
Under review as a conference paper at ICLR 2023

OFFLINE IMITATION LEARNING BY CONTROLLING
THE EFFECTIVE PLANNING HORIZON

Anonymous authors
Paper under double-blind review

ABSTRACT

In offline imitation learning (IL), we generally assume only a handful of expert tra-
jectories and a supplementary offline dataset from suboptimal behaviors to learn
the expert policy. While it is now common to minimize the divergence between
state-action visitation distributions so that the agent also considers the future con-
sequences of an action, a sampling error in an offline dataset may lead to erro-
neous estimates of state-action visitations in the offline case. In this paper, we
investigate the effect of controlling the effective planning horizon (i.e., reducing
the discount factor) as opposed to imposing an explicit regularizer, as previously
studied. Unfortunately, it turns out that the existing algorithms suffer from magni-
fied approximation errors when the effective planning horizon is shortened, which
results in a significant degradation in performance. We analyze the main cause
of the problem and provide the right remedies to correct the algorithm. We show
that the corrected algorithm improves on popular imitation learning benchmarks
by controlling the effective planning horizon rather than an explicit regularization.

1 INTRODUCTION

Imitation learning (IL) is one of the sequential decision making problem settings that aims to solve
a task from expert demonstrations instead of explicit notions of utility (Pomerleau, 1991; Ng et al.,
2000). In a standard setting of IL, the agent is only given with a few number of expert trajectories,
and it performs the imitation of the expert by interacting with the environment. We denote this
setting as online imitation learning since it is possible to query the consequence of action during the
learning with the online interactions. On the other hand, it has been recently questioned about the
practicality of online interactions, and a setting called offline imitation learning that aims to learn
from supplementary suboptimal dataset instead of interactions was proposed (Kim et al., 2021; 2022;
Ma et al., 2022).

As a basic approach for IL, one can come up with behavior cloning (BC) (Pomerleau, 1991), which
treats the problem as a supervised learning to map state to action based on expert demonstrations.
However, BC does not make a use of given information other than expert demonstrations, and suffers
from compounding error by covariate shift as it gets off track (Ross et al., 2011). To address this
issue, previous studies (Ho & Ermon, 2016; Kostrikov et al., 2018; 2019) have proposed to imitate an
expert policy by matching state-action visitation distributions, which can be estimated by interacting
with the environment. State-action visitation matching allows the agent to learn how to return to the
preferred states, and this approach has been successful in a wide range of domains of online IL.

Interestingly, in recent offline IL studies, it is often found that BC is quite competitive (Li et al.,
2022; Kim et al., 2021), and sometimes it even performs better than visitation distribution match-
ing algorithms depending on the experiment settings. This is because there is an inherent error in
estimating visitation distributions from a finite dataset in offline cases, and BC, which completely
ignores the dynamics information, does not suffer from this problem. Therefore, unlike the online
cases where we can sample from true environment dynamics, BC or visitation distribution matching
cannot always be the superior choice over the other in offline cases.

Motivated by this, we consider controlling the effective planning horizon, i.e. the discount factor γ,
for the offline imitation learning problems. The discount factor implies how important the future is
compared to the present. For visitation distribution matching algorithms, it can be interpreted as the
amount of state-action distribution difference between the learned and expert policy we allow in the
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future compared to now. While it has been overlooked in the online IL studies since we recover more
accurate policy as we less discount the future, it will be advantageous to use an optimal discount
factor in offline IL that makes the best trade-offs: using small γ to shorten the effective planning
horizon helps to become robust to the errors in the inferred dynamics (Janner et al., 2019) (which
also allows avoiding explicit regularization for robustness as in previous studies), whereas using
large γ makes an agent less prone to the compounding errors by considering longer consequences
of training.

In this paper, we start by formally analyzing the performance trade-off of a discount factor in offline
IL. It turns out that, however, recently proposed offline IL algorithms show pathological behavior
when the discount factor is lowered and naively controlling the discount factor does not lead to
a performance gain. It is because the error from the approximations they share depends on the
discount factor, and it becomes revealed and maximized as we lower γ. To this end, we propose
a simple technique called Inverse Geometric Initial state sampling (IGI) to address the problem.
We show that IGI enables the algorithm to properly learn in the low discount factor settings, and
by tuning the discount factor, the offline IL agent with IGI outperforms previous state-of-the-art
algorithms with explicit regularizations.

2 BACKGROUND

2.1 MARKOV DECISION PROCESS (MDP)

We consider environments modeled as a Markov Decision Process (MDP), which is defined by a
tuple M = (S, A, P, p0, R, γ). Here, S is the state space, and A is the action space. P and p0
represent the dynamics and initial state distribution, respectively. R is the reward function which is
assumed to be bounded in [0, Rmax], and γ ∈ [0, 1) is the discount factor. A policy π(·|s) determines
the probability of agent’s action in a state s. The goal of an agent is to maximize the sum of reward
discounted by γ. The state-action visitation distribution dπ(s, a), which is induced by a policy π, is
defined as

dπ(s, a) = (1− γ)
∞∑
t=0

γtPr(st = s, at = a |s0 ∼ p0(·), st ∼ P (·|st−1, at−1), at ∼ π(·|st)).

We consider an offline imitation learning problem where a small number of expert demonstrations
(DE) and a suboptimal dataset (DO) consisting of transitions (s, a, s′) are given. We denote total
dataset DD = DE ∪ DO as a union of two datasets. Especially, we assume that DE is sampled by
following the expert policy πE in underlying MDPM. We denote empirical distribution of DE and
DD as E(s, a) and D(s, a) respectively. On the other hand, we denote the state-action distribution
of πE as dE(s, a).

2.2 IMITATION LEARNING VIA STATE-ACTION VISITATION MATCHING

Imitation learning (IL) aims to train an agent that mimics the expert based on the expert demonstra-
tions. In addition to demonstrations, supplementary information on environment dynamics is given,
by directly interacting with environment (online IL) or by a dataset of suboptimal behaviors (offline
IL). One simplest and most popular approach to imitate an expert is behavior cloning (BC), which
treats IL as a supervised learning problem, ignoring any of supplementary information (Pomerleau,
1991). The objective of BC can be represented as follows:

min
π
−E(s,a)∼E [log π(a|s)] . (1)

However, it is well known that the error of obtained policy induced by covariate shift compounds
over time, and leads to an eventual failure unless DE is large enough (Ross et al., 2011).

To address the weakness of BC, a state-action visitation distribution matching objective is now
widely adopted, which minimizes the divergence between dπ and dE (Kostrikov et al., 2019; Ke
et al., 2020). The distribution matching objective can be presented as follows:

max
π
−DKL

(
dπ∥dE

)
= E(s,a)∼dπ

[
log

dE(s, a)

dπ(s, a)

]
. (2)
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Note that the objective can be alternatively interpreted as a reinforcement learning (RL) problem:

max
π
−DKL

(
dπ∥dE

)
= (1− γ) · Es0∼p0,

at∼π,
st+1∼P

[ ∞∑
t=0

γt log
dE(st, at)

dπ(st, at)

]
. (3)

We can observe that the objective (3) can be seen as a RL problem with a reward r = log dE

dπ . When
online interactions are allowed, we can sample from dπ by executing policy π, and Ho & Ermon
(2016) proposed to estimate the newly defined reward by learning the discriminator using samples
from dE and dπ:

max
c:S×A→(0,1)

E(s,a)∼dE [log c(s, a)] + E(s,a)∼dπ [log (1− c(s, a))] , (4)

where the optimal discriminator c∗(s, a) can be used to recover the reward as log c∗(s, a) −
log (1− c∗(s, a)) = log dE(s,a)

dπ(s,a) . On the contrary, in a fully offline setting we consider, the in-
teraction with the environment to receive samples from dπ is not allowed. A common choice in this
case is to train a discriminator that can distinguish between the expert demonstrations and a supple-
mentary suboptimal dataset (Kim et al., 2021; 2022; Ma et al., 2022), and is explained in detail in
Section 3.1.

3 OFFLINE IL VIA STATE-ACTION VISITATION MATCHING

In this section, we first derive a practical objective that can be used to optimize the distribution
matching objective (2) in the offline IL case. After the derivation of an objective that is used through-
out the paper, we provide an analysis of the effect of the discount factor on the error bound of offline
IL. In particular, we show that there is a trade-off when controlling the discount factor, unlike the
online case.

3.1 DERIVATION OF AN OFFLINE IL OBJECTIVE

We start from the widely used visitation distribution matching objective (2) as suggested in (Ho
& Ermon, 2016; Torabi et al., 2018). Rather than optimizing for the policy π, we follow the recent
approaches that optimize directly for the visitation distribution dπ (Lee et al., 2021; Kim et al., 2021).
To optimize for dπ , we need to ensure that the solution we get is a valid visitation distribution. By
making Bellman flow constraints and normalization constraints explicit, we have:

max
dπ
−DKL(d

π∥dE) (5)

s.t B∗dπ(s, a) = (1− γ)p0(s) + γP∗d
π(s, a) ∀s, (6)∑

s,a

dπ(s, a) = 1 , dπ(s, a) ≥ 0 ∀s, a, (7)

where B∗dπ(s, a) =
∑
a d

π(s, a) is a marginalization and P∗d
π(s, a) =

∑
s̄,ā P (s|s̄, ā)dπ(s̄, ā) is

an expectation over the previous state-actions. It can be easily seen that the following equalities hold
by interchanging the order of summations:∑

s

ν(s)P∗d
π(s, a) =

∑
s,a

dπ(s, a)Pν(s), where Pν(s) =
∑
s′

P (s′|s, a)ν(s′)

∑
s

ν(s)B∗dπ(s, a) =
∑
s,a

dπ(s, a)Bν(s), where Bν(s) = ν(s).

The Lagrangian of the constrained problem (5-7) is

max
dπ≥0

min
ν,λ
−Es,a∼dπ

[
log

dπ(s, a)

dE(s, a)

]
+ λ

[∑
s,a

dπ(s, a)− 1

]
+

∑
s

ν(s)((1− γ)p0(s) + γP∗d
π(s, a)− B∗dπ(s, a))

(8)
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where λ and ν(s) are Lagrange multipliers. Based on the relationships shown above, we can rewrite
Equation (8), where the summation is computed w.r.t. dπ(s, a):

max
dπ≥0

min
ν,λ

(1− γ)Es∼p0 [ν(s)] +
∑
s,a

dπ(s, a)

[
γPν(s)− Bν(s) + λ− log

dπ(s, a)

dE(s, a)

]
− λ. (9)

In the second term of Equation (9), to derive a practical algorithm, we want to make an expectation
to be performed on the total dataset distribution D(s, a). For this, we use the importance sampling
with importance weight ζ(s, a) = dπ(s,a)

D(s,a) . Then, the objective becomes

max
ζ≥0

min
ν,λ
L(ζ, ν, λ) = (1− γ)Ep0 [ν(s)] + ED [ζ(s, a) (Aν(s, a) + λ− log ζ(s, a))]− λ. (10)

where Aν(s, a) = γPν(s) − Bν(s) + log dE(s,a)
D(s,a) , which can be interpreted as an advantage when

the action a is executed in the state s if we define the reward as a log ratio of distributions r(s, a) =
log dE(s,a)

D(s,a) . Such a log ratio can be obtained by training a discriminator c(s, a) through the following
objective:

max
c:S×A→[0,1]

E(s,a)∼dE [log c(s, a)] + E(s,a)∼D[log(1− c(s, a))], (11)

such that the optimal discriminator c∗(s, a) satisfies log dE(s,a)
D(s,a) = log

(
c∗(s,a)

1−c∗(s,a)

)
. The advantage

Aν(s, a) can then be estimated based on the discriminator c being trained.

We can further simplify the optimization problem (10) by noting that the strong duality holds,
which enables us to change the order of optimization without affecting the optimal value. Closed-
form solution of maximization of Equation (10) can be obtained by solving first-order optimal-
ity condition ∂L(ζ∗,ν,λ)

∂ζ = 0, which gives ζ∗ = exp (Aν(s, a) + λ− 1). Similarly, λ∗ =

− log[E(s,a)∼D exp (Aν(s, a)− 1)] can be obtained. By substituting in ζ∗ and λ∗ to (10), we derive
the final objective:

min
ν

(1− γ)Ep0 [ν(s)] + logE(s,a)∼D [exp (Aν(s, a))] =: L(ζ∗, ν, λ∗), (12)

and optimize for ν. Based on the optimized ν∗, we can obtain ζ∗ = softmax(Aν(s, a) − 1). Using
this, policy can be extracted through the following objective:

min
π

E(s,a)∼dπ∗ [log π(a|s)] = E(s,a)∼D

[
dπ

∗
(s, a)

D(s, a)
log π(a|s)

]
= E(s,a)∼D [ζ∗ log π(a|s)] . (13)

Note that the derived objective (12) can be seen as a special case of DemoDICE (Kim et al., 2021)
and SMODICE (Ma et al., 2022), and it can be recovered by setting α = 0 in DemoDICE (no
explicit regularization toward suboptimal dataset) or by setting f -divergence to be KL divergence in
SMODICE. While the algorithm in this paper is based on KL-divergence minimization of visitation
distributions, note that it can be trivially extended to any f -divergence minimization case.

3.2 TRADE-OFF BETWEEN TWO DISTINCT EFFECTS IN OFFLINE IL BY DISCOUNT FACTOR

Now we show that there is indeed a trade-off when controlling the discount factor γ in the offline
setting. Intuitively, an offline agent can only receive supplementary information about environment
dynamics through limited finite demonstrations, and the error of estimated dynamics is inevitable.
Therefore, we can expect that learning with a long planning horizon increases the risk of compound-
ing estimation error. On the other hand, the trained agent is typically evaluated in a non-discounted
environment by measuring the average reward it gets, and excessively lowering the discount factor
for training will make a large train-test discrepancy. The theorem below is a formal analysis backing
up the argument, showing an error bound of the imitated policy with respect to a discount factor.

Theorem 1. Let P an underlying transition dynamics and P̂ an estimated transition dynamics. γ
is a discount factor used for evaluating the policy and γ̂ is a discount factor used for training the
policy where γ̂ ≤ γ. Let dπP,γ a state-action visitation distribution induced by π under the dynamics
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Figure 1: Learning curves of DemoDICE (Kim et al., 2021) and SMODICE (Ma et al., 2022) over
various choices of discount factor γ. We use DO consisting of 400 expert trajectories and 800
random-policy trajectories, and DE consisting of 1 expert trajectory. Evaluations are averaged over
3 seeds in a Hopper-v2 environment, and they are normalized so that 0 corresponds to the average
score of the random-policy dataset, and 100 corresponds to the average score of the expert policy
dataset.

P using γ, and dEP,γ a state-action visitation distribution induced by πE under the dynamics P using
γ. Assume that the reward is bounded in [0, Rmax]. Then, the error bound for imitated policy π is

∣∣∣EdπP,γ
[r(s, a)]− EdEP,γ

[r(s, a)]
∣∣∣ ≤ 2Rmax

1− γ̂

(
γ − γ̂
1− γ

+
γ̂ϵP
1− γ̂

+
ϵπ

1− γ̂

)
, (14)

where ϵP = Edπ
P̂ ,γ̂

[
DTV (P̂∥P )

]
+ EdE

P̂,γ̂

[
DTV (P̂∥P )

]
, and ϵπ = Edπ

P̂ ,γ̂

[
DTV (π∥πE)

]
.

The proof is deferred to Appendix A. The first term reflects the train-test discrepancy caused by
optimizing policy using γ̂ instead of the discount factor γ that is used for evaluation, i.e. in the LHS
of inequality (14), and is minimized as we choose γ̂ close to γ. The second term represents the
effect of the error on estimating dynamics ϵP . It can be observed that this term becomes smaller
if the effective planning horizon is shortened by using a lower γ̂. From the definition of ϵP , it is
the accumulation of step-wise dynamics estimation error over trajectories of both π and πE , and
there will always be an irreducible amount of ϵP in the offline case. The last term stands for the
policy difference between π and πE over the estimated dynamics and will be minimized if imitation
learning is done properly to maximize the objective (2).

In short, the error of the imitated policy will be mainly dependent on the first two terms of (14),
which have opposite dependencies to the discount factor for training γ̂. This result supports our ar-
gument about the trade-off between two distinct effects by discount factor during the offline training
and shows the possibility that an offline IL algorithm may benefit from choosing γ̂ that is smaller
than γ that we use to evaluate.

4 CONTROLLING THE DISCOUNT FACTOR IN OFFLINE IMITATION LEARNING

As suggested by Theorem 1, we expect that there would be a benefit from controlling the discount
factor γ that is used for training. The algorithm derivation is based on a visitation distribution
matching (5-12), as well as those of previous studies, which appears independent of and applicable
to any choice of the discount factor in principle. However, it turns out that naively lowering γ in
previously suggested visitation distribution matching offline IL algorithms (Kim et al., 2021; Ma
et al., 2022) only results in a monotonically decreasing performance, as shown in Figure 1. The
performance reduction of using lower discount factors is significant, and it seems pointless to choose
any γ below 0.99 in contrast to our analysis. In this section, we analyze the cause of this pathological
behavior and propose a simple scheme that can alleviate it.

5



Under review as a conference paper at ICLR 2023

s1 g

s0

a1 = 0.6

a1 = 1

a2 = 0.4

a1

(a) expert policy

s1 g

s0

a1 = θ

a1 = 1

a2 = 1− θ

a1

(b) learned policy

Figure 2: Toy infinite horizon MDP example with 3 states and 2 actions. All transitions are deter-
ministic and shown with the arrows. s0 is initial state, and g is absorbing state. We indicate the
probability of taking an action based on the corresponding policy on the arrows in the figure. (a)
represents expert policy and (b) is for learned policy with parameter θ.

4.1 DISTRIBUTION MISMATCH IN TRAINING A DISCRIMINATOR

The main problem lies in the fact that while the visitation distribution matching objective (5) re-
quires the estimation of dE(s, a), which is a discounted state-action distribution induced by the
expert policy πE , a discriminator c(s, a) is learned to discriminate the empirical distributions of the
datasets, i.e. between D(s, a) and E(s, a). Since the empirical distributions are undiscounted, for a
state-action pair sample (st, at) at timestep t, dE(s, a) would weight γt on this sample compared to
E(s, a) that does not weight on this sample, making the two distributions significantly different as
we have smaller γ.

To observe the consequence of having a discriminator trained on empirical distributions, we assume
that the reward is represented with an optimal discriminator such that r(s, a) = log E(s,a)

D(s,a) . As a
result of applying this to objective (10), it becomes:

max
dπ≥0

min
ν,λ
L(dπ, ν, λ) = (1− γ)Es∼p0 [ν(s)]

+
∑
s,a

dπ(s, a)

[
γPν(s)− Bν(s) + log

E(s, a)

D(s, a)
− log

dπ(s, a)

D(s, a)
+ λ

]
− λ.

(15)

By taking the derivation steps backward, we can confirm that using the discriminator trained on
empirical distributions is equivalent to solving the visitation distribution matching objective (5-7)
except for the objective:

max
dπ
−DKL(d

π(s, a)∥E(s, a)). (16)

That is, by training a discriminator trained on empirical distributions, we actually have matched
dπ(s, a) and E(s, a) to get a policy π. Note that there is a one-to-one correspondence between
the state-action visitation distributions and policies (Ho & Ermon, 2016). It implies that unless
E(s, a) = dE(s, a), even if E(s, a) is a valid visitation distribution that satisfies Bellman flow
constraints, the policy inferred by matching E(s, a) will be different from dE , and thus, π∗ ̸=
πE . In most cases, E(s, a) would not be a valid visitation distribution, and a policy π that gives
DKL(d

π(s, a)∥E(s, a)) = 0 would not exist in general. While this discrepancy between E and dE
is negligible when γ is large and the length of trajectories in DE is long enough, large error on the
imitated policy can be incurred in other cases. We give a simple toy example below.

Illustrative example Assume an infinite horizon MDP with 2 states and an absorbing state, and
with 2 actions as shown in Figure 2. The expert policy πE has 0.6 probability of doing a1 in
s0, 0.4 of doing a2 in s0, and 1 of doing a1 in the other states. Assuming that trajectories are
sampled up to timestep 2, the expert demonstration DE will be consisting of two kinds of trajec-
tories τ1 = (s0, a2, g, a1, g, a1) and τ2 = (s0, a1, s1, a1, g, a1) with the ratio of 6 : 4. E(s, a)

can be calculated by The number of (s, a) pairs
Total number of state-action pairs accordingly. The learned policy is parametrized as

π(a1|s0) = θ, π(a2|s0) = 1 − θ, and π(a1|·) = 1 in other states. By computing dπ based on the
above, we can expressDKL(d

π∥E) in terms of θ and γ. Then, we can minimizeDKL to get θ∗, and
see if we can recover θ∗ = 0.6. In this toy example, it turns out that θ ̸= 0.6 unless γ = 0.5 (detailed
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Figure 3: Learning curves of our method in HalfCheetah-v2. Here, suboptimal dataset is con-
sisted of 100 expert trajectories and 800 random-policy trajectories. We applied moving average
with 3 seeds. The plot on the left is the result of sampling p̃0(s|t) from expert dataset, and the right
is the result of sampling from total dataset.

derivations can be found in Appendix B). It can be seen in this example that we cannot match two
distributions dπ(s, a) = dπ(s)π(a|s), E(s, a) = E(s)πE(a|s) in general, and by minimizing the
distribution between state visitation distributions, optimized π will be different to πE .

4.2 INVERSE GEOMETRIC INITIAL STATE SAMPLING

As shown in the previous subsection, we cannot recover π = πE unless dE = E, where E is
the distribution that the discriminator is trained on. One straightforward solution to this problem
is to train the discriminator to distinguish dE and E, eliminating the root cause of the problem.
We can simulate the sampling from dE by weighting each sample in the dataset with respect to
their timesteps when they were sampled. For example, we can first sample the timestep t from a
geometric distribution Geom(1−γ) and then sampling (st, at) pair that had been sampled at t. This
procedure will approximate the sampling from dE sufficiently well, given that the trajectories stored
in DE is long enough.

However, training the discriminator to distinguish dE gives rise to another problem; if we use lower
γ, the samples from dE will mostly consist of early timestep samples of DE , since the probability
assigned decreases exponentially over timesteps. This results in a significant under-usage of dataset
DE by throwing away samples of later timesteps, and significantly deteriorates the performance. We
need a way to ensure that we get π = πE while not hurting the effective number of data.

To this end, we propose to devise a different initial state distribution other than the actual p0 to satisfy
both conditions. Note that even if we change the initial distribution, the optimality of policies are not
affected as mentioned in Kostrikov et al. (2019). dπ and dE that π and πE induces will be different,
but one-to-one correspondence does still hold that matching visitation distributions ensure π = πE
with arbitrary initial state distribution.

In particular, if we use an initial distribution that makes dE = E, i.e. flattens the visitation dis-
tribution to look like an undiscounted distribution, recovering π = πE will be guaranteed even if
we use the discriminator that learns from the empirical distributions. Note that sampling from dE

corresponds to sample timestep t from Geom(1 − γ) and choose (st, at) that had been sampled at
t. Hence, if we use a modified initial distribution p̃0 that samples from all the timesteps in DE with
weights inversely proportional to Geom(1−γ), the resultant d̃E will have uniform weights regarding
timesteps and therefore d̃E = E. We call this modified initial state sampling method as Inverse Ge-
ometric Initial state sampling (IGI). In practice, there are a few more things to consider determining
the weightings for each possible initial state samples; e.g. due to datasets being truncated at certain
timesteps and trajectories that are terminated early. Nevertheless, it is possible to set up a system of
linear equations to obtain the required weights for each sample to ensure d̃E = E. Details on how
to set up a linear system is shown in Appendix C.

Unfortunately, it turns out that the exact IGI that ensures d̃E = E can be too restrictive. Following
the recent practices of using a single expert policy forDE in evaluating imitation performances, only
the state-action pairs in the single trajectory can be sampled as an initial state, which cripples the
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diversity. Furthermore, we found that sampling the initial states only from DE also limited the op-
portunity of our agent to learn how to act outsideDE , incurring the covariate shift and compounding
error problems that BC has suffered. On the other hand, using IGI to sample from the total dataset
DD did not exhibit such a problem, while alleviating the discrepancy between d̃E and E. In Figure
3, we compare the performance of two options: IGI(DE) and IGI(DD). It is clearly visible that the
imitation performance of IGI(DE) is limited, whereas IGI(DD) performs robustly over a wide set
of γs. As a consequence, we used IGI with samples from DD in the following experiments.

5 RELATED WORK

Controlling the effective planning horizon In reinforcement learning (RL), the discount factor
effectively controls the amount of forward planning the agent considers making a decision. Petrik
& Scherrer (2008) has shown that the approximation error bound incurred in an inaccurate model
can be tightened by using a low discount factor. Jiang et al. (2015) has shown the similar result,
but they have analyzed in terms of the complexity of the class of policies. They show that there is
a trade-off between the complexity of the policy space and the error due to the approximated model
according to the effective planning horizon, which can controlled by a discount factor. Recently,
Hu et al. (2022) analyzed the role of discount factor from the perspective of offline RL. In addition
to the trade-off relationship between optimality and sample efficiency, they show theoretically and
empirically that the low discount factor can also be seen as a model-based pessimism. On the other
hand, there has not been a study on the effect of discount factor on offline imitation learning, up to
our knowledge.

Offline imitation learning by leveraging the duality of RL Imitation learning (IL) aims to mimic
the expert policy by using the expert demonstrations and the online interactions, but offline sup-
plementary dataset is given instead in offline case. Recently, there have been a large amount of
literature that leverages the duality in RL to develop a novel algorithm estimating quantities related
to visitation distributions. In a field of offline IL, DemoDICE (Kim et al., 2021) proposed to solve
it by deriving the dual of visitation distribution matching problem with an explicit regularizer min-
imizing the f -divergence between the visitation distribution induced by policy and the supplement
dataset distribution. SMODICE (Ma et al., 2022) considers the IfO problem, which solves IL with
state-only demonstrations by expert, and proposes a versatile offline IL algorithm by leveraging
f -divergence and Fenchel duality instead of KL used in (Kim et al., 2021).

6 EXPERIMENTS

We evaluate the performance of our algorithm in both discrete and continuous MDP. We first show
the trade-off effect by the discount factor in finite-discrete MDP, then evaluate the imitation perfor-
mance of our algorithm using IGI in continuous MDP.

6.1 FINITE AND DISCRETE MDP

In finite-discrete MDP, we empirically show the trade-off effect by the discount factor in the Random
MDP. This environment generates the finite and discrete MDP randomly. We follow the environment
configuration of Lee et al. (2021). In this experiment setting, we can see that the performance can
be optimized by choosing a lower discount factor. Details of the experiment in finite-discrete MDP
and its results with various settings are shown in Appendix E.1 due to the lack of space.

6.2 CONTINUOUS MDP

For continuous MDP, we evaluate the imitation performance of our algorithm using IGI in the Mu-
JoCo continuous control environment (Todorov et al., 2012): HalfCheetah-v2, Hopper-v2,
Walker2d-v2 and Ant-v2. The dataset used for learning is obtained from the D4RL datasets
(Fu et al., 2020). We sampled expert trajectories and random trajectories from the expert dataset
and random dataset of D4RL benchmark respectively. We use a single expert trajectory for DE ,
and our suboptimal dataset DO is constructed as a union of expert trajectories and random-policy
trajectories with specific ratios.
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Figure 4: Performance of our algorithm (IGI) and baselines according to different γs on
HalfCheetah-v2 withD2 dataset. Here, shaded area shows the standard error of the normalized
evaluation over 3 seeds.

We conduct experiments by changing the ratio between the expert data and the random-policy data
of the suboptimal dataset. We call suboptimal dataset consisting of 400 expert trajectories and 800
random-policy trajectories as D1, 100:800 as D2, 50:800 as D3. We compare our algorithm using
IGI with other offline IL algorithms, DemoDICE (Kim et al., 2021), SMODICE (Ma et al., 2022),
and BC. Performance of other algorithms is measured based on the official hyperparameters made
public by authors without any modification. For BC, we show the result of learning withDD, which
has the best performance among the various combination of the data to be cloned. All experiment
results in this paper are averaged over 3 seeds and normalized so that 0 corresponds to the average
score of the random-policy dataset, and 100 corresponds to the average score of the expert policy
dataset.

In order to demonstrate the robustness of our algorithm over different γs, we show the results by
applying various discount factor. We use discount factor for γ ∈ {0.99, 0.95, 0.9, 0.8, 0.7, 0.6}. We
also tested every algorithm with γ below 0.6, but due to exploding gradient, it was not possible to
run DemoDICE and SMODICE for lower γs below 0.6. Therefore, we report only the result of γs
mentioned above.

The results of baselines on different γs are shown in Figure 4. It can be seen that the introduced
method IGI makes the algorithm perform well regardless of γ. Additional results on other envi-
ronments and D1, D3-ratio datasets are shown in the Appendix E.2. In addition, the experiment
in Figure 4 has too large enough size of the dataset to make ϵP in the second term of Theorem
1 negligible, and the effect of controlling the discount factor is not clearly visible. Therefore, we
make additional experiments by lowering the amount of the dataset about 10 times less (40 expert
trajectories and 80 random-policy trajectories) than D1 setting to show the effect of controlling the
discount factor clearly. Relevant results are shown in Appendix F.1. Also, the pseudocode and the
hyperparameters used to demonstrate IGI can be found in Appendix D.1.

7 CONCLUSION

In this paper, we analyze the effect of controlling the discount factor on offline IL and motivate that
the discount factor can take a role of a regularizer to prevent the sampling error of the supplementary
dataset from hurting the performance. We show that the previously suggested imitation learning
algorithms that utilize discriminators and a visitation distribution matching objective suffer from
the discrepancy between the visitation distribution and the empirical distribution when low discount
factor γ is applied. To this end, we proposed Inverse Geometric Initial state sampling (IGI), which
uses the whole dataset with the weighting inversely proportional to the geometric distribution, to
alleviate the problem that we cannot recover the expert policy πE . We show that our approach shows
stable and competitive performance regardless of the discount factor compared to other visitation
distribution matching algorithms with explicit regularization.
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A PROOF OF THEOREM 1

The proof of Theorem 1 is based on the analysis in previous works (Petrik & Scherrer, 2008; Jiang
et al., 2015; Lee et al., 2020; Xu et al., 2020). We provide three Lemmas first and use them to prove
the Theorem 1. To prove three Lemmas, we define several notations. P and P̂ denote a matrix of
the underlying transition dynamics and estimated transition dynamics, respectively. EdπP,γ

[r(s, a)]

denotes the expected total reward discounted by γ for the policy π under transition dynamics P. d0

and r denote a vector of the initial state probability and the reward, respectively. For r and P, if the
π is at superscript, it means “following policy π”.
Lemma 1. For any MDP with bounded rewards |r(s, a)| ≤ Rmax, for all π : S → A and γ̂ ≤ γ,∣∣∣EdπP,γ

[r(s, a)]− EdπP,γ̂
[r(s, a)]

∣∣∣ ≤ Rmax
γ − γ̂

(1− γ)(1− γ̂)
.

Proof. ∣∣∣EdπP,γ
[r(s, a)]− EdπP,γ̂

[r(s, a)]
∣∣∣ = ∣∣∣EdπP,γ̂

[r(s, a)]− EdπP,γ
[r(s, a)]

∣∣∣
≤

∥∥∥∥∥
∞∑
t=0

(
γt − γ̂t

)
Pπtrπ

∥∥∥∥∥
∞

≤
∞∑
t=0

(
γt − γ̂t

)
Rmax

=

(
1

1− γ
− 1

1− γ̂

)
Rmax

=
γ − γ̂

(1− γ)(1− γ̂)
Rmax

We define one more notation for Lemma 2 and 3. dπP,γ denotes a vector of the marginal state
probability induced by π under transition dynamics P using γ.
Lemma 2. We can bound the difference of the evaluations of policy π on two different MDPs with
bounded rewards |r(s, a)| ≤ Rmax as∣∣∣EdπP,γ

[r(s, a)]− Edπ
P̂ ,γ

[r(s, a)]
∣∣∣ ≤ 2γRmax

(1− γ)2
Es∼dπ

P̂ ,γ
,

a∼π

[
TV

(
P̂ (s′|s, a) ∥P (s′|s, a)

)]
.

Proof.∣∣∣EdπP,γ
[r(s, a)]− Edπ

P̂ ,γ
[r(s, a)]

∣∣∣ = ∣∣∣Edπ
P̂ ,γ

[r(s, a)]− EdπP,γ
[r(s, a)]

∣∣∣ (17)

=
∣∣∣r⊤ [

(I − γP̂)−1 − (I − γP)−1
]

d0

∣∣∣ (18)

=
∣∣∣r⊤(I − γP)−1

[
γP̂− γP

]
(I − γP̂)−1d0

∣∣∣ (19)

= γ

∣∣∣∣r⊤(I − γP)−1
[
P̂− P

] dπ
P̂

1− γ

∣∣∣∣ (20)

≤ γ

1− γ
∥∥r⊤(I − γP)−1

∥∥
∞

∥∥∥[P̂− P
]

dπ
P̂

∥∥∥
1

(21)

≤ γRmax

(1− γ)2
∥∥∥[P̂− P

]
dπ
P̂

∥∥∥
1

(22)

≤ γRmax

(1− γ)2
∑
s′,a,s

∣∣∣P̂ (s′|s, a)− P (s′|s, a)∣∣∣π(a|s)dπ
P̂
(s) (23)

=
2γRmax

(1− γ)2
Es∼dπ

P̂ ,γ
,

a∼π

[
TV

(
P̂ (s′|s, a) ∥P (s′|s, a)

)]
(24)
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Lemma 3. We can bound the difference of the evaluations of two policies π and µ with bounded
rewards |r(s, a)| ≤ Rmax as∣∣∣EdπP,γ

[r(s, a)]− EdµP,γ
[r(s, a)]

∣∣∣ ≤ 2Rmax

(1− γ)2
Es∼dπP [TV(π(a|s)∥µ(a|s))] .

Proof. We can expand the difference of the evaluations of two policies like

|EdπP,γ
[r(s, a)]− EdµP,γ

[r(s, a)]| =
∣∣[(rπ)⊤(I − γPπ)−1 − (rµ)⊤(I − γPµ)−1

]
d0

∣∣
≤

∣∣∣∣(rπ − rµ)⊤
dπP

1− γ

∣∣∣∣+ ∣∣(rµ)⊤ [
(I − γPπ)−1 − (I − γPµ)−1

]
d0

∣∣.
The first term is bounded as∣∣∣∣(rπ − rµ)⊤

dπP
1− γ

∣∣∣∣ ≤ 2Rmax

1− γ
Es∼dπP,γ

[TV(π(a|s)∥µ(a|s))] . (25)

Using the process (18-22), the second term is bounded as∣∣(rµ)⊤ [
(I − γPπ)−1 − (I − γPµ)−1

]
d0

∣∣ ≤ γRmax

(1− γ)2
∥[Pπ − Pµ]dπP ∥1 (26)

=
γRmax

(1− γ)2
∑
s′

∣∣∣∣∣∑
s,a

P (s′|s, a) [π(a|s)− µ(a|s)] dπP (s)

∣∣∣∣∣ (27)

≤ γRmax

(1− γ)2
∑
s,a

|π(a|s)− µ(a|s)| dπP (s) (28)

=
2γRmax

(1− γ)2
Es∼dπP,γ

[TV (π(a|s)∥µ(a|s))] . (29)

Combining (25) and (29), we have the proof of Lemma 3.

Theorem 1. Let P an underlying transition dynamics and P̂ an estimated transition dynamics. γ
is a discount factor used for evaluating the policy and γ̂ is a discount factor used for training the
policy where γ̂ ≤ γ. Let dπP,γ a state-action visitation distribution induced by π under the dynamics
P using γ, and dEP,γ a state-action visitation distribution induced by πE under the dynamics P using
γ. Assume that the reward is bounded in [0, Rmax]. Then, the error bound for imitated policy π is∣∣∣EdπP,γ

[r(s, a)]− EdEP,γ
[r(s, a)]

∣∣∣ ≤ 2Rmax

1− γ̂

(
γ − γ̂
1− γ

+
γ̂ϵP
1− γ̂

+
ϵπ

1− γ̂

)
, (14)

where ϵP = Edπ
P̂ ,γ̂

[
DTV (P̂∥P )

]
+ EdE

P̂,γ̂

[
DTV (P̂∥P )

]
, and ϵπ = Edπ

P̂ ,γ̂

[
DTV (π∥πE)

]
.

Proof. The error bound for imitated policy π can be expanded as∣∣∣EdπP,γ
[r(s, a)]− E

dπ
E

P,γ
[r(s, a)]

∣∣∣
≤

∣∣∣EdπP,γ
[r(s, a)]− Edπ

P,γ̂
[r(s, a)]

∣∣∣+ ∣∣∣Edπ
P,γ̂

[r(s, a)]− Edπ
P̂ ,γ̂

[r(s, a)]
∣∣∣

+

∣∣∣∣EdπP̂ ,γ̂
[r(s, a)]− E

dπ
E

P̂ ,γ̂

[r(s, a)]

∣∣∣∣+ ∣∣∣∣EdπE

P,γ̂

[r(s, a)]− E
dπ

E

P̂ ,γ̂

[r(s, a)]

∣∣∣∣
+
∣∣∣EdπE

P,γ̂

[r(s, a)]− E
dπ

E
P,γ

[r(s, a)]
∣∣∣ .

The first and last terms are bounded by Lemma 1, and the second and fourth terms are bounded by
Lemma 2. Lastly, the third term is bounded by Lemma 3. This completes the proof.
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B PROOF FOR SIMPLE MDP

In Section 4.1, we define expert policy as

πE(a1|s0) = 0.6, πE(a2|s0) = 0.4, πE(a1|s1) = 1 πE(a1|g) = 1.

we said if N trajectories are sampled, the number of τ1 and τ2 is 0.6N and 0.4N. Since each trajec-
tories have three (s, a) pairs, total number of (s, a) pairs is 3N. Calculating the previously defined
E(s, a) is as follows

E(s0, a1) =
0.6N

3N
=

1

5
, E(s0, a2) =

0.4N

3N
=

2

15

E(s1, a1) =
0.6N

3N
=

1

5
, E(g, a1) =

1.4N

3N
=

7

15

Next, imitation policy is defined as

π(a1|s0) = θ, π(a2|s0) = 1− θ, π(a1|s1) = 1 π(a1|g) = 1.

Then, dπ(s, a) has the following values

dπ(s0, a1) = π(a1|s0)

[
(1− γ)p0(s0) + γ

∑
s̄,ā

P (s0|s̄, ā)dπ(s̄, ā)

]
= θ(1− γ)

dπ(s0, a2) = π(a2|s0)

[
(1− γ)p0(s0) + γ

∑
s̄,ā

P (s0|s̄, ā)dπ(s̄, ā)

]
= (1− θ)(1− γ)

dπ(s1, a1) = π(a1|s1)

[
(1− γ)p0(s1) + γ

∑
s̄,ā

P (s1|s̄, ā)dπ(s̄, ā)

]
= 1 · [(1− γ) · 0 + γ · 1 · dπ(s0, a1)] = θγ(1− γ)

dπ(g, a1) = π(a1|g)

[
(1− γ)p0(g) + γ

∑
s̄,ā

P (g|s̄, ā)dπ(s̄, ā)

]
= 1 · [0 + γ(1 · dπ(s0, a2) + 1 · dπ(s1, a1) + 1 · dπ(g, a1))]
= (1− θ)γ(1− γ) + θγ2(1− γ) + γdπ(g, a1)

→ dπ(g, a1) = (1− θ)γ + θγ2

Using E(s,a) and dπ(s, a), DKL(d
π∥E) is expressed as

min
π
DKL(d

π(s, a)∥E(s, a)) =dπ(s0, a1) log
dπ(s0, a1)

E(s0, a1)
+ dπ(s0, a2) log

dπ(s0, a2)

E(s0, a2)

+ dπ(s1, a1) log
dπ(s1, a1)

E(s1, a1)
+ dπ(g, a1) log

dπ(g, a1)

E(g, a1)

min
θ
DKL(d

π(s, a)∥E(s, a)) =θ(1− γ) log θ(1− γ)
1/5

+ (1− θ)(1− γ) log (1− θ)(1− γ)
2/15

+ θγ(1− γ) log θγ(1− γ)
1/5

+ (1− θ)γ + θγ2 log
(1− θ)γ + θγ2

7/15

To find a minimizer θ∗ of above optimization, we use first-order optimality condition. That is,

∂DKL(d
π(s, a)∥E(s, a))

∂θ
= 0.

We derive first derivative of DKL(d
π(s, a)∥E(s, a)). Result is

∂DKL(d
π(s, a)∥E(s, a))

∂θ
=

(1− γ)
[
(1 + γ) log θ − log(1− θ) + log

2

3
+ γ[log

7γ(1− γ)
3

− log((1− θ)γ + θγ2)]

]
= 0
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It is hard to get the exact θ∗ value because equation is very complicated. Therefore, we substitute
the probability value 3

5 , which is probability of expert policy, into θ to check whether the derivative
becomes 0.

∂DKL(d
π(s, a)∥E(s, a))

∂θ
=

(1− γ)
[
(1 + γ) log

3

5
− log(1− 3

5
) + log

2

3
+ γ

[
log

7γ(1− γ)
3

− log((1− 3

5
)γ +

3

5
γ2)

]]
= 0

→ γ log
3

5
+ γ

[
log

7γ(1− γ)
3

− log

(
2

5
γ +

3

5
γ2

)]
= 0

→ log
3

5
+ log

7γ(1− γ)
3

− log

(
2

5
γ +

3

5
γ2

)
= log

(
7(1− γ)
2 + 3γ

)
= 0

→ 7(1− γ) = 2 + 3γ

Since γ ∈ [0, 1), we exclude γ = 1 case. Solving last equation yields γ = 0.5. In summary, if
γ = 0.5, the expert policy can be recovered through optimization minπDKL(d

π(s, a)∥E(s, a)),
but if other γ values are applied, it can be interpreted that the optimal policy is not the same as the
expert policy.

C FINDING IGI DISTRIBUTION

Our goal is to find the initial distribution p̃0 that makes the distribution made by t0+ tgeom uniform,
where t0 ∼ p̃0(t) and tgeom ∼ Geom1−γ(t|t0). Note that Geom1−γ(t|t0) is conditional distribution.
Because, in general, there is a maximum timestep, |T |, for episode in the learning environment,
so in order to prevent the sum of timestep exceed over |T |, Geom1−γ(t|t0) must be conditional
distribution which considers the sampled initial timestep. Let T = t0 + tgeom, Then PT (T ) is
defined as

PT (T ) =

T∑
t0=0

Geom1−γ(T − t0|t0)p̃0(t0)

=

T∑
t0=0

(1− γ)γT−t0∑|T |−t0
i=0 (1− γ)γi

p̃0(t0)

=

T∑
t0=0

(1− γ)γT−t0

Sum(|T | − t0)
p̃0(t0).

(30)

For the convenience of notation, we rewrite
∑|T |−t0
i=0 (1 − γ)γi as Sum(|T | − t0). We can express

Equation (30) in linear problem form. To this end, it is represented as follows.

PT (0)

...

PT (|T |)


︸ ︷︷ ︸

PT

=



1−γ
Sum(|T |) 0 0 · · · 0
(1−γ)γ
Sum(|T |)

1−γ
Sum(|T |−1) 0 · · · 0

(1−γ)γ
Sum(|T |−1)

1−γ
Sum(|T |−2) · · · 0

...
...

...
. . .

...

(1−γ)γ|T |

Sum(|T |)
(1−γ)γ|T |−1

Sum(|T |−1)
(1−γ)γ|T |−2

Sum(|T |−2) · · · 1− γ


︸ ︷︷ ︸

Ptgeom



p̃0(0)

...

p̃0(|T |)


︸ ︷︷ ︸

p̃0

When we actually obtain PT , we obtain it through PT (T ) = The number of data with timestep T in dataset
Total number of data in dataset .

Finally, solving p̃0 = P−1
tgeom · PT gives us the p̃0(t) we want.
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D EXPERIMENTAL DETAILS

D.1 ALGORITHM DETAILS

In this subsection, we provide a simple pseudocode for our algorithm using IGI.

Algorithm 1 Our algorithm using IGI

Require: dataset DD = DE ∪ DO, IGI distribution p̃0 from Appendix C, policy network πθ with
parameter θ, neural networks νϕ and cψ with parameter ϕ and ψ, discount factor γ, batch size B,
learning rate α

Ensure: PTD is a distribution PT from Appendix C using dataset D, and Dt is an dataset D con-
sisted of data with timestep t

Make IGI distribution p̃0 using γ and PTDD

while total iterations do
Sample initial timestep: {t(i)0 }Bi=1 ∼ p̃0 ▷ using IGI distribution
Sample uniform timestep: {t(i)}Bi=1 ∼ PTDD

Sample expert timestep: {t(i)e }Bi=1 ∼ PTDE

Sample initial state: {s(i)0 } ∼ DDt(i)0

, for i = 1, ..., B

Sample total data: {(s(i), a(i), s′(i))} ∼ DD
t(i)

, for i = 1, ..., B

Sample expert data: {(s(i)e , a
(i)
e , s′e

(i)
)} ∼ DE

t
(i)
e

, for i = 1, ...B

Compute discriminator loss Jc (11) using {(s(i), a(i))}Bi=1 and {(s(i)e , a
(i)
e )}Bi=1

Compute critic loss Jν (12) using {s(i)0 }Bi=1 and {(s(i), a(i), s′(i))}Bi=1

Compute policy loss Jπ (13) using {(s(i), a(i), s′(i))}Bi=1

Update ψ ← ψ − α∇ψJc
Update ϕ← ϕ− α∇ϕJν
Update θ ← θ − α∇θJπ

end while

To compute three loss functions in Algorithm 1, we need sampled data from dE , D, and p0. This
begins by sampling the timesteps for each distribution. First of all, compute the IGI distribution us-
ing the geometric distribution Geom(1− γ) given a discount factor γ as we described in Appendix
C. At this time, uniform distribution PT for the total dataset DD is also used for practical perfor-
mance as shown in Figure 3 of Section 4.2. PT is defined as The number of data with timestep T in dataset

Total number of data in dataset as in
Appendix C. Since IGI enables sampling for the discounted distribution uniformly regardless of the
timestep, sampling from dE is replaced with sampling from PTDE

. After three types of timesteps
are sampled, we need actual data corresponding to each type of timestep to use in loss functions.
We uniformly sample actual data of corresponding timesteps in each three dataset. To compute the
loss function (11) of the discriminator, uniformly sampled expert data is used to compute the first
term and the total data is used to compute the second term. In the case of the critic network, the
initial data from IGI is used to compute the first term in (12) and the total data is used to compute the
second term. When we computeAν(s, a) in the second term, use γν(s′(i)) instead of γPν(s(i)) and
use the discriminator to compute log dE(s,a)

D(s,a) as notified in the sentence below (11). For the policy
network, total data is used to compute (13). Lastly, update the parameters of each network with a
learning rate α. Repeating this process for the total number of iterations.
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D.2 IMPLEMENTATION DETAIL

In this subsection, we provide the hyperparameter settings of our algorithm. We use an absorb-
ing state for practical implementation (Kostrikov et al., 2018). For discriminator learning, we use
WGAN-GP (Gulrajani et al., 2017) to achieve more robust learning.

Table 1: Hyperparameter settings

Hyperparameters Our setting

Actor learning rate 3× 10−4

Actor network size [256, 256]

Critic learning rate 3× 10−4

Critic network size [256, 256]

Critic gradient L2-norm coefficient 10−4

Discriminator learning rate 3× 10−4

Discriminator network size [256, 256]

Discriminator gradient penalty coefficient 10

Batch size 256

Number of total iteration 106

Random seeds 1, 2, 3

Kernel initializer He normal initializer
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E EXPERIMENT RESULTS

E.1 FINITE AND DISCRETE MDP

In this subsection, we provide experiment details in finite-discrete MDP and its results.
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Figure 5: The trend of evaluation result with various discount factors in different settings. We plot
the normalized average evaluation over 1000 random seeds.

In finite and discrete MDP, we empirically show the trade-off effect by the discount factor in the
Random MDP. This environment generates the finite and discrete MDP randomly. We follow the
environment configuration of Lee et al. (2021).

We construct the expert dataset DE and suboptimal dataset DO by rolling expert policy and subop-
timal policy, respectively. We characterized the expert policy as the stochastic policy based on the
optimal Q (state-action) value of the randomly generated MDP. The suboptimal policy has perfor-
mance between optimal and uniformly random policy by controlling the hyperparameter ω ∈ [0, 1]
as ωV ∗(s0) + (1 − ω)V πunif(s0) where V ∗ and V πunif is the value function of optimal policy and
uniformly random policy, respectively. Since the MDP is finite and discrete, we can compute the
discounted visitation distribution of the policy directly, which means learning the discriminator is
unnecessary. Thus, there is no need to use IGI in this environment. We use Maximum likelihood es-
timation (MLE) transition dynamics P̂ and discount factor γ̂ for training the policy as we discussed
in Theorem 1. We use discount factor for γ̂ ∈ {0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1} with
varying the number of suboptimal trajectories for {5, 20, 60, 100}. The number of expert trajectory
is 1 for all settings. Figure 5 shows the policy evaluation result on the true MDP with true discount
factor γ. It shows evaluation trends so that the trade-off effect by discount factor suggested in Sec-
tion 3.2 can be confirmed. We can see that the performance can be optimized by choosing lower γ.
Furthermore, the figure shows that the performance of using large discount factors becomes better
as the number of suboptimal trajectories gets larger.
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E.2 CONTINUOUS MDP

We provide the supplementary experiment results of Figure 4 here. We plot the learning curve
according to γ and dataset ratio. Figure 6 represents the result in HalfCheetah-v2 environment,
and Figure 7, 8, 9 is the result on the Hopper-v2, Walker2d-v2 and Ant-v2, respectively.
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Figure 6: Performance of our algorithm using IGI and other baseline algorithms with γ ∈
{0.99, 0.95, 0.9, 0.8, 0.7, 0.6} and dataset ratio D1, D2 and D3 in HalfCheetah-v2 environ-
ment.
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Figure 7: Performance of our algorithm using IGI and other baseline algorithms with γ ∈
{0.99, 0.95, 0.9, 0.8, 0.7, 0.6} and dataset ratio D1, D2 and D3 in Hopper-v2 environment.
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Figure 8: Performance of our algorithm using IGI and other baseline algorithms with γ ∈
{0.99, 0.95, 0.9, 0.8, 0.7, 0.6} and dataset ratio D1, D2 and D3 in Walker2d-v2 environment.
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Figure 9: Performance of our algorithm using IGI and other baseline algorithms with γ ∈
{0.99, 0.95, 0.9, 0.8, 0.7, 0.6} and dataset ratio D1, D2 and D3 in Ant-v2 environment.
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F ADDTIONAL EXPERIMENT RESULT

F.1 EXPERIMENT ON SMALL DATASET IN CONTINUOUS MDP
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Figure 10: The trend of the final evaluation over 3 random seeds with various discount factors in
different environment. For comparison, we plot green line which represents the normalized average
returns of DemoDICE(γ = 0.99).

We make additional experiments by lowering the amount of dataset about 10 times less (40 expert
trajectories and 80 random-policy trajectories) than D1 / D2 / D3 settings. Figure 10 shows the last
evaluation of IGI with applying aforementioned setting in 4 MuJoCo environments over 3 random
seeds, and green line shown in the Figure 10 is the maximum last evaluation over 3 seed of De-
moDICE among different discount factors for each environment (Note that best discount factor of
DemoDICE is 0.99 for all environments).

As shown in the attached figure, we confirmed that the optimal discount factor appeared at lower
than 0.99, except for the HalfCheetah-v2 environment. To explain the reason why a differ-
ent trend came out only in HalfCheetah-v2, we inform that unlike the other environments,
HalfCheetah-v2 environment has the peculiarity that learning is stable in the offline RL prob-
lem, even when the policy is unregularized. For example, refer to the experiment result by vary-
ing the policy regularization factor in Figure 9 of Wu et al. (2019), HalfCheetah-v2 environ-
ment shows good performance compared to other environments even when a low regularization
factor α is applied. Combining these experimental results with the regularization effect on the
discount factor in the offline RL referred to Hu et al. (2022) (Section 3), we can expect that the
performance of the learned policy can be improved when a high discount factor is used in the
HalfCheetah-v2 environment. Eventually, the reason why Figure 10 shows a different trend
only in the HalfCheetah-v2 environment is interpreted as reflecting this environmental disposi-
tion, and the error bound that we proposed in Theorem 1 is valid under general situations.
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F.2 TEST ON VALIDITY OF THEOREM 1
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Figure 11: Figures in the first row show the magnitude of the second and third terms averaged
over 100 random seeds with different discount factors and the number of suboptimal trajectories
(num traj) for each optimality setting. The second row shows only the magnitude of the third term,
and the last row represents the performance of imitated policies.

To check the validity of Theorem 1, we measured the magnitude of the second and third terms in
finite-discrete MDP described in E.1 where ϵP and ϵπ can be exactly computed. Figure 11 shows
the trend of two terms in (14) with different discount factors at each setting. Results show that the
third term has a much lower value than the second term. As a result, Theorem 1 is mainly dependent
on the first and second terms.

The peculiar part is that the third term increases as the suboptimal data increases. In this situation,
the proportion of expert data in the total dataset is reduced, and in that case, the state-marginal
distribution, dπ

P̂ ,γ̂
(s) generated by MLE MDP will give unnecessary amount of probability for the

suboptimal data. Therefore, it is interpreted that the third term is increased because samples with
high DTV (π∥πE) are more frequently reflected in ϵπ as suboptimal data increases.
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F.3 PERFORMANCE ON DIFFERENT SUBOPTIMAL DATASET
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Figure 12: Last evaluation of IGI and best amon DemoDICE when suboptimal dataset is consisted
of 850 medium-trajectory. Gray line represents best of DemoDICE (γ = 0.99).

We additionally conducted an experiment using medium trajectory as suboptimal data. Figure 12
shows the evaluations of learning 1 million steps according to the discount factor when the subopti-
mal dataset is consisted of 850 medium trajectories, and the gray line represents DemoDICE’s best
performance. As a result, in an environment other than Hopper-v2 it was possible to obtain a
higher return than DemoDICE. We also included the learning curve of this experiment in next page,
Figure 13. Here, we can see that the IGI still shows robust learning on the discount factor.
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Figure 13: Performance of IGI and DemoDICE when suboptimal dataset is made by 850 medium-
trajectories. Each column shows the normalized return of two algorithms according to the discount
factor in the same environment.
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