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Abstract
This paper introduces the Hamilton-Jacobi-
Bellman Proximal Policy Optimization (HJBPPO)
algorithm into reinforcement learning. The
Hamilton-Jacobi-Bellman (HJB) equation is used
in control theory to evaluate the optimality of the
value function. Our work combines the HJB equa-
tion with reinforcement learning in continuous
state and action spaces to improve the training of
the value network. We treat the value network
as a Physics-Informed Neural Network (PINN)
to solve for the HJB equation by computing its
derivatives with respect to its inputs exactly. The
Proximal Policy Optimization (PPO)-Clipped al-
gorithm is improvised with this implementation
as it uses a value network to compute the objec-
tive function for its policy network. The HJBPPO
algorithm shows an improved performance com-
pared to PPO on the MuJoCo environments.

1. Introduction
In discrete-time Reinforcement Learning (RL), the value
function estimates returns from a given state as a sum of
the returns over time steps. This value function is obtained
by solving the Bellman Optimality Equation. On the other
hand, in continuous-time RL, the value function estimates
returns from a given state as an integral over time. This value
function is obtained by solving a partial differential equation
(PDE) known as the Hamilton-Jacobi-Bellman (HJB) equa-
tion (Munos, 1999). Currently existing algorithms in the
RL literature such as Proximal Policy Optimization (PPO)
update the value function using the Bellman Optimality
Equation to estimate the discrete-time returns for each state.
We discovered that this value function, when trained on
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MuJoCo environments, does not show convergence towards
the optimal value function as described by the HJB equation
(see Figure 2 in Appendix B). This shows that information
is lost when the value function is trained using discrete-time
methods.

Physics-informed neural networks (PINNs) was introduced
by Raissi et al. (2019) and leverage auto-differentiation to
compute derivatives of neural networks with respect to their
inputs and model parameters exactly. This enables the laws
of physics (described by ODEs or PDEs) governing the
dataset of interest to act as a regularization term for the
neural network. PINNs outperform regular neural networks
on such datasets by exploiting the underlying physics of the
data.

To the best of our knowledge, this paper is the first to ex-
amine the intersection between PINNs and RL. We utilize
PINNs to encode the HJB equation to train the value func-
tion and bridge the information gap between returns com-
puted over discrete time and continuous time. We propose
the Hamilton-Jacobi-Bellman Proximal Policy Optimization
(HJBPPO) algorithm, which demonstrates superior perfor-
mance in terms of higher rewards, faster convergence, and
greater stability compared to PPO on MuJoCo environments,
making it a significant improvement.

2. Preliminaries
Consider a controlled dynamical system modeled by the
following equation:

ẋ = f(x, u), x(t0) = x0, (1)

where x(t) is the state and u(t) is the control input. In
control theory, the optimal value function V ∗(x) is useful
towards finding a solution to control problems (Munos et al.,
1999):

V ∗(x) = sup
u

∫ ∞

t0

γtR(x(τ ; t0, x0, u(·)), u(τ))dτ, (2)

where R(x, a) is the reward function and γ is the discount
factor. The following theorem introduces a criteria for
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assessing the optimality of the value function [(Liberzon,
2012), (Kamalapurkar et al., 2018)].

Theorem 2.1. A function V (x) is the optimal value function
if and only if:

1. V ∈ C1(Rn) and V satisfies the Hamilton-Jacobi-
Bellman (HJB) Equation

V (x) ln γ + sup
u∈U
{R(x, u) +∇xV

T (x)f(x, u)} = 0

(3)
for all x ∈ Rn.

2. For all x ∈ Rn, there exists a controller u∗(·) such
that:

V (x) ln γ +R(x, u∗(x)) +∇xV
T (x)f(x, u∗(x))

= V (x) ln γ + sup
û∈U
{R(x, û) +∇xV

T (x)f(x, û)}.

(4)

Currently existing algorithms in RL such as PPO do not
focus on solving the HJB equation to maximize the total
reward for each episode. To show this, we define the HJB
loss at each episode as the following:

M̂SEf

=
1

T

T−1∑
t=0

|V (xt) ln γ +R(xt, at) +∇xV
T (xt)f(xt, at)|2,

(5)

where T is the number of timesteps in the episode, xt is the
state of the environment at timestep t, and at is the action
taken at timestep t. The gradient∇xV

T (xt) is computed ex-
actly using auto-differentiation. We approximate f(xt, at)
using finite differences:

MSEf =
1

T

T−1∑
t=0

|V (xt) ln γ +R(xt, at)

+∇xV
T (xt)(

xt+1 − xt

∆t
)|2, (6)

where ∆t is the time step size used in the environment.
We have plotted the HJB loss for each environment using
PPO in Figure 2 in Appendix B. The mean HJB loss for
each environment takes extremely high values and does not
show convergence in 6 out of 10 of the environments, thus
showing that the value function does not converge to the
optimal value function as shown by the HJB equation.

As a comparison, we have plotted the graphs for the value
network loss in Figure 3 in Appendix B. The Bellman opti-
mality loss shows convergence in 8 out of the 10 environ-
ments. This shows that information is lost when we solve
the Bellman optimality equation for a discrete-time value

function compared to a continuous-time value function. It
also shows that convergence of the value function does not
necessarily lead to convergence in the HJB loss.

To solve this problem as shown in Figure 2, we treat the
value network as a PINN and use gradient-based methods
to reduce the HJB loss.

3. Related Work
The use of HJB equations for continuous RL has sparked
interest in recent years among the RL community as well
as the control theory community and has led to promising
works. Kim et al. (2021) introduced an alternate HJB equa-
tion for Q Networks and used it to derive a controller that
is Lipschitz continuous in time and shows improved perfor-
mance over Deep Deterministic Policy Gradient (DDPG)
without the need for an actor-network. Wiltzer et al. (2022)
introduced a distributional HJB equation to train the FD-
WGF Q-Learning algorithm. This models return distribu-
tions more accurately compared to Quantile Regression TD
(QTD) for a particle-control task.

The use of neural networks to solve the HJB equation has
been an area of interest across multiple research projects.
Jiang et al. (2016) uses a structured Recurrent Neural Net-
work to solve for the HJB equation and achieve optimal
control for the Dubins car problem. Tassa & Erez (2007)
uses the Pineda architecture (Pineda, 1987) to estimate par-
tial derivatives of the value function with respect to its in-
puts. They used iterative least squares method to solve
the HJB equation. Sirignano & Spiliopoulos (2018) devel-
ops the DGM algorithm to solve PDEs. They use auto-
differentiation to compute first-order derivatives and Monte
Carlo methods to estimate higher-order derivatives. This
algorithm was used to solve the HJB equation to achieve
optimal control for a stochastic heat equation and achieved
an error of 0.1%. Nakamura-Zimmerer et al. (2020) used a
PINN to solve the HJB equation in an optimal feedback con-
trol problem setting. The paper achieves results similar to
that of the true optimal control function in high-dimensional
problems.

4. HJBPPO
To our knowledge, our work is the first to combine the HJB
equation with a currently existing RL algorithm, PPO. It is
also the first to use a PINN to solve the HJB equation in an
RL setting. The PPO-Clipped algorithm is improvised with
this implementation because it uses a value network to com-
pute advantages used to update its policy network (Schul-
man et al., 2017). PPO is an actor-critic method that limits
the update of the policy network to a small trust region at
every iteration. It shows state-of-the-art performance in the
RL literature.
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Our work combines the HJB equation with reinforcement
learning in continuous state and action spaces to improve
the training of the value network. We treat the value network
as a PINN to solve for the HJB equation by computing its
derivatives with respect to its inputs exactly. Note that the
term

sup
û∈U
{R(x, û) +∇xV

T (x)f(x, û)}

in the HJB equation cannot be determined without explo-
ration of the agent in its environment. From Theorem
2.1, the optimal policy π∗(a|x) and the optimal controller
u∗(x) = argmaxaπ

∗(a|x) satisfies equation (4). The opti-
mal policy is modeled by the policy network πθ parameter-
ized by θ and the optimal controller can be approximated
using u(x) = argmaxaπθ(a|x). As a result, we can use the
following approximation:

V (x) ln γ +R(x, u(x)) +∇xV
T (x)f(x, u(x))

≈ V (x) ln γ + sup
û∈U
{R(x, û) +∇xV

T (x)f(x, û)}. (7)

This, as a result, justifies the use of equation 6 as the HJB
loss used to update the value function at each episode. The
loss function is computed as

J(ϕ) = 0.5MSEu + λHJBMSEf ,

where MSEf is defined in equation (6) and MSEu is the
standard loss function for the value network used in PPO,
and is used to improve the discrete-time estimate of returns
for the value function:

MSEu =
1

T

T−1∑
t=0

|V (xt)−(R(xt, at)+γV (xt+1))|2, (8)

where {xt}Tt=1 is a batch of states explored in a single
episode, and {at}Tt=1 is a batch of actions executed at time
step t following the policy πθ. The hyperparameter λHJB

is determined by hand as the magnitude of the ratio of the
Bellman optimality loss to the HJB loss so that both losses
are given equal weight. Similar to PINNs, MSEf is the
physics loss that forces the value function to converge to the
solution of the HJB equation and MSEu gives data points
that correspond to initial conditions for the value network.

4.1. Algorithm

The HJBPPO algorithm is provided in Algorithm 1. The pol-
icy update and the minimization of MSEu for the value net-
work is identical to PPO. In order to satisfy V (x) ∈ C1(Rn)
as stated in Theorem 2.1, we use the infinitely differentiable
tanh activation function for the value network.

Lines 3–7 in the algorithm are identical to the PPO al-
gorithm. The advantage term At is computed as: At =∑T−1

n=t (γλ)
n−tδn, where δt = Rt + γVϕ(st+1) − Vϕ(st),

Algorithm 1 HJBPPO
1: Initiate policy network parameter θ and value network

parameter ϕ
2: for iteration = 1, 2, ... do
3: Run the policy πθ in the environment for T timesteps

and observe samples {(st, at, Rt, st+1)}Tt=1.
4: Compute the advantage At

5: Compute rt(θ) =
πθ(at|st)
πθold (at|st)

6: Compute the objective function of the policy network:
L(θ) = 1

T

∑T−1
t=0 min[rt(θ)At, clip(rt(θ), 1− ϵ, 1+

ϵ)At]
7: Update θ ← θ + α1∇θL(θ)
8: Compute the value network loss as: J(ϕ) =

0.5MSEu + λHJBMSEf described in equations
(8) and (6)

9: Update ϕ← ϕ− α2∇ϕJ(ϕ)
10: end for

γ is the discount factor, and λ is the Generalized Advantage
Estimation (GAE) parameter. α1 and α2 are learning rates
for the policy network optimizer and value network opti-
mizer respectively. ϵ is the clipping parameter. Lines 8–9 in
the algorithm are our modifications to the PPO algorithm.
We treat the value network as a PINN and add a MSEf

term into its loss function. This way, the HJB equation is
used as a regularization term for the value network.

5. Results
The HJBPPO algorithm was implemented by modify-
ing the code for PPO in the Stable Baselines 3 li-
brary by Raffin et al. (2021). To ensure the repro-
ducibility of our results, we have posted our code at
https://github.com/amartyamukherjee/stable-baselines3 and
provided our hyperparameters in Appendix C. The code was
run on the Béluga cluster in Compute Canada. The cluster
provided the MuJoCo environments for training. Training
each algorithm over 1 million time steps took seven hours,
and training over 10 million time steps took three days. The
multiprocessing library from Python was used to train each
algorithm over multiple environments at the same time.

The reward graphs have been plotted in Figure 1, comparing
HJBPPO to PPO on all the MuJoCo environments over a mil-
lion time steps or ten million time steps. The line shows the
total reward, averaged over 50 consecutive episodes, and the
shaded area indicated the standard deviation of the total re-
ward over 50 consecutive episodes. HJBPPO shows a signif-
icant improvement in Ant-v4 and HalfCheetah-v4. It shows
faster convergence and stability in Reacher-v4, Swimmer-
v4, and InvertedDoublePendulum-v4. And it shows a slight
improvement in HumanoidStandup-v4, Hopper-v4, and
Walker2d-v4. And it performs equally as well as PPO in the

https://github.com/amartyamukherjee/stable-baselines3
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Figure 1. Comparison of learning curves for PPO (Red) compared
to HJBPPO (Blue)

remaining environments. For the two remaining environ-
ments (Humanoid-v4 and InvertedPendulum-v4), it shows
equal performance to PPO.

As a result, the graphs show that incorporating the HJB
equation into the PPO algorithm to train the value function
leads to an improved learning curve for the agent. This is
because HJBPPO uses a PINN to exploit the physics in the
environment. It uses finite differences to approximate the
underlying governing equation f(x, u) of the environment
and uses auto-differentiation to solve the HJB equation to
achieve optimal control.

The HJB loss for each environment has been plotted in Fig-
ure 4 in Appendix C. HJBPPO shows a significant decrease
in the HJB loss compared to PPO. And the HJB loss shows
convergence in 8 out of the 10 environments, including
Ant-v4 and HalfCheetah-v4 where it performs significantly
better than PPO in terms of rewards, thus showing that the
value function converges to the optimal value function as
shown in the HJB equation.

The HJB loss does not converge for Humanoid-v4 and
HumanoidStandup-v4, even though the HJB loss for these
environments is significantly lower than that as shown in
Figure 2. In both of these environments, the reward curve
for HJBPPO shows similar performance to PPO. This shows
that HJBPPO does not show significantly improved perfor-
mance compared to PPO in general if the HJB loss does not
show convergence.

The value loss for each environment has been plotted in Fig-
ure 5 in Appendix C. The value network shows convergence
in every environment, including Ant-v4 and Walker2d-v4,
where PPO doesn’t show convergence. This shows that con-
vergence of the value function in the continuous-time HJB
equation also improves its convergence in the discrete-time
Bellman optimality equation, while the converse may not
necessarily be true.

6. Conclusion
In this paper, we have introduced the HJBPPO algorithm
that improves the PPO algorithm to solve the HJB equation.
This paper is the first of its kind to combine PINNs with
RL. We treat the value function as a PINN to solve the HJB
equation in an RL setting. The HJBPPO algorithm shows
an overall improvement in performance compared to PPO
due to its ability to exploit the physics of the environment
as well as optimal control to improve the learning curve
of the agent. This paper also shows that convergence of
the value function in the continuous-time HJB equation
also improves its convergence in the discrete-time Bellman
optimality equation.

7. Future Research
Despite showing an overall improvement in the reward
curves, the HJBPPO leaves room for improved RL algo-
rithms using PINNs.

The loss function MSEf used in training the value net-
work was derived as a result of the approximation used
in equation 7. So this does not guarantee convergence of
the policy network towards the optimal policy such that
u(x) = supû∈U{R(x, û) + ∇xV

T (x)f(x, û)} where the
controller u(x) is derived from the policy πθ(a|x). Hol-
zleitner et al. (2021) proves the convergence of the policy
network parameters in PPO to a local optimum but it does
not guarantee global convergence. Thus, a potential area of
further research could involve alternate choices of HJB loss
functions for the value network that relaxes this approxima-
tion.

Additionally, finite difference approximations become less
accurate in environments with high dimensions (Sirignano &
Spiliopoulos, 2018). This makes the HJB loss less reliable in
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environments such as Humanoid-v4 and HumanoidStandup-
v4 where the state is a 376-dimensional vector. The finite
difference approximation does not compute f(x, u) exactly
because the environment uses semi-implicit Euler integra-
tion steps rather than Euler’s method (Tassa et al., 2012).
Thus, a potential area for further research could be combin-
ing HJBPPO with model-based RL so that f(x, u) can be
estimated with a smaller error.

In the MuJoCo environments, the HJBPPO algorithm
showed an improvement compared to PPO due to the fact
that f(x, u) could be estimated through finite differences,
thus allowing for the physics of the environment to be ex-
ploited. The environments give all the details of the state
needed to choose an action. Another limitation of HJBPPO
is that it may not perform well in partially observable envi-
ronments because the estimate of f(x, u) may be inaccurate.
Deep Transformer Q Network (DTQN) was introduced by
Esslinger et al. (2022) and achieves state-of-the-art results
in many partially observable environments. A potential
area for further research may be the introduction of an HJB
equation that facilitates partial observability. The DTQN
algorithm may be improvised by incorporating this HJB
equation using PINNs.
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A. Hyperparameters

Hyperparameter Value
Horizon (T) 2048

Adam stepsize 3e-04
Num. epochs 10

Minibatch size 64
Discount (γ) 0.99

GAE parameter (λ) 0.95

Table 1. HJBPPO hyperparameters

Environment Value
Ant-v4 0.1

HalfCheetah-v4 0.1
Humanoid-v4 1e-04

HumanoidStandup-v4 1.0
InvertedPendulum-v4 1e-04

InvertedDoublePendulum-v4 1e-03
Reacher-v4 1.0

Swimmer-v4 1e-04
Hopper-v4 0.1

Walker2d-v4 0.1

Table 2. λHJB hyperparameter for each environment
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B. PPO Loss Curves
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Figure 2. HJB loss curves for PPO on MuJoCo environments
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Figure 3. Bellman optimality loss curves for PPO on MuJoCo environments
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C. HJBPPO Loss Curves
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Figure 4. HJB loss curves for HJBPPO on MuJoCo environments
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Figure 5. Bellman optimality loss curves for HJBPPO on MuJoCo environments


