2δ log

(
|M|
δ

)
.

We also note that

|H(A(B1) | B1)−H(A(B2) | B2)| ≤
∑
z∈B

|Pr[B1 = z]− Pr[B2 = z]| ·H(A(z)) ≤ 2δ log(|M|).

Combining both inequalities completes the proof of Lemma F.2.

Given the lemmas above, we are ready to complete the proof of Proposition C.5. Let B̃ be the approximation of B which is
given by the SDPI assumption, and denote M := A(B), M̃ := A(B̃). Applying Lemma F.2 and the ρ-SDPI assumption
that holds for (A, B̃), we see that

I(M ;B) ≥ I(M̃ ; B̃)− 4δ log(|M|/δ) ≥ 1

ρ
I(M̃ ;A)− 4δ log(|M|/δ) .

19

Trade-offs in Data Memorization via Strong Data Processing Inequalities

Further note that dTV(M̃,M) ≤ dTV(B̃, B) ≤ δ, which implies |H(M̃) − H(M)| ≤ 2δ log(|M|/δ) by Lemma F.1.
Furthermore, by assumption, the same is true even after we condition on A. Therefore, we may conclude that

|I(M̃ ;A)− I(M ;A)| ≤ |H(M̃)−H(M)|+ |H(M | A)−H(M̃ | A)| ≤ 4δ log(|M|/δ).

Plugged into the inequality above, we get that

I(M ;B) ≥ 1

ρ
(I(M ;A)− 4δ log(|M|/δ))− 4δ log(|M|/δ) ,

or rearranged,
I(M ;A) ≤ ρI(M ;B) + 4δ(1 + ρ) log(|M|/δ) ≤ ρI(M ;B) + 8δ log(|M|/δ) .

F.2. Completing the Proof of Theorem C.7

We will show that if err(A,P) ≤ α, then

I(A(X1:n);X) ≥ DKL (Ber(1− α) ||Ber(α)) = (1− 2α) log

(
1− α

α

)
.

Consider a random variable X ′ ∼ P0 drawn independently of X ∼ Pθ, X1:n ∼ Pn
θ and A(X1:n). Since P0 is the marginal

of Pθ over θ, the characterization of the mutual information as the KL-divergence between the joint and product distributions
shows that

I(A(X1:n);X) = DKL (A(X1:n), X || A(X1:n), X
′)

≥ DKL (A(X1:n)(X) || A(X1:n)(X
′))

= DKL (Ber(p) ||Ber(q)) ,

where the inequality follows because post-processing does not increase the KL divergence, and p, q denote the probability of
the model classifying positive/negative points as 1, respectively. Now, the error of A is equal to 1−p

2 + q
2 and therefore the

condition err(A,P) ≤ α implies that p− q ≤ 1− 2α. Optimizing this expression (as in the proof of Fano’s inequality, cf.
Cover & Thomas, 1999) we get

I(A(X1:n);X) ≥ DKL (Ber(1− α) ||Ber(α)) = (1− 2α) log

(
1− α

α

)
.

G. Proof of Gaussian Clustering Application
In this section, we prove Theorem D.1. We will establish the three claims one by one.

G.1. Gaussian sample complexity (n = 1)

Given a single sample X1 ∼ Pθ, we will show that the algorithm that returns the linear classifier

h(X) := 1

{
⟨X1, X⟩ ≥

√
4 log(200)d

}
has error at most 0.01. This will follow from standard Gaussian concentration bounds, since with high probability:

X ∼ Pθ =⇒ ⟨X,X1⟩ ≳ λ2d ≳
√
d ,

X ∼ P0 =⇒ E⟨X,X1⟩ = 0 , and hence |⟨X,X1⟩| ≲
√
d .

Formally, start by noting that in the null case, X1 and X ∼ P0 are simply two independent isotropic Gaussians, and
therefore a standard bound on their inner product ensures that

Pr
X∼P0

[⟨X1, X⟩ ≥
√
4 log(200)d] ≤ e−4 log(200)/4 =

1

200
.

20

Trade-offs in Data Memorization via Strong Data Processing Inequalities

On the other hand, if X ∼ Pθ then both X and X1 can be seen as distributed as X = λθ + g0, X1 = λθ + g1 where
g0, g1 ∼ N (0d, (1− λ2)Id) are independent of one another as well as of θ. Hence,

⟨X,X1⟩ = λ2∥θ∥2 + λ⟨θ, g0⟩+ λ⟨θ, g1⟩+ ⟨g0, g1⟩

=
C2

d1/2
∥θ∥2 + C

d1/4
⟨θ, g0⟩+

C

d1/4
⟨θ, g1⟩+ ⟨g0, g1⟩ .

Since 1− λ2 < 1, applying the same argument as in the null case to the latter three summands and union bounding ensures
that

Pr
θ,g0,g1

[min{⟨θ, g0⟩, ⟨θ, g1⟩, ⟨g0, g1⟩} < −
√

4 log(1200)d] ≤ 3e− log(1200) =
1

400
.

Furthermore, a standard bound on the norm of a Gaussian vector (cf. Vershynin, 2018, Theorem 3.1.1) ensures that
Pr[∥θ∥2 < γd] < 1

400 for some absolute constant γ > 0. Union bounding over this event as well, we overall see that with
probability at least 1− 1

200 :

⟨X,X1⟩ ≥ C2 · γd1/2 − 2C
√

4 log(1200)d1/4 −
√

4 log(1200)d .

For sufficiently large absolute constant C, the latter is larger than
√
4 log(200)d, and we see that the linear classifier h

achieves error at most 2 · 1
200 = 1

100 , completing the proof.

G.2. Gaussian memorization lower bound

In order to prove the lower bound, our goal is to establish that the conditions in Theorem C.7 hold. To do so, we use the
dominating variables approach and apply Theorem C.8, without any need for approximation (i.e. δn = 0). We construct the
dominating random variables Ztrain

θ , Ztest
θ as

Ztrain
θ = N

(
λ
√
n√

1 + (n− 1)λ2
· θ, 1− λ2

1 + (n− 1)λ2
· Id

)
, (2)

Ztest
θ = N (λθ, (1− λ2)Id).

To see that these variables satisfy the ρn-SDPI, we will use Fact C.2, and therefore need to show the variables are
√
ρn-

correlated unit Gaussians, for suitable ρn. To that end, recalling that θ ∼ N (0d, Id) and therefore marginalized over θ it
holds that

Ztrain
θ =

λ
√
n√

1 + (n− 1)λ2
N (0d, Id) +N

(
0d,

1− λ2

1 + (n− 1)λ2
· Id
)

= N
(
0d,

λ2n

1 + (n− 1)λ2
· Id
)
+N

(
0d,

1− λ2

1 + (n− 1)λ2
· Id
)

= N (0d, Id) ,

and similarly

Ztest
θ = λ · N (0d, Id) +N (0d, (1− λ2)Id) = N (0d, Id) .

We see that Ztrain
θ , Ztest

θ are both unit Gaussians, with each coordinate i ∈ [d] satisfying

E
[
(Ztrain

θ)i · (Ztest
θ)i

]
=

λ
√
n√

1 + (n− 1)λ2
· λ =:

√
ρn,

thus establishing the ρn-SDPI, as claimed.

We turn to argue about the existence of the desired mappings Φtrain,Φtest. First note that Ztrain
θ can be mapped to

N (λθ, 1−λ2

n Id) simply by rescaling by
√

n
1+(n−1)λ2 . Furthermore, it is known that N (λθ, 1−λ2

n Id) can be processed to

produce X1, . . . , Xn ∼ N (λθ, (1 − λ2)Id) since the average 1
n

∑n
i=1 Xi ∼ N (λθ, 1−λ2

n Id) is a sufficient statistic of
Gaussians with the same known variance (cf. Cover & Thomas, 1999, Section 2.9). By composition, this provides Φtrain.

21

Trade-offs in Data Memorization via Strong Data Processing Inequalities

Moreover, Φtest is simply the identity since Ztest
θ ∼ Pθ. We therefore establish the test/train condition in Theorem C.8 with

δn ≡ 0.

To establish the data generation SDPI with ϵn ≡ 0 as well, we once again use our construction of the post-processing Ztrain
θ

as in Eq. (2), and claim that θ and Ztrain
θ satisfy the τn-SDPI for

√
τn = λ

√
n√

1+(n−1)λ2
. This follows as we know that they

are both unit Gaussians, and by noting that they are
√
τn-correlated coordinate-wise by construction of Ztrain

θ . Therefore,
the dataset X1:n which we have shown to be a post-processing of Ztrain

θ also satisfies τn-SDPI with respect to θ, since for
every M such that M ⊥⊥ θ |X1:n we can use the SDPI and the (regular) DPI to see that

I(M ; θ) ≤ τnI(M ;Ztrain
θ) ≤ τnI(M ;X1:n).

Overall, by applying Theorem C.8, we see that the conditions of Theorem C.7 are met, and we get that for any algorithm A
with err(A,PG) ≤ α < 1

2

memn(A,PG) ≥
1− τn
ρn

Cα =
1− λ2n

1+(n−1)λ2

λ4n
1+(n−1)λ2

· (1− 2α) log

(
1− α

α

)
=

1− λ2

λ4n
· (1− 2α) log

(
1− α

α

)
.

G.3. Gaussian memorization upper bound

Given a sample X1:n ∼ Pn
θ , we will show that there exists an algorithm that returns a good classifier with the claimed

memorization upper bound. For that, we argue that an algorithm can return a high accuracy classifier h = A(X1:n) which is
describable using O(d log(dn)/n) bits, hence in particular

memn(A,PG) = I(h;X1:n | θ)
(⋆)

≤ I(h;X1:n) ≤ H(h) = O

(
d log(dn)

n

)
, (3)

where (⋆) is due to the fact that h ⊥⊥ θ |X1:n.

To construct the predictor we introduce some notation. Given a vector v ∈ Rd, we denote by v[1:ℓ] :=
(v1, . . . , vℓ, 0, . . . , 0) ∈ Rd its projection onto the first ℓ coordinates embedded in Rd. Let X̂ := 1

n

∑n
i=1 Xi be the

dataset’s empirical average, and note that

X̂ ∼ N
(
λθ,

1− λ2

n
Id

)
. (4)

For X̂ [1:ℓ] = (X̂1, . . . , X̂ℓ, 0, . . . , 0) ∈ Rd, let qk(X̂ [1:ℓ]) ∈ Rd be a quantization of X̂ [1:ℓ] that stores only k bits of X̂ [1:ℓ]

in each coordinate’s binary expansion, allowing up to magnitude of O(log(d/n)). We consider the algorithm A that returns
the linear classifier

h(X) := 1

{
⟨X [1:ℓ], qk(X̂

[1:ℓ])⟩ ≥ t
}
.

We will argue that for suitable choices of

ℓ = Θ(d/n) , k = Θ
(
log(dn)

)
, t = Θ(

√
d/n) ,

this classifier satisfies the desired properties. We note that this classifier is described by ℓk = O(d log(dn)/n) bits, so indeed
(3) holds, proving the memorization upper bound.

It remains to show that h is a high accuracy classifier. To bound the classifier’s error, recall (4) and note that on one hand for
the null case X ∼ P0 = N (0d, Id) :

⟨X [1:ℓ], X̂ [1:ℓ]⟩ = ⟨X [1:ℓ], λθ[1:ℓ]⟩+
〈
X [1:ℓ],N

(
0ℓ,

1− λ2

n
Iℓ

)〉
= N (0, λ2∥θ[1:ℓ]∥2 + ∥g∥2) , g ∼ N

(
0ℓ,

1− λ2

n
Iℓ

)
where equality is in the distributional sense. Hence,

E⟨X [1:ℓ], X̂ [1:ℓ]⟩ = 0 ,

22

Trade-offs in Data Memorization via Strong Data Processing Inequalities

and applying the general Hoeffding’s inequality (Vershynin, 2018, Theorem 2.6.2) ensures that for some absolute constants
c1, c2 > 0 :

Pr

[
⟨X [1:ℓ], X̂ [1:ℓ]⟩ ≥ t

2

]
≤ exp

(
− c1t

2

λ2∥θ[1:ℓ]∥2 + ∥g∥2

)
(1)

≤p exp

(
− c2t

2

ℓ/d1/2 + ℓ/n

)
(2)

≤ 0.001 , (5)

where
(1)

≤p holds with high probability (say, at least 0.999) for suitable c2 since ∥θ[1:ℓ]∥2 ≲ ℓ and ∥g∥2 ≲ ℓ · 1−λ2

n ≤ ℓ
n , and

(2)

≤ holds for a suitable assignment of t, ℓ as above, under our assumption that d ≳ n2.

It remains to further bound the error induced by quantization. Note that a standard bound on the maximum of independent
normal variables, each of the first ℓ coordinates of X̂ [1:ℓ] is bounded by ≤ 1000

√
2 log ℓ with probability at least 0.999.

Since we are storing the bits allowing up to a magnitude of O(log(d/n)), under this probable event the quantization error is
only due to the bits erased at the right-end of the binary expansion. It therefore holds that

⟨X [1:ℓ], qk(X̂
[1:ℓ])⟩ = ⟨X [1:ℓ], X̂ [1:ℓ]⟩+ ⟨X [1:ℓ], qk(X̂

[1:ℓ])− X̂ [1:ℓ]⟩
≤ ⟨X [1:ℓ], X̂ [1:ℓ]⟩+ ∥X [1:ℓ]∥ · ∥qk(X̂ [1:ℓ])− X̂ [1:ℓ]∥

≤ ⟨X [1:ℓ], X̂ [1:ℓ]⟩+ ∥X [1:ℓ]∥ ·
√
ℓ∥qk(X̂ [1:ℓ])− X̂ [1:ℓ]∥∞︸ ︷︷ ︸

coordinate-wise quantization error

≤ ⟨X [1:ℓ], X̂ [1:ℓ]⟩+ ∥X [1:ℓ]∥ ·
√
ℓ2log2 O(

√
log ℓ)−k

≤ ⟨X [1:ℓ], X̂ [1:ℓ]⟩+ ∥X [1:ℓ]∥ ·
√
ℓ log ℓ · 2−k ,

and further applying a Gaussian norm bound that ensures that Pr[∥X [1:ℓ]∥ ≥ C̃
√
ℓ] < 0.0001 for absolute constant C̃ > 0,

we see that the additional term is negligible for our setting of k. Union bounding with (5) and overall obtain

Pr
X∼P0

[h(X) = 0] = Pr
X∼P0

[⟨X, qk(X̂
[1:ℓ])⟩ < t] > 0.995 . (6)

As to X ∼ Pθ = N (λθ, (1− λ2)Id), note that

E⟨X [1:ℓ], X̂ [1:ℓ]⟩ = λ2 E ∥θ[1:ℓ]∥2 = λ2ℓ = C2 ·Θ(t) .

Thus, similar concentration and quantization arguments as in the null case yields for sufficiently large absolute constant
C > 0 (in the problem definition):

Pr
X∼Pθ

[h(X) = 1] = Pr
X∼Pθ

[⟨X [1:ℓ], qk(X̂
[1:ℓ])⟩ > t] > 0.995 . (7)

By union bounding (6) and (7) we get overall that

err(A,PG) < 0.01 ,

which completes the proof.

H. Proof of Boolean Clustering Application
In this section, we prove Theorem D.3.

H.1. Boolean sample complexity (n = 1)

Consider the algorithm that given X1 ∼ Pθ returns the predictor

h(X) := 1

{
⟨X1, X⟩ ≥

√
2 log(200)d

}
.

23

Trade-offs in Data Memorization via Strong Data Processing Inequalities

To see why this predictor suffers from error at most 0.01, first note that for X ∼ P0 : E⟨X1, X⟩ = 0, and by Hoeffding’s
inequality:

Pr[⟨X1, X⟩ ≥
√
2 log(200)d] ≤ 1

200
. (8)

On the other hand, for X ∼ Pθ :

E⟨X1, X⟩ =
d∑

i=1

E[(X1)i · (X)i] = d · E[(X1)1] · E[(X)1] .

Note that on one hand E[(X)1] = λθ1, or equivalently θ1 E[(X)1] = λ. Plugging this into the equation above, we see that

E⟨X1, X⟩ = dθ21 E[(X1)1] · E[(X)1] = dλ2 = C2
√
d .

A similar calculation also shows that Var⟨X1, X⟩ = dVar((X1)1)Var((X)1) ≤ d, following from Popoviciu’s variance
bound. Therefore, Chebyshev’s inequality yields

Pr[⟨X1, X⟩ ≤ (C2 −
√
200)

√
d] ≤ 1

200
. (9)

Assuming C is sufficiently large so that C2 −
√
200 >

√
2 log(200) we see by union bounding over (8) and (9) that the

defined predictor h indeed classifies between samples from Pθ and P0 with error at most 1
200 + 1

200 = 1
100 , as claimed.

H.2. Boolean memorization lower bound

Once again, we will follow the framework of Theorem C.7 to prove Item 2 of Theorem D.3.

BINOMIALS AND ADVANCED COMPOSITION

To start, we state and prove the following lemma.

Lemma H.1. Let λ ∈ (0, 1/10) and n ∈ N be such that n < 1
10λ2 . Let X be a product distribution over {±1}n where

for each coordinate i it holds that Pr[Xi = 1] = 1+λ
2 . Similarly let Y be a product distribution over {±1}n where for

each i ∈ [n] it holds that Pr[Yi = 1] = 1−λ
2 . Then, for every δ ∈ (0, 1) and ρ =

√
8n log(1/δ)λ, there exists a pair of

distributions A,B over {±1}n such that

dTV(X,
1 + ρ

2
A+

1− ρ

2
B) < δ,

dTV(Y,
1− ρ

2
A+

1 + ρ

2
B) < δ.

Here, pA+ (1− p)B denotes the mixture of two distributions with weights p and (1− p).

Lemma H.1 tells us how to post-process a Bernoulli random variable with bias 1
2 ± ρ, to approximate a sequence of

n independent Bernoulli random variables, each of bias 1
2 ± λ where λ ≈ ρ√

n
. This lemma appears to be folklore in

the differential privacy literature, yet for completeness, we include a brief proof below. First, we need the notion of
“indistinguishability” between distributions.

Definition H.2. Let X,Y be a pair of random variables with the same support Ω. We say that X and Y are (ε, δ)-
indistinguishable, if for every measurable E ⊆ Ω, it holds that

Pr[X ∈ E] ≤ eε Pr[Y ∈ E] + δ,

Pr[Y ∈ E] ≤ eε Pr[X ∈ E] + δ.

We use the following “decomposition” lemma for indistinguishable distributions, the proof of which is usually attributed to
(Kairouz et al., 2015).

Proposition H.3 ((Kairouz et al., 2015)). Suppose X,Y are (ε, δ)-indistinguishable. Then, there exists four distributions
X ′, Y ′, E1, E2 such that

X = (1− δ)X ′ + δE1,

Y = (1− δ)Y ′ + δE2,

24

Trade-offs in Data Memorization via Strong Data Processing Inequalities

and X ′, Y ′ are (ε, 0)-indistinguishable. Furthermore, there are two distributions U, V such that

X ′ =
eε

1 + eε
U +

1

1 + eε
V,

Y ′ =
eε

1 + eε
V +

1

1 + eε
U.

In light of Proposition H.3, to prove Lemma H.1, it suffices to show that the distributions X,Y in the statement are
(ρ, δ)-indistinguishable.

In the language of differential privacy, X and Y can be understood as the n-wise composition of the randomized response
mechanism,4 where each individual RR mechanism enjoys (λ + o(1), 0)-DP. The advanced composition theorem of
differential privacy then says the following:
Proposition H.4 ((Dwork et al., 2010; Kairouz et al., 2015)). Suppose A1, . . . ,An are n (ε, 0)-DP algorithms operating
on b ∈ {±1} and n < 1

5ε2 . Then, their composition (A1 ◦ · · · ◦ An) satisfies (
√

4n log(1/δ)ε, δ)-DP for every δ ∈ (0, 1).
In other words, (A1 ◦ · · · ◦ An)(−1) and (A1 ◦ · · · ◦ An)(+1) are (

√
4n log(1/δ)ε, δ)-indistinguishable.

Finally, combining Propositions H.4 and H.3 concludes the proof of Lemma H.1.

THE MUTUAL INFORMATION BOUND

We are ready to establish the second item of Theorem D.3. Recall the setting of PB: a random θ ∼ {±1}d is drawn. The
input distribution Pθ is the binary symmetric channel Bin 1−λ

2
(θ). Namely, to draw y ∼ Pθ, for each coordinate i ∈ [d] set

yi = θi with probability 1+λ
2 , and set yi = −θi otherwise. Next, we verify that the two conditions of Theorem C.7 are met

for PB.

Data generation SDPI. Conditioning on θ ∈ {±1}d, for each i ∈ [d], the i-th coordinates of X1:n are n independent draws
from a Bernoulli distribution of bias 1

2 + λ · θi. As such, we apply Lemma H.1 with some δ > 0 to be specified. Namely,
we draw a single Zi from Ber(12 + ξθi) with ξ =

√
8n log(1/δ) · λ, and post-process Zi as in Lemma H.1, to obtain a

collection of n Boolean variables (X̃1,i, . . . , X̃n,i), such that (over the randomness of Zi and the post-processing) the TV
distance between (X1,i, . . . , Xn,i) and (X̃1,i, . . . , X̃n,i) is at most δ. We run the same argument for each coordinate i ∈ [d].
Overall, we have shown how to post-process a random variable Z ∼ Bin 1−ξ

2
(θ) to obtain a sequence of n samples X̃1:n

such that the TV distance between X̃1:n and X1:n is bounded by δd. Using Item 1 of Theorem C.8, this implies that the pair
(θ,X1:n) satisfies (ξ2, δd)-SDPI where ξ =

√
8n log(d/δ) · λ and δ ∈ (0, 1) can be arbitrarily chosen.

Test/train SDPI. We now verify the second condition. Consider the “Z” random variable we have introduced. We have
shown a post-processing mapping Φtrain such that Φtrain(Z) is close to X1:n in TV distance. We can also draw X ∼ Pθ

and define Φtest as the identity mapping. It remains to show that Z and X satisfy ρn-SDPI for a small ρn. Indeed, note
that θ is uniform over {±1}d. Conditioned on θ, we have Z ∼ Bin 1−ξ

2
(θ) and X ∼ Bin 1−λ

2
(θ), and they are independent

conditioning on θ. Therefore, by the symmetry of the binary symmetric channel, it follows that Z ∼ Bin 1−λξ
2

(X), which

implies that Z and X satisfy ρn-SDPI with
√
ρn = λξ = Õ(λ2

√
n) = Õ(

√
n
d). Consequently, by Item 2 of Theorem C.8,

we conclude that the pair (X,X1:n) satisfies (λ2ξ2, δd)-SDPI, where we recall that ξ2λ2 = Õ(λ4n) = Õ(nd).

Conclusion. We have established both conditions of Theorem C.7. Using Theorem C.7, this yields that for any δ ∈ (0, 1) :

memn(A,PB) = Ω

(
1− λ2n log(d/δ)

λ4n log(d/δ)
(Cα − δd log(|M|/δ))

)
,

which by setting δ = min{(Cα

d log(|M|))
2, 1

2} results in

memn(A,PB) = Ω

(
1− λ2n log(d log |M|)
λ4n log(d log |M|)

Cα

)
.

4Recall that the (ε, 0)-DP randomized response (RR) mechanism receives an input b ∈ {±1}, and outputs a random bit b̂ such that
Pr[b̂ = b] = eε

1+eε
.

25

Trade-offs in Data Memorization via Strong Data Processing Inequalities

In particular, as long as λ2n ≤ 1
2 , or equivalently n ≤

√
d/C2, and if log |M| ∈ poly(d), or equivalently |M| ≤ exp(dC̃)

for some absolute constant C̃ > 0, then

memn(A,PB) = Ω̃

(
1− λ2n

λ4n
Cα

)
= Ω̃

(
d

n

)
.

H.3. Boolean memorization upper bounds

Here, we describe algorithms to complement the lower bound and establish Item 3 of Theorem D.3. We split the proof into
the two considered regimes n ≲

√
d and n ≳

√
d log d.

ALGORITHM WHEN n ≲
√
d

We will show that when 1 ≤ n ≤
√
d examples are available, we can design an algorithm A which learns an accurate model

h such that I(h;X1:n) = O
(
d
n

)
.

Let Csub > 0 be a sufficiently large constant. On input n i.i.d. samples X1:n ∼ Pn
θ , let θ̂ be the bit-wise majority vote of

X1:n. Our algorithm chooses t = min
(
d, Cd

n

)
and returns the hypothesis

h(X) := 1

{
⟨θ̂[1,t], X [1,t]⟩ ≥

√
2 log(200)t

}
.

Here, recall that for a vector v ∈ Rd, the notation v[1,t] = (v1, . . . , vt, 0, . . . , 0) denotes its projection onto the first t
coordinates embedded in Rd.

We prove that h is, with high probability, a good predictor. First, for X ∼ P0, the same argument as in Section H.1 proves
that PrX∼P0

[h(X) = 1] ≤ 1
200 .

It remains to show that h classifies most X ∼ Pθ correctly. Indeed, for every coordinate j ∈ [d], we have

Pr[θ̂j = θj] ≥
1

2
+ C ′

√
nλ

for some constant C ′. Also,

Pr[Xj = θj] =
1

2
+ λ

These two combined would imply that

E⟨θ̂[1,t], X [1,t]⟩ ≥ C ′λ2
√
nt = C ′′

√
t.

Similarly as in Section H.1, we have

Var
[
⟨θ̂[1,t], X [1,t]⟩

]
≤ t.

Therefore, Chebyshev’s inequality gives

Pr[⟨θ̂[1,t], X [1,t]⟩ ≤ ((C ′′)2 −
√
200)

√
t] ≤ 1

200
.

By setting Csub to be large enough, we can guarantee that (C ′′)2 −
√
200 ≥

√
2 log(200), which would consequently yield

that PrX∼Pθ
[h(X) = 0] ≤ 1

200 . This completes the accuracy analysis of h.

Regarding memorization, observe that h can be described using O(Cd
n) bits. Hence, we have

memn(A,PB) ≤ I(h;X1:n) ≤ H(h) ≤ O

(
d

n

)
,

as desired.

26

Trade-offs in Data Memorization via Strong Data Processing Inequalities

ALGORITHM FOR n ≳
√
d log d

We now provide an accurate algorithm for which memn(A,P) = O(d2 exp(−d/
√
n)), and so if n ≥ C̃

√
d log d, then A

learns an accurate model h with nearly no excess memorization, particularly, such that I(h;X1:n) = O(d−C̃/2).

Similarly to the previously described algorithm, given n i.i.d. samples X1:n ∼ Pn
θ , let θ̂ be the bit-wise majority vote of

X1:n. Our algorithm returns the hypothesis

hθ̂(X) := 1

{
⟨θ̂, X⟩ ≥

√
2 log(200)d

}
.

Noting that this is the same predictor as before but with no projection, it is easy to verify that the accuracy analysis follows
from the same calculation as in the previous case. We will therefore prove the memorization bound, which follows from
different arguments.

By definition,

memn(A,PB) = E
θ∼U({±1}d)

[
I(hθ̂ | θ;S | θ)

]
≤ E

θ∼U({±1}d)
[H(hθ̂ | θ)] .

We will show that for any θ, it holds that H(hθ̂ | θ) ≲ d−Ω(C̃), thus implying the claimed bound. Fix θ, and let
γ = PrX1:n

[hθ̂ ̸= hθ] which is the probability that the bit-wise majority vote did not reconstruct θ. By Hoeffding’s bound,
for any coordinate j ∈ [d] : PrX1:n [θ̂j ̸= θj] ≤ exp(−nλ2/2) so by union bounding we see that γ ≤ d exp(−nλ2/2).

Considering the Markov chain θ → X1:n → hθ̂, Fano’s inequality shows that

H(hθ̂ | θ) ≤ H2(γ) + γ log(|{±1}d| − 1)

< H2(γ) + γd

≤ 2
√
γ + γd

≤ 2
√
d exp(−nλ2/4) + d2 exp(−nλ2/2)

≤ 3d2 exp(−nλ2/2) ,

where we used the easily verifiable numerical bound H2(γ) ≤ 2
√
γ. Overall we see that

memn(A,PB) = O(d2 exp(−nλ2/2)) ,

which under our parameter regime λ = C/d1/4, yields the claimed bound.

I. Proof of Sparse Boolean Hypercube Application
In this section, we prove Theorem D.4.

I.1. Sparse Boolean sample complexity (n = 1)

Recall that in PsB, the learning problem is parameterized by θ = (S, y) where S is a random subset including each i ∈ [n]
with probability ν ≈ 1

d1/2 and y ∼ {±1}d is uniformly at random. The distribution Pθ is a product distribution X on {±1}d
where XS = yS with probability one and XS is uniformly at random.

We claim that learning with a single samples is possible so long as the set S satisfies that |S| ≥
√

4 log(200)d. First, note
that this event happens with probability at least 1− exp(−Ω(

√
d)) if we choose ν = C

d1/2 for a large enough constant C.
Now, suppose we have |S| ≥

√
4 log(200)d and let X1 be the training sample. Consider the hypothesis

h(X) := 1

{
⟨X,X1⟩ ≥

√
2 log(200)d

}
.

We verify that h has a low generalization error. To see this, we first observe that for X ∼ P0, it holds E[⟨X1, X⟩] = 0, and
by Hoeffding’s bound, we further have Pr[⟨X1, X⟩ ≥

√
2 log(200)d] ≤ 0.005. On the other hand, conditioned on θ, for

every X ∼ Pθ, we have that XS = (X1)S and Xj ∼ {±1} for every j ̸∈ S. In this case, it is easy to see that ⟨X,X1⟩ is a
random variable with mean |S| ≥

√
2 log(200)d and standard deviation O(

√
d− |S|). Similarly to the proof for the case

of PB, we see that PrX∼Pθ
[⟨X,X1⟩ ≤

√
2 log(200)d] ≤ 0.005. Overall, we see that the predictor h has error at most 0.01

as a classifier between Pθ and P0, as desired.

27

Trade-offs in Data Memorization via Strong Data Processing Inequalities

I.2. Sparse Boolean memorization lower bound

In this section, we establish Item 2 of Theorem D.4. We will deviate slightly from the framework of Theorem C.7. In
particular, we will establish a lower bound on I(A(X1:n);X1:n) via the test/train SDPI as in Theorem C.7, however, we
will not prove a data generation SDPI. Instead, we directly upper bound I(X1:n; θ) by the Shannon entropy of θ, which is at
most O(

√
d log(d)). Then, a lower bound on I(A(X1:n);X1:n | θ) follows easily.

Suppose θ ∼ Ψ and (X,X1:n) ∼ Pn+1
θ . We show that the pair (X,X1:n) satisfy ρn-SDPI with ρn = Θ(2n

d1/2). We begin
with a basic observation: recall that the parameter θ consists of a pair (S, xS) where each element is included in S with
probability ν = Θ(d1/2). Here, conditioning on X would not change the distribution of S: namely, it is still the case
that each i is in S with probability ν. Furthermore, if i ∈ S then we know the i-th bits of the training samples (namely,
(Xj,i)

n
j=1) all agree with X0,i. Otherwise, (Xj,i)

n
j=1 is uniformly distributed in {±1}n.

With this observation in mind, we introduce a random variable Z ∼ Bin 1
2+ξ(X) for some ξ to be specified. Consider the

following post-processing of Z that produces sequence of samples X̃1, . . . , X̃n:

• Independently for each coordinate i ∈ [d], with probability ν+(1−ν)2−n+1, set all of X̃1,i, . . . , X̃n,i as Zi. Otherwise
choose (X̃1,i, . . . , X̃n,i) ∼ U({±1}n \ {(−1)n, (+1)n}) uniformly at random.

We argue that, for a proper choice of ξ, the joint distribution of (X, X̃1:n) is identical to that of (X,X1:n). Indeed, for each
i ∈ [d], the probability that all of (Xj,i)

n
j=1 are the same is ν + (1− ν)2−n+1, which is also the case for X̃1:n. Furthermore,

conditioning on the event that (Xj,i)
n
j=1 are not all-0 nor all-1, they are uniformly distributed in {±1}n \ {(−1)n, (+1)n},

which is, again, also the case for X̃1:n.

We turn to the case that all of (Xj,i)
n
j=1 are the same. It is easy to calculate that the probability of the event (Xj,i)

n
j=1 =

(X0,i)
n is ν + (1− ν)2−n, while the same probability term w.r.t. X̃ evaluates to (12 + ξ) · (ν + (1− ν)2−n+1). It remains

to set ξ properly so that the two probability quantities coincide. Indeed, this gives

ξ =
ν + (1− ν)2−n

ν + (1− ν)2−n+1
− 1

2
=

ν

2ν + (1− ν)2−n+2
.

Recall that we set ν = Θ(d−1/2). Therefore, for all n ≤ o(log d), the expression simplifies to ξ = Θ(ν2n).

We have shown that with the proper choice of ξ, we can define Z ∼ Bin 1
2+ξ(X) and post-process Z to obtain a sequence of

samples X̃1:n identically distributed as X1:n. This implies that the pair (X,X1:n) enjoys at least the same SDPI as the pair
(X,Z). Quantitatively, the SDPI parameter we achieve is ρn = ξ2 = Θ(ν222n) = Θ(2

2n

d). This consequently implies that

I(A(X1:n);X1:n) ≥
1

ρn
I(A(X1:n);X) = Ω

(
d

22n
(1− 2α) log

(
1− α

α

))
,

as claimed. For all n ≤ o(log d), this lower bound is far above
√
d log d. Hence,

memn(A,PsB) = I(A(X1:n);X1:n | θ) ≥ I(A(X1:n);X1:n)−H(θ) = Ω

(
d

22n

)
.

I.3. Sparse Boolean memorization upper bound

Similarly to the other memorization upper bound proofs, given a sample X1:n ∼ Pn
θ , we will argue that an algorithm can

return a high accuracy classifier h = A(X1:n) which is describable using Õ(d/22n) bits, hence in particular

memn(A,PsB) = I(h,X1:n | θ)
(h⊥⊥θ |X1:n)

≤ I(h,X1:n) ≤ H(h) = Õ

(
d

22n

)
.

Let Ŝ ⊂ [d] be the subset that includes coordinates j ∈ [d] in which the dataset is constant, namely for which (Xi)j = (Xi′)j
is the same for all i, i′ ∈ [n]. Furthermore, let Ŝℓ be the first ℓ coordinates in Ŝ, and define

h(X) = 1
{
⟨XŜℓ , (X1)Ŝℓ⟩ ≥ t

}
= 1

∑
j∈Ŝℓ

Xj · (X1)j ≥ t

 .

28

Trade-offs in Data Memorization via Strong Data Processing Inequalities

We will argue that for suitable

ℓ = Θ

(
d

22n

)
, t =

√
2 log(200)ℓ = Θ(

√
ℓ),

this classifier satisfies the desired properties. We note that the memorization upper bound readily follows by the description
length argument above, since all that needs to be stored are the ℓ bits of (X1)Ŝℓ alongside their corresponding indices in [d],
which requires O(ℓ log(d)) memory.

It remains to show that h is a high accuracy classifier. We first note that in the null case P0 = U({±1}d), so it holds that

E
X∼P0

⟨XŜℓ , (X1)Ŝℓ⟩ = 0 ,

and by Hoeffding’s bound

Pr
[
⟨XŜℓ , (X1)Ŝℓ⟩ ≥ t

]
= Pr

[
⟨XŜℓ , (X1)Ŝℓ⟩ ≥

√
2 log(200)ℓ

]
≤ 0.005 . (10)

We now turn to argue about the case X ∼ Pθ. Note that for any coordinate j ∈ Ŝℓ, if j ∈ S then Xj = (X1)j with
probability 1, yet if j /∈ S then Xj · (X1)j ∼ U({±1}). Hence, we see that

E
X∼Pθ

⟨XŜℓ , (X1)Ŝℓ⟩ = |Ŝℓ ∩ S| . (11)

Therefore, we set out to estimate the size of Ŝℓ ∩ S. This set corresponds to coordinates in Ŝℓ which are “truly” constant, as
opposed to uniformly random coordinates that happened to be constant on all seen examples, even thought they are not in S.
Accordingly, since S ⊂ Ŝ, for any coordinate j ∈ [d] :

Pr[j ∈ S | j ∈ Ŝ] =
Pr[j ∈ Ŝ ∩ j ∈ S]

Pr[j ∈ Ŝ]
=

Pr[j ∈ S]

Pr[j ∈ Ŝ]
=

ν

ν + (1− ν)2−n+1
.

Moreover, by symmetry, choosing the first ℓ coordinates in Ŝ into Ŝℓ is equivalent to sub-sampling ℓ coordinates among the
constant coordinates, and therefore

E |Ŝℓ ∩ S| = ℓ · Pr[j ∈ S | j ∈ Ŝ] = ℓ ·
(

ν

ν + (1− ν)2−n+1

)
≳(1) ℓ ·

2n√
d
≥(2) C

′ ·
√
ℓ ,

where (1) follows from the assumption that n = O(log d), and (2) follows for any constant C ′ of our choice provided that
ℓ = C ′′ d

22n for a large enough C ′′. For sufficiently large C ′, Hoeffding’s bound further ensures that

Pr[|Ŝℓ ∩ S| > 3t] > 0.999 ,

and therefore under this probable event and applying yet another Hoeffding bound over ⟨XŜℓ , (X1)Ŝℓ⟩, (11) ensures that

Pr
X∼Pθ

[⟨XŜℓ , (X1)Ŝℓ⟩ ≥ t] > 0.995 .

Overall, combined with (10), this ensures that the predictor h has classification error of at most 0.01, completing the proof.

J. Proofs for Section E
J.1. Proof of Theorem E.3

The proof follows that of Feldman (2020, Theorem 2.3). We can write

err(A,Pmult | S) = E
π∼Πk

p,θ1:k∼Ψk
E

S∼P̃θ1:k,π,h←A(S)

[
1

2
Pr

X∼Pθ1:k,π

[h(X) = 0] +
1

2
Pr

X∼P0

[h(X) = 1]

∣∣∣∣ S]

=
1

2
E

π∼Πk
p,θ1:k∼Ψk

E
S∼P̃θ1:k,π,h←A(S)

∑
j∼π

Pr
X∼Pθj

[h(X) = 0] + Pr
X∼P0

[h(X) = 1]

∣∣∣∣∣∣ S


29

Trade-offs in Data Memorization via Strong Data Processing Inequalities

Using Zn#ℓ to denote the collection of clusters u that appear exactly ℓ times in S, we have

1

2
E

π∼Π,θ1:k∼Ψk
E

S∼P̃θ1:k,π,h←A(S)

[
Pr

X∼Pθ,π

[h(X) = 0] + Pr
X∼P0

[h(X) = 1]

∣∣∣∣ S]
=
∑

0≤ℓ≤n

errn(A, S, ℓ) · 1

|Zn#ℓ|
·
∑

u∈Zn#ℓ

E[πu | S]

=
∑

0≤ℓ≤n

τℓ · errn(A, S, ℓ).

In words, the term τℓ reflects the change of (distribution of) πu after conditioning on S, while the term errn reflects the
change of θ. It turns out, by calculation, that after conditioning on S, the error of the algorithm can be succinctly described
by the formula above.

To prove the theorem, it remains to argue that

opt(Pmult | S) ≤ τ0 · errn(A, S, 0) +O(1/k). (12)

We describe an algorithm A∗ here: for every cluster u that has been seen at least once in S, the algorithm trains a binary-
classification model to distinguish Pθu from P0 with error at most 1

k2 (this is possible thanks to Assumption E.2). Then,
upon receiving a query X , the algorithm tests whether X was likely from Pθu for every seen cluster u. A∗ outputs 1 if at
least one of the tests outputs 1. and 0 otherwise. By simple union bound, for X ∼ P0, the algorithm makes an error on X
with probability at most O(1k). For X ∼ Pθu where u-th cluster is present in S, the probability that A∗ misclassifies X is at
most 1

k2 . For every X ∼ Pθu where u ∈ Zn#0, A∗ might fail miserably on X . However, by Lemma E.1, the weight of
all such clusters, after conditioning on S, is at most τ0 · |Zn#0|. This shows that the error of A∗ is upper bounded by the
right-hand side of (12), as claimed.

To establish the second item of the theorem, we simply take the average over S.

J.2. Proof of Theorem E.5

Let S = ((X1, i1), . . . , (Xn, in)). We start by writing

I(A(S);S | θ1:k, π) = I(A(S);S, (i1, . . . , in) | θ1:k, π)
= I(A(S); (i1, . . . , in) | θ1:k, π) + I(A(S);S | θ1:k, π, (i1, . . . , in))
≥ I(A(S);S | θ1:k, π, (i1, . . . , in)).

We focus on the last line. By definition of conditional mutual information, we can first sample and condition on π ∼ Πk
p

and i1, . . . , in ∼ πn, and consider the conditional mutual information I(A(S);S | θ1:k) (where i1, . . . , in, π have been
fixed). Note that the parameters θ1, . . . , θn and examples X1, . . . , Xn are independent of these choices and still have the
same distribution. We denote by SX := (X1, . . . , Xn) the unconditioned part of S.

Next, we want to show that the memorization of different clusters is essentially independent. Toward that goal, let Sj be the
set of pairs (X, i) from S such that i = j (i.e., Sj contains examples of S that are from the j-th cluster). We have

I(A(S);S | θ1:k) = H(S | θ1:k)−H(S | θ1:k,A(S))

≥
∑
j∈[k]

H(Sj | θj)−H(Sj | θ1:k,A(S)) (sub-additivity and additivity of entropy)

≥
∑
j∈[k]

H(Sj | θj)−H(Sj | θj ,A(S)) (monotonicity of conditional entropy)

=
∑
j∈[k]

I(A(S);Sj | θj).

We now derive the claimed lower bound. As before, let In#ℓ(S) be the collection of all j’s that appear exactly ℓ times
among i1, . . . , in.

30

Trade-offs in Data Memorization via Strong Data Processing Inequalities

Having conditioned on i1, . . . , in, let j ∈ In#ℓ(S). We consider how well the algorithm distinguishes Pθj from P0 (when
we take the average over θj , Sj and A(S)). Thinking of this as a binary classification problem between Pθj and P0 where ℓ
samples from Pθj are available, we can evaluate the error of the algorithm by

ej :=
1

2
E

θ1:k∼Ψk,SX ,h←A(S)

[
Pr

X∼Pθj

[h(X) = 0] + Pr
X∼P0

[h(X) = 1]

]
.

Using Assumption E.4, we obtain that

I(A(S);Sj | θj) ≥ cP(1− 2ej) ·memℓ(P).

Note that ∑
j∈In#ℓ(S)

ej = E
θ1:k∼Ψk,SX

[errn(A, θ1:k, S, ℓ)] .

Adding up the contribution from different j ∈ In#ℓ(S), we get∑
j∈In#ℓ(S)

I(A(S);Sj | θj) ≥ cP · E
θ1:k∼Ψk,SX

[(|In#ℓ(S)| − 2 · errn(A, θ1:k, S, ℓ)) ·memℓ(P)] .

Finally, summing over all ℓ and taking the average over π, i1, . . . , in concludes the proof.

31

	Introduction
	Our Contribution
	From cluster classification to LLMs

	Discussion
	Related Work
	Formal Problem Setting
	General Framework: SDPIs and Memorization
	SDPIs imply Memorization
	Proving SDPIs via Dominating Variables

	Applications
	Gaussian Clustering
	Boolean Clustering
	Sparse Boolean Hypercube

	Lower Bounds for Mixtures of Clusters
	Memorization Lower Bound

	Proofs for Section C
	Proof of Proposition C.5
	Completing the Proof of Theorem C.7

	Proof of Gaussian Clustering Application
	Gaussian sample complexity (n=1)
	Gaussian memorization lower bound
	Gaussian memorization upper bound

	Proof of Boolean Clustering Application
	Boolean sample complexity (n=1)
	Boolean memorization lower bound
	Boolean memorization upper bounds

	Proof of Sparse Boolean Hypercube Application
	Sparse Boolean sample complexity (n=1)
	Sparse Boolean memorization lower bound
	Sparse Boolean memorization upper bound

	Proofs for Section E
	Proof of Theorem E.3
	Proof of Theorem E.5

