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Abstract

Single-Pixel Imaging enables reconstructing objects using a single detector through1

sequential illuminations with structured light patterns. We propose a bilevel opti-2

misation method for learning task-specific, binary illumination patterns, optimised3

for applications like single-pixel fluorescence microscopy. We address the non-4

differentiable nature of binary pattern optimisation using the Straight-Through5

Estimator and leveraging a Total Deep Variation regulariser in the bilevel formula-6

tion. We demonstrate our method on the CytoImageNet microscopy dataset and7

show that learned patterns achieve superior reconstruction performance compared8

to baseline methods, especially in highly undersampled regimes.9

1 Introduction10

Single-Pixel Imaging (SPI) is a technique that allows imaging using a single non-spatial detector that11

measures the total intensity of transmitted light [7, 9]. The lack of spatial resolution is resolved by12

illuminating the object with a sequence of structured light patterns. The object is then reconstructed13

using the sequence of corresponding measurements along with the associated illumination patterns.14

The measurement process can be described by a forward model y = P (Ax), where x ∈ RN15

represents the (vectorised) object, A ∈ RM×N is the sensing matrix, with rows representing16

illumination patterns, y ∈ RM are the measurements, and P is some noising process, for which in17

this work we use additive Gaussian noise.18

SPI scan and reconstruction times are directly related to the number of illumination patterns M .19

Thus, a primary goal is to reduce the number of patterns, ideally achieving an undersampling regime20

M ≪ N . Reconstruction of x from (noisy) measurements y in this regime is an ill-posed inverse21

problem, and it is commonly formulated using variational regularisation as22

x̂ = argmin
x∈RN

1

2
∥Ax− y∥22 + αJ (x), (1)

where J is a regularisation term which incorporates prior knowledge about the object [20]. The23

choice of both the sensing matrix A and the regulariser J is crucial for accurate reconstruction.24

While patterns like Hadamard or random matrices are common [5], they may not be optimal for a25

specific imaging task, and reconstructions can be improved by using data-adaptive patterns.26

This work focuses on designing optimal illumination patterns for image modalities, like single-pixel27

fluorescence microscopy, that impose physical constraints on admissible patterns. Specifically, we28

consider pattens A whose elements are restricted to {−1, 1}. These patterns are standard in SPI29

and are acquired by measuring a pair of complementary {0, 1} patterns and subtracting the results.30

In SPI systems, values 0 and 1 in the sensing matrix correspond to blocking and transmitting light,31

respectively. We tackle this problem by framing pattern design as a bilevel optimisation problem,32
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where we jointly learn the optimal {−1, 1} patterns and specific hyperparameters of the reconstruction33

process. This approach has been successfully employed in domains like magnetic resonance imaging34

(MRI), sparse recovery or model selection [23, 19, 4]. Our main contributions are:35

• Use the Straight-Through Estimator (STE) [3] to handle the discrete nature of pattern optimisation;36

• Integrate a pre-trained Total Deep Variation (TDV) regulariser [15] in the lower-level problem to37

enhance reconstruction quality.38

Related Work Higham et al. [11] introduced the first data-driven framework for learning SPI39

illumination patterns, showing that learned patterns can improve both reconstruction quality and40

compression efficiency. Their method formulates pattern design as training an autoencoder, where41

the linear encoder defines the illumination patterns and the nonlinear decoder performs image42

reconstruction. To improve the decoder, Wu et al. [26] propose an unrolling approach, while Wang et43

al. propose a physics-informed architecture based on differential ghost imaging [24]. Optimising44

sampling patterns also arises in different applications, such as minimising matrix coherence for45

compressive sensing [1] and k-space sampling in MRI [21, 23]. In MRI, sampling pattern design46

requires binary masks, for which the (Gumbel) STE [14] is commonly employed [19, 27].47

2 Learning Sampling Patterns via Bilevel Learning48

We aim to find an optimal sensing matrix A by minimising the reconstruction error over a representa-49

tive dataset of images {x(i)}ni=1. We consider a bilevel problem given by50

min
A∈{−1,1}M×N

α>0

{
L(θ) :=

n∑
i=1

L
(
x(i), x̂

(
θ;P (Ax(i))

))}
, where θ = (A, α), (2)

such that x̂(θ;y) ∈ argmin
x∈RN

1

2
∥Ax− y∥22 + αJ (x). (3)

The upper-level problem (2) aims to find a sensing matrix A and the regularisation parameter51

α > 0 that minimise the discrepancy between ground truth data and reconstructions from noisy52

measurements. The reconstructions are obtained by solving the lower-level problem (3), which is53

defined by a reconstruction method x̂(θ; ·) for a given A and α. The success of bilevel optimisation54

relies on the quality of lower-level solutions: if the regulariser J is a poor match for the data, the55

learned patterns will be suboptimal. Prior work has often relied on classical regularisers like Total56

Variation (TV) [23] or the ℓ1-norm [25]. Instead, we leverage TDV [15], a powerful, data-driven57

regulariser that has shown superior performance over TV in many linear inverse problems.58

The key challenge in the bilevel formulation is that the upper-level problem (2) is over a discrete set,59

making standard gradient-based methods inapplicable. We explore two methods to address this.60

Relax and Penalise (RnP) is an approach that replaces the binary constraint A ∈ {−1, 1}M×N with61

A ∈ [−1, 1]M×N and drives the matrix entries towards {−1, 1} by adding a penalty term62

rϵ(A) =
1

ϵ

∑
i,j

1− a2i,j . (4)

It follows from [17, Theorem 1] that with an appropriate schedule of the penalty strength ϵ > 0, the63

relaxed problem has the same minimiser as the binary one. However, in practice, this requires careful64

parameter tuning. The constraint A ∈ [−1, 1]M×N can be enforced by projecting the matrix entries65

onto the constraint set after each gradient step or by a reparameterisation A = tanh(Z), applied66

entry-wise, using a real-valued latent matrix Z ∈ RM×N . While these methods allow computing the67

gradient exactly, a notable drawback is that A is not strictly binary during optimisation.68

STE enables gradient-based optimisation for binary variables by using a surrogate gradient during69

backpropagation [3]. We represent the binary matrix A ∈ {−1, 1}M×N using a real-valued matrix70

Z ∈ RM×N and the sign function as A = sgn(Z), applied entry-wise with sgn(0) = 1. The sgn71

function has zero gradient almost everywhere, so it cannot be used for gradient-based optimisation. To72

avoid this, STE replaces the activation function with a differentiable surrogate during the backwards73

pass. A common choice is the derivative of the hyperbolic tangent, tanh′(Z), allowing the latent74
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Figure 1: PSNR (left) and SSIM (right) for reconstructions using different illumination patterns with
respect to an increasing number of patterns M .
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Figure 2: Reconstructions using TDV regulariser with different illumination patterns for the same
number of measurements M = 512 (3.125% subsampling ratio) with (PSNR, SSIM).

matrix Z to be updated as if the objective were differentiable. As an extension, we can introduce a75

scaling parameter controlling the asymptotics, though this was not tested. The key trade-off is that76

while STE preserves the binary nature of A during training, it relies on inexact gradient updates.77

3 Numerical Experiments78

Dataset We validate our approach using a subset of the CytoImageNet dataset [12], which contains79

cell microscopy images sourced from a range of publicly available datasets. The full dataset contains80

890K images. To mimic the limited data setting often encountered in applications, we use only 100081

images to estimate the optimal patterns. We use a second, independent subset of 100 images from82

CytoImageNet to evaluate the learned patterns. We consider 128× 128 px2 images, which is at the83

physical limit in microscopy SPI [8], with a BRISQUE score [18] lower than 25.0. When simulating84

the measurements y for a given matrix A we add 5% relative Gaussian white noise.85

Bilevel Optimisation Minimising the objective (2) requires computing the gradient of the upper-86

level problem with respect to parameters θ = (A, α). The main challenge is computing the Jacobian87
∂x̂(θ)
∂θ of the solution x̂(θ) to the lower-level problem (3). We obtain x̂(θ) via fixed-point itera-88

tions x(k+1) = Tθ(x
(k)) with a suitable operator Tθ that is defined by the used iterative scheme.89

Differentiating the fixed-point equation x̂(θ) = Tθ(x̂(θ)) gives the Jacobian90

∂x̂(θ)

∂θ
=

(
I− ∂Tθ(x̂(θ))

∂x̂(θ)

)−1
∂Tθ(x̂(θ))

∂θ
,

see, e.g. [2]. To reduce the computational cost, we use Jacobian-Free Backpropagation [10], which91

relies on the zero-order Neumann series approximation of the inverse term. This yields an approximate92

gradient that is efficient to compute and works well in practice [22, 28].93
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Figure 3: Reconstructions using Learned-STE with TDV (top row), and the first four learned patterns
(bottom row) over five values of M .

Results: TDV We first compare the proposed TDV regulariser with the standard TV regulariser.94

For TV, the lower level variational problem (1) is solved using the Primal-Dual Hybrid Gradient95

algorithm [6], while TDV is optimised with the nonmonotonic Accelerated Proximal Gradient method96

[16], which thus defines Tθ. Unlike TV, TDV allows for a fully gradient-based optimisation since97

the regulariser is smooth. Results are presented in Figure 1, where we can see a clear performance98

increase, with respect to both PSNR and SSIM, for all tested undersampling ratios. Additional99

qualitative results are provided in Figure 6 in the Appendix, which shows the staircasing artefacts,100

characteristic of TV, and the improved reconstruction quality achieved by TDV.101

Results: Learned Patterns We compare our approach at different numbers of measurements102

M against random Gaussian and scrambled Hadamard (SH) sampling patterns [13], which are103

common choices in compressive sensing and SPI. Images are reconstructed using the TDV regulariser104

and nmAPG to minimise the variational objective (1). Regularisation parameter α is selected by105

maximising SSIM on a batch of images from the training set. Results in Figure 1 show that learning106

the sampling pattern provides a significant increase in reconstruction quality, especially in the highly107

undersampled regime, which is of particular significance for fluorescence microscopy. Moreover,108

Learned - STE is noticeably better at capturing finer image structures (cf. Figure 2 zoom). In Figure 3109

we show Learned - STE reconstructions at different sampling ratios (first row), and the learned110

patterns (second row). Learned patterns exhibit more structure at lower sampling ratios, and less111

structure at higher sampling ratios (also observed by [11]). We show the best, median and worst112

reconstructions with respect to PSNR in Figure 4 in the Appendix. The code will be publicly released113

at a later stage.114

4 Conclusions and Further Work115

We introduce a bilevel framework for learning binary illumination patterns for SPI, with a particular116

focus on fluorescence microscopy. In addition, we incorporate a data-driven TDV regulariser into117

the variational reconstruction method. Experiments on the CytoImageNet dataset demonstrate clear118

quantitative and qualitative performance boosts, especially in the highly undersampled regime.119

In the current manuscript, our validation is limited to simulated measurements. Applying the learned120

patterns to experimental single-pixel fluorescence microscopy data, with a realistic noise model, will121

be a critical next step. Moreover, our comparisons are restricted to variational regularisation–based122

methods; future work will include benchmarking against fully learned approaches, such as [11],123

with particular emphasis on stability and generalisability to unseen data. In addition, this work uses124

a specific data-driven regulariser with weights trained on natural images. Investigating alternative125

learned regularisers and retraining them on a relevant dataset (e.g. CytoImageNet) represents another126

promising research direction. Finally, while this work focuses on binary illumination patterns,127

extending the framework to ternary {−1, 0, 1} patterns is another important line of future work.128
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A Additional Results195

Table 1: PSNR and SSIM for sampling patterns with respect to M , using the TV regulariser.
M = 128 M = 256 M = 512 M = 1024 M = 2048

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Gaussian 18.59 0.448 20.78 0.495 23.19 0.568 25.72 0.650 28.65 0.734
SH 19.98 0.458 22.27 0.522 24.88 0.602 27.60 0.689 30.31 0.778

Learned - RnP 23.48 0.544 24.56 0.579 25.98 0.630 27.64 0.689 29.89 0.765
Learned - STE 24.62 0.580 26.59 0.641 28.14 0.697 29.61 0.752 30.95 0.797

Table 2: PSNR and SSIM for sampling patterns with respect to M , using the TDV regulariser.
M = 128 M = 256 M = 512 M = 1024 M = 2048

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Gaussian 22.08 0.531 25.13 0.616 27.36 0.682 29.51 0.753 31.84 0.825
SH 22.37 0.529 25.20 0.621 27.36 0.686 29.75 0.761 32.18 0.834

Learned - RnP 24.47 0.590 26.18 0.642 27.97 0.702 29.68 0.759 31.77 0.822
Learned - STE 25.75 0.630 27.60 0.684 29.31 0.741 30.94 0.795 32.38 0.839

Gaussian

(32.63, 0.812)

SH

(32.98, 0.826)

Learned - RnP

(33.49, 0.840)

Learned - STE

(35.66, 0.884)

Ground Truth

(27.05, 0.743) (27.75, 0.758) (27.59, 0.754) (29.25, 0.792)

(20.24, 0.376) (20.55, 0.394) (21.36, 0.486) (22.67, 0.491)

Figure 4: Comparison of the different sampling patterns for M = 512 and the TDV regulariser. We
order the rows by best, median, and worst reconstruction PSNR of Learned - STE. We report the
reconstruction quality metrics in brackets (PSNR, SSIM).
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Figure 5: Comparison between classical approaches (Gaussian and SH using TV regularisers), and
learned approaches (RnP and STE with TDV regulariser) for M = 1024. We report reconstruction
quality metrics in brackets (PSNR, SSIM).
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Figure 6: Comparison of the TDV and TV regulariser during reconstruction for both the Gaussian
and SH patterns for M = 1024.
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