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Abstract

Dataset distillation (DD) aims to synthesize a small dataset whose test performance
is comparable to a full dataset using the same model. State-of-the-art (SoTA) meth-
ods optimize synthetic datasets primarily by matching heuristic indicators extracted
from two networks: one from real data and one from synthetic data (see Fig. 1,
Left), such as gradients and training trajectories. DD is essentially a compression
problem that emphasizes maximizing the preservation of information contained in
the data. We argue that well-defined metrics which measure the amount of shared
information between variables in information theory are necessary for success
measurement but are never considered by previous works. Thus, we introduce
mutual information (MI) as the metric to quantify the shared information between
the synthetic and the real datasets, and devise MIM4DD numerically maximizing
the MI via a newly designed optimizable objective within a contrastive learning
framework to update the synthetic dataset. Specifically, we designate the samples
in different datasets that share the same labels as positive pairs and vice versa
negative pairs. Then we respectively pull and push those samples in positive and
negative pairs into contrastive space via minimizing NCE loss. As a result, the
targeted MI can be transformed into a lower bound represented by feature maps of
samples, which is numerically feasible. Experiment results show that MIM4DD can
be implemented as an add-on module to existing SoTA DD methods.
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Figure 1: (Left) General framework of previous
SoTA DD methods: matching heuristic indica-
tors extracted by networks from real and syn-
thetic datasets; (Right) the motivation of MIM4DD:
maximizing the mutual information between two
datasets for optimizing the synthetic dataset.

Deep learning has remarkably successful perfor-
mance in computer vision tasks [25, 6], but
most deep-learning-based methods require enormous
amounts of data followed by extensive training re-
sources. For example, in order to train a CLIP
model [31] in a self-supervised manner [8], a high-
resolution dataset with more than 10 million images
are collected for training, which consumes tens of
hundreds of GPU hours.

A straightforward solution to eliminate the reliance
on training DNNs on data is to construct small train-
ing sets. Before the deep learning era, coreset or
subset selection is the most prevalent paradigm, in
which one can obtain a subset of salient data points
to represent the original dataset of interest [1, 12, 34]. In the era of deep learning, in contrast to
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previously mentioned selection-based methods, Dataset Distillation (DD), also known as Dataset
Condensation [41, 46, 40, 5], offers a revolutionary paradigm to synthesize a small dataset using
gradient descent algorithms [33], as shown in Fig.1 (Left). In DD, the key question is how to define
metrics to measure the distance between synthetic and real datasets. Only by optimizing a well
designed distance metric can gradient descent be properly applied to update synthetic data. To answer
this question, researchers design several distance algorithms. For example, Zhao et al. [46] measure
distance between the batch gradients of the synthetic samples and original ones; Wang et al. [40] use
the similarity between the feature maps extracted by networks on different datasets; Cazenavette et
al. [5] resort to the MSE between the training trajectories of networks on real and synthetic datasets.

Dataset distillation task is essentially a compression problem with a strong emphasis on maximizing
the preservation of information contained in the data [41, 19, 11]. Admittedly, previous heuristic-
designed distance metrics have achieved promising performance. However, we argue that previous
works neglect the well-defined distributional metric in information theory, which is necessary for
success measurement. Specifically, if we define a dataset’s samples as variables, it is imperative
that the high-level distributional properties of these variables from synthetic and real datasets (e.g.,
correlations and dependencies between two datasets) should be captured and utilized to guide the
update of synthetic datasets. Motivated by this notion, we introduce Mutual Information (MI), a
well-formulated metric in information theory for dataset distillation. In detail, MI quantifies the
information amount shared by the real and synthetic datasets. In contrast to the aforementioned works
focusing on aligning the indicators extracted by different neural networks, MI can naturally capture
non-linear statistical dependencies between variables and be used as a measure of true dependence,
which is important information in data compression [4, 39, 36].

Based on MI metric, we propose a novel method, termed Mutual Information Maximization for
Dataset Distillation (MIM4DD). In particular, we first formulate DD as a problem of MI maximization
between two datasets. Then, we derive a numerically feasible lower bound and maximize this
lower bound via contrastive learning [15, 18, 8]. Finally, we design a highly effective optimization
strategy for the dataset distillation task using contrastive estimation for MI maximization. In this
way, contrastive learning theoretically leads to the targeted MI maximization and also contributes to
the inter-class decorrelation of synthetic samples. In other words, MIM4DD is built upon a contrastive
learning framework to synthesize the small dataset, where samples from the synthetic dataset are
pulled closer to the counterparts with the identical label in the real dataset, and pulled further away
from the ones with different labels in the contrastive space. To the best of our knowledge, it is the
first work aiming at MIM of the datasets over the DD task within a contrastive learning framework.

Overall, the contributions of this paper are three-fold: (i) To distill information from a large real
dataset to a small synthetic dataset under a well-defined metric, we formulate the DD task as an MI
maximization problem. To the best of our knowledge, this is the first work to introduce MI into the
literature of DD. (ii) To maximize the targeted MI, we derive a numerically feasible lower bound
and maximize it via contrastive learning. In this way, the heterogeneity in the generated images gets
enhanced, which further improves the performance of the DD method. (iii) Experimental results show
that our method outperforms existing SoTA methods. Importantly, our method can be implemented
as a plug-and-play module for existing methods.

2 Methodology

In this section, we demonstrate the methodology of Mutual Information Maximization for Dataset
Distillation (MIM4DD). Firstly, we briefly revisit the general framework in previous SoTA DD methods,
and we illustrate the MI background. Secondly, we model the DD problem within the literature on
mutual information maximization (MIM). Then, we convert the targeted but numerical inaccessible
MIM goal into a learnable object optimization problem, and solve the problem via a newly designed
MIM4DD loss. Finally, we discuss the potential insights of MIM4DD. Note that we only elaborate on the
key derivations in this section due to the space limitation; detailed discussions and technical theorems
can be found in the supplemental material.

2.1 Preliminaries

Dataset Distillation. In short, the goal of dataset distillation (also dubbed dataset condensation) is
to synthesize a small training set, Dsyn = {xj

syn,y
j}Mj=1 such that models trained on this synthetic
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dataset can have comparable performance as models (with the same architecture) trained on the
large real set, Dreal = {xi

real,y
i}Ni=1, in which M ≪ N . In this way, after obtaining the targeted

synthetic data, the training process of DNNs can be largely accelerated. In this premise, we review
some representative DD methods [43, 5, 40], which generally propose to enforce the behaviors of
models trained on real and synthetic datasets to be similar. The core idea can be formalized in a form
of an optimization problem:

D⋆
syn = arg min

Dsyn

Exsyn∽Dsyn
Exr∽Dreal

Dist(f(xreal; θ
⋆), f(xsyn; γ

⋆)), (2.1)

in which θ⋆ and γ⋆ are the learned parameters of networks trained on the real dataset Dreal and the
synthetic dataset Dsyn, respectively; and the distance function Dist(·, ·) is specifically developed
to measure the similarity of two networks across datasets. With aligning the networks, one can
optimize the synthetic data. Note that designing the distance functions aligning the networks trained
on different datasets to optimize the synthetic dataset is the core of previous DD methods, e.g.,
CAFE [40] uses the MSE distance of feature maps, and MTT [5] calculates the difference of training
trajectories as distance functions.

Although those heuristically designed distance functions lead to promising results, we argue that
well-defined metrics in information theory for measuring the amount of shared information between
variables have never been considered, as DD is essentially a compression problem with a different
emphasis on the information contained in the data.

Mutual Information and Contrastive Learning. Mutual information quantifies the amount of
information obtained about one random variable by observing the other random variable. It is
a dimensionless quantity with (generally) units of bits, and can be considered as the reduction
in uncertainty about one random variable given knowledge of another. High mutual information
indicates a large reduction in uncertainty and vice versa [23]. Strictly, for two discrete variables X
and Y, their mutual information (MI) can be defined as [23]:

I(X,Y) =
∑
x,y

PXY(x, y) log
PXY(x, y)

PX(x)PY(y)
, (2.2)

where PXY(x, y) is the joint distribution, PX(x) =
∑

y PXY(x, y) and PY(y) =
∑

x PXY(x, y)
are the marginals of X and Y, respectively.

In the content of DD, we would like them to share as much information as possible. Theoretically,
considering the samples in real and synthetic datasets as two random variables, the MI between those
two variables should be maximized. Recently, contrastive learning has been proven an effective
approach to maximize MI. Many methods based on contrastive loss for self-supervised learning
are proposed, such as [18], [29], [42]. These methods are theoretically based on NCE [15] and
InfoNCE [18]. Essentially, the key concept of contrastive learning is to pull representations in
positive pairs close and push representations in negative pairs apart in a contrastive space. Thus the
major obstacle for modeling problems in a contrastive way is to define the negative and positive pairs.
In this work, we also resort to a contrastive learning framework for maximizing our targeted MI.
Meanwhile, we illustrate how we formulate DD as a MI maximization problem, and how we solve
this targeted problem within the contrastive learning framework.

2.2 MIM4DD: Mutual Information Maximization for Dataset Distillation

In this section, we first formalize the idea of maximizing the MI between the distributions of real and
synthesized data, via constructing a contrastive task based on Noise-Contrastive Estimation (NCE).
Specifically, we derive a novel MIM4DD loss to distill task-specific information from real data Dreal

to synthetic data Dsyn, where NCE is introduced to avoid the direct MI computation by estimating
it with its lower bound in Eq.2.14. From the perspective of NCE, straight-forwardly, the real and
synthesized samples from the same class can be pulled close, and samples from different classes can
be pushed away, which corresponds to the core idea of contrastive learning.

Problem Formulation: Ideally, for variable Xreal representing the samples in real data and Xsyn in
the synthetic data, we desire to maximize the MI between Xreal and Xsyn in terms of Xsyn, i.e.,

Targeted MI: X⋆
syn = argmax

Xsyn

I(Xreal,Xsyn). (2.3)
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In this way, synthetic data D⋆
syn and fixed real data D⋆

real can share maximal information. However,
directly approaching this goal is unattainable since the distributions of datasets themselves are absurd
to estimate [15, 18]. To encounter this obstacle, let us include the networks trained on real and
synthetic datasets. We define those networks in the form of K-layer Multi-Layer Perceptrons (MLPs).
For simplification, we discard the bias term of those MLPs. Then the network f(x) can be denoted
as:

f(W1, · · · ,WK ;x) = (WK · σ ·WK−1 · · · · · σ ·W1)(x), (2.4)

where x is the input sample and Wk : Rdk−1 7−→ Rdk(k = 1, ...,K) stands for the weight matrix
connecting the (k− 1)-th and the k-th layer, with dk−1 and dk representing the sizes of the input and
output of the k-th network layer, respectively. The σ(·) function performs element-wise activation
operation on the input feature maps. Based on those predefined notions, the sectional MLP fk(x)
with the front k layers of the f(x) can be represented as:

fk(W1, · · · ,Wk;x) = (Wk · σ · · ·σ ·W1)(x). (2.5)

The k-th layer’s feature maps are Ak
syn and Ak

real, (k ∈ {1, · · · ,K}), where Ak
syn =

(ak,1syn, · · · ,ak,Msyn ) and Ak
real = (ak,1real, · · · ,a

k,N
real) can be considered as a series of variables. Specifi-

cally, the feature map can be obtained by:

a
k,jcr
syn = fk(xj

syn), j ∈ {1, · · · ,M}, a
k,ics
real = fk(xi

real), i ∈ {1, · · · , N}. (2.6)

Here, we show the relationship of MI in data X level and in feature maps A level, i.e., the relationship
between I(Xreal,Xsyn) and I(Areal,Asyn). We utilize the in-variance of MI to understand it. The
property can be illustrated as follows:

Theorem 1 (In-variance of Mutual Information): Mutual information is invariant under the
reparametrization of the marginal variables. If X ′ = F (X) and Y ′ = G(Y ) are homeomorphisms
(i.e., F (·) and G(·) are smooth uniquely invertible maps), then

I(X,Y ) = I(X ′, Y ′). (2.7)

Since each layer’s mapping Wk : Rdk−1 7−→ Rdk(k = 1, ...,K) can be considered as the smooth
uniquely invertible maps Theorem 1. Combining this theorem with the definition of MI in Eq.2.2,
we observe that the MI in the targeted data level is equivalent to MI in the feature maps level, i.e.,

I(Xreal,Xsyn) = I(Ak
real,A

k
syn), (k = 1, ...,K). (2.8)

More details and the proof of this theorem are in Supplemental Materials and [21].

Facilitated by this property, we are able to access the calculation of MI between real and synthetic
datasets via the feature maps of networks trained on those datasets. In other words, Theorem 1
helps us transfer the targeted MI maximization in Eq.2.3 to a reachable MI in Eq.2.8 in the dataset
distillation literature, i.e.,

Accessible MI: argmax
Xsyn

K∑
k=1

I(Ak
real,A

k
syn), (2.9)

in which Ak
syn = fk(Xsyn) and Ak

real = fk(Xreal).

Apart from the theoretical derivation, intuitively, the corresponding variables (aksyn,a
k
real) should

share more information, i.e., MI of the same layer’s output feature maps I(aksyn,a
k
real) (k ∈

{1, · · · ,K}) should be maximized to enforce them mutually dependent. This motivation has also
been testified from the perspective of KD [17, 13] by CRD [39] and WCoRD [7]. In those methods,
the penultimate layer’s feature maps of teacher and student are aligned in a contrastive learning man-
ner to enhance the heterogeneity of representations, which can also be explained via MI maximization.
However, MIM4DD is different from those methods (details is in Related Work).

To optimize the accessible Mutual Information (MI) as defined in Eq.2.9, we incorporate a contrastive
learning framework into our targeted Dataset Distillation (DD) task. The fundamental principle of
contrastive learning involves comparing varying perspectives of the data, typically under different
data augmentations, to compute similarity scores [29, 18, 2, 16, 8]. This framework is suitable for
our case, since the activations from real and synthetic datasets can be seen as two different views.
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Figure 2: Feeding images from two datasets into two corresponding neural networks, and we obtain the three
pairs of representations for each layer. We embed the representations into a contrastive space, then learn from
the pair correlation with the contrastive learning task in Eq. 2.16. In this way, the heterogeneity in the generated
images can be enhanced. Theoretically, we can realize the formulated mutual information maximization (MIM)
in Eq. 2.9, which is equivalent to the targeted MIM in Eq. 2.3.

(Definition: Positive and Negative Samples.) Let’s denote each sample from the real and synthetic
datasets as {xjcr

real} (jcr ∈ {1, · · · , N}) and {xics
syn} (ics ∈ {1, · · · ,M}), respectively. Here, cr and

cs ∈ {1, · · · , C} represent the class labels of xjcr
real and x

ics
syn, respectively. We feed two batches of

samples from two datasets to two different neural networks and obtain N ·M pairs of k-th layer’s
activations (ak,icssyn ,a

k,jcr
real ), which can further be utilized for the contrastive learning task. We define

a pair containing two activations corresponding to the same labels as the positive pair, i.e., if cr = cs,
(a

k,ics
syn ,a

k,jcr
real )+ and vice versa. Consequently, there is M

C · M
C · C = 1

C ·N ·M positive pairs, and
thus (1 − 1

C ) · N · M negative pairs. The key concept of contrastive learning is to discriminate
whether a given pair of activation (a

k,ics
syn ,a

k,jcr
real ) is positive or negative. In other words, it involves

estimate the distribution P (D | ak,icssyn ,a
k,jcr
real ), in which D is a scalar variable indicating whether

cs = cr or cs ̸= cr. Specifically, D = 1 when cs = cr, and D = 0 when cs ̸= cr. However, we can
not directly reach the distribution P (D | ak,icssyn ,a

k,jcr
real ) [15], and thus we introduce its corresponding

variational form:
q(D | ak,jcrreal ,a

k,ics
syn ). (2.10)

Intuitively, q(D | ak,jcrreal ,a
k,ics
syn ) can be treated as a binary classifier, which can classify a given pair

(a
k,ics
syn ,a

k,jcr
real ) into positive or negative. Importantly, q(D | ak,icsreal ,a

k,jcr
syn ) can be estimated by some

mature statistical methods, such as NCE [15] and InfoNCE [18].

Using the Bayes rule, the posterior probability of two activations from the positive pair can be
formalized as:

q(D = 1 | ak,icssyn ,a
k,jcr
real ) =

q(a
k,ics
syn ,a

k,jcr
real | D = 1) 1

C

q(a
k,ics
syn ,a

k,jcr
real | D = 1) 1

C + q(a
k,ics
syn ,a

k,jcr
real | D = 0)C−1

C

. (2.11)

The probability of activations from negative pair is q(D = 0 | ak,icssyn ,a
k,jcr
real ) = 1 − q(D = 1 |

a
k,ics
syn ,a

k,jcr
real ). To simplify the NCE derivative, several works [15, 42, 39] build assumption about

the dependence of the variables, we also use the assumption that the activations from positive pairs
are dependent and the ones from negative pairs are independent, i.e. q(ak,icssyn ,a

k,jcr
real | D = 1) =

P (a
k,ics
syn ,a

k,jcr
real ) and q(a

k,ics
syn ,a

k,jcr
real | D = 0) = P (a

k,ics
syn )P (a

k,jcr
real ). Hence, the above equation

can be simplified as:

q(D = 1 | ak,icssyn ,a
k,jcr
real ) =

P (a
k,ics
syn ,a

k,jcr
real )

P (a
k,ics
syn ,a

k,jcr
real ) + P (a

k,ics
syn )P (a

k,jcr
real )(C − 1)

. (2.12)

Performing logarithm to Eq.2.12 and arranging the terms, we can achieve

log q(D = 1 | ak,icssyn ,a
k,jcr
real ) ≤ log

P (a
k,ics
syn ,a

k,jcr
real )

P (a
k,ics
syn )P (a

k,jcr
real )

− log(C − 1). (2.13)
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Taking expectation of P (a
k,ics
syn ,a

k,jcr
real ) on both sides, and combining Eq.2.2, we can transfer the MI

into:

Accessible MI in Eq. 2.9︷ ︸︸ ︷
I(aksyn,a

k
real) ≥ log(C − 1) +

optimized lower bound︷ ︸︸ ︷
E
P (a

k,ics
syn ,a

k,jcr
real |D=1)

[
log q(D = 1 | ak,icssyn ,a

k,jcr
real )

]
, (2.14)

where I(aksyn,a
k
real) is the MI between the real and synthetic data distributions. Instead of directly

maximizing the MI, maximizing the lower bound in the Eq.2.14 is a practical solution.

However, even q(D = 1 | ak,ics ,ak,jcr ) is still hard to estimate. Thus, as tackled by many contrastive
learning works [29, 18, 2, 39, 36, 37], we introduce a discriminator network d(·, ·) with parameter ϕ
(i.e., d(ak,icssyn ,a

k,jcr
real ;ϕ)). Basically, the discriminator d can map aksyn,a

k
real to [0, 1] (i.e., distinguish

given two samples aksyn,a
k
real belonging to positive or negative pair). Specifically, the discriminator

function is designed as follows:

d(a
k,ics
syn ,a

k,jcr
real ) = exp(

< gϕ(a
k,ics
syn ), gϕ(a

k,jcr
real ) >

τ
)/C, (2.15)

in which gϕ(·) is the embedding function for mapping the activations into the contrastive space and

C = exp(
<g(a

k,ics
syn ),g(a

k,jcr
real )>

τ ) + 1, and τ is a temperature parameter that controls the concentration
level of the distribution [17, 39].

Loss Function. We define the contrastive loss function Lk
NCE between the k-th layer’s activations

aksyn and akreal as: Lk
NCE =

E
q(a

k,ics
syn ,a

k,jcr
real |D=1)

[
log h(a

k,ics
syn ,a

k,jcr
real )

]
+(C−1)·E

q(a
k,ics
syn ,a

k,jcr
real |D=0)

[
log(1− h(a

k,ics
syn ,a

k,jcr
real ))

]
.

(2.16)
4

2

0

8

6

4

2

0

8

6

 

66

66

66

65

65

65

65

65

64

64

 

O
R
丘
<
LL-
Q
u
o
>
:::i
eJ
n
:::>
Q
<

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

入in Overall Loss Function (Eq.17) 

2

0

8

6

4

2

0

8

6

 

1

1

0

0

0

0

0

9

9

 

4

4

4

4

4

4

4

3

3

 

O
O
R
士

<
LL-
O
u
o
>::
>e
」

n
3
3
<

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

入in Overall Loss Function (Eq.17) 

Figure 3: Ablation Studies. Effect of λ in LMIM4DD
(Eq.2.17) on CIFAR10 (Left) and CIFAR100 (Right).
λ = 0 is the baseline, MTT [5].

In the view of contrastive learning, the first term in
the above loss function about positive pairs is op-
timized for capturing more intra-class correlations
and the second term of negative pairs is for inter-
class decorrelation. Because we construct the pairs
instance-wisely, the number of negative pairs can
be the size of the entire real dataset, e.g., 50K for
CIFAR [22]. By incorporating hand-crafted, addi-
tional contrastive pairs for the proxy optimization
problem in Eq.2.16, the representational quality
of generated images can be further enhanced as
demonstrated by numerous contrastive learning
methods[8, 29, 18, 2].

Finally, by incorporating the set of NCE loss for various layers
{
Lk
NCE

}
, (k = 1, · · · ,K), we can

then formulate MIM4DD loss LMIM4DD as:

LMIM4DD = λ

K∑
k=1

Lk
NCE

βK−1−k
+ LDD, (2.17)

in which LDD can be any loss functions in previous DD methods [40, 43, 5], λ is used to control the
NCE loss, and β is a scalar greater than 1. In practice, we use MTT [5] or BPTT [11] as default LDD.

2.3 Discussion on MIM4DD

In addition to the theoretical formulation, we are going to provide a more straightforward mani-
festation of MIM4DD. As illustrated in Fig.2, by embedding the activations to the contrastive space
and constructing proper negative-and-positive embedding pairs, we can heterogeneously distill the
relevant information from the real dataset to learnable synthetic dataset, and enhance the heterogeneity
of the synthetic dataset within the contrastive learning framework as shown in Fig.5. Specifically,
networks on different datasets first learn self-supervised information benefited from a large number
of the designed pairs [18, 39]. Then, via the backward pass in Fig.2, the synthetic data are updated
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w.r.t. this contrastive loss. While the actual number of negative samples in practice can be huge,
e.g., 50K for synthesizing 10 pictures per-class to replace CIFAR10 [22] despite only drawing two
samples in Fig.2.

Furthermore, we give a direct explanation of why optimizing LMIM4DD in Eq.2.17 can lead to the
targeted MIM between synthetic dataset and real dataset in Eq.2.3. Firstly, optimizing the formulated
contrastive loss in Eq.2.16 is equivalent to maximizing the derived accessible MI between activations
in Eq.2.9, as the inequality in Eq.2.14 (Eq.2.10-2.13 can derive Eq.2.14). Secondly, based on
Theorem 1 (Eq.A.1) and the property of the networks itself (Eq.2.4 and Eq.2.5), maximizing the
accessible MI in Eq.2.9 equals to maximizing the targeted MI in Eq.2.8, which is our goal, to
minimize the MI between synthetic dataset and real dataset. Since real data are fixed and synthetic
data are learnable, the optimized synthetic dataset can contain as much information as the real dataset
under the metric of MI.

3 Experiments

In this section, we conduct comprehensive experiments to evaluate our proposed method MIM4DD on
four different datasets for DD task. We first describe the implementation details of MIM4DD, and then
compare our method with several SoTA DD methods to demonstrate superiority of our proposed
method. Finally, we validate the effectiveness of MI module (connected with Eq.2.16 and Eq.2.17)
by a series of ablation studies.

3.1 Datasets and Implementation Details

Datasets. We use MNIST [24], SVHN [35], and CIFAR10/100 datasets to conduct our experiments.
MNIST [24] is a dataset for handwritten digits recognition that is widely used for validating image
recognition models. It contains 60,000 training images and 10,000 testing images with the size of
28× 28. CIFAR10/100 [22] are two datasets consist of tiny colored natural images with the size of
32× 32 from 10 and 100 categories, respectively. In each dataset, 50,000 images are used for training
and 10,000 images for testing. More details of the datasets can be found in Supplemental Materials.

Implementation Details. In the experiments, we optimize synthetic sets with 1/10/50 Images Per
Class (IPC) across all three datasets, using a three-layer Convolutional Network (ConvNet) identical
to those used in [46, 40, 5]. The ConvNet comprises three consecutive blocks of ’Conv-InstNorm-
ReLU-AvgPool.’ Each convolutional layer has 128 channels, and AvgPool represents a 2× 2 average
pooling operation with stride 2. The synthetic images’ initial learning rate is 0.1, which is halved at
the 1,800th and 2,800th iterations. The training is stopped after 5,000 iterations. To test the ConvNet’s
performance on the synthetic dataset, we train the network on synthetic sets for 300 epochs and
assess the performance using five randomly initialized networks. The network’s initial learning rate
is 0.01. As per [5], we conduct five experiments and report the mean and standard deviation across
the five networks. The default batch size is 256, and λ in Eq.2.17 is 0.8. The effect of λ is explored
in Sec.3.3.

3.2 Comparison with SoTA

We compare MIM4DD with a series of state-of-the-art (SoTA) dataset distillation methods, including
Dataset Distillation (DD) [41], LD [3], Dataset Condensation (DC) [46], DC with differentiable
siamese augmentation (DSA) [43], DC with distribution matching (DM) [45], CAFE [40], FRePo [47],
TESLA [10], BPTT [11], and MTT [5]. We report the performances of our method and comparisons
on three datasets in Table 1. Taking into account the overall performance of MIM4DD across these
mainstream dataset distillation benchmarks, it’s apparent that our method consistently outperforms
existing SoTAs. For instance, in the setting of generating 10 images per class, our method delivers
top-tier results across all datasets. Additionally, when we synthesize 10 images per class using
CIFAR100 as a real-world dataset, our method surpasses MTT by a margin of 1.4%. Importantly, our
method can serve as an effective plug-and-play module for existing state-of-the-art DD methods.

3.3 Ablation Studies
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Table 1: Dataset distillation methods comparisons. The settings are the same as previous SoTAs, BPTT [11],
MTT [5], and DREAM [27]. Importantly, MIM4DD can work as an add-on module for SoTA methods.

MNIST CIFAR10 CIFAR100
IPC-1 IPC-10 IPC-50 IPC-1 IPC-10 IPC-50 IPC-1 IPC-10

Full Set 99.6 ± 0.0 84.8 ± 0.1 56.2 ± 0.3

DD [41] - 79.5 ± 8.1 - - 36.8 ± 1.2 - - -
LD [3] 60.9 ± 3.2 87.3 ± 0.7 93.3 ± 0.3 25.7 ± 0.7 38.3 ± 0.4 42.5 ± 0.4 11.5 ± 0.4 -
CAFE [40] 93.1 ± 0.3 97.2 ± 0.2 98.6 ± 0.2 30.3 ± 1.1 46.3 ± 0.6 55.5 ± 0.6 14.0 ± 0.3 31.5 ± 0.2
DM [44] 89.7 ± 0.6 97.5 ± 0.1 98.6 ± 0.1 26.0 ± 0.8 48.9 ± 0.6 63.0 ± 0.4 11.4 ± 0.3 29.7 ± 0.3
DSA [43] 88.7 ± 0.6 97.8 ± 0.1 99.2 ± 0.1 28.8 ± 0.7 52.1 ± 0.5 60.6 ± 0.5 16.8 ± 0.2 32.3 ± 0.3
DC [46] 91.7 ± 0.5 97.4 ± 0.2 98.9 ± 0.2 28.3 ± 0.5 44.9 ± 0.5 53.9 ± 0.5 12.8 ± 0.3 25.2 ± 0.3
DCC [26] - - - 32.9 ± 0.8 49.4 ± 0.5 61.6 ± 0.4 13.3 ± 0.3 30.6 ± 0.4
DSAC [26] - - - 34.0 ± 0.7 54.5 ± 0.5 64.2 ± 0.4 14.6 ± 0.3 33.5 ± 0.3
FRePo [47] 92.4 ± 0.5 98.4 ± 0.1 98.8 ± 0.1 41.3 ± 0.5 59.6 ± 0.3 63.6 ± 0.2 24.8 ± 0.2 31.2 ± 0.2
FRePo-w [47] 93.0 ± 0.4 98.6 ± 0.1 99.2 ± 0.0 46.8 ± 0.7 65.5 ± 0.4 71.7 ± 0.2 28.7 ± 0.1 42.5 ± 0.2
MTT [5] 91.4 ± 0.9 97.3 ± 0.1 98.5 ± 0.1 46.3 ± 0.8 65.3 ± 0.7 71.6 ± 0.2 24.3 ± 0.3 40.1 ± 0.4
TESLA [10] - - - 48.5 ± 0.8 66.4 ± 0.8 72.6 ± 0.7 24.8 ± 0.4 41.7 ± 0.3

MTT [5] 91.4 ± 0.9 97.3 ± 0.1 98.5 ± 0.1 46.3 ± 0.8 65.3 ± 0.7 71.6 ± 0.2 24.3 ± 0.3 40.1 ± 0.4
+ MIM4DD 92.0 ± 0.6 98.1 ± 0.2 98.9 ± 0.2 47.6 ± 0.2 66.4 ± 0.2 71.4 ± 0.3 25.1 ± 0.3 41.5 ± 0.2
∆ (0.6↑) (0.8↑) (0.4↑) (1.3↑) (1.1↑) (0.2↓) (0.8↑) (1.4↑)

BPTT [11] 94.7 ± 0.2 98.9 ± 0.1 99.2 ± 0.0 49.1 ± 0.6 62.4 ± 0.4 70.5 ± 0.4 21.3 ± 0.6 34.7 ± 0.5
+ MIM4DD 95.8 ± 0.3 98.9 ± 0.1 99.2 ± 0.1 51.8 ± 0.3 66.4 ± 0.8 72.9 ± 0.5 25.0 ± 0.4 38.5 ± 0.6
∆ (1.1↑) (0.0-) (0.0-) (2.7↑) (4.0↑) (2.4↑) (3.7↑) (3.8↑)

DREAM [27] - - - 51.1 ± 0.3 69.4 ± 0.4 74.8 ± 0.1 29.5 ± 0.3 46.8 ± 0.7
+ MIM4DD - - - 51.9 ± 0.3 70.8 ± 0.1 74.7 ± 0.2 31.1 ± 0.4 47.4 ± 0.3
∆ - - - (0.8↑) (1.4↑) (0.1↓) (0.6↑) (0.6↑)

Table 2: Hyperparameters selection w. 10 Imgs/Cls
on CIFAR10.

Hyper-parameter Accuracy

critic function w.o network 64.9 ± 0.2
critic function w. 1 fc-layer 65.9 ± 0.4
critic function w. 2 fc-layer 65.3 ± 0.4

β = 1.0 in LMIM4DD 63.8 ± 0.6
β = 2.0 in LMIM4DD 66.0 ± 0.5
β = 0.5 in LMIM4DD 62.8 ± 0.6

We conduct a series of ablation studies of MIM4DD in
CIFAR-10 and CIFAR100. By adjusting the coeffi-
cient λ in the loss function LMIM4DD (Eq.2.16 and
Eq.2.17), we investigate the effect of MIM4DD loss
in synthesizing distilled datasets. The results are
shown in Fig.3. We observe the trend that with λ in-
creasing, the performance improves, which validates
the effectiveness of our designed method. However,
when the ratio of LNCE in overall loss is greater
than a threshold, the performance of student net-
works drops, which means the main task, dataset
distillation is overlooked in the optimization.

MIM4DD as an Add-on Module. We apply the MIM4DD framework to state-of-the-art Dataset Distillation
(DD) techniques, including MTT [5] and BPTT [11]. The results are presented in Table1. It is
observed that MIM4DD effectively enhances the performance of all the tested methods, providing
substantial evidence that our approach can be utilized as an add-on module to existing techniques.

Hyper-parameters and Relative Module Selection. In addition to ablation studies, we conduct
experiments to select the important hyper-parameters and modules. We investigate one hyper-
parameter, the co-efficient to adjust the weight of layer in overall loss in Eq.2.17, and one module,
the architecture of embedding network in Eq.2.15. The results are in Table 2.

3.4 Regularization Propriety

(b)(a)

Figure 4: LDD curves while training w.o.
(left) and w. (right) LNCE .

Here, we analyze the trends of dataset distillation loss,
LDD in Eq.2.17 during training. As we presented in
Sec. 2.2, the term LDD in Eq.2.17 can be any dataset dis-
tillation loss. By controling the co-efficient λ in Eq.2.17,
we can separately study the DD loss LDD. Their training
curves are presented in Fig.4. When turning on NCE loss
(assigning λ = 0.8), we observe that the LDD drops using
our designed NCE loss (Left), while the corresponding testing performance improves (see Table 1).
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Combining this phenomenon and analysis on the effect of λ in Fig. 3, we conclude that our designed
MIM4DD module can act as a regularization term.

3.5 CKA analysis

We formulate DD in a view of variable distribution, and thus we analyze distributional information
flow within layers of neural networks. Centered kernel alignment (CKA) [9, 20, 32] is able to
compare activations within or across networks quantitatively. Specifically, for a network fed by
m samples, CKA algorithm takes X ∈ Rm×p1 and Y ∈ Rm×p2 as inputs which are output
activations of two layers (with p1 and p2 neurons respectively). Letting K ≜ XX⊤ and L ≜ YY⊤

denote the Gram matrices for the two layers CKA computes: CKA(K,L) = HSIC(K,L)√
HSIC(K,K)HSIC(L,L)

,

where HSIC is the Hilbert-Schmidt independence criterion [14]. Given the centering matrix H =

In − 1
n11

⊤ and the centered Gram matrices K′ = HKH and L′ = HLH, HSIC = vec(K′)vec(L′)
(m−1)2 ,

MTT MIM4DD

Figure 5: CKA analyzes the information
shared within different datasets (Real v.s.
Synthetic with 10 Img/Cls on CIFAR100).
The lighter the dot, the more similar of the
two corresponding layers learned from differ-
ent datasets. Higher similar score between
two layers’ output represents those two lay-
ers share more information.

the similarity between these centered Gram matrices.
Therefore, we employ Centered Kernel Alignment (CKA)
to delve into the information interplay between real and
synthetic data. Specifically, we input two datasets into
two correspondingly trained networks and examine the
similarity between the networks’ feature maps using CKA.
The findings are depicted in Fig.5. The CKA heatmap
reveals that the dataset distilled via MIM4DD shares more
information with the real dataset compared to the MTT [5].
This is because, in our DD formulation, the output similar-
ity is supposed to be highly related to the data similarity
(Theorem 1, Eq.A.1).

4 Related Work

Dataset Distillation is essentially a compression problem that emphasizes maximizing the preservation
of information contained in the data. We argue that well-defined metrics which measure the amount
of shared information between variables in information theory are necessary for success measurement
but are never considered by previous works. Therefore, we propose introducing a well-defined metric
in information theory, mutual information (MI), to guide the optimization of synthetic datasets.

The formulation of our method for DD, MIM4DD absorbs the core idea of contrastive learning (i.e.,
constructing the informative positive and negative pairs for contrastive loss) of the existing contrastive
learning methods, especially the contrastive KD methods, CRD [39] and WCoRD [7]. However, our
approach has several differences from those methods: (i) our targeted MI and formulated numerical
problem are totally different; (ii) our method can naturally avoid the cost of MemoryBank [42] for the
exponential number of negative pairs in CRD and WCoRD, thanks to the small size of the synthetic
dataset in our task. (Further details can be found in the Appendix.)

5 Conclusion

In this paper, we explore that well-defined metrics which measures the amount of shared information
between variables in information theory for dataset distillation. Specifically, we introduce MI
as the metric to quantify the shared information between the synthetic and the real datasets, and
devise MIM4DD numerically maximizing the MI via a newly designed optimizable objective within a
contrastive learning framework to update the synthetic dataset.
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A Appendix

A.1 In-variance of Mutual Information

Theorem 1 (In-variance of Mutual Information): Mutual information is invariant under
reparametrization of the marginal variables. If X ′ = F (X) and Y ′ = G(Y ) are homeomorphisms
(i.e., F (·) and G(·) are smooth uniquely invertible maps), then

I(X,Y ) = I(X ′, Y ′). (A.1)

Proof. If X ′ = F (X) and Y ′ = G(Y ) are homeomorphisms (smooth and uniquely invertible maps),
and JX = ∥ ∂X

∂X′ ∥ and JY = ∥ ∂Y
∂Y ′ ∥ are the Jacobi determinants, then

µ′(x′, y′) = JX(x′)JY (y
′)µ(x, y) (A.2)

and similarly for the marginal densities, which gives

I(X ′, Y ′) =

∫∫
dx′dy′µ′(x′, y′) log

µ′(x′, y′)

µ′
x(x

′)µ′
y(y

′)

=

∫∫
dxdyµ(x, y) log

µ(x, y)

µx(x)µy(y)

= I(X,Y ).

(A.3)

More details can be found in [21].

Discussion on Theorem 1.

Our objective is to maximize the Mutual Information (MI) between the synthetic dataset and the real
dataset (Eq. 3), a task that is numerically unfeasible. To overcome this challenge, we present this
theorem. It allows us to transform the target problem at the data level (Eq. 3) into a more manageable
problem at the feature map level (Eq. 9). Given that each layer’s mapping Wk : Rdk−1 7−→ Rdk(k =
1, ...,K) in the network (as per Eq. 4, 5, and 6) can be treated as smooth, uniquely invertible maps,
we can achieve the goal of maximizing the mutual information between the two datasets. This is
done by maximizing the mutual information between two sets of down-sampled feature maps.

A.2 Datasets and Implementation Details

A.2.1 Datasets

MNIST [24] is a dataset for handwritten digits recognition that is widely used for validating image
recognition models. It contains 60,000 training images and 10,000 testing images with the size of
28× 28.

CIFAR10/100 [22] are two datasets consist of tiny colored natural images with the size of 32× 32
from 10 and 100 categories, respectively. In each dataset, 50,000 images are used for training and
10,000 images for testing.

A.2.2 Implementation Details.

In the experiments, we optimize synthetic sets with 1/10/50 Images Per Class (IPC) across all three
datasets, using a three-layer Convolutional Network (ConvNet) identical to those used in [46, 40,
5]. The ConvNet comprises three consecutive blocks of ’Conv-InstNorm-ReLU-AvgPool.’ Each
convolutional layer has 128 channels, and AvgPool represents a 2× 2 average pooling operation with
stride 2. The synthetic images’ initial learning rate is 0.1, which is halved at the 1,800th and 2,800th
iterations. The training is stopped after 5,000 iterations. To test the ConvNet’s performance on the
synthetic dataset, we train the network on synthetic sets for 300 epochs and assess the performance
using five randomly initialized networks. The network’s initial learning rate is 0.01. As per [5], we
conduct five experiments and report the mean and standard deviation across the five networks. The
default batch size is 256, and λ in Eq.17 is 0.8. The effect of λ is explored in Sec.3.3.
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Figure 6: (Left) Samples from CIFAR10; (Right) Samples from Synthetic dataset based on CIFAR10.
We observe that the heterogeneity in the generated images enhanced, benefited from the contrastive
learning loss (Loss LMIM4DD in Eq.17).

A.3 Synthetic Samples Visualization.

B Related Work

Dataset Distillation (DD) is firstly introduced by Wang et al. [41], in which they optimize the
distilled images using gradient-based hyperparameter optimization [28]. The key problem is to
optimize the specific-designed metrics of networks on real and synthetic datasets to update the
optimizable images. Subsequently, several works significantly improve the results by designing
different metrics. For example, Bohdal et al.and Sucholutsky et al. [3, 38] use distance between
networks’ soft labels; Zhao et al. [46] define the gradients of networks as metric; Zhao et al. [43]
further adopts augmentations to enhance the alignment ability; Wang et al. [40] utilize distance of
network feature maps as metric; and Cazenavette [5] propose long-range trajectory to construct the
metric function. Lee et al. [26] propose Dataset Condensation with Contrastive Signals (DCC) by
modifying the loss function to enable the DC methods to effectively capture the differences between
classes. On the other hand, researchers take DD as a bi-level optimization problem. For example,
Zhou et al. [47] employ a closed-form approximation for the unrolled inner optimization; Deng et
al. [11] revisits the optimization framework in [41] and observe that the inclusion of a momentum
term in inner optimization can significantly enhance performance, leading to state-of-the-art results
in certain settings.

DD is essentially a compression problem that emphasizes on maximizing the preservation of informa-
tion contained in the data. We argue that well-defined metrics which measure the amount of shared
information between variables in information theory are necessary for success measurement, but are
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never considered by previous works. Therefore, we propose to introduce a well-defined metric in
information theory, mutual information (MI), to guide the optimization of synthetic datasets.

Contrastive Learning and Mutual Information. The fundamental idea of all contrastive learning
methods is to draw the representations of positive pairs closer and push those of negative pairs
farther apart within a contrastive space. Several self-supervised learning methods are rooted in
well-established ideas of MI maximization, such as Deep InfoMax [18], Contrastive Predictive
Coding [29], MemoryBank [42], Augmented Multiscale DIM [2], MoCo [16] and SimSaim [8].
These are based on NCE [15] and InfoNCE [18] which can be seen as a lower bound on MI [30].
Meanwhile, Tian et al. [39] and Chen et al. [7] extend the contrastive concept into the realm of
Knowledge Distillation (KD), pulling and pushing the representations of teacher and student.

The formulation of our method for DD, MIM4DD also absorbs the core idea (i.e., constructing the
informative positive and negative pairs for contrastive loss) of the existing contrastive learning
methods, especially the contrastive KD methods, CRD [39] and WCoRD [7]. However, our approach
has several differences from those methods: (i) our targeted MI and formulated numerical problem are
totally different; (ii) our method can naturally avoid the cost of MemoryBank [42] for the exponential
number of negative pairs in CRD and WCoRD, thanks to the small size of the synthetic dataset in our
task. Given that the size of the synthetic dataset M typically ranges from 0.1− 1% of the size of the
real dataset N , the product M ·N is significantly smaller than N ·N (i.e., M ·N ≪ N ·N ).

Difference with DCC [26]. Recently, Lee et al. [26] introduced Dataset Condensation with Con-
trastive Signals (DCC), modifying the loss function to allow Dataset Condensation methods to
effectively discern differences between classes. However, several distinctions exist between DCC
and our method: (i) They are motivated differently. Our approach is predicated on information
degradation, while DCC hinges on class diversity. (ii) From the perspective of contrastive learning,
the view, positive and negative samples differ considerably. Our approach can be implemented at
the feature map level, thanks to the introduced Theorem 1, while DCC can only be deployed at the
gradient level. (iii) The performance of our method significantly surpasses that of DCC.

C Codes

Codes can be found anomalously in Supplement.

14


	Introduction
	Methodology
	Preliminaries
	MIM4DD: Mutual Information Maximization for Dataset Distillation
	Discussion on MIM4DD

	Experiments
	Datasets and Implementation Details
	Comparison with SoTA
	Ablation Studies
	Regularization Propriety
	CKA analysis

	Related Work
	Conclusion
	Appendix
	In-variance of Mutual Information
	Datasets and Implementation Details
	Datasets
	Implementation Details.

	Synthetic Samples Visualization.

	Related Work
	Codes

