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Abstract001

While large language models (LLMs) are in-002
creasingly capable of handling longer contexts,003
recent work has demonstrated that they exhibit004
the "lost in the middle" phenomenon (Liu et al.,005
2024) of unevenly attending to different parts006
of the provided context. This hinders their abil-007
ity to cover diverse source material in multi-008
document summarization, as noted in the DI-009
VERSESUMM benchmark (Huang et al., 2024).010
In this work, we contend that principled con-011
tent selection is a simple way to increase source012
coverage on this task. As opposed to prompt-013
ing an LLM to perform the summarization in014
a single step, we explicitly divide the task into015
three steps—(1) reducing document collections016
to atomic key points, (2) using determinantal017
point processes (DPP) to perform select key018
points that prioritize diverse content, and (3)019
rewriting to the final summary. By combining020
prompting steps, for extraction and rewriting,021
with principled techniques, for content selec-022
tion, we consistently improve source coverage023
on the DIVERSESUMM benchmark across var-024
ious LLMs. Finally, we also show that by in-025
corporating relevance to a provided user intent026
into the DPP kernel, we can generate person-027
alized summaries that cover relevant source028
information while retaining coverage.029

1 Introduction030

Recent advances in language modeling have en-031

abled contemporary models to handle very long032

contexts (Reid et al., 2024; Anthropic, 2024b),033

spurring new evaluations of their capabilities in034

these settings (Tay et al., 2021; Pang et al., 2022;035

Shaham et al., 2022; Kamradt, 2023; Karpinska036

et al., 2024). As it becomes possible to process037

these longer inputs, Zheng et al. (2024) observe038

that a common use case of LLMs involves the sum-039

marization of dense information from collections040

of documents. A key challenge in providing reli-041

able output for the users in this setting is ensuring042

high coverage of the source material when multi- 043

ple documents present diverse viewpoints on the 044

same issue—a problem formalized by the DIVERS- 045

ESUMM benchmark (Huang et al., 2024) as Multi- 046

Document Diversity Summarization (MDDS). 047

While contemporary models are highly capable, 048

their attention mechanisms tend to prioritize con- 049

tent at the start and end of the context (Liu et al., 050

2024). This bias is particularly problematic for 051

MDDS, where key details may be spread across 052

multiple documents. As a result, even state-of- 053

the-art LLMs like GPT-4 struggle when prompted 054

to complete the MDDS task (Huang et al., 2024) 055

despite performing well on single-document sum- 056

marization (Goyal et al., 2022), where clear in- 057

troductions and conclusions provide natural focal 058

points. Furthermore, deploying LLMs in public- 059

facing interfaces highlights another important facet 060

of the MDDS problem—ensuring reliable cover- 061

age of all relevant information in a collection of 062

documents to user intents, essentially an instance 063

of Query-focused summarization (Daumé III and 064

Marcu, 2006; Vig et al., 2022). There exists an 065

open question to investigate how the attention bi- 066

ases of LLMs interact with information relevance 067

to user intents when generating summaries. 068

Our research question is: How does content se- 069

lection impact the source coverage of LLMs in 070

MDDS? (Section 3). We observe that prompting 071

an LLM for the task involves implicitly selecting 072

relevant content and generation into a coherent 073

summary in a single step. Instead, we decouple 074

this single prompting step into principled content 075

selection to prioritize diversity, defending against 076

the aforementioned attention bias, followed by a 077

rewriting step to produce a coherent, high-coverage 078

summary (Figure 1). 079

In order to select content, we draw inspiration 080

from recent work which shows that LLMs reli- 081

ably break down individual documents into atomic 082

claims or key points (Kim et al., 2024; Padmaku- 083
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Figure 1: Overview of the MDDS task (Section 2), which aims to generate a summary from a set of source documents
with an optional user intent. Compared to (a) prompting an LLM to perform MDDS in a single step (Naive LLM) and
other baselines, (b) our method (LLM + DPP) first extracts atomic key points from each document, then explicitly
selects content using DPPs to ensure diversity and relevance before rewriting them into a summary (Section 3).
LLM + DPP improves source coverage and produces summaries more aligned with user intent (Section 5).

mar and He; Krishna et al., 2023). After extracting084

key points from each source document, we use de-085

terminantal point processes (DPPs) (Kulesza et al.,086

2012) to select the subset of key points used to gen-087

erate the summary. DPPs are a statistical model that088

are used to select subsets of items prioritizing di-089

versity.1 Finally, we rewrite the selected key points090

into the desired output by prompting an LLM.091

We show that using DPPs for diverse content092

selection consistently improves coverage on the093

DIVERSESUMM benchmark, compared to both a094

naive prompting baseline and a multi-step LLM-095

prompt pipeline, robustly across multiple LLMs—096

GPT-3.5, GPT-4o, Claude-3-Sonnet, and Llama 3.1097

(Section 5.1). Content selection via DPPs can also098

be tuned to incorporate a relevance matrix gener-099

ating summaries that are better aligned with user100

intents (Section 5.2). As LLMs are increasingly de-101

ployed in sequential, agentic pipelines for complex102

tasks, our findings show the value of complement-103

ing LLM prompting steps—such as extracting and104

rewriting key points—with principled techniques105

like DPPs for content selection, where appropriate,106

to achieve stronger performance.107

2 Problem Formulation108

Multi-document diversity summarization109

(MDDS) The MDDS task, as formulated by110

Huang et al. (2024), focuses on generating a111

summary s from a set of articles, D = {d1...k},112

covering the same news story. Each set D is paired113

with a set of questions Q = {q1, . . . , qm}, which114

contain diverse answers drawn from multiple115

1We detail related work that uses DPPs in recommender
systems (Section 6.3) and as well as previous approaches to
single document summarization (Section 6.2)

source documents. The objective is to model 116

p(s|D) such that the summary s is faithful to the 117

source content and achieves high coverage, as 118

measured by correctly answering a large number 119

of questions qi ∈ Q based on the summary s. 120

Query-focused Multi-document diversity sum- 121

marization Building on the MDDS framework, 122

we also explore a variation known as query-focused 123

summarization (Daumé III and Marcu, 2006). In 124

this task, the input consists of the set of articles 125

D and a user-specified query quser. The goal is to 126

model p(s|D, quser), where the summary s has high 127

coverage of content relevant to the quser. Relevance 128

is determined using a scoring function frel(qi|quser), 129

which identifies the subset of relevant questions 130

Quser ⊂ Q. We evaluate the summary based on 131

coverage of relevant questions qi ∈ Quser. 132

3 Constructing Documents With 133

Principled Key Point Selection 134

A typical LLM pipeline for summarizing long con- 135

texts involves either concatenating multiple source 136

documents and performing summarization via a 137

single zero-shot prompt (Huang et al., 2024), or 138

hierarchically summarizing the collection, using 139

prompting to process individual documents (Chang 140

et al., 2024). We hypothesize that LLMs might 141

not be well suited to perform the content selection 142

aspect of summarization. To test this, we design a 143

three-step pipeline (Figure 1) that constructs a sum- 144

mary by extracting atomic key points from each 145

document (Section 3.1), selects the key points to 146

be included in the summary in a principled manner, 147

prioritizing diversity of content (Section 3.2.2) as 148

well as relevance to a user intent (Section 3.2.3) 149
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and then rewrites the selected key points into the150

summary (Section 3.3). We then evaluate the cov-151

erage of summaries generated with our method152

(Section 4.2) to various baselines (Section 4.3).153

3.1 Key Point Extraction154

Given a set of documents D = {d1...k}, we use an155

LLM to decompose each document di into a set of156

key points Ki = {ki,1, ki,2 . . . ki,n} that represent157

distinct pieces of information within the text. Prior158

work has demonstrated that LLMs reliably break159

down individual documents into atomic claims or160

key points via a zero-shot prompt for various ap-161

plications (Kim et al., 2024; Padmakumar and He;162

Krishna et al., 2023). We aim to generate a sum-163

mary s that allows for high coverage of Q associ-164

ated with D. Each extracted key point captures an165

atomic claim or distinct piece of information, so166

we hypothesize that selecting diverse key points167

would lead to better coverage of Q.168

3.2 Principled Key Point Selection169

Given the set of all key points from all documents,170

K =
⋃

iKi, the next step involves selecting a sub-171

set of key points, Ksel, prioritizing coverage of172

source material for MDDS, additionally incorpo-173

rating relevance for query-focused summarization.174

3.2.1 Background on DPPs175

Determinantal Point Processes (DPPs) model the176

probability of selecting subsets from a set of items177

emphasizing diversity among the chosen elements178

(Kulesza et al., 2012). DPPs construct a kernel179

matrix L using a similarity function between pairs180

of items. The kernel matrix may also be weighted181

by a diagonal matrix that scores the absolute quality182

or a task-specific property such as the relevance of183

the items (Kulesza et al., 2012). Inference from184

DPPs is formulated as a combinatorial optimization185

problem, where the goal is to find the subset of186

items with the highest likelihood under the kernel L.187

This can be efficiently approximated using greedy188

algorithms Chen et al. (2018). Our work uses DPP189

inference out of the box, noting that this allows the190

number of selected items to vary according to the191

similarity of items in the kernel matrix rather than a192

pre-specified number of distinct items. We provide193

more extensive coverage of prior work connecting194

DPPs with NLP tasks in Section 6.2.195

3.2.2 Selecting Key Points Prioritizing 196

Diversity 197

To achieve high source coverage in the MDDS task, 198

we use a DPP to select a subset of key points from 199

K =
⋃

iKi that prioritizes diversity. Each key 200

point kij is first embedded into a high-dimensional 201

vector vij via a transformer-based encoder. These 202

embeddings are then used to construct a kernel 203

matrix L, where each entry L(i1,j1),(i2,j2) repre- 204

sents the similarity between pairs of key points, 205

computed through a kernel function fk(vi1j1 , vi2j2). 206

We then run DPP-inference on L to obtain the se- 207

lected key points, Ksel as detailed in Section 3.2.1. 208

3.2.3 Selecting Relevant Key Points 209

Prioritizing Diversity 210

In the query-focused MDDS task, we incorporate 211

relevance to quser into the key point selection ob- 212

jective, using a modified DPP approach. After 213

embedding each key point kij into a vector vij , we 214

construct the similarity matrix L as above. We then 215

create the relevance vector R, where each entry 216

Ri represents the relevance score of ki ∈ K cal- 217

culated as frel(ki|quser).2 The relevance-weighted 218

matrix to L′ = RLRT thus balances both key 219

point similarity and relevance to quser. where 220

each entry in L′
(i1,j1),(i2,j2)

= frel(vi1j1 |quser) × 221

fk(vi1j1 , vi2j2)× frel(vi2j2 |quser). DPP inference 222

is then applied to L′ (Section 3.2.1), selecting a 223

diverse yet query-relevant subset Ksel. 224

3.3 Rewriting 225

The final step involves synthesizing the selected 226

key points into a coherent summary s. We use an 227

LLM to rewrite the chosen subset, ensuring that 228

the output is coherent and well-structured. 229

4 Experimental Setup 230

4.1 Datasets 231

4.1.1 DiverseSumm Benchmark 232

The DIVERSESUMM benchmark consists of 245 233

examples, each of which is a set 10 articles cover- 234

ing different aspects of the same news event. Each 235

example is accompanied by 1 to 10 questions, with 236

each question linked to a set of articles that provide 237

answers. These articles offer diverse perspectives 238

on the questions, and the objective is to produce a 239

summary that captures the range of perspectives. 240

2We note here that the dimensionality of R is equal to the
total number of key points across all source documents, the
same as that of L.
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4.1.2 Augmenting DiverseSumm with more241

questions242

We observe that 78.3% of news stories in the orig-243

inal dataset have 3 or fewer associated questions.244

Thus not all articles are associated with questions245

in each example. To better evaluate the coverage246

of individual articles by the different methods, we247

use GPT-4o to generate 10 additional questions per248

article for each news story. This results in a syn-249

thetically augmented version of DIVERSESUMM250

with 100 questions per news story, sourced from251

the different articles.3 The prompt to obtain these252

questions is provided in Appendix A.1. Unlike the253

original dataset, we do not expect these questions254

to have coverage across multiple articles, but this255

helps improve the statistical power of our compar-256

ison across methods. We report results on both257

the original, as well as augmented versions of the258

DIVERSESUMM dataset.259

4.1.3 Augmenting DiverseSumm with260

synthetic user intents261

Finally, to adapt DIVERSESUMM for a query-262

focused multi-document summarization task, we263

synthetically generate user intents to accompany264

each news story. These user intents reflect varied in-265

formation needs, making certain perspectives from266

the source articles more or less relevant based on267

the intent. We prompt an LLM, again GPT-4o, to268

produce 5 distinct user intents for each news story269

given the concatenated set of 10 articles.4 The270

prompt details for generating these user intents are271

provided in Appendix A.1.272

4.2 Evaluation273

Automatic Evaluation of Source Coverage To274

evaluate the coverage of generated summaries, we275

measure how many questions qi ∈ Q can be cor-276

rectly answered based on the summary s. We eval-277

uate if a question is answered using an LLM-as-278

judge evaluation with GPT-4o to (a) check whether279

a given question qi is answerable from s, and (b)280

verify whether the answer from s aligns with the281

content in the corresponding article dj ∈ D. A282

question qi is covered by s if qi is answerable283

from s and if the answer for qi obtained from s284

matches the answer from dj . We report the average285

3To verify the quality of the augmented questions, we
conduct a human annotation in Appendix B.1.

4We detail the method in which we filter generated user in-
tents for quality as well as identify the set of relevant questions
for evaluation in Appendix B.2. We also conduct a human
annotation to verify the quality of the intents in Appendix B.2.

coverage of examples from DIVERSESUMM and 286

DIVERSESUMM Augmented (Section 4.1). Prior 287

work has demonstrated the effectiveness of evalua- 288

tion of question-answering tasks by prompting an 289

LLM (Li et al., 2024; Balepur et al., 2024a). We 290

select the prompt format per the recommendations 291

of Huang et al. (2024) to evaluate the coverage of 292

each question individually from the summary and 293

the faithfulness of the answer to the original article, 294

each via binary answers from an LLM. We provide 295

the prompt used in Appendix A.6. 296

Correlation with Human Judgments To vali- 297

date the reliability of our automatic evaluation, we 298

cross-check a random sample of LLM-as-judge out- 299

puts from GPT-4o against human annotations col- 300

lected via Amazon Mechanical Turk. We sample 301

100 outputs, equally split between cases where qi is 302

answerable from s and cases where it is not, obtain- 303

ing 3 human annotations for each. The agreement 304

between the LLM-as-judge and human annotations 305

is 86.4% for answerability and 95.3% for correct- 306

ness, demonstrating the robustness and reliability 307

of the automatic evaluation method.5 308

4.3 Models Used 309

We perform experiments using four LLMs: GPT- 310

3.5, GPT-4o (OpenAI, 2024), Claude-3-Sonnet 311

(Anthropic, 2024a), and LLaMA 3.1 70B (Dubey 312

et al., 2024). 313

Our Method (LLM + DPP) We first perform 314

key point extraction from each article using the 315

respective LLM (Section 3.1) with the prompt 316

detailed in Appendix A.2. We then select the key 317

points to be included in the summary (Section 3.2) 318

using the DPPy library (Gautier et al., 2019).6 319

We create the Gaussian kernel matrix L, using 320

BertScore (Zhang* et al., 2020) with Deberta-V3 321

embeddings (He et al.) as the similarity function 322

between pairs of key points—we ablate aspects 323

of the DPP kernel in Table 2. Additionally, we 324

score the relevance of different key points to 325

quser using an instruction-tuned retrieval model, 326

intfloat/e5-mistral-7b-instruct (Wang 327

et al., 2023) model due to its strong performance 328

on the MTEB leaderboard. The selected key points 329

are then rewritten into the final summary using the 330

5We note that this agreement matches is in line with the
reported performance of GPT-4 in an LLM-as-judge setting in
MT-Bench (Zheng et al., 2023). However, we acknowledge
the limitations of LLM-as-judge evaluation in Section 8.

6We perform exact sampling via the spectral method, the
default inference technique via DPPy
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same LLM (Section 3.3) with the prompt detailed331

in Appendix A.3.332

Baselines (1) Naive LLM- A simple baseline333

where we prompt the LLM to generate the sum-334

mary from the concatenated set of articles, per-335

forming content selection and text generation in336

one step. The prompt for Naive LLM is provided337

in Appendix A.4, (2) All KPs- To ablate the effect338

of our content selection methods, we compare to a339

baseline where we prompt the LLM to generate the340

summary from the set of all key points extracted341

from the articles. This uses the same prompt as342

LLM + DPP for rewriting (Appendix A.3), just343

without the selection step, and (3) LLM-Selected344

KPs- Finally, to demonstrate the effectiveness of345

the DPP-based key point selection method over an346

entirely LLM-prompting pipeline, we compare to a347

baseline that performs key point selection with an348

LLM (GPT-4o) before rewriting. The prompt used349

for LLM-based key point selection is provided in350

Appendix A.7. This uses the same prompt as LLM351

+ DPP for rewriting (Appendix A.3).352

5 Results353

5.1 Evaluating Source Coverage in354

Multi-document Summarization355

Content selection with DPPs results in better356

source coverage From Table 1, we observe that357

LLM + DPP consistently achieves the highest358

source document coverage across all evaluated359

LLMs, outperforming all baselines on both the360

DIVERSESUMM and DIVERSESUMM Augmented361

datasets. The baselines that explicitly select key362

points (All KPs and LLM-Selected KPs) generally363

outperform the naive approach of concatenating364

articles and prompting the LLM for a summary365

(Naive LLM) for all LLMs. Additionally, the con-366

sistent improvement of LLM-Selected KPs and367

LLM + DPP over All KPs indicates that simply368

reducing context length by extracting all key points369

is insufficient, explicit key point selection is impor-370

tant in order to obtain better coverage.371

Encoded model representations of key points372

provide useful signal for key point selection373

From Table 2, we also observe that LLM + DPP,374

using variants of the DPP-kernel applied to high-375

dimensional encoder embeddings, outperforms376

LLM-Selected KPs, which performs on explicit377

key point selection in the text space through LLM378

prompting. This finding shows the value of using379

principled techniques, such as diversity-aware key 380

point selection (Section 3.2), to perform individual 381

steps in a pipeline instead of performing every step 382

via an LLM prompt. 383

While LLMs selecting content have uneven 384

coverage, key point selection is more uniform 385

Prior work (Liu et al., 2024) has shown that LLMs 386

have systematic biases in how well they attend to 387

context, better answering questions when relevant 388

information appears at the start or end of the con- 389

text. Huang et al. (2024) also observe similar ’lost- 390

in-the-middle’ biases on the multi-document sum- 391

marization task. To study this, we plot the coverage 392

of the generated summaries from LLM + DPP and 393

Naive LLM per article on DIVERSESUMM Aug- 394

mented in Figure 2.7 We observe that the Naive 395

LLM approach exhibits systematic positional bi- 396

ases. Llama 3.1 has better coverage of documents 397

at the end of the context, an end bias. Similarly, 398

GPT-4o has a start bias, and GPT-3.5 and Claude 399

exhibit mild biases to not sufficiently cover docu- 400

ments in the middle. LLM + DPP improves cover- 401

age on all documents, particularly alleviating the 402

positional biases on Llama 3.1 and GPT-4o, high- 403

lighting the efficacy of key point selection in the 404

multi-document summarization task. 405
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Figure 2: Studying the ’lost-in-the-middle’ phenomenon
by plotting coverage of different source articles by index
with Naive LLM and LLM + DPP. While Naive LLM
exhibits biases to better cover the articles at the start
(GPT-4o, GPT-3.5) or end (Llama) of the context, LLM
+ DPP has higher and more uniform coverage of all
source documents—mitigating these biases.

Key points selected in LLM + DPP better covers 406

the source documents than LLM-Selected KPs 407

To investigate the improved coverage of LLM + 408

DPP over LLM-Selected KPs, we plot the distribu- 409

7We selected the augmented version of DIVERSESUMM
since the synthetic question generation ensures that each arti-
cle has at least 10 associated questions. This ensures we have
statistical power on our results.
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DIVERSESUMM DIVERSESUMM Augmented

GPT 3.5 GPT 4o Claude Llama GPT 3.5 GPT 4o Claude Llama

Naive LLM 0.3324 0.5516 0.4776 0.2427 0.2667 0.4807 0.4248 0.2187

All KPs 0.3472 0.5443 0.5683 0.3458 0.2573 0.4620 0.4114 0.2368
LLM-Selected KPs 0.4370 0.5747 0.5369 0.3376 0.3849 0.5409 0.5142 0.3087

LLM + DPP 0.4706 0.5805 0.5923 0.3653 0.3845 0.5535 0.5469 0.3227

Table 1: Source coverage evaluation (Section 4.2) on DIVERSESUMM (Section 4.1.1) and DIVERSESUMM Aug-
mented (Section 4.1.2). We report coverage of the source material as the fraction of questions correctly answered
from the generated summaries (Section 4.2) from 4 different LLMs—GPT3.5, GPT-4o, Claude-3-Sonnet and
Llama-3.1, and compare the performance of our method, LLM + DPP, with three relevant baselines (Section 4.3).
Selecting key points to prioritize diversity via DPPs (Section 3.2) results in better source coverage for all 4 LLMs.

DIVERSESUMM DIVERSESUMM Augmented

GPT 3.5 GPT 4o Claude GPT 3.5 GPT 4o Claude

LLM-Selected KPs 0.4370 0.5747 0.5369 0.3849 0.5409 0.5142

LLM + DPP (Gaussian Kernel, σ = 0.1) 0.4494 0.6145 0.6347 0.3728 0.6145 0.6037
LLM + DPP (Gaussian Kernel, σ = 1) 0.4706 0.5805 0.5923 0.3845 0.5535 0.5469

LLM + DPP (Gaussian Kernel, σ = 10) 0.4342 0.5906 0.5198 0.3752 0.5258 0.4699
LLM + DPP (Linear Kernel) 0.4653 0.5893 0.5863 0.3674 0.5518 0.5450

Table 2: We report 4 ablations of the DPP kernel used for keypoint selection (Section 3.2) for our method, LLM +
DPP. We evaluate 3 LLMs on 4 different kernels for source coverage (Section 4.2).
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Figure 3: Distribution of source documents covered by
key points when selected with LLM + DPP and LLM-
Selected KPs. LLM + DPP exhibits consistently higher
coverage of source documents.

tion of the fraction of source documents covered410

in the selected subsets of key points in Figure 3.411

While LLM-Selected KPs has a much higher vari-412

ance of documents covered, LLM + DPP consis-413

tently achieves high coverage of the diverse source414

documents.8415

DPP-based key point selection improves cover-416

age without increasing summary length To in-417

vestigate whether the improved source coverage418

achieved by LLM + DPP stems from better con-419

tent selection rather than simply generating longer420

summaries—a potential confounder—we compare421

the average summary lengths across LLM + DPP,422

8We perform tests for significance in Appendix C.2.

GPT-4o GPT-3.5 Llama Claude

LLM + DPP 925.34 448.77 296.28 890.37
LLM-Selected KPs 929.33 414.13 290.71 706.50

Naive LLM 914.05 418.15 298.40 601.77

Table 3: Average length of summaries, in words, from
LLM + DPP, LLM-Selected KPs and Naive LLM with
various LLM. For GPT-4o, GPT-3.5, and Llama, we
observe no significant difference across methods.

Naive LLM, and LLM-Selected KPs for each of the 423

four LLMs analyzed (Table 3). We calculate the 424

statistical significance of the differences in mean 425

lengths using a two-tailed t-test. We observe no 426

significant differences in average summary lengths 427

for GPT-4o, GPT-3.5, and Llama indicating that 428

the higher source coverage reported in Table 1 is 429

not attributable to longer summaries in these.9 430

5.2 Evaluation of Coverage of Relevant 431

Source Material in Query-Focused 432

Multi-Document Summarization 433

Adapting DPPs to select relevant content to a 434

user intent leads to better relevant coverage 435

9For Claude, the differences in summary lengths across
the various methods, at odds with the other LLMs, potentially
stems from differences in model training—we note that Claude
was specifically tuned for long contexts (Anthropic, 2024b).
We believe that this differing behavior when interacting with
different inputs for the rewriting step presents a direction for
future exploration.
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Figure 4: Case study of LLM + DPP (Section 5.2) selecting key points that are diverse and yet relevant to two
different user intents (Section 3.2.3) and evaluation of the summaries via question-answering (Section 4.2).

Figure 5: TSNE visualization of the key points selected for the two user intents in Figure 4 from the document set.
Blue triangles represent selected key points, while red circles denote unselected points. Color intensity reflects
relevance to the respective user intent. LLM + DPP is able to select relevant key points while also prioritizing
diverse coverage of the source material.

too In addition to ensuring better coverage of436

the source material, we also evaluate the effective-437

ness of our proposed method in covering content438

relevant to specific user intents using the DIVERS-439

ESUMM Relevance dataset (Section 4.1.3). This440

problem requires balancing diversity of content se-441

lected along with relevance to user intent. From Ta-442

ble 4, we find that adapting the DPP kernel to incor-443

porate relevance (Section 3.2.3) leads to the high-444

est performance compared to the various baselines.445

While prompting an LLM to directly generate sum-446

maries tailored to user intents (LLM-Selected KPs)447

yields improved relevance coverage compared to448

the naive summarization baseline (Naive LLM), our449

approach, which combines principled key point se-450

lection with relevance-aware DPPs, consistently451

outperforms both baselines.10 452

To further illustrate the effectiveness of select- 453

ing diverse yet relevant key points, we provide a 454

qualitative case study. Figure 4 is an example of 455

two distinct user intents associated with the same 456

set of source documents, along with correspond- 457

ing representative key points selected by LLM + 458

DPP. As a result, the answers to evaluation ques- 459

tions (Section 4.2) differ based on the summaries 460

rewritten from these selected key points. In Fig- 461

ure 5, we present a t-SNE visualization of key 462

points from the source documents, embedded using 463

the intfloat/e5-mistral-7b-instruct model 464

(Section 4.3), that also highlights their relevance 465

to the two user intents and marks those selected 466

10We use prompts Appendix A.5 and Appendix A.8 for
Naive LLM and LLM-Selected KPs in Section 5.2.
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DIVERSESUMM Relevance

GPT 3.5 GPT 4o Claude Llama

Naive LLM 0.4080 0.6410 0.5843 0.3182
LLM-Selected

KPs
0.5292 0.6443 0.6180 0.3603

LLM + DPP 0.5229 0.6605 0.6672 0.4224
LLM + DPP-

Relevance
0.5409 0.6972 0.6937 0.4501

Table 4: Evaluation of coverage of relevant source ma-
terial on DIVERSESUMM Relevance (Section 4.1.3). We
compare the performance of LLM + DPP with two rele-
vant baselines (Section 4.3) across various LLMs. Incor-
porating relevance into the DPP-kernel (Section 3.2.3)
results in the highest coverage, improving over LLM-
Selected KPs prompted to select relevant key points and
LLM + DPP prioritizing diversity alone.

by LLM + DPP. We observe that LLM + DPP467

effectively balances diverse coverage across the la-468

tent space while maintaining high relevance to user469

queries.470

6 Background and Related Work471

6.1 Multi-Document Summarization472

Our work builds on foundational multi-document473

summarization methods that extract information474

at various granularities (Radev et al., 2004; Hong475

and Nenkova, 2014; Cheng and Lapata, 2016) and476

abstractively summarize documents with special-477

ized neural networks (McKeown and Radev, 1995;478

Radev and McKeown, 1998; Barzilay et al., 1999;479

Zhang et al., 2018; Fabbri et al., 2019; Song et al.,480

2022). This has been aided by various datasets481

(Over and Yen, 2004; Dang, 2005; Owczarzak and482

Dang, 2011; Fabbri et al., 2019; Lu et al., 2020),483

most recent of which is DIVERSESUMM (Huang484

et al., 2024). More recently, Bhaskar et al. (2023);485

Chang et al. (2024) prompt LLMs to hierarchically486

generate summaries. To et al. (2024) generate an487

extractive summary using K-means clustering of488

sentence embeddings and then rewrite it as an ab-489

stractive summary using a fine-tuned T5 model.490

With LLMs able to process longer contexts, Huang491

et al. (2024) primarily evaluate a version of the492

Naive LLM baseline reporting results on various493

models. Our work extends this line of research by494

integrating a prompting pipeline with a principled495

content selection mechanism using Determinantal496

Point Processes (DPPs). This approach allows us497

to combine the strong off-the-shelf generative ca-498

pabilities of LLMs on the extraction and rewriting499

subtasks with a robust content selection strategy.500

6.2 DPPs for Summarization 501

Earlier works that use DPPs for summarization 502

tend to be extractive in nature. Kulesza et al. (2012) 503

propose a method to use DPPs for selection of sen- 504

tences to construct a summary that best resembles 505

the reference in training data, computing the simi- 506

larity kernel between sentences via TF-IDF scores. 507

Cho et al. (2019b) propose to use DPPs to select 508

sentences to construct an extractive summary based 509

on a BERT-based similarity measure. Cho et al. 510

(2019a) propose an enhanced similarity metric to 511

further refine extractive summaries. Moving be- 512

yond sentence-level extraction, Perez-Beltrachini 513

and Lapata (2021) introduced DPPs into the atten- 514

tion mechanisms of LSTMs and transformers for 515

abstractive summarization, encouraging diversity 516

in attending to input tokens during generation. Our 517

method requires no additional fine-tuning, as we 518

make no changes to the model architecture or ob- 519

jective function, unlike previous abstractive meth- 520

ods, allowing us to reap the benefits from further 521

advancements in language modeling. Unlike exist- 522

ing extractive methods, which focus on selecting 523

context-dependent sentences from the documents, 524

we operate on context-independent key points to 525

ensure more high-quality content selection. 526

6.3 Further applications of DPPs 527

DPPs are used in recommender systems when di- 528

versity in retrieved items is desirable (Gan et al., 529

2020; Wilhelm et al., 2018). DPPs are also used to 530

select diverse and high-quality in-context learning 531

examples leading to improved performance when 532

prompting LLMs (Wang et al., 2024; Ye et al., 533

2023; Yang et al., 2023). Finally, DPPs have also 534

been used to help search the prompt space, thereby 535

eliciting jailbreaks of LLMs (Zhang et al., 2024). 536

7 Conclusion 537

In this work, we demonstrate the utility of ex- 538

plicit content selection for improving the coverage 539

of diverse sources on the DIVERSESUMM bench- 540

mark. Creating a pipeline that uses LLM prompt- 541

ing steps, for extracting and rewriting information, 542

combined with principled key point selection with 543

DPPs yields summaries that cover diverse source 544

material as well as can be personalized to different 545

user intents. As agentic workflows are increas- 546

ingly deployed for complex tasks, our findings 547

highlight the need to identify and incorporate prin- 548

cipled techniques and tools as a complement to 549

powerful LLMs in order to best suit user needs. 550
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8 Limitations551

Firstly, we note the limitations of automatically552

evaluating coverage on DIVERSESUMM with an553

LLM. While ultimately the gold standard, con-554

ducting human evaluations for all ablations is pro-555

hibitively expensive, particularly as our task would556

require annotators to review entire news articles.557

We followed the evaluation recommendations from558

Huang et al. (2024) and supplemented our auto-559

matic evaluation with human validation of the met-560

rics in Appendix B. Another limitation of this561

project is that we run experiments on only one562

dataset, with synthetic augmentations. The main563

reason for this is that we are intentionally looking564

for datasets that involve long documents with di-565

verse source material. The challenge with many566

other summarization datasets is that LLMs already567

obtain fairly high performance when compared568

against the references (Goyal et al., 2022). It is yet569

unclear if our findings would generalize beyond the570

news domain, and to other languages. We do not571

make an exhaustive comparison with all possible572

prompting pipelines for multi-document summa-573

rization. Our research question in this project is574

about evaluating the role of principled content se-575

lection in improving coverage so we compare to576

baselines that do this implicitly (Naive LLM) or via577

an LLM prompt (LLM-Selected KPs). It is unclear578

if this is the maximum performance that can be ob-579

tained on the task with a multi-step LLM pipeline.580

One potential risk from our pipeline is that in Sec-581

tion 3.2.2, we select key points purely based on582

diversity—we do not incorporate any information583

about the reliability of the particular news articles.584

Since our work is purely academic, with publicly585

available datasets, this is not as much an issue but586

incorporating reliability into systems is important587

if deployed with real users.588
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Daniel Tam. 2004. Centroid-based summarization770
of multiple documents. Information Processing &771
Management, 40(6):919–938.772

Dragomir R Radev and Kathleen R McKeown. 1998.773
Generating natural language summaries from mul-774
tiple on-line sources. Computational Linguistics,775
24(3):470–500.776

Machel Reid, Nikolay Savinov, Denis Teplyashin,777
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste778
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-779
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-780
locking multimodal understanding across millions of781
tokens of context. arXiv preprint arXiv:2403.05530.782

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori783
Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong, Mor784
Geva, Jonathan Berant, et al. 2022. Scrolls: Stan-785
dardized comparison over long language sequences.786
In Proceedings of the 2022 Conference on Empiri-787
cal Methods in Natural Language Processing, pages788
12007–12021.789

Yun-Zhu Song, Yi-Syuan Chen, and Hong-Han Shuai.790
2022. Improving multi-document summarization791
through referenced flexible extraction with credit-792
awareness. In Proceedings of the 2022 Conference793
of the North American Chapter of the Association for794
Computational Linguistics: Human Language Tech-795
nologies, pages 1667–1681, Seattle, United States.796
Association for Computational Linguistics.797

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,798
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,799
Sebastian Ruder, and Donald Metzler. 2021. Long800
range arena : A benchmark for efficient transformers.801
In International Conference on Learning Representa-802
tions.803

Huy Quoc To, Hung-Nghiep Tran, Andr’e Greiner-804
Petter, Felix Beierle, and Akiko Aizawa. 2024.805
Skt5scisumm-a hybrid generative approach for multi-806
document scientific summarization. arXiv preprint807
arXiv:2402.17311.808

Jesse Vig, Alexander Richard Fabbri, Wojciech Kryś-809
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A.1 Augmenting DIVERSESUMM with874

synthetic questions875

Write down 10 factual questions that can876

be answered from the article below. These877

questions, and their answer should relate878

the most important facts of the event879

being reported in the article. Include880

questions that require reasoning about881

the facts in the document.882

Make sure you create questions883

such that all the important information884

in the document appears in the answers.885

Each question should be up to 14 words.886

Return a numbered list of questions887

with answers and nothing else.888

Article:889

<ARTICLE>890

891

A.2 Generating key points from articles892

Summarize all the content in this article893

into a list of simple, one-sentence,894

bullet points. Make sure that each bullet895

point is atomic and can be understood896

without any external context. Also, make897

sure that all the information in the898

article is covered in the list.899

Article:900

<ARTICLE>901

A.3 Rewriting the set of selected key points902

into a coherent summary903

Read the following set of key points904

obtained from a set of news stories about905

a specific topic. From the set, you have906

a subset of selected key points. Rewrite907

the selected key points into a coherent908

report that includes all the details909

present in the key points. Make sure the910

summary is fluent and coherent. Elaborate911

when you summarize diverse or conflicting912

information. Make sure to include all of913

the factual details from the key points914

because we want to use the report to915

answer questions. Remember, your output916

should be a summary that discusses and917

elaborates on the diverse and conflicting918

information presented across the articles.919

You need to elaborate on the differences920

rather than only mentioning which topic921

they differ. Don't worry about the summary922

being too lengthy. You must give your 923

response in a structured format: 924

```Report: [your report]```, where 925

[your report] is your generated report. 926

-------- 927

SELECTED KEY POINTS 928

-------- 929

<SELECTED KEYPOINTS> 930

A.4 Naive LLM baseline prompt 931

We largely reuse the prompt as provided by Huang 932

et al. (2024). 933

Read the following news articles. Produce 934

a summary that only covers diverse 935

and conflicting information across the 936

following articles, without discussing 937

the information all articles agree upon. 938

Elaborate when you summarize diverse or 939

conflicting information by stating what 940

information different sources cover and 941

how is the information diverse or 942

conflicting. You must give your answer in a 943

structured format: ```Report: 944

[your report]```, where [your report] is 945

your generated report. 946

--------- 947

ARTICLES 948

<ARTICLES> 949

--------- 950

Remember, your output should be a summary 951

that discusses and elaborates on the 952

diverse and conflicting information 953

presented across the articles. You need 954

to elaborate on the differences rather 955

than only mentioning which topic they 956

differ. Don't worry about the summary 957

being too lengthy. 958

A.5 Naive LLM baseline prompt with 959

relevance 960

Read the following news articles and 961

associated user intent. Produce 962

a summary that only covers the diverse 963

and conflicting information across the 964

following articles relevant to the user 965

intent, without discussing 966

the information all articles agree upon. 967

Elaborate when you summarize diverse or 968

conflicting information by stating what 969

information different sources cover and 970

how is the information diverse or 971

conflicting. Balance diversity of content 972
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with relevance to user intent. You973

must give your answer in a974

structured format: ```Report:975

[your report]```, where [your report]976

is your generated report.977

---------978

ARTICLES979

<ARTICLES>980

---------981

USER INTENT982

<USER INTENT>983

---------984

Remember, your output should be a summary985

that is relevant to the user intent and986

discusses and elaborates on the987

diverse and conflicting information988

presented across the articles. You need989

to elaborate on the differences rather990

than only mentioning which topic they991

differ. Don't worry about the summary992

being too lengthy.993

A.6 Evaluation of source coverage994

Please act as an impartial judge and995

evaluate the quality of the response996

provided by an AI assistant. Your997

evaluation should consider coverage of998

the summary with regard to the question999

and answers (i.e. how much information1000

in the question and answers is covered1001

by the summary). Begin your evaluation1002

by deciding if the question is1003

answerable from the summary - this1004

should be a true or false answer. Be as1005

objective as possible. You next need to1006

evaluate if the information to answer a1007

question from the summary matches the1008

reference answer. The answer to whether1009

the answer matches should be “0” for1010

insufficient coverage, and 1 indicates1011

sufficient coverage. The output should1012

strictly be in the format of a JSON with1013

two keys, 'answerable' with the value1014

true or false, and 'coverage' with the1015

answer 0 or 1. Return nothing else.1016

--------1017

Model Generated Response:1018

<SUMMARY>1019

--------1020

Question:1021

<QUESTION>1022

--------1023

Reference Answer: 1024

<REFERENCE ANSWER> 1025

A.7 LLM-Selected KPs baseline prompt 1026

Read the following set of key points 1027

obtained from a set of news stories about 1028

a specific topic. From the set, you have 1029

a select a subset that ensure maximum 1030

coverage of the articles provided. 1031

Make sure that all the important factual 1032

details from the articles are covered 1033

in the selected key points. Ensure that 1034

you cover all of the diverse viewpoints 1035

mentioned in the articles. Your output 1036

should be a list of selected key points 1037

where each selected one identically 1038

matches the corresponding key point 1039

You must give your 1040

response in a structured format: 1041

```Selected Key Points: [your list]```. 1042

-------- 1043

KEY POINTS 1044

<ALL KEYPOINTS> 1045

--------- 1046

ARTICLES 1047

<ARTICLES> 1048

--------- 1049

1050

A.8 LLM-Selected KPs baseline prompt with 1051

relevance 1052

Read the following set of key points 1053

obtained from a set of news stories about 1054

a specific topic and the associated user 1055

intent. From the set, you have 1056

a select a subset that are relevant to the 1057

user intent and ensure maximum 1058

coverage of the articles provided. 1059

Make sure that all the important factual 1060

details from the articles that are 1061

relevant to the user intent are covered 1062

in the selected key points. Ensure that 1063

you cover all of the diverse viewpoints 1064

mentioned in the articles. Your output 1065

should be a list of selected key points 1066

where each selected one identically 1067

matches the corresponding key point 1068

You must give your 1069

response in a structured format: 1070

```Selected Key Points: [your list]```. 1071

-------- 1072

KEY POINTS 1073
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<ALL KEYPOINTS>1074

---------1075

ARTICLES1076

<ARTICLES>1077

---------1078

USER INTENT1079

<USER INTENT>1080

---------1081

B Validation of DIVERSESUMM1082

Augmented and DIVERSESUMM1083

Relevance1084

In order to confirm that our synthetic augmenta-1085

tions of DIVERSESUMM are valid, we perform an1086

additional human annotation. The annotators for1087

this task were volunteer PhD students recruited1088

from our university in the US.1089

B.1 Confirming that the questions generated1090

in Section 4.1.2 are valid1091

We randomly sample 100 LLM-generated question-1092

answer pairs and the corresponding articles from1093

which they were generated. Two separate human1094

annotators independently provide a binary annota-1095

tion that the question can indeed be answered by1096

the article in question. Both annotators agree that1097

the generated questions are answerable in 98% of1098

cases. They are also asked to score if the provided1099

answer correctly answers the question given the ar-1100

ticle. Agreement on the correctness of the provided1101

answer is 93%.1102

B.2 Filtering of synthetic user intents1103

generated in Section 4.1.31104

To create the query-focused version of the dataset,1105

we prompt the model to generate 5 distinct user1106

intents. For each of the intents, we identify1107

the set of relevant questions by scoring the rel-1108

evance of all DIVERSESUMM-Augmented ques-1109

tions to that particular intent with the trained1110

intfloat/e5-mistral-7b-instruct model. We1111

select this model due to its strong performance on1112

the MTEB leaderboard. We set the threshold as1113

0.6 above which a question is deemed relevant. We1114

retain all user intents that contain at least 20 differ-1115

ent relevant questions associated with them. As a1116

result, the average number of user intents evaluated1117

per example is 4.65 with a minimum of 2 and a1118

mode of 5.1119

Confirming the validity of synthetic user intents1120

generated in Section 4.1.3 We randomly sample1121

50 examples, and the associated user intents, out 1122

of those that maintain 5 intents after filtering (Ap- 1123

pendix B.2). These are independently annotated 1124

by two separate human annotators. Each annota- 1125

tor provides a score from 1-5 to assess that each 1126

individual intent is valid given the set of input doc- 1127

uments. The mean rating assigned to the gener- 1128

ated user intents is 4.35 out of 5, with a Cohen’s 1129

Kappa of 0.64 indicating moderate to high agree- 1130

ment. This value also corresponds with the score 1131

assigned for Applicability of LLM-generated user 1132

personas in (Balepur et al., 2024b). We then ask the 1133

annotators to score the effective number of distinct 1134

personas out of the provided 5, an integer value 1135

from 1 to 5. Annotators report an average value of 1136

3.56 indicating that further exploration is necessary 1137

in order to synthetically create diverse user intents. 1138

C Additional Results 1139

C.1 The latent representations also contain 1140

useful information over selecting key 1141

points with uniform random sampling 1142

From Section 5.1, we observe that prioritizing di- 1143

versity when selecting key points leads to high 1144

coverage in summaries, more uniformly covering 1145

all the different source documents. However, uni- 1146

form random sampling is another way in which we 1147

can, in theory, cover each source document. We 1148

concatenate key points from all the documents and 1149

then randomly sample k of them, before rewriting 1150

these into the summary using the prompt in Ap- 1151

pendix A.3. We then compare this baseline with 1152

one that selects k key points using a k-DPP to rep- 1153

resent these. From Figure 6, we see that, for the 1154

same number of key points, the k-DPP baseline 1155

fairly consistently outperforms uniform random 1156

sampling. This again highlights the value in using 1157

the learned representations to select key points as 1158

it allows our method to sample prioritizing the rel- 1159

ative similarities of different key points. Finally, 1160

we note that both these methods are comfortably 1161

outperformed by the LLM + DPP baseline, essen- 1162

tially a DPP with exact sampling as detailed in 1163

Section 3.2.2. The main difference is that exact 1164

sampling sets the number of key points to be se- 1165

lected by considering the nature of the latent space 1166

of the key points, and not as a hyperparameter input 1167

to the method. This confirms the benefit of combin- 1168

ing LLM-prompting with principled techniques as 1169

appropriate to achieve high performance on tasks 1170

such as DIVERSESUMM. 1171
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Figure 6: Comparing using a k-DPP with uniform
random sampling for key point selection for DIVERS-
ESUMM, varying k, across 4 different LLMs (Ap-
pendix C). The k-DPP consistently outperforms uniform
random sampling, showing the value in sampling while
considering the learned representations of key points.
We also note that both are outperformed by LLM + DPP
with exact sampling.

C.2 Tests for statistical significance1172

To evaluate the significance of the coverage im-1173

provements shown in Table 1, we perform a1174

two-tailed t-test comparing the mean coverage of1175

LLM + DPP to LLM-Selected KPs, the highest-1176

performing baseline, for DIVERSESUMM and DI-1177

VERSESUMM-Augmented. We find that LLM +1178

DPP achieves significantly higher coverage than1179

LLM-Selected KPs for GPT-3.5, Claude, and Llama1180

3.1 at the 5% significance level (p < 0.05). For DI-1181

VERSESUMM-Augmented, the improvement is sig-1182

nificant for all four LLMs, likely due to increased1183

statistical power from the larger sample size. Sim-1184

ilarly, for Table 4, we perform a two-tailed t-test1185

comparing LLM + DPP with and without relevance1186

in the DPP-kernel. Incorporating relevance leads1187

to significantly higher coverage (p < 0.05) across1188

all LLMs.1189
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