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ABSTRACT

Assortment optimization involves selecting a subset of items that maximizes ex-
pected reward under a choice model, with applications in online platforms and
revenue management systems. We propose a differentiable, stochastic optimiza-
tion framework that applies the Lovász extension to embed the discrete objective
into the unit hypercube. The resulting continuous problem is solved efficiently
with stochastic gradient descent and converted back to a near-optimal discrete as-
sortment via a rounding scheme. Our method is scalable, model-agnostic, offers
theoretical guarantees, and naturally extends to capacity-constrained settings.

1 INTRODUCTION

The goal of assortment optimization is to determine an optimal subset of items to present to users,
thereby maximizing the expected revenue, engagement, or welfare. It has become an important prob-
lem in modern computational settings (Désir et al., 2016; Udwani, 2023; Berbeglia & Joret, 2020;
Agrawal et al., 2019; Chen et al., 2020), with wide-ranging applications in online retail platforms,
digital advertising, and recommendation systems (Qi et al., 2020; Heger & Klein, 2024). This prob-
lem essentially involves the algorithmic design for discrete and combinatorial optimization, where
a discrete choice model (Train, 2009) is commonly used to capture the user preference for bet-
ter alignment with human values, for example, the customized assortment for different consumer
types. As digital platforms increasingly rely on data-driven decision-making, effective assortment
optimization is crucial for both improving user experience and driving business outcomes.
Despite its importance, assortment optimization poses significant computational challenges. At its
core, the problem is discrete in nature: selecting a subset of items from a potentially massive choice
set. This discreteness renders the optimization problem non-differentiable, which prevents the direct
use of gradient-based optimization techniques that have proven effective in continuous settings.
Designing methods that are both computationally efficient and broadly applicable remains an open
challenge.
Existing approaches have two celebrated streams of research. The first focuses on specialized al-
gorithms tailored to particular choice models. The examples are not limited to Multinomial Logit
(MNL) (Rusmevichientong et al., 2014), Nested Logit (Gallego & Topaloglu, 2014), Mallows model
(Désir et al., 2016), and a neural-network choice model that accounts for assortment effects Wang
et al. (2023). These methods either encounter the curse of dimensionality with scalability issues or
do not come with performance guarantees. Moreover, they cannot be easily portable to other newly
proposed choice models like Akchen & Mitrofanov (2025); Yang et al. (2025).
A second stream of work like Udwani (2023) casts assortment optimization as a subset selection
problem. This perspective has motivated the use of approximation and heuristic algorithms, which
offer computational tractability for fixed-size k-subset selection. However, such exact k-subset se-
lection algorithms have some gaps with the assortment problem in non-capacitated or capacitated
settings, where k is upper bounded by the cardinality of the whole choice set or the capacity, re-
spectively. Then the subset selection approaches require exhaustive computation across all possible
subset sizes, and thus are not directly applicable to very large item choice sets for non-capacitated
assortment optimization. This limits its applicability in real-world platforms with vast item catalogs.
In this paper, we propose a new approach that bridges the gap between discrete assortment optimiza-
tion and continuous gradient-based methods. We introduce a differentiable, stochastic optimization
framework that is model-agnostic and thus enables applications to diverse choice models. Our con-
tributions are threefold. First, we leverage the Lovász extension that embeds the discrete objective
onto the continuous unit hypercube. Despite the non-submodularity of the objective which makes the
Lovász non-convex, along with chain rules, this embedding enables the use of unbiased stochastic
(sub)gradient for the relaxed distributive objective. Second, we provide a scalable algorithmic imple-
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mentation with an efficient generative rounding procedure for discrete assortment recovery. Third,
we establish near-optimal theoretical guarantees on the quality of the returned assortment with mild
assumptions and show that our method naturally extends to cardinality-constrained settings, which
was validated via extensive experiments. Collectively, these advancements yield a novel, scalable
framework for assortment optimization, free from restrictive parametric assumptions, and highly
applicable to practical recommendation and decision-making contexts.

1.1 LITERATURE REVIEW

Assortment optimization with specific choice model: A large body of research has focused on de-
veloping efficient algorithms under particular parametric choice models. For instance, assortment
optimization under the MNL model has been extensively studied, leading to an optimal revenue-
order policy (Talluri & Van Ryzin, 2004) with its robustness being justified in Rusmevichientong &
Topaloglu (2012). Extensions to variants such as nested logit models (Davis et al., 2014; Gallego &
Topaloglu, 2014) and Markov Chain (MC) choice model without constraints (Blanchet et al., 2016)
have also been proposed. However, assortment optimization becomes computationally intractable
in many other common settings. Notably, even the unconstrained case of a mixture of just two MNL
models (Bront et al., 2009) or the constrained problem under the MC model (Désir et al., 2020)
is NP-hard. In such cases, the literature has largely resorted to heuristic methods specific to each
choice model structure.
Assortment optimization with general choice model: Beyond model-specific approaches, another
line of work seeks to design algorithms that apply under general or even arbitrary choice models,
which is the setting our work addresses. Heuristic methods such as revenue-ordered assortments
(Berbeglia & Joret, 2020) or local search strategies (Jagabathula, 2014) provide tractable solutions
but has rationality assumptions or lack rigorous global convergence guarantees. Recent research
has also drawn connections between assortment optimization and subset selection which closely
connected with our proposed algorithm, and we will review the subset selection (and sampling) al-
gorithms in the next paragraph. Complementing these efforts, emerging machine learning–based
approaches directly optimize assortments (Li et al., 2025), demonstrating strong empirical scalabil-
ity, though such methods generally lack theoretical guarantees regarding solution quality.
Subset Selection and Sampling: The subset selection or sampling approaches have three promising
directions as summarized in (Wijk et al., 2025): score function estimator (Williams, 1992), pathwise
gradient estimator (Bengio et al., 2013), and relaxed sampling (Xie & Ermon, 2019; Yamada et al.,
2020). Our approach is most relevant to the third direction. These existing designs of approximation
algorithms can cause estimation biases. A notable exception is the SFESS method (Wijk et al., 2025)
for k-subset sampling, which achieves unbiased estimation without reliance on sampling. However,
as mentioned in the previous introduction, solving the assortment problem without the cardinality
constraint becomes computationally inefficient as the consideration set grows large. Notably, the
submodular maximization for subset selection is also considered for enabling provable performance
bounds (Udwani, 2023; Ito, 2019; Zhang et al., 2023), yet the submodularity assumption does not
apply to the general revenue function (Udwani, 2023). We refer the readers to Section 4 for a more
detailed comparison of our algorithm with the literature.
Compared to the above literature, our work contributes significantly to a general-purpose and near-
optimal solution that can scale well to large consideration sets and flexibility across any given choice
model. Note that there are literature working on online and dynamic assortment optimization (e.g.,
Agrawal et al. (2019); Chen et al. (2020); Li et al. (2024)), whereas this paper focuses on the offline
setting with one horizon in the assortment planning.

2 PRELIMINARIES

2.1 ASSORTMENT OPTIMIZATION

The assortment optimization problem is: given a ground set of n items V = {1, . . . , n}, select a
subset S ⊆ V to maximize the total reward that depends on the user’s choice behavior. Formally,
we study

max
S⊆V

r(S), where r(S) :=
∑
j∈S

rj · P(j | S).

Here, r(S) denotes the expected reward when presenting the assortment S, where rj ∈ [0, r̄] is the
marginal reward obtained if item j is chosen, and P(j | S) is the choice probability of item j given
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that the assortment S is offered. The choice probabilities P(j | S) depend on an underlying discrete
choice model. Prominent examples include:

[leftmargin=11pt]Basic Attraction Model (BAM). Each product i has attraction value vj >
0 and the no-purchase option has v0 > 0. The choice probability of item j ∈ S is

P(i | S) = vj
v0 +

∑
k∈S vk

.

A special case of BAM is Multinomial Logit (MNL), when vj = euj for utilities uj ∈
R. Nested Logit (NL). Partition products into G nests {Sg}Gg=1, each with a dissimilarity
parameter γg ∈ [0, 1]. The choice probability of item j in nest g is given by

P(j | S) = vgj
Vg

V
γg
g

v0 +
∑G

h=1 V
γh

h

with Vg :=
∑

k∈Sg
vgk. Mixed Multinomial Logit (MMNL). There are M customer types,

each with a mixture probability αm. Customers of type m associate the attraction value
vmj . The choice probability of item j ∈ S is

P(j | S) =
M∑

m=1

αm

vmj
vm0 +

∑
k∈S vmk

.

To align with the minimization convention in optimization theory, we define f(S) := −r(S), so
that the assortment optimization problem can be equivalently expressed as

min
S⊆V

f(S). (1)

In many applications, the assortment is subject to an additional capacity constraint, which limits the
number of items that can be offered. In this case, the optimization problem becomes

min
S⊆V, |S|≤K

f(S), (2)

where K denotes the maximum allowable assortment size. e remark that a related but different
problem is K-subset selection, where the capacity constraint is specified as equality.

2.2 LOVÁSZ EXTENSION

The minimization problem (1) is discrete in nature. In polyhedral theory, a powerful approach to
extending discrete set functions to a continuous domain is through the Lovász extension (Lovász,
1983). While it has been primarily studied in the context of submodular functions, its definition
applies more broadly and is not restricted to them. For any set function f : 2V → R, its Lovász
extension ϕ : [0, 1]n → R admits two equivalent constructions. The first, known as the sorting
formula, is constructed as follows. For any vector x ∈ [0, 1]n, let πx be a permutation that sorts the
components in non-increasing order xπx(1) ≥ xπx(2) ≥ · · · ≥ xπx(n) ≥ xπx(n+1) := 0. Define a
chain of nested sets

Sk(x) := {πx(1), . . . , πx(k)} for k = 1, . . . , n, with S0(x) = ∅. (3)
The Lovász extension is given by

ϕ(x) ≜
n∑

k=1

(
xπx(k) − xπx(k+1)

)
f (Sk(x)) . (4)

An equivalent construction is provided by the threshold integral representation. For threshold t ∈
[0, 1], define the level set St(x) := {i ∈ V : xi ≥ t}. The Lovász extension can then be expressed
as:

ϕ(x) ≜
∫ 1

0

f (St(x)) dt. (5)

Both constructions will be useful in our framework.
A key property linking discrete and continuous optimization is the equivalence:

min
S⊆V

f(S) = min
x∈[0,1]n

ϕ(x). (6)

The equivalence (6), established by Lovász (1983) and elaborated in Bach (2013), follows from two
key observations. First, for any set S ⊆ V with characteristic vector 1S , we have ϕ (1S) = f(S),
ensuring consistency at the vertices. Second, for any x ∈ [0, 1]n, the value ϕ(x) constitutes a con-
vex combination of the function values {f (Sk(x))}nk=1 by (5), guaranteeing that the continuous
minimum cannot fall below the discrete minimum. Note that the Lovász extension ϕ is convex if
and only if the set function f is submodular. However, the cost function f is mostly not submod-
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ular. Therefore, (6) is generally a non-convex optimization. We will tackle this challenge through
distributional reparameterization in Section 4.1.
The Lovász extension ϕ possesses the following properties:

•••(1) (Piecewise linearity) For each permutation π, define the strict-order region:
Cπ :=

{
x ∈ [0, 1]n : xπ(1) > xπ(2) > · · · > xπ(n)

}
.

On each Cπ , ϕ is affine, and for all x ∈ Cπ , we have ∇ϕ(x) = gπ .

(2) (Lipschitz continuity) The function ϕ is Lipschitz continuous on [0, 1]n with respect to the
ℓ1-norm. Specifically, defining

G := max
S⊆V,j /∈S

|f(S ∪ {j})− f(S)| ,

we have for all x, y ∈ [0, 1]n:
|ϕ(x)− ϕ(y)| ≤ G∥x− y∥1.

3 CLARKE SUBDIFFERENTIAL AND STOCHASTIC SUBGRADIENT

In general, the Lovász extension is non-convex. In the special case where it is convex, its stochastic
subgradient has been well-characterized in Ito (2019). In the non-convex setting, Lemma 2.2 shows
that the extension is piecewise linear and Lipschitz continuous. This allows us to define its Clarke
subdifferential and construct an unbiased stochastic subgradient estimator.
By Rademacher’s theorem, any locally Lipschitz function is differentiable almost everywhere. This
property allows us to define a generalized notion of subdifferential suitable for this class of functions.
[Clarke Subdifferential] For a locally Lipschitz function h : Rn → R, the Clarke subdifferential at x,
denoted ∂◦h(x), is the convex hull of all possible limit points of gradients from nearby differentiable
points:

∂◦h(x) := conv

{
lim
j→∞

∇h(xj) : xj → x, and h is differentiable at xj

}
.

where conv denotes the convex hull.
For any x ∈ [0, 1]n and any permutation π that satisfies xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n), we define the
vector gπ(x) ∈ Rn by its (permutated) components:

gππ(k)(x) := f (Sk(x))− f (Sk−1(x)) , k = 1, . . . , n,

where the chain of sets Sk(x) defined in the sorting formula of the Lovász extension (see (4)). This
vector gπ(x) represents the discrete differences of f along the chain induced by π.
The following proposition provides an explicit characterization of the Clarke subdifferential of ϕ.
[Clarke subdifferential] For every x ∈ [0, 1]n, the Clarke subdifferential of ϕ is given by:

∂◦ϕ(x) = conv {gπ : π ∈ Π(x)} ,
where Π(x) is the set of permutations π such that xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n).
When the number of items n is large, the following construction provides a stochastic estimate of a
subgradient.
[Stochastic Subgradient] Fix x ∈ [0, 1]n. First, sample a permutation π ∈ Π(x) by breaking any ties
in the components of x randomly. Then, sample a rank K ∈ {1, . . . , n} with probability 1/n. Let
Sk = {π(1), . . . , π(k)} for k = 0, . . . , n (S0 = ∅). The stochastic subgradient ĝ is defined as:

ĝ := n (f(SK)− f(SK−1)) eπ(K),
where eπ(K) is the standard basis vector for the element at rank K. This estimator requires only
two function evaluations, f(SK) and f(SK−1) per sample, making it highly efficient.
The unbiasedness of this stochastic subgradient is established as follows. [Unbiasedness] The
stochastic subgradient ĝ is an unbiased estimator of the specific subgradient gπ corresponding to
the sampled permutation π:

E[ĝ | π] = gπ.

Consequently, its unconditional expectation lies in the Clarke subdifferential:
E[ĝ] = E[gπ] ∈ conv{gπ : π ∈ Π(x)} = ∂◦ϕ(x).

That is, ĝ is an unbiased estimator of a vector in ∂◦ϕ(x). This unbiasedness property enables the
use of gradient-based methods for optimizing the Lovász extension ϕ in the next section.
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4 OUR ALGORITHM

Building on the stochastic subgradient for the Lovász extension, we now describe our main algorith-
mic framework.

4.1 DISTRIBUTIONAL REFORMULATION AND REPARAMETERIZATION

We first reparameterize the problem using an implicit generative model. Let P([0, 1]n) denote the
set of probability distributions on [0, 1]n. We cast problem (6) as an equivalent distributional opti-
mization, which can be interpreted as a randomized assortment optimization (Wang et al., 2024):

min
p∈P([0,1]n)

Ex∼p

[
ϕ(x)

]
. (7)

To parameterize p, we use an implicit generative model: draw a random sample z from an easy-to-
sample continuous distribution ν, which is chosen to be standard Gaussian N (0, Id) in our paper,
and set x = gθ(z), where gθ : Rd → [0, 1]n is a neural network parameterized by θ, then p is
parameterized as the push-forward distribution gθ#ν. Our distributional reformulation (7) becomes

min
θ

Ez∼ν

[
ϕ
(
gθ(z)

)]
. (8)

Note that as long as gθ is piecewise smooth (as is true for most neural network activations), the
smoothness of the Gaussian distribution ν ensures the objective in (8) is differentiable with respect
to θ, despite the Lovasz extension ϕ being piecewise linear. Using the chain rule, a stochastic
gradient estimator is given by

Jθgθ(z)
Tĝ, z ∼ ν, (9)

where Jθgθ(z) ∈ Rn×d is the Jacobian matrix of the mapping θ 7→ gθ(z).
The estimator given by (9) is an unbiased estimator of the gradient∇θEz∼ν

[
ϕ
(
gθ(z)

)]
.

4.2 ROUNDING THE SOLUTION

To obtain a discrete assortment from a continuous solution x ∈ [0, 1]n, we apply a rounding proce-
dure based on the chain of sets S0(x) ⊂ S1(x) ⊂ · · · ⊂ Sn(x) induced by sorting the components
of x, defined in (3). We choose an assortment by minimizing f over the chain:

Ŝ(x) ∈ argmin
k=0,...,n

f(Sk(x)). (10)

Our rounding procedure is deterministic, selecting the optimal assortment from a sorted chain of
candidate sets. This contrasts with the approach in (Ito, 2019), which employs a stochastic rounding
scheme that forms a set by applying a random threshold to the continuous solution. We will give a
guarantee for this rounded solution in Section 5.2.

4.3 ALGORITHM

Motivated by the preceding analysis, we introduce Deep Assortment Optimization (DAO), a noisy
stochastic gradient descent algorithm for assortment optimization.

Algorithm 1 Deep Assortment Optimization (DAO)
1: Input: Initialize θ0 ∼ µ0, weight-decay factor α, noise scaling parameter τ > 0, learning rate

η, mini-batch size B
2: while not converge do
3: Sample a mini-batch {z(b)}Bb=1 ∼ ν and compute a stochastic gradient estimator G using

(9)
4: Update the parameter

θ ← (1− α)θ − ηG+
√
2τηξ, ξ ∼ N (0, I)

5: end while
6: Output Ŝ(gθ(z)) in (10), with z ∼ ν

Our algorithm is related to the relaxed sampling approach for subset selection (e.g., Xie & Ermon
(2019); Ahmed et al. (2023); Paulus et al. (2020); Yamada et al. (2020)) in its use of the reparame-
terization trick to generate relaxed samples in the unit cube. However, our algorithm differs in two
crucial aspects: (i) we employ a Lovász extension to define the loss, rather than a surrogate loss;
and (ii) we round the continuous solution to a discrete one using a principled procedure. These
distinctions allow us to establish provable performance guarantees (Section 5). Furthermore, our
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algorithm accommodates both capacity inequality constraints and unconstrained problems, whereas
the relaxed sampling approach is restricted to equality constraints, a limitation for many assortment
optimization applications.

5 PERFORMANCE GUARANTEES

5.1 ALGORITHMIC CONVERGENCE

We now present a convergence guarantee for Algorithm 1. Although proving convergence for train-
ing neural networks is challenging, we here provide a sensible result utilizing the mean-field theory
(Mei et al., 2018; Nitanda et al., 2022). In particular, we consider a specific neural network archi-
tecture to parameterize gθ. The model takes the form of a one-hidden-layer network where the input
layer is fed with a pre-trained feature extractor h : Rd → RH (which is chosen to be a one-layer
ReLU network in our experiment). The hidden layer is the trainable part and outputs

gθ(z) =
1

N

N∑
i=1

σ(W ih(z) + bi),

where the trainable parameters are θ = {(W i, bi)}Ni=1, with W i ∈ Rn×H and bi ∈ Rn. As the
number of neurons N in the hidden layer tends to infinity, the empirical distribution of the trainable
parameters, 1

N

∑N
i=1 δ(W i,bi), converges to a probability distribution µ; thus, the generator is now

parameterized by a distribution µ:
gµ(z) = Eθ∼µ[σ(Wh(z) + b)],

This allows us to define the objective as a functional F over the space of probability distributions:
F (µ) := Ez∼ν

[
ϕ
(
gµ(z)

)]
.

The evolution of the distribution µ under Algorithm 1 can be understood as a gradient flow on the
Wasserstein space. Note that in contrast to prior works such as (Mei et al., 2018; Nitanda et al.,
2022) that rely on flat convexity F , here we deal with a nonconvex setting, which makes our result
differ.
In the mean-field limit, the distributional dynamics induced by Algorithm 1 is given by

µt+1 =
(
id− η∇ δF

δµ [µt]
)
#
µt ∗ N (0, 2ητI), (11)

where δF
δµ [µt] denotes the first variation of F evaluated at µt (see formal definition in Appendix

A.5), where # denotes the push-forward of measures and ∗ denotes the convolution of probability
measures. To characterize the convergence properties, we introduce the following two definitions.
[Fixed Point] A distribution µ∗ is a fixed point (stationary point) of the dynamics (11) if it satisfies
the self-consistency equation µ∗ = pµ∗ , where pµ is the proximal Gibbs distribution associated with
µ:

pµ(θ) ∝ exp
(
− 1

τ

δF

δµ
[µ](θ)

)
.

[Fisher Information] The Fisher information of a distribution q with respect to its associated Gibbs
distribution pq is defined as:

I(q) :=
∫

q(θ)
∥∥∥∇ log

q(θ)

pq(θ)

∥∥∥2dθ.
The Fisher information is non-negative and equals zero if and only if q = pq . It measures the rate

of change of the distribution along the flow, and thus can be viewed as a measure of stationarity.
Assume the following conditions hold:

[label=(),leftmargin=*]gθ is Lipschitz continuous and bounded with respect to θ for each
z. There exist constants C > 0 and k ≥ 0 such that for all θ, the norm of the Jaco-
bian ∥Jθgθ(z)∥ is bounded by C

(
1 + ∥z∥k

)
for almost every z. There exists a integrable

function h : Z → R+ such that for all θ ∈ Θ and for ν−almost every z,
|gθ(z)| ≤ h(z)

(
1 + ∥θ∥22

)
.

and
∥∇θgθ(z)∥ ≤ h(z),

These conditions are standard in the analysis of mean-field models for neural networks. They ensure
that the objective functional F (µ) is well-behaved and that all regularity conditions in Assumption 1
of Nitanda et al. (2022) are satisfied except for convexity, since ϕ(x) is not convex in our setting. To
describe our convergence result, we borrow a notion of random stopping from non-convex stochastic
optimization in Euclidean space (Ghadimi & Lan, 2013). The randomized time t̃ is obtained by
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first sampling τ ∈ {0, . . . , T − 1} with probability proportional to the step size ητ , then sampling
U ∼ Unif[0, ητ ], and finally setting t̃ = sτ + U , where sτ =

∑τ−1
k=0 ηk.

Under Assumption 5.1, the sequence {µt} is tight, and any convergent subsequence has a limit
distribution µ⋆ that is a fixed point. In addition, for a total of T iterations with a constant step size
η = 1/

√
T , the expected Fisher information at a randomly chosen iteration t̃ satisfies

E[I(µt̃)] = O
(

1√
T

)
.

This rate matches the optimal rate for non-convex stochastic optimization in the Euclidean space
(Ghadimi & Lan, 2013). Our result is different from Nitanda et al. (2022), as we do not have a flat
convex functional F (µ) as they have.

5.2 OPTIMALITY GAP

A key property of this rounding scheme is that, by construction, the reward of the rounded assortment
satisfies the key inequality that

r(Ŝ(x)) ≥ −ϕ(x).

This follows from the Lovász extension’s integral form: ϕ(x) =
∫ 1

0
f(St(x))dt, and since f = −r,

we have−ϕ(x) =
∫ 1

0
r(St(x))dt. The rounding selects the best set in the chain {St(x)}, dominating

this average.
In our framework, the continuous solution x = gθ(z) is generated by a neural network trained to
minimize Φ(θ) = Ez∼N (0,Id)[ϕ(gθ(z))]. The universal approximation theorem implies that ϕ ◦
gθ can approximate ϕ(xS∗) for an optimal assortment S∗, leading to approximation error εapprox.
Training may not reach the global optimum due to computational limits, yielding optimization error
εopt.
Our theoretical guarantee explicitly accounts for both errors, as formalized in the following theorem.
Let gθ : Rd → [0, 1]n be a generative neural network model. Let θ̂ be the parameters output by our
training algorithm, which satisfy the following ε-optimality condition:

Φ(θ̂) ≤ min
θ

Φ(θ) + εopt.

Let S∗ be an optimal assortment with r(S∗) = maxS⊆V r(S) and characteristic vector xS∗ . Assume
the expressive power of the generative model yields that

min
θ

Φ(θ) ≥ ϕ(xS∗)− εapprox.

Additionally, assume that there exists M > 0 such that |r(S)| ≤ M for all S ⊂ V . Then, for any
δ > 0, with probability at least 1 − δ over the random seed z ∼ N (0, Id), the continuous solution
x = gθ̂(z) satisfies:

ϕ(x) ≤ ϕ(xS∗) + εopt + εapprox + κ(δ),

and consequently, the rounded assortment Ŝ(x) achieves a reward:
r(Ŝ(x)) ≥ r(S∗)− εopt − εapprox − κ(δ),

where the concentration term is explicitly given by κ(δ) = M
√

2 ln(1/δ).
This result provides a rigorous foundation for our approach. The error decomposition reveals how
different components contribute to the final performance: the approximation error εapprox can be re-
duced by using more expressive network architectures, the optimization error εopt can be controlled
through better training algorithms, and the concentration term κ(δ) diminishes as we allow higher
confidence levels (smaller δ).
Notably, the theorem does not require convexity of ϕ (which would imply submodularity of f ) or
any specific structure like submodularity of r, making it applicable to the broad class of assortment
optimization problems.

6 EXTENSION: HANDLING CAPACITY CONSTRAINTS

In this section, we extend our framework to the constrained optimization (2) through an exact penalty
method. By augmenting the Lovász extension ϕ(x) with a penalty term, we obtain:

ϕλ(x) = ϕ(x) + λρLK(x),
where ρLK(x) =

∑n
i=K+1 x(i) is the Lovász extension of the cardinality violation penalty ρK(S) =

(|S| − K)+, and x(1) ≥ · · · ≥ x(n) denote the sorted components of x. The penalty function
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ρLK(x) admits a geometric interpretation that connects constraint violation to distance from sparsity,
established by the following lemma. [Best K-sparse truncation] Let PK(x) denote the projection
that keeps the top K entries of x (by magnitude) and sets the rest to zero. Then,

∥x− PK(x)∥1 =

n∑
i=K+1

x(i) = ρLK(x).

This lemma establishes that ρLK(x) measures the ℓ1-distance from x to the set of K-sparse vec-
tors, encouraging solutions in {x : ∥x∥0 ≤ K}. The following theorem confirms that the penalized
objective exactly recovers the constrained problem for a sufficiently large penalty parameter. [Ex-
act penalty for cardinality constraint] Let G be the Lipschitz constant of the Lovász extension ϕ as
defined in Lemma 2.2. For every λ ≥ G,

min
x∈[0,1]n

ϕλ(x) = min
S⊆V
|S|≤K

f(S).

Moreover, any minimizer xλ of the penalized problem satisfies ρLK(xλ) = 0, implying ∥xλ∥0 ≤ K.
Consequently, every threshold set St(xλ) has size at most K, and at least one chain set Sk(xλ) is
an optimal cardinality-K assortment. By simply replacing ϕ with ϕλ in the distributional objective
(8), we can directly apply our DAO algorithm (Algorithm 1) to solve the constrained problem. The
generative rounding procedure (Theorem 5.2) ensures that when λ ≥ G, the resulting assortment
Ŝ(x) is not only feasible but also near-optimal for the cardinality-constrained problem.

7 NUMERICAL EXPERIMENTS

In this section, we validate our proposed algorithm DAO by comparing it with the state-of-the-art
SFESS (Wijk et al., 2025) for the mixed logit (ML) choice model under both capacity-constrained
and unconstrained assortment optimization settings. We also refer the reader to the experiment
result for other choice model specification including nested logit (NL) and and basic attraction
model (BAM) in the Appendix C. We construct a comprehensive benchmark with problem sizes
n ∈ {10, 100, 1000} and capacity limits K ∈ {3, 10, 30, 100} subject to K < n. For all instances,
item revenues are drawn i.i.d. from Unif[10, 100] and attractions from Unif[1, 10]. Each parameter
combination is replicated multiple times with independent random seeds to enable statistical signif-
icance testing. The mixed logit framework models customer heterogeneity through discrete mixing
over m ∈ {10, 100, 1000} customer segments. Each segment represents a distinct preference pat-
tern, with the outside option parameter drawn from v0 ∼ Unif[5.0, 20.0] to introduce baseline utility
variation. We report numerical results for both the capacity-constrained case, with capacity limits
K ∈ {3, 10, 30, 100}, and the unconstrained case.
In our setting, the number of learnable parameters in the SFESS model is significantly larger than in
the DAO model, making it evident that SFESS can capture more information and generally performs
better. However, as shown in Table 1, while SFESS outperforms DAO for small-scale problems (e.g.,
n = 10, achieving near-optimal solutions with minimal gaps (0.00 ± 0.00), its performance begins
to fluctuate significantly as the problem size increases, especially when n = 100 and K = 30.
Particularly, for n = 100 and K = 30, the gap for SFESS increases substantially, with an error of
1.60 ± 0.69, indicating that as the problem complexity increases, SFESS’s advantage is limited due
to its larger number of learnable parameters. In contrast, DAO shows significantly smaller errors,
close to 0, in this setting. This suggests that, for medium-scale problems, especially when K is
large, DAO demonstrates better stability in maintaining low error levels compared to SFESS.
Regarding computational efficiency, DAO also outperforms SFESS. The runtime comparison in
Table 2 shows that SFESS requires significantly more computational time than DAO. This indicates
that as the problem size grows, SFESS’s computational demands and time consumption increase,
while DAO maintains relatively lower computational times across all configurations. In large-scale
problems, DAO consistently completes tasks within the time limits, while SFESS often fails due to
time constraints.
For the unconstrained case, we observe that when the number of products is relatively small, our
algorithm can achieve the same results as the traditional Mixed Logit (ML) model, but it requires
more computation time. However, as the number of products increases, our computation time de-
creases significantly. Although for n = 1000, the gap increases slightly for different m values,
we believe this result is acceptable considering the substantial reduction in computation time. In
fact, this demonstrates that within an acceptable gap range, our algorithm can significantly improve
computational efficiency and produce results close to the optimal in a much shorter time.
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m = 10 m = 100 m = 1000
n K DAO SFESS DAO SFESS DAO SFESS

10 3 4.5 ± 4.7 0.00 ± 0.00 2.3 ± 3.3 0.00 ± 0.00 2.3 ± 3.5 -0.00 ± 0.00
100 10 2.0 ± 0.6 0.00 ± 0.00 1.5 ± 0.6 -0.00 ± 0.00 2.0 ± 0.6 -0.01 ± 0.02
100 30 0.0 ± 0.0 0.00 ± 0.00 0.0 ± 0.0 0.00 ± 0.00 0.0 ± 0.0 1.60 ± 0.69
1000 30 3.11 ± 0.41 0.00 ± 0.00 2.9 ± 0.7 -0.00 ± 0.01 2.1 ± 0.5 -
1000 100 2.55 ± 0.61 0.46 ± 0.19 2.4 ± 0.6 0.39 ± 0.15 2.2 ± 0.8 -

Table 1: Comparison of DAO and SFESS under the Mixed Logit (ML) model (constrained). Values
report the percentage gap ± standard deviation with respect to the optimal solutions. Each entry is
averaged over 10 independent runs, except for n = 1000 where only 5 runs were performed due to
computational limits. “–” indicates that the solver did not finish within the 5-minute time limit.

m = 10 m = 100 m = 1000
n K DAO SFESS DAO SFESS DAO SFESS

10 3 72.60 ± 45.56 122.76 ± 59.26 8.52 ± 4.18 31.82 ± 16.45 2.08 ± 1.10 17.31 ± 8.54
100 10 1.52 ± 0.39 3.53 ± 1.51 0.27 ± 0.08 1.14 ± 0.70 0.01 ± 0.00 0.18 ± 0.02
100 30 11.41 ± 8.34 17.31 ± 13.27 0.56 ± 0.27 303 ± 2.19 0.04 ± 0.00 0.65 ± 0.09
1000 30 0.07 ± 0.00 0.21 ± 0.00 0.10 ± 0.01 0.52± 0.29 0.32 ± 0.00 -
1000 100 0.38 ± 0.19 2.06 ± 0.99 0.05 ± 0.00 0.74 ± 0.00 0.18 ± 0.00 -

Table 2: Comparison of DAO and SFESS under the Mixed Logit (ML) model (constrained). Values
report the runtime ratio (DAO or SFESS time / optimal solver time) expressed as mean ± standard
deviation across different (n,K,m). “–” indicates that the solver did not finish within the 5-minute
time limit.

Metric n m = 10 m = 100 m = 1000

Gap (%) 10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
100 0.02 ± 0.03 0.02 ± 0.03 0.02 ± 0.03

1000 1.47 ± 0.33 1.70 ± 0.22 1.10 ± 0.23

Runtime ratio 10 104.76 ± 38.29 19.53 ± 6.29 4.17 ± 0.49
100 5.64 ± 2.80 0.67 ± 0.50 0.03 ± 0.01

1000 0.51 ± 0.40 0.06 ± 0.02 0.13 ± 0.00

Table 3: Mixed Logit (ML), unconstrained case. The table reports (top block) the percentage gap ±
standard deviation with respect to the optimal solutions, and (bottom block) the runtime ratio (DAO
time / optimal solver time), both across (n,m). Each entry is averaged over 10 independent runs,
except for n = 1000 where only 5 runs were performed due to computational limits.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made comprehensive efforts to document all
theoretical and experimental components. For the theoretical results, including the guarantees in
Theorem 5.1 and 5.2, complete proofs with detailed explanations of assumptions (e.g., Lipschitz
continuity and boundedness) are provided in the appendix. For the experimental setup, we include
a full description of the datasets, preprocessing steps, hyperparameters, and evaluation metrics in
the supplementary materials. Additionally, an anonymous link to downloadable source code, im-
plementing the generative model and rounding procedure, is submitted as supplementary material
to facilitate replication of our results. We encourage readers to refer to these resources for further
details.
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A PROOFS

A.1 PROOFS FOR SECTION 2

A.1.1 PROOF OF LEMMA 2.2

We prove each property separately.
Proof of (1).
For any fixed permutation π, consider the region Cπ . For any x ∈ Cπ , the components have a
strict ordering. By Lemma A.2.1, ϕ is differentiable at x and its gradient is given by ∇ϕ(x) = gπ ,
where gπ is the constant vector with components gππ(k) = f(Sk) − f(Sk−1) for k = 1, . . . , n and
Sk = {π(1), . . . , π(k)} with S0 = ∅. Moreover, from the sorting formula of the Lovász extension,
we have that

ϕ(x) =

n∑
k=1

xπ(k) (f(Sk(x))− f(Sk−1(x))) = ⟨gπ, x⟩,

where gπ is the constant vector with components gππ(k) = f(Sk)− f(Sk−1) for k = 1, . . . , n. This
shows that ϕ is an affine function on Cπ with constant gradient∇ϕ(x) = gπ .
Since the hypercube [0, 1]n can be partitioned into finitely many such regions Cπ (and their bound-
aries), ϕ is piecewise affine.
Proof of (2).
By Lemma A.2.1, on each region Cπ , the gradient∇ϕ(x) = gπ is constant. We have:

∥∇ϕ(x)∥∞ = ∥gπ∥∞ = max
1≤k≤n

|f(Sk)− f(Sk−1)| ≤ G,

where the inequality follows from the definition of G as the maximum marginal change when adding
any single element to any subset.
Now, for any x, y ∈ [0, 1]n, consider the straight line segment connecting them: γ(t) = x+ t(y−x)
for t ∈ [0, 1]. The function ϕ is piecewise affine and therefore absolutely continuous along this path.
By the fundamental theorem of calculus for absolutely continuous functions, we have that

ϕ(y)− ϕ(x) =

∫ 1

0

⟨∇ϕ(γ(t)), y − x⟩dt,

where the gradient exists almost everywhere along the path.
Taking absolute values and using the Cauchy-Schwarz inequality yields

|ϕ(y)− ϕ(x)| ≤
∫ 1

0

|⟨∇ϕ(γ(t)), y − x⟩|dt ≤
∫ 1

0

∥∇ϕ(γ(t))∥∞∥y − x∥1dt.

Since ∥∇ϕ(γ(t))∥∞ ≤ G almost everywhere, we obtain that

|ϕ(y)− ϕ(x)| ≤ G∥y − x∥1
∫ 1

0

dt = G∥y − x∥1,

which completes the proof of the Lipschitz continuity.
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A.2 PROOFS FOR SECTION 3

A.2.1 PROOF OF PROPOSITION 3

To prove Proposition 3, we introduce a preliminary lemma. When the components of x have a
strict ordering, the gradient of ϕ is well-defined and has a simple form. If x has a strict order, i.e.,
xπ(1) > xπ(2) > · · · > xπ(n) for some unique permutation π, then the Lovász extension ϕ is
differentiable at x, and its gradient is given by:

∇ϕ(x) = gπ(x).
This result holds regardless of whether ϕ is convex, as it is a fundamental property of the Lovász

extension.

Proof. Since x has a strict order, there exists an open ball B(x) ⊂ Rn centered at x such that for all
y ∈ B(x), the ordering of components remains unchanged, i.e.,

yπ(1) > yπ(2) > · · · > yπ(n).
This follows from the continuity of the coordinate functions and the strict inequalities at x.
For any y ∈ B(x), using the sorting formula (4), the Lovász extension ϕ(y) can be expressed as

ϕ(y) =

n∑
k=1

yπ(k) (f(Sk(x))− f(Sk−1(x))) ,

where the sets Sk(x) are fixed for all y ∈ B(x) since the permutation π is invariant in B(x).
Thus, ϕ(y) is a linear function of y on B(x), since the coefficients ak = f(Sk(x)) − f(Sk−1(x))
are constants. Specifically,

ϕ(y) = ⟨gπ(x), y⟩,
where gπ(x) is the vector with components gπ(x)π(k) = ak for k = 1, . . . , n.
Since ϕ is linear on B(x), it is differentiable at x, and its gradient is the constant vector of coeffi-
cients:

∇ϕ(x) = gπ(x).

This completes the proof.

Now, we begin the proof of Proposition 3.
By Lemma 2.2(2), ϕ is Lipschitz continuous on [0, 1]n, so the Clarke subdifferential ∂◦ϕ(x) is well-
defined for every x ∈ [0, 1]n. By definition, ∂◦ϕ(x) is the convex hull of all limits of sequences
∇ϕ(xj) where xj → x and ϕ is differentiable at xj .
From Lemma 2.2(1), ϕ is piecewise affine on the strict-order regions Cπ . Moreover, by Lemma
A.2.1, at any point x with strict order, ∇ϕ(x) = gπ for the corresponding permutation π.
We now prove the two inclusions.
(i) Inclusion ∂◦ϕ(x) ⊇ conv {gπ : π ∈ Π(x)}. Fix any π ∈ Π(x). We need to show that gπ ∈
∂◦ϕ(x). To do this, we construct a sequence x(ε) → x such that for sufficiently small ε > 0,
x(ε) ∈ Cπ and hence by Lemma A.2.1,∇ϕ(x(ε)) = gπ .
Let the distinct values of x be x̄1 > x̄2 > · · · > x̄m, and define the tie blocks Br = {j ∈ V :
xj = x̄r} for r = 1, . . . ,m. Since π ∈ Π(x), it respects the order of the blocks: for any i ∈ Br and
j ∈ Bs with r < s, we have xi > xj , and π places all elements of Br before those of Bs. Within
each block Br, the order given by π may be arbitrary.

Now, construct a perturbation η(ε) as follows: for each block Br, choose distinct numbers b(r)i for
i ∈ Br such that they are strictly decreasing in the order prescribed by π within Br. For example,
set b(r)i = −k for the k-th element in Br according to π. Then, we define

η
(ε)
i = εrb

(r)
i for i ∈ Br, and x(ε) = x+ η(ε).

For small ε, the perturbations are small. Since for i ∈ Br and j ∈ Bs with r < s, we have
xi − xj = x̄r − x̄s > 0, and the perturbations are of order εr and εs with r < s, so for small ε,
x
(ε)
i > x

(ε)
j because the perturbation does not change the order between blocks. Within each block,

the distinct b(r)i ensure strict order as prescribed by π. Thus, for small ε, x(ε) ∈ Cπ .
Therefore, ∇ϕ(x(ε)) = gπ for all small ε, and since x(ε) → x as ε → 0, we have gπ as a limit of
gradients, so gπ ∈ ∂◦ϕ(x). Since this holds for every π ∈ Π(x), and ∂◦ϕ(x) is convex, we have
∂◦ϕ(x) ⊇ conv {gπ : π ∈ Π(x)}.
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(ii) Inclusion ∂◦ϕ(x) ⊆ conv {gπ : π ∈ Π(x)}.
Take any v ∈ ∂◦ϕ(x). By definition, there exists a sequence xj → x such that ϕ is differentiable
at each xj and ∇ϕ(xj) → v. Since ϕ is piecewise affine (Lemma 2.2(1)), each xj lies in some
strict-order region Cπj , and thus ∇ϕ(xj) = gπ

j

. There are only finitely many permutations, so by
passing to a subsequence, we may assume that πj = π for all j for some fixed permutation π. Then
v = limj→∞∇ϕ(xj) = gπ .
We now show that π ∈ Π(x). That is, for any i, j such that xi > xj , we must have that π places i
before j.
Since xj → x, for large j, we have xj

i > xj
j due to that xi > xj . Since xj has strict order consistent

with π, it must be that π places i before j. This holds for all such pairs, so π respects the order of the
values of x. Specifically, if we consider the tie blocks, for any i ∈ Br and j ∈ Bs with r < s, we
have xi > xj , so π places i before j. Within blocks, the order may be arbitrary, so indeed π ∈ Π(x).
Therefore, v = gπ for some π ∈ Π(x). Since every point in ∂◦ϕ(x) is a limit of such gradients, and
the set {gπ : π ∈ Π(x)} is finite, the convex hull of these limits is exactly conv{gπ : π ∈ Π(x)}.
Thus, ∂◦ϕ(x) ⊆ conv {gπ : π ∈ Π(x)}.
Combining both inclusions, we have equality. The proof is complete.

A.2.2 PROOF OF PROPOSITION 3

We first fix x ∈ [0, 1]n and condition on a sampled permutation π ∈ Π(x). By Definition 3, the
stochastic subgradient ĝ is defined as that

ĝ = n (f(SK)− f(SK−1)) eπ(K),

where K is a random rank uniformly sampled from {1, . . . , n} with probability 1/n, and Sk =
{π(1), . . . , π(k)} for k = 0, . . . , n (with S0 = ∅). Using the law of total expectation over K, the
conditional expectation of ĝ given x and π is computed as that

E[ĝ | x, π] =
n∑

k=1

P(K = k | π) · n (f(Sk)− f(Sk−1)) eπ(k).

Since P(K = k | π) = 1/n by the uniform sampling, it simplifies to that

E[ĝ | x, π] =
n∑

k=1

(f(Sk)− f(Sk−1)) eπ(k) = gπ, (12)

where the last equality follows from the definition of gπ as the subgradient associated with π. Thus,
E[ĝ | π] = gπ (noting that conditioning on π implies x is fixed).
Now, consider the expectation conditional only on x. Let Q be the distribution on Π(x) induced
by the tie-breaking rule (e.g., uniform within each block of tied values). Taking expectation of both
sides in (12) over π ∼ Q yields that

E[ĝ | x] = Eπ∼Q [E[ĝ | x, π]] = Eπ∼Q[g
π].

Since gπ ∈ {gπ : π ∈ Π(x)} for each π, the expectation Eπ∼Q[g
π] is a convex combination of these

vectors. By Proposition 3, we have conv{gπ : π ∈ Π(x)} = ∂◦ϕ(x), so we have
E[ĝ | x] ∈ ∂◦ϕ(x).

If x is fixed, then the unconditional expectation E[ĝ] equals E[ĝ | x], and hence E[ĝ] ∈ ∂◦ϕ(x).
This completes the proof of both equalities.
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A.3 PROOFS FOR SECTION 4

The following lemma establishes the differentiability of Φ(θ) = Ez∼ν [ϕ(gθ(z))] with respect to θ.
Assume that the function gθ : Z → Rd is piecewise smooth in θ, meaning that for each z ∈ Z,
the map θ 7→ gθ(z) is piecewise continuously differentiable. The probability measure ν on Z has a
density, and there exists an integrable function h : Z → R such that for all θ, the norm of the Jaco-
bian ∥Jθgθ(z)∥is bounded by h(z) for almost every z. Then, the function Φ(θ) = Ez∼ν [ϕ(gθ(z))]is
differentiable with respect to θ, and

∇θΦ(θ) = Ez∼ν [∇θϕ(gθ(z))],
where∇θϕ(gθ(z)) exists for almost every z and is given by the chain rule.

Proof. Since ϕ is piecewise linear, it is differentiable almost everywhere. Similarly, since gθ(z) is
piecewise smooth in θ, the function θ 7→ ϕ(gθ(z)) is differentiable almost everywhere in θ for each
z. The gradient is given by the chain rule:

∇θϕ(gθ(z)) = Jθgθ(z)
T∇xϕ(x)

∣∣
x=gθ(z)

,

where∇xϕ(x) exists almost everywhere.
By the Lipschitz continuity of ϕ, we have ∥∇xϕ(x)∥ ≤ Lϕ almost everywhere, where Lϕ is the
Lipschitz constant. Therefore,

∥∇θϕ(gθ(z))∥ ≤ ∥Jθgθ(z)T∥ · ∥∇xϕ(x)∥ ≤ ∥Jθgθ(z)∥Lϕ.
By assumption, ∥Jθgθ(z)∥ ≤ h(z) for some integrable function h, so ∥∇θϕ(gθ(z))∥ ≤ Lϕh(z),
which is integrable since h is integrable.
Thus, by the dominated convergence theorem, we can interchange the gradient and the expectation:

∇θΦ(θ) = ∇θEz∼ν [ϕ(gθ(z))] = Ez∼ν [∇θϕ(gθ(z))].
This completes the proof.

A.3.1 PROOF OF THEOREM 4.1

Let G(z) = Jθgθ(z)
Tĝ, where z ∼ ν. We aim to show that E[G(z)] = ∇θΦ(θ), with Φ(θ) =

Ez∼ν [ϕ(gθ(z))].
By Proposition 3, E[ĝ | x] ∈ ∂ϕ(x) for x = gθ(z), where ∂ϕ(x) is the subdifferential of ϕ at x.
For fixed z, conditional on z, we have that

E[G(z) | z] = E[Jθgθ(z)Tĝ | z] = Jθgθ(z)
TE[ĝ | z] = Jθgθ(z)

TE[ĝ | x] ∈ Jθgθ(z)
T∂ϕ(x).

By the chain rule for subdifferentials, since gθ is differentiable and ϕ is convex, it follows that:
Jθgθ(z)

T∂ϕ(x) = ∂θ(ϕ ◦ gθ)(z),
where ∂θ(ϕ ◦ gθ)(z) denotes the subdifferential of the function θ 7→ ϕ(gθ(z)) with respect to θ, at
fixed z.
Thus, it follows that

E[G(z) | z] ∈ ∂θ(ϕ ◦ gθ)(z).

Taking expectation over z yields that
E[G(z)] = Ez [E[G(z) | z]] ∈ Ez [∂θ(ϕ ◦ gθ)(z)] .

Since Φ(θ) is differentiable with respect to θ, we can interchange the gradient and the expectation
by the dominated convergence theorem:

∇θΦ(θ) = ∇θEz∼ν [ϕ(gθ(z))] = Ez∼ν [∇θϕ(gθ(z))].

Since Φ(θ) is differentiable with respect to θ (as ensured by the smoothness of ν and the piecewise
smoothness of gθ), the subdifferential ∂θΦ(θ) is a singleton containing only∇θΦ(θ). Therefore, we
obtain that

E[G(z)] = ∇θΦ(θ),

which proves that G(z) is an unbiased estimator of∇θΦ(θ).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 PRELIMINARIES AND PROOFS FOR SECTION 5

A.5 PRELIMINARIES

We first give the definition of a gradient for the functional F . [First Variation] The first variation of
the functional F at a distribution µ, denoted δF

δµ [µ](θ), is the functional derivative of F with respect
to µ evaluated at a point θ. Formally,

δF

δµ
[µ](θ) := lim

ϵ→0

F
(
(1− ϵ)µ+ ϵν

)
− F (µ)

ϵ
,

for any perturbation distribution ν. The first variation provides the infinitesimal direction along
which the functional F decreases under perturbations of µ.

A.5.1 PROOF OF THEOREM 5.1

To prove the theorem, we adopt the mean-field theory developed in Nitanda et al. (2022).
We first provide a brief overview of the mean-field theory and highlight several key results in Nitanda
et al. (2022) that will be used in our proof. Let θi := (W i, bi). As N → ∞, the empirical
distribution 1

N

∑N
i=1 δθi converges to the a distribution µ, and gθ(z) converges to

Eµ[σ(Wh(z) + b)].
Thereby, we write the objective of (8) as

F (µ) := Ez∼ν

[
ϕ
(
Eµ[σ(Wh(z) + b)]

)]
.

Denote by δF
δµ [·] the first variation of F , and by ∇ δF

δµ [µ](·) the Wasserstein gradient of F at µ. Let
(µt)t≥0 be the laws of the iterates

θt+1 = (1− α)θt −∇
δF

δµ
[µt](θt) +

√
2ηtτξt.

Then
µt+1 = (id− η∇ δF

δµ [µt])#µt ∗ N (0, 2ηtτI).

Define a Lyapunov functional
L(µ) = F (µ) + τH(µ),

where H(µ) = Eµ[logµ] is the negative entropy of µ. Define the Fisher information of a distribution
q as

I(q) :=
∫

q(θ)
∥∥∥∇ log

q

pq
(θ)

∥∥∥2dθ,
where pq is the proximal Gibbs associated with q:

pq(θ) ∝ exp
(
− 1

τ

δF

δq
[q](θ)

)
.

For each s, let (q(t)s )s∈[0,ηt] be the Langevin interpolation with q
(t)
0 = µt and q

(t)
ηt = µt+1. Then we

have
|q̇(t)s |2 = τ2I

(
q(t)s

)
.

From Nitanda et al. (2022, Theorem 2 and Lemma 1), we have the following results:

(R1) supt Eµt [∥θ∥2] <∞.
(R2) There exist a constant C <∞ such that

L(µt+1)− L(µt) ≤ −τ2
∫ ηt

0

I
(
q(t)s

)
dt+ Cη2t . (13)

Notably, neither of these results relies on the convexity of ϕ, an assumption that does not hold in our
setting.

Proof of Theorem 5.1. Summing (13) from t = 0 to T − 1 and using that L is bounded below along
(µt)t (implied from (R1)), we obtain

λ2
T−1∑
t=0

∫ ηt

0

I
(
q(t)s

)
ds ≤ L(µ0)− L(µT ) + C

T−1∑
t=0

η2t ≤ L(µ0)− inf L+ C

T−1∑
t=0

η2t . (14)

Letting T →∞ and using
∑

t η
2
t <∞ gives

∞∑
t=0

∫ ηt

0

I
(
q(t)s

)
ds < ∞. (15)
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Define s0 := 0, st+1 := st + ηt, and the concatenated curve
Qs := q

(t)
s−st for s ∈ [st, st+1).

Then, by the identity |q̇(t)s |2 = λ2I(q(t)s ) and (15), we have
∞∑
t=0

W 2
2 (µt+1, µt) =

∞∑
t=0

W 2
2

(
q(t)ηt

, q
(t)
0

)
≤

∫ ∞

0

|Q̇s|2ds =
∞∑
t=0

∫ st+1

st

|Q̇s|2 ds = λ2
∞∑
t=0

∫ ηt

0

I
(
q(t)s

)
ds <∞.

For each t, choose τt ∈ [st, st+1] so that

|Q̇τt |2 ≤
1

ηt

∫ st+1

st

|Q̇s|2 ds,

which is possible by the mean value theorem. Since ηt ↓ 0 and
∑

k

∫ st+1

st
|Q̇s|2ds < ∞, we have

|Q̇τt | → 0. By (R1) the family (Qτt) is tight in P2, hence (passing to a subsequence if needed)
Qτt → µ∞ in W2. We claim that µ∞ = pµ∞ . Indeed, since the map q 7→ pq is W2-continuous; the
lower semicontinuity of metric slopes yields that q 7→ I(q) is lower semicontinuous with respect to
W2 convergence. Therefore,

0 ≤ λ2I(µ∞) ≤ lim inf
t→∞

|Q̇τt |2 = 0,

so I(µ∞) = 0, i.e.,∇ log µ∞
pµ∞

= 0 µ∞–a.e., and hence µ∞ = pµ∞ .

Finally, let us derive the convergence rate. Generate random vector (τ, U) with probabilities

P(τ = t) =
ηt∑T−1

t′=1 ηt′
, U ∼ Unif[0, ητ ].

Set

t̃ = sτ + U, HT =

T∑
t′=1

ηt′

Then t̃ ∼ Unif[0, HT ]. Using (14),

E[I(Qt̃)] ≤
L(µ0)− inf L

τHT
+

C
∑T−1

t=0 η2t
τ2HT

.

Setting ηt = η = 1/
√
T yields HT =

√
T and

E[I(Qt̃)] ≤
L(µ0)− inf L

τ
√
T

+
C

τ2
√
T
.

A.5.2 PROOF OF THEOREM 5.2

By the approximation error and optimization error assumptions, it follows that
Φ(θ̂) ≤ ϕ(xS∗) + εapprox + εopt.

Consider the random variable X = ϕ(gθ̂(z)) where z ∼ N (0, Id). Since ϕ is bounded by M , we
have |X| ≤ M and E[X] = Φ(θ̂). By Hoeffding’s inequality for bounded random variables, we
have

P(X ≥ E[X] + t) ≤ exp

(
− 2t2

(2M)2

)
= exp

(
− t2

2M2

)
.

Set δ = exp
(
− t2

2M2

)
, so t = M

√
2 ln(1/δ) = κ(δ). Then, with probability at least 1− δ, it holds

that
ϕ(x) = X ≤ E[X] + κ(δ) = Φ(θ̂) + κ(δ) ≤ ϕ(xS∗) + εapprox + εopt + κ(δ).

By the key property of the rounding scheme, we have r(Ŝ(x)) ≥ −ϕ(x). Since ϕ(xS∗) = −r(S∗),
it holds with probability at least 1− δ that

−ϕ(x) ≥ r(S∗)− εapprox − εopt − κ(δ).

Therefore, we have
r(Ŝ(x)) ≥ r(S∗)− εapprox − εopt − κ(δ).

The proof is complete.
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A.6 PROOFS FOR SECTION 6

A.6.1 PROOF OF THEOREM 6

Fix an arbitrary x ∈ [0, 1]n and let z = PK(x), where PK(x) denotes the projection of x onto the
set of vectors with at most K non-zero entries. By Lemma 2.2, the Lovász extension ϕ is Lipschitz
continuous with constant G, which implies:

ϕ(x) ≥ ϕ(z)−G∥x− z∥1.
Since ∥x− z∥1 = ρLK(x), By Lemma 6, we have that

ϕ(x) ≥ ϕ(z)−GρLK(x).
Rearranging terms yields that

ϕ(x) +GρLK(x) ≥ ϕ(z).

For any λ ≥ G, it follows that
ϕλ(x) = ϕ(x) + λρLK(x) ≥ ϕ(x) +GρLK(x) ≥ ϕ(z).

Taking the infimum over x ∈ [0, 1]n on the left-hand side and over z with ∥z∥0 ≤ K on the right-
hand side (noting that z depends on x), we obtain that

inf
x∈[0,1]n

ϕλ(x) ≥ inf
z∈[0,1]n

∥z∥0≤K

ϕ(z). (16)

Conversely, for any z with ∥z∥0 ≤ K, we have ρLK(z) = 0, which implies that
ϕλ(z) = ϕ(z) + λρLK(z) = ϕ(z).

Hence, it follows that
inf

x∈[0,1]n
ϕλ(x) ≤ inf

z∈[0,1]n

∥z∥0≤K

ϕ(z). (17)

Combining inequalities (16) and (17), we conclude that
min

x∈[0,1]n
ϕλ(x) = min

z∈[0,1]n

∥z∥0≤K

ϕ(z).

Now, for any z with ∥z∥0 ≤ K, the Lovász extension satisfies that

ϕ(z) =

∫ 1

0

f(St(z)) dt,

where St(z) = {i ∈ V : zi > t}. Since ∥z∥0 ≤ K, each threshold set St(z) has cardinality at most
K. Thus, ϕ(z) is a convex combination of f(S) for sets S with |S| ≤ K, implyiny that

min
z∈[0,1]n

∥z∥0≤K

ϕ(z) ≥ min
S⊆V
|S|≤K

f(S).

Moreover, for any S ⊆ V with |S| ≤ K, the characteristic vector z = 1S satisfies ϕ(z) = f(S), so
we have that

min
z∈[0,1]n

∥z∥0≤K

ϕ(z) = min
S⊆V
|S|≤K

f(S).

Therefore, we prove that
min

x∈[0,1]n
ϕλ(x) = min

S⊆V
|S|≤K

f(S) = − max
S⊆V
|S|≤K

r(S),

where the last equality follows from f(S) = −r(S).
To prove the moreover part, let xλ be a minimizer of ϕλ(x). Suppose, for contradiction, that
ρLK(xλ) > 0. Then, with z = PK(xλ), we have that

ϕλ(xλ) = ϕ(xλ) + λρLK(xλ) > ϕ(xλ) +GρLK(xλ) ≥ ϕ(z),
where the last inequality holds by Lemma 2.2. However, since ρLK(z) = 0, we have ϕλ(z) = ϕ(z),
and by optimality of xλ,

ϕλ(xλ) ≤ ϕλ(z) = ϕ(z),

which is a contradiction. Hence, ρLK(xλ) = 0, which implies ∥xλ∥0 ≤ K.
Consequently, every threshold set St(xλ) satisfies |St(xλ)| ≤ ∥xλ∥0 ≤ K. The chain sets Sk(xλ)
are threshold sets, and since ϕ(xλ) is an average of f(St(xλ)) over t ∈ [0, 1], and xλ minimizes ϕλ,
it follows that at least one chain set Sk(xλ) must achieve the minimum value of f , and thus is an
optimal cardinality-K assortment. The proof is complete.
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B EXPERIMENT SETTING

To ensure reproducibility, random seeds are deterministically generated as seed = n · 106 + m ·
104 +K · 10 + rep, where (n,m,K,rep) index the experimental configuration.

B.1 DAO

Our proposed Differentiable Assortment Optimizer (DAO) is a neural generator model designed for
end-to-end optimization of discrete assortment problems. DAO constructs a latent-variable generator
that maps Gaussian noise vectors to probabilistic selection logits, enabling gradient-based learning
despite the inherently combinatorial structure of the problem. To adapt across model classes, DAO
incorporates model-specific oracles (e.g., BAM, ML, NL) that provide unbiased stochastic gradients
of the expected revenue with respect to the generator output.
The neural architecture of DAO model consists of a shared multi-layer perceptron with hidden di-
mension H = 256, followed by N = 4 parallel output channels. Each channel applies a ReLU
transformation and produces a candidate selection vector; these are averaged and passed through
a sigmoid nonlinearity to yield smooth selection probabilities. The latent dimension is fixed at
zdim = 64, ensuring compact yet expressive stochastic embeddings.
Training employs the Adam optimizer with learning rate 10−3, batch size 64, and temperature-
controlled Gumbel-softmax relaxation for discrete rounding. We use a cosine annealing schedule
for the relaxation parameter τ , initialized at 0.15, decayed to 0.02 over the course of training with a
100-step warmup. The total number of iterations scales with problem size according to steps =

1200× clip
(

n
25

√
K
, 1, 10

)
, yielding between 1,200 and 12,000 updates per instance.

B.2 SFESS

The core methodology combines parametric neural networks to generate product selection logits
with SFESS-based discrete sampling mechanisms, enabling gradient-based optimization of inher-
ently non-differentiable combinatorial objectives. To accommodate different market structures, we
construct three model-specific variants with tailored revenue and loss functions: (1) the Multi-
category SFESS implementing nested logit structure with category-level dissimilarity parameters
to capture within- and across-category substitution patterns, (2) the Mixed Logit SFESS incorpo-
rating customer heterogeneity through type-specific attraction parameters, and (3) the base SFESS
model with multinomial logit (MNL) choice probabilities for single-segment markets.
The neural architecture across all variants consists of multi-layer perceptrons with hidden dimen-
sions ranging from 64 to 256 neurons, incorporating batch normalization and dropout (0.1-0.2)
for regularization, with Xavier initialization strategies. Product features (prices, attractions, and
customer-type specific parameters) are min-max normalized and processed through feature encoders
before generating selection logits, which are numerically stabilized via clamping to [-10, 10]. Train-
ing employs the AdamW optimizer (learning rate 0.001-0.005, weight decay 5 × 10−4) with Re-
duceLROnPlateau scheduling (patience=50, factor=0.8), processing 8-300 SFESS samples per iter-
ation over 200-1000 iterations depending on problem scale. The discrete product selection process
uses control-variate score function estimators to reduce variance in policy gradients, with gradient
trimming (max norm = 1.0) to ensure training stability.
Across all three model variants, we maintain consistent hyperparameter settings for fair compari-
son. The base SFESS model is configured with hidden layer dimension of 256, learning rate of
0.001, 500 training iterations, batch size of 64, and n samples per iteration (instance-dependent).
The Mixed Logit SFESS variant employs identical architecture (hidden size 256) with a slightly el-
evated learning rate of 0.005 to accommodate the increased complexity of heterogeneous customer
types, maintaining 500 iterations and batch size 64. The Multi-category SFESS model similarly uses
hidden dimension 256, learning rate 0.005, 500 iterations, and batch size 64, with additional early
stopping criteria (patience=150, minimum improvement threshold 10−6, improvement window=20
iterations). All models utilize the control-variate score function estimator for variance reduction in
gradient estimation, with the number of SFESS samples per iteration determined by instance-specific
metadata. Notably, for constrained choice models, the optimal assortment size does not necessarily
equal the capacity constraint K, as revenue may be maximized at smaller assortment sizes due to
cannibalization effects; therefore, we enumerate all values 1 ≤ k ≤ K and select the k yielding
maximum revenue. For computational consistency, the capacity parameter is set to k+1 across all
experiments to account for the no-purchase option, ensuring uniform problem formulation across
different choice model structures.
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B.3 HARDWARD

All experiments are conducted on a single NVIDIA RTX A4000 GPU (16 GB memory, CUDA
12.4, driver version 550.144.03) with TF32 enabled, and results are averaged across REPS = 10
independent repetitions for statistical robustness.

C MORE NUMERICAL RESULTS

C.1 NESTED LOGIT

The Nested Logit (NL) model captures substitution patterns through a hierarchical choice structure.
The n items are partitioned into g ∈ {2, 20, 200} nests with g < n and n mod g = 0, ensuring
balanced allocation across nests. The dissimilarity parameter γ is sampled from Unif[0.2, 0.9] to
cover the spectrum from near-independence (γ → 1) to strong within-nest correlation (γ → 0). For
consistency across instances, the outside option utility is fixed at v0 = 15.0.
The detailed numerical results are presented as follows. DAO achieves competitive accuracy across
both constrained (Table 4) and unconstrained (Table 6) settings. In the large-scale case with
n = 1000 and K = 100 (Table 5), DAO demonstrates particularly favorable runtime performance,
maintaining accuracy while completing well within the cutoff. By contrast, the optimal solver fre-
quently fails to finish within the 5-minute limit, underscoring DAO’s advantage in large-scale NL
problems. Overall, these results highlight DAO’s robustness and scalability across diverse Nested
Logit instances

C.1.1 CAPACITY-CONSTRAINED

G = 2 G = 20 G = 200
n K DAO SFESS DAO SFESS DAO SFESS

10 3 2.35 ± 4.06 – – – – –
100 10 3.90 ± 3.47 – 2.63 ± 1.69 – – –
100 30 0.00 ± 0.00 – 0.00 ± 0.00 – – –

1000 10 3.41 ± 2.75 – 4.37 ± 2.18 – 7.01 ± 2.45 –
1000 30 2.90 ± 1.79 – 2.38 ± 0.91 – 3.98 ± 0.51 –

Table 4: Nested Logit (NL) with capacity constraints. Values report the percentage gap ± standard
deviation relative to the optimal solutions across (n,K,G). Entries marked “–” in the upper-right
blocks correspond to settings where n < G, which are not meaningful for NL. Entries marked “–” in
the last row correspond to cases where the classical solver required to compute the optimal solution
did not finish within the 5-minute time limit.

DAO consistently delivers tighter gaps at larger problem scales. In contrast, the optimal solver
often fails to finish within the 5-minute cutoff when n = 1000, highlighting DAO’s advantage in
large-scale instances.

G = 2 G = 20 G = 200
n K DAO SFESS DAO SFESS DAO SFESS

1000 100 <0.04 – <0.05 – <0.09 –

Table 5: Nested Logit (NL) runtime comparison: ratio of DAO and SFESS runtime to that of the
optimal solver (mean ± standard deviation). For large-scale settings (n = 1000), DAO achieves
competitive accuracy while maintaining significantly lower runtime ratios.

C.1.2 UNCONSTRAINED

C.2 BASIC ATTRACTION MODEL

Our final specification employs the Basic Attraction Model (BAM) as a multinomial logit baseline.
We set the attraction of the outside option to a0 = 10.0 in all instances to provide a consistent
calibration of the probability of choice.
For the BAM model, we can observe that DAO achieves competitive accuracy in unconstrained set-
ting. However,when dealing with simple product choices without distinguishing between categories,
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n G = 2 G = 20 G = 200

10 0.00 ± 0.00 – –
100 0.01 ± 0.02 0.02 ± 0.03 –
1000 1.53 ± 0.18 1.58 ± 0.18 1.62 ± 0.24

Table 6: Nested Logit (NL) without capacity constraints. Values report the percentage gap ± stan-
dard deviation relative to the optimal solutions across (n,G). Entries marked “–” indicate parameter
combinations that are not meaningful (e.g., n < G).

n = 10 n = 100 n = 1000
Setting DAO SFESS DAO SFESS DAO SFESS

Unconstrained 0.00 ± 0.00 – 0.04 ± 0.04 - 1.57 ± 0.35 –
K = 3 0.61 ± 1.29 -0.00 ± 0.00 8.27 ± 4.58 - 4.52 ± 1.99 –
K = 10 – – 1.49 ± 0.84 -0.00 ± 0.00 2.74 ± 0.81 -0.00 ± 0.00
K = 30 – – 0.02 ± 0.02 -0.00 ± 0.00 2.20 ± 0.53 –
K = 100 – – – – 2.26 ± 0.51 –

Table 7: Comparison of DAO and SFESS under the Basic Attraction Model (BAM). The first row
shows the unconstrained version, followed by results with capacity constraints at different K. Values
report the percentage gap ± standard deviation with respect to the optimal solutions across (n,K).

the difference in the number of model parameters has a significant impact on the final results. More-
over, for the DAO model, as n increases, the difference between the DAO model and the classical
BAM model can only be reduced when K increases. A potential reason for this is that as K grows,
it becomes closer to the number of products selected in the unconstrained BAM case.
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D LLM USAGE

In the preparation of this work, the authors used a large language model (LLM) primarily for two
purposes: (1) polishing and refining the writing of certain parts of the paper to improve clarity and
readability, and (2) assisting in generating portions of boilerplate implementation code. The LLM
was not involved in formulating research ideas, deriving theoretical results, conducting experiments,
or interpreting findings. All text and code produced with the aid of the LLM were carefully reviewed,
corrected as necessary, and verified by the authors. This LLM usage was limited to supporting roles
and did not influence the scientific contributions or conclusions of the work.
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