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Abstract

We present L1-GP , an architecture based on L1 adaptive control and Gaussian Process Regression
(GPR) for safe simultaneous control and learning. On one hand, the L1 adaptive control provides
stability and transient performance guarantees, which allows for GPR to efficiently and safely learn
the uncertain dynamics. On the other hand, the learned dynamics can be conveniently incorporated
into the L1 control architecture without sacrificing robustness and tracking performance. Subse-
quently, the learned dynamics can lead to less conservative designs for performance/robustness
tradeoff. We illustrate the efficacy of the proposed architecture via numerical simulations.
Keywords: Bayesian Learning, Gaussian Process Regression, Safe Adaptive Control

1. Introduction
The historical premise of adaptive control was to control uncertain systems while simultane-

ously learning the system parameters and providing robustness to uncertainties. Rudolf Kalman was
the first to coin the term “self-tuning controller” in 1958 by introducing optimal linear-quadratic
regulator (LQR) with explicit identification of parameters (Kalman, 1958). The field of adaptive
control since then witnessed tremendous developments, capturing different classes of nonlinear
systems, including presence of unmodeled dynamics, switching models, hybrid systems and other
singularities, e.g. Åström and Wittenmark (2008); Landau (1979); Narendra et al. (1980); Sas-
try and Bodson (2011); Ioannou and Sun (2012), and references therein. The main architectures
were inspired by inverse Lyapunov design, ensuring asymptotic stability in the presence of system
uncertainties and disturbances. Recent developments in L1 adaptive control filled the last gap of
explicitly introducing robustness into the problem formulation, leading to a framework with a pri-
ori guaranteed robustness margins, transient and steady-state specifications (Cao and Hovakimyan,
2008; Hovakimyan and Cao, 2010). In L1 control architecture, estimation is decoupled from con-
trol, thereby allowing for arbitrarily fast adaptation subject only to hardware limitations. The L1
control has been successfully implemented on NASA’s AirStar 5.5% subscale generic transport air-
craft model (Gregory et al., 2009, 2010) and Calspan’s Learjet (Ackerman et al., 2016, 2017) and
F16 aircraft and unmmaned aerial vehicles (Kaminer et al., 2010, 2015; Jafarnejadsani et al., 2017;
Zuo and Ru, 2014). Despite these vast developments, the issue of learning the system dynamics
and/or uncertainties remained unresolved, as the typical estimation schemes in all these adaptive
architectures require persistency of excitation (PE) type assumption on reference signals to ensure
parameter convergence. Such requirement is unacceptable in safety-critical applications, rendering
the conventional Lyapunov-based adaptive control architectures incomplete, if parameter/system
identification is to be addressed simultaneously with transient specifications.
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L1 ADAPTIVE CONTROL WITH GPR

The last two decades have witnessed a type of data explosion that has revolutionized the industry
of autonomous systems. Tools from machine learning have been extensively explored in modeling,
identification, and control of dynamic systems. A few examples of such tools include, but are not
limited to, neural networks (Lewis et al., 1998), Gaussian processes (Williams and Rasmussen,
2006), and reinforcement learning (Sutton and Barto, 2018). In many of these instances, guarantees
of stability have not been prioritized, yet having an impressive demonstration was the main objec-
tive to show the power of data-driven methods towards achieving full autonomy (Lillicrap et al.,
2015; Deisenroth et al., 2013; Levine et al., 2016; Pan et al., 2020). Due to its data efficiency,
the nonparameteric structure and the ability to provide uncertainty quantification, Gaussian Process
Regression (GPR) has become popular in safety-critical learning and control (Aswani et al., 2013;
Akametalu et al., 2014; Berkenkamp and Schoellig, 2015; Berkenkamp et al., 2017; Hewing et al.,
2019; Wang et al., 2018), including application to model reference adaptive control (Chowdhary
et al., 2014). When the learning methods generate unsafe reference/control commands, the control
barrier function methods presented by Cheng et al. (2019), Salehi et al. (2019), and Taylor and Ames
(2019) correct the control input to ensure the system state remains in a safe set. In the present work
the desired trajectory is designed to be feasible and safe for an appropriately designed reference
system. The safety and feasibility guarantees are then dependent on the ability of an adaptive con-
troller to emulate the reference system. This design philosophy allows safe and feasible trajectories
to be generated a priori, instead of relying on run-time optimization routines to correct the unsafe
trajectories. In most of the learning control methods presented, the control performance is a direct
function of the quality of the learned uncertainties. In this paper we combine the formal stability and
robustness guarantees of L1 adaptive control with Gaussian Processes to ensure safe learning and
adaptation with a priori transient bounds. This would enable the satisfaction of control objectives
like trajectory tracking and simultaneously enable learning from the collected data.

Over the last two years L1 control has been explored within NASA’s Learn-To-Fly (L2F) frame-
work, wherein a real-time system identification toolbox is integrated across the flight envelope to
continuously update the model parameters and enable autonomous flight without wind-tunnel test-
ing, while an L1 adaptive controller is used to provide robustness and stability guarantees (Snyder,
2019). Incorporation of learning via neural network in L1 control was investigated in Cooper et al.
(2014). The system identification within L2F and the neural network based learning require some
prior knowledge of the system and uncertainty structure to facilitate parameter estimation.

In this paper we explore the L1 control architecture with Bayesian learning in the form of GPR
for safe learning with guaranteed stability and control performance throughout the learning phase.
We assume no availability of model structure and resort to the GPR to learn the uncertain dynamics
whenever possible, while achieving given control objectives like trajectory tracking. The predictor
in L1 adaptive control architecture naturally allows the incorporation of the availabe knowledge in
a systematic way1. We demonstrate that one can learn model uncertainties efficiently and safely
via GPR, while guaranteeing the stability and performance. Furthermore, we illustrate that the fast
adaptation of L1 controller intervenes when the uncertainties change. This ensures safe control
while the Bayesian learning catches up.

Finally, one may argue that if L1 adaptive control already guarantees stability and robustness,
then why incorporate learning within it. Instead, the learning should be kept separate if the goal is
just safe learning. While this assertion is true, in addition to safe learning, we are also demonstrating

1. The a priori knowledge of a system such as time-delay and input saturation can be conveniently incorporated into
the state predictor, which helps to improve both the performance and robustness (Kharisov et al., 2011).
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that learning can be incorporated within the L1 architecture without harming robustness or perfor-
mance. This is the initial step of the envisioned research, where the next step is to illustrate how the
learning can improve performance, without sacrificing robustness, when a larger operational enve-
lope is considered as compared to a single trim condition. On the other hand, the benefits of L1-GP
for purposes of planning (guidance and navigation) in highly uncertain environments are yet to be
illustrated on appropriate benchmark examples.

The problem formulation is introduced in Section 2, where an overview of GPR and L1 adaptive
control is also provided. The main architecture of L1 − GP is presented in Section 3. Numerical
validation is provided in Section 4. The manuscript is concluded in Section 5.
2. Problem Formulation

Let ‖ · ‖p denote the p-norm defined on the space Rn, n ∈ N, and ‖ · ‖ denote the 2-norm. In
denotes an identity matrix of size n. Given a positive scalar κ, we denote by Xκ the compact set
containing all x ∈ Rn such that ‖x‖∞ ≤ κ. Similarly, arbitrary compact subsets of Rn are denoted
by X. For any time-varying function g(t), g(s) denotes its Laplace transform when it exists, and
‖g‖L∞ denotes its L∞ norm. For a transfer function matrix G(s), ‖G(s)‖L1 denotes its L1-norm.
Next we discuss the problem formulation by considering the following system:

ẋ(t) = Amx(t) +Bm(u(t) + f(x(t))), x(0) = x0, and y(t) = Cmx(t), (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, Am ∈ Rn×n is a known
Hurwitz matrix specifying the desired closed-loop dynamics, Bm ∈ Rn×m and Cm ∈ Rm×n,
m ≤ n, are known matrices with rank(Bm) = m, f : Rn → Rm is the unknown nonlinearity
representing the model uncertainties, and y(t) ∈ Rm is the regulated output. The matrices Am, Bm
and Cm are the reference system matrices specifying the desired closed-loop system behavior.

Assumption 1 The constituent functions of the unknown nonlinearity f =
[
fi · · · fm

]>, fi :
Rn → R are samples from Gaussian processes GP(0,Kf,i(x, x

′)), where the kernels Kf,i : Rn ×
Rn → R and their Lipschitz constants Lk,i(X) on compact subsets of Rn are known.

Assumption 2 There exists a known conservative bound Lf (X) such that ‖∇xf(x)‖∞ ≤ Lf (X)
for all x ∈ X, and B0 such that ‖f(0)‖∞ ≤ B0.

The objective is to learn the model uncertainty f and track a given bounded reference signal
r(t) with quantifiable performance bounds both in transient and steady-state. Next we discuss the
two components of our approach, namely GPR and L1 adaptive control.

2.1. Bayesian Learning of Model Uncertainties

We present the high-probability bounds for the uniform prediction errors by first setting up the
measurement model. Assume we have N ∈ N measurements of the form yj = f(xj) + ζ =(
B>mBm

)−1
B>m (ẋj −Amxj) − uj + ζIm, ζ ∼ N (0, σ2n), yj ∈ Rm. Note that, estimates of

ẋ may be numerically generated with the estimation errors incorporated into ζ, for example, by
the Savitsky-Golay filter (Schafer, 2011). We define the data set as DN = {Y,X}, where Y ∈
RN×m, X ∈ RN×n and are defined as Y =

[
y1 · · · yN

]>, and X =
[
x1 · · · xN

]>. GPR
proceeds by using the assumption that fi ∼ N (0,Kfi(x, x

′)), i ∈ {1, . . . ,m}, and the data yj ∼
N (f(xj), σ

2
nIm) to formulate the posterior distributions conditioned on data at any test point x? ∈

Rn as
fi(x

?)|Yi ∼ N (µi(x
?), σ2i (x

?)), i ∈ {1, . . . ,m}, (2)
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where Yi is the ith column of Y. The terms µi(x?) and σi(x
?) are mean and variance of the

GP model and are defined as µi(x?) = K?
i (x

?)>
(
Ki + σ2nIN

)−1
Yi, and σ2i (x

?) = K??
i (x?) −

K?
i (x

?)>
(
Ki + σ2nIN

)−1
K?
i (x

?). The terms K??
i (x?), K?

i (x
?) and Ki are defined based on the

kernel of GP model as K??
i (x?) = Kf,i(x

?, x?) ∈ R, K?
i (x

?) = Kf,i(X, x
?) ∈ RN , Ki =

Kf,i(X,X) ∈ RN×N . Further details can be found in Williams and Rasmussen (2006) and Bishop
(2006). A major advantage of GPR is that the predictive estimates are in the form of predictive
distributions, as in (2), as opposed to point estimates. These predictive distributions can be used to
produce high probability bounds on the prediction errors as in Srinivas et al. (2012); Chowdhury
and Gopalan (2017). Recently, Lederer et al. (2019) presented a method of computing such bounds,
which are amenable to on-line computation, the generalization of which is presented below.

Theorem 1 Let Assumptions 1- 2 hold. Given the distributions in (2), for some ξ > 0 and any
compact X ⊂ Rn, let µ(x) =

[
µ1(x) · · · µm(x)

]>, σ(x) =
[
σ1(x) · · · σm(x)

]>, and

Lµi(X) =Lk,i(X)
√
N‖(Ki + σ2nIN )−1Yi‖, Lµ(X) = max

i∈{1,...,m}
Lµi(X)

ωσi(ξ) =

√
2ξLk,i(X)

(
1 +N‖(Ki + σ2nIN )−1‖ max

x,x′∈X
Kf,i(x, x′)

)
, ωσ(ξ) = max

i∈{1,...,m}
ωσi(ξ),

for i ∈ {1, . . . ,m}. Furthermore, for any δ ∈ (0, 1) define β(ξ) = 2 log
(
mM(ξ,X)

δ

)
, γ(ξ) =(

Lf (X)
n + Lµ(X)

)
ξ+
√
β(ξ)ωσ(ξ) , where M(ξ,X) is the ξ-covering number of X. Then, we have

Pr
{
‖f(x)− µ(x)‖∞ ≤ ef (x) =

√
β(ξ) ‖σ(x)‖∞ + γ(ξ), ∀x ∈ X

}
≥ 1− δ.

The proof is provided in the extended version of the manuscript in Gahlawat et al. (2020).

2.2. Overview of L1 Adaptive Control

We now briefly review theL1 control architecture for (1) without incorporation of learned dynamics.
Further details can be found in Hovakimyan and Cao (2010). An L1 controller consists of a state
predictor, an adaptation law, and a control law. The state predictor is given as

˙̂x(t) = Amx̂(t) +Bm(u(t) + σ̂(t)), x̂(0) = x̂0, and ŷ(t) = Cmx̂(t), (3)

where x̂(t) ∈ Rn is the predictor state and x̂0 is its initial value (that may be different from x0 in
(1)), and σ̂(t) ∈ Rm is the adaptive estimate. The adaptive estimate is updated according to

σ̂(t) = σ̂(iTs), σ̂(iTs) = −B+
mΦ−1(Ts)e

AmTs x̃(iTs), (4)

where t ∈ [iTs, (i+ 1)Ts] with Ts being the sampling time and i ∈ N, B+
m is the pseudo-inverse of

Bm, Φ(Ts) , A−1m (eAmTs − In), and x̃(t) , x̂(t)− x(t). The control law is given as

u(s) = C(s)(σ̂(s)− kgr(s)), (5)

where σ̂(s) is the Laplace transform of σ̂(t), r(t) is the reference signal and kg , −(CmA
−1
m Bm)−1

is a feedforward gain to ensure that the desired transfer function matrix M(s) = Cm(sIn −
Am)−1Bm has an identity DC gain, and C(s) is a lowpass filter with C(0) = Im, subject to

‖H(s)(I− C(s))‖L1 <
(
ρr − ‖H(s)C(s)kg‖L1 ‖r‖L∞ − ρin

)
/ (Lf (Xρr)ρr +B0) , (6)
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where H(s) , (sIn − Am)−1Bm, ρin ,
∥∥s(sI−Am)−1

∥∥
L1 ρ0 with ρ0 being a known bound

for the initial state x0 (i.e. ‖x0‖∞ ≤ ρ0), B0 and Lf (·) are defined in Assumption 2, ρr is a
positive constant that defines the semiglobal domain of attraction. The filter can be designed via
optimization (Hovakimyan and Cao, 2010, Section 2.6), (Jafarnejadsani et al., 2017). When there
is no initialization error, i.e. x̂0 = x0, following Hovakimyan and Cao (2010), if Ts → 0, then the
state and control signals of the closed-loop L1 system – both in transient and steady-state – can be
made arbitrarily close to the corresponding signals of the following non-adaptive auxiliary reference
system

ẋref(t) =Amxref(t) +Bm(uref(t) + f(xref(t))), xref(0) = x0, (7a)

uref(s) =C(s)(kgr(s)− ηref(s)), yref(t) = Cmxref(t), (7b)

where ηref(s) is the Laplace transform of ηref(t) , f(xref(t)). In the presence of non-zero initial-
ization error, the performance bounds between the adaptive system and the reference system will
contain additive exponentially decaying terms that depend on the initialization error. The reference
system defines the ideal achievable performance, where the uncertainty is perfectly known and can-
celled within the bandwidth of the filter C(s). Its stability hinges upon the same condition in (6),
while the bandwidth of the filter C(s) defines the tradeoff between performance and robustness.
3. The L1-GP Architecture

The architecture of the L1-GP controller contains two primary components: i) the Bayesian
learner that uses a GPR algorithm to produce estimates of the uncertainty f , and ii) the L1 adaptive
controller which incorporates the estimates and generates the control input u(t).
Bayesian learner: The task of the Bayesian learner is to use the collected data to produce the
estimates of the uncertainty f in the form of the mean function µ of the posterior distribution.
Furthermore, it also outputs the high-probability prediction error bounds presented in Theorem 1 as

M(x(t), t) = {f̂(x(t), t), êf (x(t), t)}, (8)

where the piecewise static in time f̂ and ê are defined as f̂(x(t), t) = µk(x(t)) and êf (x(t), t) =
ef,k(x(t)), for all t ∈ [tk, tk+1), tk ∈ T . Here, T is the set of discrete time-instances at which the
Bayesian learner updates the model parameters. Thus, over the time interval [tk, tk+1), µk(x(t)) =[
µk,1(x(t)) · · · µk,m(x(t))

]
, where µk,i(·) are the mean functions obtained after the kth-model

update computed via the posterior distributions in (2). Similarly, ef,k(x(t)) is the uniform error
bound computed via Theorem 1 after the kth model update. The Bayesian learner updates the model
once N ∈ N new data points have been collected; thus N is a design parameter. The Bayesian
learner is initialized to µ0(x(t)) = 0m, which is the prior mean, and ef0(x(t)) = ef (x(t)) is
obtained based solely on the GP priors on f .
Incorporating Learning into L1 Control: Next, we present the L1-GP controller that incorpo-
rates the model updates produced by the Bayesian learner into the L1 controller. Same as the L1
controller, the L1-GP controller consists of the state-predictor, adaptation law, and the control law.
The L1-GP state predictor is given by

˙̂x(t) =Amx̂(t) +Bm (fL(t) + σ̂(t) + u(t)) , x̂(0) = x̂0 and ŷ(t) = Cmx̂(t), (9)

where σ̂(t) is the adaptive estimate of uncertainties, fL(t) is the solution of the following equation

ḟL(t) = −ω(t)
(
fL(t)− f̂(x(t), t)

)
, fL(0) = 0, (10)

5



L1 ADAPTIVE CONTROL WITH GPR

0 10 20 30
-2

0

2

4

6

8

10

12

(a) State evolution

0 10 20 30

-2

-1

0

1

2

3

4
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Figure 1: State and control input evolution for L1-GP closed-loop system for step reference inputs.

with f̂(x(t), t) being defined in (8), and

ω(s) = L(s)ω̂(s), ω̂(t) = min {ω0/êf (x(t), t), ωc} . (11)

Here, ω0 > 0 is an an arbitrarily small a priori chosen constant, and ωc is the bandwidth of C(s)
verifying the L1-norm condition in (6), êf (x(t), t) is the output of the Bayesian learner in (8), and
L(s) is a low-pass filter. The update of the adaptive estimate σ̂ is governed by the piecewise-constant
adaptation law with sampling time Ts per (4). The L1-GP controller is given by

u(s) = −fL(s)− C(s)(σ̂(s)− kgr(s)). (12)

Note that êf (x(t), t), defined in (8), starts at ef0(x(t)) when no model updates have been performed,
and ideally approaches zero after sufficiently large number of model updates have been performed
as the size of the data set increases. Therefore, by the law presented in (11), ω(t) in (10) increases
from an arbitrarily small value ω0/ef0(x(t)) to ωc, the bandwidth of the filter C(s). Moreover, the
change in ω(t) is smooth because of the low-pass filter L(s). The filter (10) allows incorporation of
the learned uncertainties smoothly into the system. Further, as f̂ → f2 , it is expected that x̃(t) and
σ̂(t) go to zero. Thus, the L1-GP closed-loop system (1), (9)-(12) converges to the L1 reference
system in (7). The adaptive estimate σ̂ is driven by the prediction error x̃ , x̂− x, given by

˙̃x(t) = Amx̃(t) +Bm (fL(t)− f(x(t)) + σ̂(t)) , x̃(0) = x̂0 − x0. (13)

The learned dynamics are used to cancel the model uncertainty via fL(t) in (10). From the pre-
diction error dynamics (13), it is evident that the −C(s)σ̂(s) component of the control law (12)
compensates for the remaining uncertainty, f(x(t))−fL(t), within the bandwidth of the filter C(s).

Remark 2 Proof of the stability of the L1-GP closed-loop system can be established by following
the ideas in Cooper et al. (2014); Snyder (2019).

4. Simulation Results
We now present the results of numerical experimentation. We consider the dynamics of body-

frame angular rates x(t) ∈ R3 of a multirotor craft given by

ẋ(t) = −J−1 (x(t)× Jx(t)) + J−1f(x(t)) + J−1utotal(t), y(t) = x(t), (14)

2. The expression f̂ → f implies that the high-probability bounds on ‖f(x) − µ(x)‖∞ go to zero. The conditions
under which this convergence takes place can be found in Lederer et al. (2019).
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with x(0) = x0 = 03, where J = diag{0.011, 0.011, 0.021} is the known moment-of-inertia
matrix, f(x(t)) is the model uncertainty, and utotal(t) ∈ R3 is the control input, which, for a
multirotor craft presents the body-frame moments. The control input is decomposed as utotal(t) =
ubl(t)+u(t), where ubl(t) is the baseline input and u(t) is the L1-GP input. The role of the baseline
input is to inject desired dynamics, i.e., ubl(t) = JAmx(t) + (x(t)× Jx(t)), where Am = −3I3.
With baseline input injected into (14), the partially closed-loop system can be written in the form
of (1) with Bm = J−1 and Cm = I3. Next, we consider the following model uncertainty

f(x(t)) =
[
0.01

(
x21(t) + x23(t)

)
0.01

(
x3(t)x2(t) + x21(t)

)
0.01

(
x23(t)

)]>
. (15)

0 50 100
0

0.5

1

1.5

2

2.5

3

Figure 2: Evolution of ‖fL(t)‖ and
‖η(t)‖ for sinusoidal refer-
ence commands.

For the L1-GP control input, we set C(s) = ωc/(ωc +
s)I3, ωc = 80 rad/s, L(s) = 0.01/(0.01 + s),
and ω0 = 1. The predictor (9) is initialized with
x̂0 =

[
0.5 0.5 0.5

]>, which is distinct from the
system’s initial conditions in (14). For the GPR,
we choose the Squared-Exponential (SE) kernels as
Kf,i(x, x

′) = σ2fexp
(
−(x− x′)>(x− x′)/2l2

)
, where

the unoptimized hyper-parameters are chosen to be σf =
l = 1. Furthermore, we upper bound the covering
number β(ξ) (Thm. 1) as in Lederer et al. (2019) us-
ing ξ = 0.001 and conservatively chosen X = {x ∈
R3 : ‖x‖∞ ≤ 15}. For the purposes of simulation, we
ignore the γ(ξ) term (Thm. 1) as it can be made arbitrar-
ily small. Finally, we choose δ = 0.01, the feedforward
gain kg = −

(
CmA

−1
m Bm

)−1 and the sampling time for the update of the adaptive estimate σ̂(t)
as Ts = 0.001. The Bayesian learner collects data at the rate 1 Hz and updates the model after
N = 10 new data-points have been collected; thus the model is updated at 0.1 Hz. Figure 1 il-
lustrates the state evolution and the L1-GP input u in response to a step reference command. The
figure shows the scaled response of the system without retuning, a property that L1-GP shares with
L1 control. Moreover, L1-GP preserves the performance bounds which are guaranteed for L1 con-
trol. Next we show the effect of learning within the L1-GP input u(t). Recall that u(t) in (12) is
comprised of two components, the learning based input fL(t) and the adaptive input η(t), where
η(s) = C(s)σ̂(s). The evolution of these individual components for a sinusoidal reference is given
in Fig. 2. Note that the dominant component of the input u(t) transitions from adaptive input η(t)
to the learning based input fL(t) as the learning improves. We now demonstrate the safe-learning
enabled by the L1-GP controller under sudden change of uncertainties. As illustrated in Fig. 2, as
the learning improves, the learning based component fL(t) becomes the major contributor to u(t).
However, the adaptive component, η(t), always remains active in the background ready to intervene
when new uncertainties enter the dynamics. This is crucial for stability and performance guaran-
tees as the learning runs on a long time scale, whereas the fast adaptation due to σ̂(t) immediately
intervenes to compensate for the new uncertainties. To demonstrate this, the L1-GP controller is
tasked with tracking a sinusoidal reference command. At t = 35 s, we switch the model uncertainty
from f(x(t)) in (15) to f(x(t)) = [0.5 sin(x1(t)) 0.01 cos(x3(t)) 0.5 (sin(x1(t)) + cos(x2(t)))]

> .
The results are given in Fig. 3. At t = 35 s, when the uncertainty f(x(t)) switches, the adaptive
element η(t) immediately intervenes to compensate for the new uncertainty. Furthermore, at this
point, the previously learned input fL(t) is incapable of cancelling the new f(x(t)). Therefore,
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η(t) considers fL(t) as a disturbance to be rejected. However, since fL(t) enters the system via the
low-pass filter (10), it always remains within the bandwidth of C(s), and thus is compensated by
the adaptive element η(t). Finally, the state evolution illustrates the maintenance of stability of the
system. We would also like to remark that both the L1-GP and the L1 control maintain the same
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(a) Evolution of ‖fL(t)‖ and ‖η(t)‖.
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(b) State evolution. Inset shows the smooth
response of the system state across the
uncertainty switch.

Figure 3: Learning and adaptive components of the L1-GP input u(t) and system state evolution
with model uncertainty switch at t = 35s.

time-delay margins. The time-delay margins for both control schemes were computed numerically
to be ≈ 20 ms. This is not surprising since the time-delay margins are dominated by the adap-
tive elements including the low-pass filter C(s) and sampling time Ts, which are the same for the
L1-GP and the L1 controllers.
5. Conclusion

We presented the L1-GP architecture, which incorporates Bayesian learning via Gaussian Pro-
cess Regression (GPR) into the L1 adaptive control framework. Within the framework, GPR allows
for sample-efficient learning of the model uncertainties, while the L1 controller provides stability,
robustness and performance guarantees throughout the learning phase. The L1-GP architecture is
the initial phase of the research and will next proceed by using learning to improve the performance
over a larger envelope of operation, while maintaining given robustness specifications. Eventually,
the presented work will be extended to safe and robust planning and control of uncertain systems.
The L1-GP architecture will be extended to consider spatio-temporal learning for realistic scenar-
ios as most real systems are subject to time-varying disturbances. Further extensions of the L1-GP
architecture to the case of output-feedback and stochastic systems will also be investigated.
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