
Under review as a conference paper at ICLR 2022

SELF-ORGANIZED POLYNOMIAL-TIME
COORDINATION GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Coordination graph is a promising approach to model agent collaboration in multi-
agent reinforcement learning. It factorizes a large multi-agent system into a suite
of overlapping groups that represent the underlying coordination dependencies.
One critical challenge in this paradigm is the complexity of computing maximum-
value actions for a graph-based value factorization. It refers to the decentralized
constraint optimization problem (DCOP), which and whose constant-ratio approx-
imation are NP-hard problems. To bypass this fundamental hardness, this paper
proposes a novel method, named Self-Organized Polynomial-time Coordination
Graphs (SOP-CG), which uses structured graph classes to guarantee the optimal-
ity of the induced DCOPs with sufficient function expressiveness. We extend the
graph topology to be state-dependent, formulate the graph selection as an imag-
inary agent, and finally derive an end-to-end learning paradigm from the unified
Bellman optimality equation. In experiments, we show that our approach learns
interpretable graph topologies, induces effective coordination, and improves per-
formance across a variety of cooperative multi-agent tasks.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) is a promising approach to a variety of
real-world applications, such as sensor networks (Zhang & Lesser, 2011; Ye et al., 2015), traffic
light control (Van der Pol & Oliehoek, 2016), and multi-robot formation (Alonso-Mora et al., 2017).
One of the long-lasting challenges of cooperative MARL is how to organize coordination for a large
multi-agent system. Coordination graph (Guestrin et al., 2001) is a classical approach to represent
coordination relations in the reinforcement learning framework. It decomposes a multi-agent system
into a suite of overlapping factors. Each factor is a hyper-edge covering a subset of agents that may
involve coordinated behaviors. More specifically, the joint value function of the multi-agent system
is factorized to the summation of local value functions based on factors or edges. Such a graph
structure is a particular type of inductive bias that encodes task-specific coordination dependencies.
It is known that conducting appropriate inductive bias can both reduce the model complexity and
improve the generalizability (Battaglia et al., 2018).

2 6 10 14 18
Number of agents

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Ac
cu

ra
cy

0.0%

5.0%

10.0%

15.0%

20.0%

To
p

10
%

 q
ua

nt
ile

 o
f r

el
at

iv
e

er
ro

r

accuracy
relative error

Figure 1: A motivating example with
the accuracy and the relative joint Q
error of max-sum algorithm w.r.t. the
number of agents.

One fundamental problem for coordination graphs is the
trade-off between the representational capacity of value
functions and the computational complexity of policy exe-
cution. To obtain value functions with high expressiveness,
an advanced approach, deep coordination graphs (DCG)
(Böhmer et al., 2020), considers a static complete graph
connecting all pairs of agents. This graph structure has high
representational capacity in terms of function expressive-
ness but raises a challenge for computation in the execu-
tion phase. The greedy action selection over a coordina-
tion graph can be formalized to a decentralized constraint
optimization problem (DCOP), finding the maximum-value
joint actions (Guestrin et al., 2001; Zhang & Lesser, 2013;
Böhmer et al., 2020). Note that the DCOP and its any
constant-ratio approximation are NP-hard problems, espe-
cially for the complete graph used in DCG (Dagum & Luby,

1

Under review as a conference paper at ICLR 2022

Figure 2: Illustration of our basic idea. For ease of viewing, we mark each edge with a unique
color. Our algorithm conducts different coordination graphs for different environment states. For
example, the selection of graph topologies on states s1 and s2 depends on the utility functions on
corresponding states. These utility values are updated through the learning procedure.

1993; Park & Darwiche, 2004). From the perspective of theoretical computer science, any scalable
heuristic algorithm (e.g., max-sum algorithm (Pearl, 1988)) for DCOP problem may have an un-
predictable gap with the optimal solution. To visualize this phenomenon, we conduct a motivating
example for generating a suite of complete-graph DCOPs with random edge-values. More detailed
experiment setting are deferred to to Appendix A. We investigate the accuracy and the relative joint
Q error of the max-sum algorithm in computing optimal joint actions, which is the default imple-
mentation of MARL methods based on coordination graphs (Stranders et al., 2009; Zhang & Lesser,
2013; Böhmer et al., 2020). The results are shown in Figure 1. As the number of agents increases,
the accuracy of greedy action selection consistently decreases, and the relative joint Q error between
the selected and optimal joint actions increases accordingly. How to incorporating polynomial-time
complexity guarantee into coordination graphs with sufficient function expressiveness remains an
open problem in MARL.

In this paper, we aim to overcome a dilemma in coordination graphs, i.e., expressive graph struc-
tures lead to computationally intractable DCOPs but concise graph structures are in lack of function
expressiveness. To tackle this problem, we propose a novel graph-based MARL method for multi-
agent coordination, named Self-Organized Polynomial-time Coordination Graphs (SOP-CG), that
(1) utilizes structured graph topologies with polynomial-time guarantees for DCOPs and (2) extends
their representation expressiveness through a dynamic graph organization mechanism. These two
characteristics open up a new family of MARL algorithms. More specifically, we first construct
graph classes guaranteeing polynomial-time DCOPs and then conduct a state-dependent graph se-
lection mechanism. Such a dynamic factorization structure can be self-organized. We introduce an
imaginary coordinator agent, whose action is to select a graph topology in a given class at each time
step. SOP-CG incorporates this imaginary agent into the Bellman optimality equation supporting
end-to-end learning. Figure 2 illustrates the basic idea of SOP-CG. We integrate the search of graph
structures into the MARL paradigm. The utilities of different graph topologies are learned along
with the RL objective. As the graph utilities are updated through agent-environment interactions,
the coordination graph will evolve to the topology characterizing the coordination dependencies.

We evaluate the performance of SOP-CG in both grid-world and simulated physical environments.
Empirical results on challenging tasks demonstrate that SOP-CG outperforms state-of-the-art base-
lines. By extensive ablation studies, we verify that harnessing specific structures with optimality
guarantee of the induced DCOPs improves the sample quality and the accuracy of the one-step TD
target. Furthermore, we show that SOP-CG can learn interpretable and context-dependent coordina-
tion graphs, which induces effective and dynamic coordination among agents.

2 RELATED WORK

Multi-agent reinforcement learning (OroojlooyJadid & Hajinezhad, 2019) is challenged by the size
of joint action space, which grows exponentially with the number of agents. Independent Q-learning

2

Under review as a conference paper at ICLR 2022

(Tan, 1993; Foerster et al., 2017) models agents as independent learners, which makes the environ-
ment non-stationary in the perspective of each agent. An alternative paradigm called centralized
training and decentralized execution (CTDE; Kraemer & Banerjee, 2016) is widely used in both
policy-based and value-based methods. Policy-based multi-agent reinforcement learning methods
use a centralized critic to compute gradient for the local actors (Lowe et al., 2017; Foerster et al.,
2018; Wen et al., 2019; Wang et al., 2020d). Value-based methods usually decompose the joint value
function into individual value functions under the IGM (individual-global-max) principle, which
guarantees the consistency between local action selection and joint action optimization (Sunehag
et al., 2018; Rashid et al., 2020b; Son et al., 2019; Wang et al., 2021a; Rashid et al., 2020a). Other
work also studies this problem from the perspective of agent roles and individuality (Wang et al.,
2020a;b; Jiang & Lu, 2021) or communication learning (Singh et al., 2018; Das et al., 2019; Wang
et al., 2020c). Compared to these methods, our work is built upon graph-based value decomposition,
which explicitly models the interaction among agents.

Coordination graphs are classical technique for planning in multi-agent systems (Guestrin et al.,
2001; 2002b). They are combined with multi-agent deep reinforcement learning by recent work
(Castellini et al., 2019; Böhmer et al., 2020; Li et al., 2020; Wang et al., 2021b). Joint action
selection on coordination graphs can be modeled as a decentralized constraint optimization problem
(DCOP), and previous methods compute approximate solutions by message passing among agents
(Pearl, 1988). As the work which is most closed to our method, Zhang & Lesser (2013) presents
an algorithm based on coordination graph searching. They define a measurement to quantify the
potential loss of the lack of coordination between agents and search for a coordination structure to
minimize the communication cost within restricted loss of utilities. However, their induced DCOPs
still remain NP-hard. In contrast, minimizing communication is not our core motivation, and we
aim to use a structured graph class to maintain sufficient function expressiveness when bypassing
the computational hardness of large-scale DCOPs (Dagum & Luby, 1993; Park & Darwiche, 2004).

3 BACKGROUND

In this paper, we consider about fully cooperative multi-agent tasks that can be modelled as a Dec-
POMDP (Oliehoek et al., 2016) defined asM = ⟨D,S, {Ai}ni=1, T, {Oi}ni=1, {σi}ni=1, R, h, b0, γ⟩,
where D = {1, . . . , n} is the set of n agents, S is a set of states, h is the horizon of the environment,
γ ∈ [0, 1) is the discount factor, and b0 ∈ ∆(S) denotes the initial state distribution. At each
stage t, each agent i takes an action ai ∈ Ai and forms the joint action a = (a1 . . . , an), which
leads to a next state s′ according to the transition function T (s′|s,a) and an immediate reward
R(s,a) shared by all agents. Each agent i observes the state only partially by drawing observations
oi ∈ Oi, according to σi. The joint history of agent i’s observations oi,t and actions ai,t is denoted
as τi,t = (oi,0, ai,0, . . . , oi,t−1, ai,t−1, oi,t) ∈

(
Oi ×Ai

)t ×Oi.

Deep Q-Learning. Q-learning algorithms is a well-known algorithm to find the optimal joint
action-value function Q∗(s,a) = r(s,a)+γEs′ [maxa′ Q∗(s′,a′)]. Deep Q-learning approximates
the action-value function with a deep neural network with parameters θ. In Multi-agent Q-learning
algorithms (Sunehag et al., 2018; Rashid et al., 2020b; Son et al., 2019; Wang et al., 2021a), a replay
memory D is used to store the transition tuple (τ ,a, r, τ ′), where r is the immediate reward when
taking action a at joint action-observation history τ with a transition to τ ′. Q(τ ,a;θ) is used in
place of Q(s,a;θ), because of partial observability. Hence, parameters θ are learnt by minimizing
the following expect TD error:

L(θ) = E(τ ,a,r,τ ′)∈D

[(
r + γV

(
τ ′;θ−)−Q (τ ,a;θ)

)2]
(1)

where V (τ ′;θ−) = maxa′ Q(τ ′,a′;θ−) is the one-step expected future return of the TD target and
θ− are the parameters of the target network, which will be periodically updated with θ.

Coordination graphs. An undirect coordination graph (CG, Guestrin et al. (2001)) G = ⟨V, E⟩
contains vertex vi ∈ V for each agent 1 ≤ i ≤ n and a set of (hyper-)edges in E ⊆ 2V which
represents coordination dependencies among agents. Prior work considers higher order coordination
where the edges depend on actions of several agents (Guestrin et al., 2002a; Kok & Vlassis, 2006;
Guestrin et al., 2002b). Such a coordination graph induces a factorization of global Q function:

3

Under review as a conference paper at ICLR 2022

Qtot(s,a) =
∑
vi∈V

f i(ai|s) +
∑

e={e1,...,e|e|}∈E

fe(ae1 , . . . , ae|e| |s) (2)

, where f i represents the individual utility of agent i and fe specifies the payoff contribution for
the actions of the agents connected by the (hyper-)edge e, so that the global optimal solution can be
found through maximizing this joint value. The special case that E is an empty set yields VDN, but
each additional edge enables the value representation of the joint actions of a pair of agents and can
thus help to avoid relative-overgeneralization (Böhmer et al., 2020). In many coordination graph
learning works (Zhang & Lesser, 2013; Böhmer et al., 2020; Wang et al., 2021b), the hyper-edges
are simplified into pairwise edges. The graph is usually considered to be specified before training.
Guestrin et al. (2002b) and Zhang & Lesser (2013) suggest that the graph could also depend on
states, which means each state can have its own unique CG.

4 SELF-ORGANIZED POLYNOMIAL-TIME COORDINATION GRAPHS

A common method for multi-agent reinforcement learning is to decompose the joint value function
into a linear combination of local value functions, each of which conditions on actions of a subset of
agents (Guestrin et al., 2001; Böhmer et al., 2020). With this paradigm, computing joint action with
maximum value can be modeled as a distributed constraint optimization problem (DCOP). General
DCOP and any constant-ratio approximation have been proved to be NP-hard (Dagum & Luby,
1993; Park & Darwiche, 2004). Previous work adopts a variety of heuristic algorithms for action
selection (Kok & Vlassis, 2006; Wang et al., 2021b). The imperfection of heuristics may lead to two
side effects: (a) collecting bad samples and (b) errors in constructing one-step TD target, which hurt
the learning performance.

To address these issues, we investigate polynomial-time coordination graphs, in which the induced
DCOPs can be solved in polynomial time. We present a novel algorithm called Self-Organized
Polynomial-time Coordination Graphs (SOP-CG), that utilizes a class of polynomial-time coordi-
nation graphs to construct a dynamic and state-dependent topology. In Section 4.1, we introduce
our value factorization upon coordination graphs, which can hold the optimality guarantee of the
induced DCOPs without significantly sacrificing the representational capacity by using a bottom-up
design. To enable efficient topology self-organization, in Section 4.2, we unify the graph selection
into the Q-learning framework by formulating the graphs as actions of an imaginary coordinator
agent, and depict the whole framework of our algorithm. In Section 4.3, we further propose two
polynomial-time graph class instances and discuss their theoretical advantages in SOP-CG.

4.1 VALUE FACTORIZATION ON POLYNOMIAL-TIME COORDINATION GRAPHS

To establish an algorithm with optimality guarantee in action selection, our approach first models co-
ordination relations upon the graph-based value factorization specified by deep coordination graphs
(DCG; Böhmer et al., 2020), in which the joint value function of the multi-agent system is factorized
to the summation of individual utility functions qi and pairwise payoff functions qij as follows:

Q(τ (t),a;G) =
∑
i∈[n]

qi(τ
(t)
i , ai) +

∑
(i,j)∈G

qij(τ
(t)
i , τ

(t)
j , ai, aj), (3)

where the coordination graph G is represented by a set of undirected edges. In our method, we focus
on Polynomial-Time Coordination Graph which is defined as follows:

Definition 1 (Polynomial-Time Coordination Graph) Let GPoly denote the set of graph topologies
whose induced DCOP can be solved in Poly(n, {|Ai|}ni=1) running time with arbitrary edge values.

In the literature of coordination graphs, we know that the set of undirected acyclic graphs Guac is
a subset of GPoly (Fioretto et al., 2018). However, an undirected acyclic graph can contain at most
n−1 edges in an environment with n agents, which suffers from the lack of function expressiveness.

To alleviate this problem, our approach allows the graph topology to dynamically evolve through
the transitions of environment status. Given different environmental states, the joint values can be
factorized with different coordination graphs chosen from a predefined graph class G ⊆ Guac ⊆ GPoly.

4

Under review as a conference paper at ICLR 2022

This design is based on an assumption that, although a long-horizon task cannot be characterized by
a static sparse coordination graph, the coordination relations at each single-time step are sparse and
manageable. The employment of this graph class fills the lack of representational capacity as well
as maintains a polynomial complexity of the induced DCOPs.

4.2 LEARNING SELF-ORGANIZED TOPOLOGY WITH AN EXPLICIT COORDINATOR

Now we present a novel framework to render the self-organized coordination graph. We introduce an
imaginary coordinator agent whose action space refers to the selection of graph topologies, aiming
to select a proper graph for minimizing the loss within restricted coordination. When using the
graph-based value factorization stated in Eq. (3), the graph topology G can be regarded as an input
of joint value function Q(τ (t),a;G). The objective of the coordinator agent is to maximize the
joint value function over the specific graph class, which is a dual problem for finding a graph to
minimize the loss within the different restricted coordination structures (Zhang & Lesser, 2013).
Under this interpretation, we can integrate the selection of graph topologies into the trial-and-error
loop of reinforcement learning. We handle the imaginary coordinator as a usual agent in multi-agent
Q-learning framework and rewrite the joint action as acg = (a1, · · · , an, G).

Execution. Formally, at time step t, greedy action selection indicates the following joint action:

a(t)
cg ← argmax

(a1,··· ,an,G)

Q(τ (t), a1, · · · , an;G). (4)

Hence the action of coordinator agent G(t) is naturally the corresponding component in Eq. (4):

G(t) ← argmax
G∈G

(
max

a
Q(τ (t),a;G)

)
. (5)

After determining the graph topology G(t), the agents can choose their individual actions to jointly
maximize the value function Q(τ (t),a;G(t)) upon the selected topology.

Training. With the imaginary coordinator, we can re-formulate the Bellman optimality equation
and maximizing the future value over the coordinator agent’s action:

Q∗(τ ,a;G) = E
τ ′

[
r + γmax

G′
max
a′

Q∗(τ ′,a′;G′)
]

(6)

Since the graph selection is a part of agent action, the associative value Q(τ ,a;G) of graph G can
be updated through temporal difference learning. The network parameters θ can be updated by
minimizing the standard Q-learning TD loss:

Lcg(θ) = E
(τ ,a,G,r,τ ′)∼D

[
(ycg −Q(τ ,a;G;θ))

2
]

(7)

where ycg = max(a′,G′) Q(τ ′,a′;G′;θ−) is the one-step TD target and θ− are the parameters of
target network. G(t) is regarded as part of the transition and is stored in the replay buffer together
with the realistic agent actions. We include more implementation details of temporal difference
learning in Appendix C.

The overall algorithm of our approach is summarized in Algorithm 1. The graph selection step at
line 6 is the main characteristic of our method, which differs from the static graph representation
used by prior work (Guestrin et al., 2002a; Kok & Vlassis, 2006; Böhmer et al., 2020). To support the
self-organization of coordination graphs, the graph selection step raises a new computation demand,
i.e., we need to find the best candidate from the graph class G, which will be another non-trivial
combinatorial optimization problem. We will show that, by designing a proper graph class G, we can
maintain both computational efficiency and function representational capacity in the next subsection.

4.3 HARNESSING STRUCTURED GRAPH CLASSES FOR EFFICIENT COORDINATION

To achieve the efficient graph search over the polynomial-time class instances, we investigate the
following structures for the graph class G, which are subsets of Guac:

5

Under review as a conference paper at ICLR 2022

Algorithm 1 Self-Organized Polynomial-Time Coordination Graphs
Require: Predefined graph class G

1: Initialize replay buffer D
2: Initialize network with random weights
3: for episode= 1, · · · ,M do
4: Receive initial observation τ (0)

5: for t = 0, · · · , T do
6: Choose coordination graph G(t) ∈ G according to Eq. (5) ▷ Section 4.3
7: Select actions a(t) w.r.t G(t) and an ϵ-greedy exploration
8: Execute actions a(t) and receive reward r(t) and observation o(t+1)

9: Store transition (τ (t),a(t), r(t), τ (t+1)) in D
10: end for
11: Sample random minibatch of transitions from D
12: Perform a gradient descent step on loss defined in Eq. (7)
13: end for

• Pairwise grouping GP . This class is introduced by Castellini et al. (2019). n agents are parti-
tioned to ⌊n/2⌋ non-overlapping pairwise groups. Only pairwise interactions are considered
and two agents are connected with an edge if they lie in the same group.

• Hierarchical organization GH . Overlapping edges are allowed in this class. In a system
with n agents, the graph is organized as a tree with n − 1 edges so that all agents form
a connected component. Even if two agents are not directly connected by an edge, their
actions are implicitly coordinated through the path on the tree. This provides the potential to
approximate complex joint value functions.

Graph Class
Select

graph G(t)
Select actions on

a given graph

GP
√ √

GH −
√

Complete graph N/A −

Table 1: Computational considerations in choos-
ing graph class. A check mark “

√
” means that

known algorithms for the problem are guaranteed
to find the optimal solution in polynomial time. The
mark “−” denotes that these settings use the specific
heuristic methods.

GH is actually the set of maximal undirected
acyclic graphs. It is noteworthy that we do
not further incorporate the smaller graphs
into both classes, since their representational
capacity are dominated by existing graphs
in the classes. We summarize the hardness
of computing these problems upon differ-
ent graph class in Table 1. Although the
representational capacity of GP is relatively
weaker, selecting G(t) from this class can
be rigorously solved by polynomial-time al-
gorithms (Edmonds, 1965), which highlights
the key benefit of GP . In comparison, select-
ing G(t) from GH is non-trivial, so we design
a greedy algorithm to compute approximated
solutions. Note that, although the graph selection of GH may be imprecise, its represented values
are formally optimized by temporal difference learning with accurate action selection. Thus, as we
will show in the experiment section, GH can still work as a promising graph class in absence of
rigorous graph selection. Please refer to Appendix B for the implementation details of the induced
combinatorial optimization for graph selection.

Remark. In this paper, SOP-CG trades off the representational capacity of value function with
the computational complexity within the polynomial-time boundary. Compared to fully connected
graph, our sparse graphs restrict the value function class to a smaller space. This polynomial-time
graph class enables SOP-CG to achieve accurate greedy action selection using limited message pass-
ing along the edges and achieve effective learning in the centralized training process. Moreover, if
these graph classes are enough to express the coordination dependencies in a multi-agent task, using
such topologies will be more sample-efficient by virtue of the concise function classes (Battaglia
et al., 2018), which becomes another potential advantage of our algorithm.

6

Under review as a conference paper at ICLR 2022

0.0 0.1 0.2 0.3 0.4 0.5
T (mil)

40

20

0

20

40

Te
st

 R
et

ur
n

(a) Online data collection

SOP-CG (P)
SOP-CG (H)
DCG

0.0 0.1 0.2 0.3 0.4 0.5
Trained Transitions (mil)

40

20

0

20

40

Te
st

 R
et

ur
n

(b) Offline data collection

SOP-CG (P)
SOP-CG (H)
DCG

0.0 0.1 0.2 0.3 0.4 0.5
T (mil)

40

20

0

20

40

Te
st

 R
et

ur
n

(c) Online data collection

SOP-CG (P)
SOP-CG (H)
DCG (line)
DCG (star)

Figure 3: Ablation studies on Sensor-network: (a) comparison against DCG with online data collec-
tion; (b) comparison against DCG with offline dataset; (c) comparison with static topologies.

5 EXPERIMENTS

In this section, we conduct experiments to answer the following questions: (1) Does the class of
polynomial-time coordination graphs improve our performance (see Section 5.1)? (2) How well
does SOP-CG perform on complex cooperative multi-agent tasks (see Fig. 5)? (3) Can SOP-CG
extract interpretable dynamic coordination structures (see Fig. 6)?

5.1 DIDACTIC EXAMPLE

Figure 4: Sensor-network.

We first study a didactic example to demonstrate two main con-
tributions of this paper: (a) harnessing polynomial-time coordina-
tion graphs to obtain optimality guarantee of the induced DCOPs;
(b) maintaining function expressiveness by incorporating a class of
structured graphs into the Q-learning framework. We conduct ab-
lation studies on Sensor-network, which is a classic task for test-
ing multi-agent coordination (Lesser et al., 2003; Zhang & Lesser,
2011). We adopt the same task configuration as Wang et al. (2021b).
As illustrated in Fig. 4, 15 sensor agents are arranged as a 3×5 ma-
trix while three targets randomly walk in the same grid space. At each timestep, an agent can choose
to scan one of the eight nearby positions (inducing a cost) or perform no operation. If two or more
agents scan the target simultaneously, the target is captured and produces a positive joint reward. We
compare our algorithm with DCG (Böhmer et al., 2020) on this game. The default implementation
of DCG uses a fully connected coordination graph. In addition, DCG provides alternative imple-
mentations on two static graphs Line (agent i is connected with agent i−1 and i+1) and Star (agent
1 is linked with others), which are two special instances of GH . SOP-CG (GH) has absolutely higher
function expressiveness than DCG (line) and DCG (star).

For the first contribution, we verify that the optimality guarantee of the induced DCOP in our al-
gorithm improve the performance. We test these algorithms in both online (Fig. 3a) and offline
learning (Fig. 3b) settings. For fair evaluation, we train DCG (line) and collect 15K experienced
episodes throughout the training process to set up the diverse offline dataset. As shown in Fig. 3(a-
b), SOP-CG outperforms DCG in both settings. In the offline setting, as the dataset is fixed for
both algorithms, the main difference between SOP-CG and DCG lies in the construction of one-step
TD target. Our algorithm is guaranteed to find the optimal solution of the induced DCOPs, which
must play an important role in reducing the errors in computing TD target. We also observe that
DCG sticks in a bad local optimum with online data collection, but its performance is improved in
the offline setting. This result indicates that the hardness of greedy action selection causes DCG to
collect low-quality samples in the online setting, which may hurt the final performance. In contrast,
our method converges to the same superior value in both settings, highlighting the effectiveness of
polynomial-time coordination graphs.

For the second contribution, we show the importance of learning a state-dependent structure. As
illustrated in Fig. 3c, the performance of SOP-CG is much better than both DCG (line) and DCG
(star) with online data collection. A static sparse topology usually cannot express the coordina-
tion dependencies in all steps, so these methods could not work well even if they are built upon
polynomial-time coordination graphs.

7

Under review as a conference paper at ICLR 2022

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T (mil)

0

2

4

6

8

10

Te
st

 R
et

ur
n

Pursuit

0 1 2 3 4 5
T (mil)

2.5

5.0

7.5

10.0

12.5

Te
st

 R
et

ur
n

Chase

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T (mil)

0

50

100

150

200

250

Te
st

 R
et

ur
n

Postman
SOP-CG (P) SOP-CG (H) DCG CASEC VDN QMIX NDQ Optimal Return

Figure 5: Learning curves on Pursuit, Chasing and Postman. The optimal return is demonstrated if
it is available.

5.2 PERFORMANCE COMPARISON

To further demonstrate the effectiveness of our algorithm and discuss the difference among the graph
classes, we evaluate SOP-CG on three large-scale complex tasks with highly dynamic coordination
requirements and partial observation: Pursuit, Chase and Postman.

• Pursuit. This environment is also called predator-and-prey, which is widely used in recent
work (Son et al., 2019; Böhmer et al., 2020; Wang et al., 2021b). 20 agents and 10 random
walking prey interact on a 10 × 10 grid-world. Based on a limited sight range, an agent can
move on the map or catch adjacent prey. One prey is captured only if at least two adjacent
agents catch it simultaneously, inducing a joint reward of 1. After that, both agents and the
captured prey are removed from the game. If only one agent tries to catch the prey, it will fail
and receive a punishment of -1.

• Chase. This is a challenging task on the particle world with trained adversaries instead of
built-in AIs created by Lowe et al. (2017). On the map with 3 randomly generated obstacles,
10 slower agents chase 3 faster adversaries. For each collision between an agent and an ad-
versary, the agents receive a reward while the adversaries are punished. An agent or adversary
can observe the units in a restricted circular area that is centered at its position. We train the
agents by a specific algorithm, and the adversaries are concurrently trained by VDN.

• Postman. 12 postmen work in a vast community to deliver letters from residents to the post
office. With the post office located in the northwest of the community, the whole community
is separated into three parts according to the distance to the post office, and each postman will
only work in one region. Postmen need to pick randomly generated letters in the community.
While two postmen meet each other, any one of them can offer its letters to another one, so
they can collaborate in order to deliver the letters to the post office. A postman can observe
the information of other postmen and the letters in a sight range.

We compare our method with the state-of-the-art coordination graph learning methods
(DCG (Böhmer et al., 2020), CASEC (Wang et al., 2021b)), fully decomposed value-based meth-
ods (VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2020b)) and communication-based method
(NDQ (Wang et al., 2020c)). The implementation details and hyperparameter settings are included
in Appendix D. As presented in Fig. 5, SOP-CG outperforms the baselines in all three environments.

Using a smaller graph class will be more efficient if such a concise graph class is sufficient to express
the coordination dependency in the task of interest. Taking the task Chase as an example, DCG and
CASEC performs as poorly as the fully-decomposed methods, as their graph classes are too large
and complex to learn. However, our method significantly outperforms coordination graph learning
algorithms with a smaller graph class, which strongly confirms our statement. Furthermore, SOP-
CG (GH) has better performance than SOP-CG (GP) on this task, which may be due to the lack of
representational capacity of GP . On the contrary, Pursuit mainly involves pairwise cooperation, so
SOP-CG (GP) achieves better sample efficiency than SOP-CG (GH).

We will show that reducing the error of DCOP can also improve performance. On task Pursuit with
20 agents, our method achieves almost the optimal of this task while DCG has over two times larger
gap with the optimal value than ours. The reason is that Pursuit requires precise collaborations. If
only one agent tries to catch the prey, it will fail and induce a large punishment. When facing grow-
ing scales, DCG and CASEC have a poor accuracy on DCOP, as we showed before, which may lead

8

Under review as a conference paper at ICLR 2022

4

8

61

0

5

3
7

29

8

4

3

9

5

1
6

0

7 2Sight range
of agent 1

(a) (b) (c)
0

8 4
3

6
5

1

9

7
2

agent and its id adversary and its moving direction edge in the chosen graph

Group A

Group B

Group C

Opportunity!

Figure 6: Various coordination graphs learned by our algorithm on Chase: (a) Self-organized group-
ing at initialization; (b) Connecting to agent with rich observation for better information sharing; (c)
Concentrated collaboration structure around an enclosed adversary.

to inaccurate greedy action selection, impeding DCG to better performance. In the super hard task
Postman, which requires agents to collaborate during long horizon, our method also outperforms
other methods.

5.3 VISUALIZATION OF SELF-ORGANIZED COORDINATION

A major strength of our method is that SOP-CG can organize different coordination graphs to adapt
to different situations. Such an adaptive organization mechanism can improve the efficiency of
multi-agent collaboration. To illustrate the coordination relations organized by SOP-CG, we vi-
sualize the learned graph structures on Chase. In Fig. 6, we take three snapshots chronologically
from one episode. This episode is collected by SOP-CG (GH) using the tree-based graph class. It
shows that SOP-CG can produce interpretable graph structures that characterize the ground-truth
coordination dependencies. The learned coordination behaviors are interpreted as follows:

1. Fig. 6a presents the initial status of the game, where agents and adversaries are generated
randomly on the map. As the three adversaries distribute in separate positions, the agents
naturally form three groups to chase different adversaries.

2. After several time steps, in Fig. 6b, two adversaries gather at the bottom left of the map.
Note that, in this game, each agent can only observe objects within a small circular range.
Only agent 1 can observe the two adversaries simultaneously, which makes it connect to the
majority of the rest of the agents and helps them recognize the position of the adversaries.

3. Finally, as illustrated by Fig. 6c, the bottom adversary is surrounded by multiple agents, yield-
ing an opportunity for the agents to win considerable rewards, which makes the collaboration
structure concentrate around the adversary.

As presented above, the graph structures learned by SOP-CG can learn effective coordination pat-
terns in Chase, which can be explained by the oracle collaboration strategy of human experts. It
demonstrates the ability of our approach to organizing coordination relations.

6 CONCLUSION

This paper introduces SOP-CG, a novel multi-agent graph-based method that guarantees the
polynomial-time greedy policy execution with expressive function representation of a structured
graph class. To enable end-to-end learning, SOP-CG introduces an imaginary agent to dynamically
select the state-dependent graph and incorporates it into a unified Bellman optimality equation. We
demonstrate that SOP-CG can learn interpretable graph topologies and outperform state-of-the-art
baselines on several challenging tasks. Although the graph class is exponentially large, we conduct
two specific polynomial-time graph class instances to achieve impressive performance. Designing
effective graph exploration methods to deal with larger graph classes will be an interesting future
direction.

9

Under review as a conference paper at ICLR 2022

ETHICS AND REPRODUCIBILITY STATEMENTS

The main contribution of our work locates on the research of a foundation theoretical problem in
optimality theory and try to improve the problem with our method. Our work does not have a bad
social impact. The source code of our method for all the experiments is attached in supplementary
material, and the settings and parameters for all models and algorithms mentioned in the experiment
section please refer to Appendix D.

REFERENCES

Javier Alonso-Mora, Stuart Baker, and Daniela Rus. Multi-robot formation control and object trans-
port in dynamic environments via constrained optimization. The International Journal of Robotics
Research, 36(9):1000–1021, 2017.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In International
Conference on Machine Learning, pp. 980–991. PMLR, 2020.

Jacopo Castellini, Frans A Oliehoek, Rahul Savani, and Shimon Whiteson. The representational
capacity of action-value networks for multi-agent reinforcement learning. In AAMAS 2019: The
18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1862–1864.
International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), 2019.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Paul Dagum and Michael Luby. Approximating probabilistic inference in bayesian belief networks
is np-hard. Artificial intelligence, 60(1):141–153, 1993.

Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and
Joelle Pineau. Tarmac: Targeted multi-agent communication. In International Conference on
Machine Learning, pp. 1538–1546, 2019.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.

Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint optimization prob-
lems and applications: A survey. Journal of Artificial Intelligence Research, 61:623–698, 2018.

Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip HS Torr, Pushmeet
Kohli, and Shimon Whiteson. Stabilising experience replay for deep multi-agent reinforcement
learning. In International conference on machine learning, pp. 1146–1155. PMLR, 2017.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with factored mdps. In NIPS,
volume 1, pp. 1523–1530, 2001.

Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In
ICML, volume 2, pp. 227–234. Citeseer, 2002a.

Carlos Guestrin, Shobha Venkataraman, and Daphne Koller. Context-specific multiagent coordina-
tion and planning with factored mdps. In AAAI/IAAI, pp. 253–259, 2002b.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23:2613–
2621, 2010.

10

Under review as a conference paper at ICLR 2022

Jiechuan Jiang and Zongqing Lu. The emergence of individuality. In International Conference on
Machine Learning, pp. 4992–5001. PMLR, 2021.

Jelle R Kok and Nikos Vlassis. Sparse cooperative q-learning. In Proceedings of the twenty-first
international conference on Machine learning, pp. 61, 2004.

Jelle R Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by payoff propaga-
tion. Journal of Machine Learning Research, 7:1789–1828, 2006.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Victor Lesser, Charles L Ortiz Jr, and Milind Tambe. Distributed sensor networks: A multiagent
perspective, volume 9. Springer Science & Business Media, 2003.

Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer. Deep implicit
coordination graphs for multi-agent reinforcement learning. arXiv preprint arXiv:2006.11438,
2020.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Neural Information Processing Systems
(NIPS), 2017.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. In Advances in Neural Information Processing Systems, pp. 7611–7622,
2019.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent deep rein-
forcement learning. arXiv preprint arXiv:1908.03963, 2019.

James D Park and Adnan Darwiche. Complexity results and approximation strategies for map ex-
planations. Journal of Artificial Intelligence Research, 21:101–133, 2004.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, 1988.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. In Advances
in Neural Information Processing Systems, 2020a.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:2003.08839, 2020b.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Learning when to communicate at scale
in multiagent cooperative and competitive tasks. arXiv preprint arXiv:1812.09755, 2018.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 5887–5896, 2019.

Ruben Stranders, Alessandro Farinelli, Alex Rogers, and Nicholas R Jennings. Decentralised co-
ordination of mobile sensors using the max-sum algorithm. In Twenty-First International Joint
Conference on Artificial Intelligence, 2009.

11

Under review as a conference paper at ICLR 2022

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Elise Van der Pol and Frans A Oliehoek. Coordinated deep reinforcement learners for traffic light
control. Proceedings of Learning, Inference and Control of Multi-Agent Systems (at NIPS 2016),
2016.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yu Yang, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations, 2021a.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Multi-agent reinforcement learning
with emergent roles. In International Conference on Machine Learning, 2020a.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
Rode: Learning roles to decompose multi-agent tasks. arXiv preprint arXiv:2010.01523, 2020b.

Tonghan Wang, Jianhao Wang, Chongyi Zheng, and Chongjie Zhang. Learning nearly decompos-
able value functions via communication minimization. In International Conference on Learning
Representations, 2020c.

Tonghan Wang, Liang Zeng, Weijun Dong, Qianlan Yang, Yang Yu, and Chongjie Zhang. Context-
aware sparse deep coordination graphs. arXiv preprint arXiv:2106.02886, 2021b.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Off-policy multi-
agent decomposed policy gradients. arXiv preprint arXiv:2007.12322, 2020d.

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning for
multi-agent reinforcement learning. arXiv preprint arXiv:1901.09207, 2019.

Dayong Ye, Minjie Zhang, and Yun Yang. A multi-agent framework for packet routing in wireless
sensor networks. Sensors, 15(5):10026–10047, 2015.

Se-eun Yoon, Hyungseok Song, Kijung Shin, and Yung Yi. How much and when do we need higher-
order information in hypergraphs? a case study on hyperedge prediction. In Proceedings of The
Web Conference 2020, pp. 2627–2633, 2020.

Chongjie Zhang and Victor Lesser. Coordinated multi-agent reinforcement learning in networked
distributed pomdps. In Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

Chongjie Zhang and Victor Lesser. Coordinating multi-agent reinforcement learning with limited
communication. In Proceedings of the 2013 international conference on Autonomous agents and
multi-agent systems, pp. 1101–1108, 2013.

12

Under review as a conference paper at ICLR 2022

A EXPERIMENTAL DETAILS OF THE MOTIVATING EXAMPLE

Algorithms. To get the correct result of DCOP, we use a brute force with complexity O(|A|n),
while we choose Max-sum algorithm (has an alternative implementation called Max-plus) (Pearl,
1988), which is commonly used by most of the coordination graph learning methods (Zhang &
Lesser, 2013; Böhmer et al., 2020; Wang et al., 2021b) to test the accuracy and relative Q error. The
details of the algorithm are presented below (Zhang & Lesser, 2013).

Max-sum constructs a bipartite graph Gm = ⟨Va,Vq, Em⟩ according the coordination graph ⟨V, E⟩.
Each node v ∈ Vm represents an agent who needs to do action selection, and each node u ∈ Vq
represents a (hyper-)edge function. Edges in Em connect u with the corresponding agent nodes.
Max-sum algorithm will do multi-round message passing on this graph. The number of iterations is
usually set smaller than 10 in previous work, while we set it 100 in this experiment.

Message passing on this bipartite graph starts with sending messages from node v ∈ Va to node
u ∈ Vq:

mv→u(ai) =
∑

h∈Fv\u

mh→v(ai) + cvu (8)

where Fv represents the node connected to v, and cvu is the normalizing factor preventing the value
of messages from growing arbitrarily large. The message from node u to v is:

mu→v(ai) = max
au\av

f(au) +
∑

h∈Vu\v

mh→u(ah)

 (9)

where Vu is the set of nodes connected to node u, au = {ah|h ∈ Vu}, au\av = {ah|h ∈ Vu\{v}},
and f represents the value function of the (hyper-)edge. After iterations of message passing, each
agent v can find its optimal action by calculating a∗v = argmaxav

∑
h∈Fv

mh→v (av).

Test data. We take 1, 000 random seeds to test the problem. We fix the number of actions 3 and
move the number of agents from 2 to 18. For each setting, we generate a fully connected graph with
each value a uniformly random number in {−1, 0, 1} along with a noise drawn from the normal
distribution.

B COMPUTATIONS WITH CLASSES GP AND GH

Here we present the details of algorithms we used to select graph G(t) from the graph class G.

When G = GP , pairwise grouping. In this case, n agents are pairwise matched by ⌊n/2⌋ edges.
One agent will be isolated if n is an odd number. With such a coordination graph, each agent
coordinates with exactly one agent, except for the isolated one.

If node i is matched with node j, it will contribute qi→j = qi(τi, ai)+ qj(τj , aj)+ qij(τi, τj , ai, aj)
to the total value when choosing action ai, which only contains the single utility function and one
pairwise function. Thus the pair (i, j) can contribute at most

max
ai,aj

[qi(τi, ai) + qj(τj , aj) + qij(τi, τj , ai, aj)] (10)

to the joint value without effect the action selection of other agents.

Hence, we construct a undirected weighted graph G = ⟨V, Ew⟩, where V is the vertex set, and

Ew =

{(
i, j, w(i, j) = max

ai,aj

[qi(τi, ai) + qj(τj , aj) + qij(τi, τj , ai, aj)]

) ∣∣∀(i, j) ∈ E} . (11)

A matching on such graph is a function mate(v) where mate(mate(v)) = v for all v ∈ V with at
most one v satisfies that mate(v) = v. The weight of the matching is defined as

∑
v w(v,mate(v)).

Our goal is to find the maximum weighted matching on this graph.

13

Under review as a conference paper at ICLR 2022

This problem can be solved by the blossom algorithm (Edmonds, 1965) in O(n3) time. The brief
steps of this algorithm are to iteratively find augmentation paths on the graph and contract the odd-
cycle, which is called blossom in this algorithm.

When G = GH , hierarchical organization. In this case, the graph is an acyclic graph with n − 1
edges, and all agents form a connected component. The distributed constraint optimization problem
(DCOP) on such a graph can always be solved in the polynomial time (Fioretto et al., 2018).

Choosing the best graph G(t) in GH is non-trivial. Therefore, we present a greedy algorithm to
select the graph from the graph class. The high level idea is to add edges greedily until all agents
are connected. At each iteration, we add an edge across two different connected components to
the coordination graph, which optimizes the increment of the maximal joint value. For an edge set
E ⊆ E , we define the value of a set f(E) to be the result of DCOP on graph ⟨V, E⟩. Initially we
have E is an empty set. We do the iteration n− 1 times. In each iteration, we find

e = argmax
e∈E,E∪{e} is acyclic

f(E ∪ {e}), (12)

and add this edge to the current graph, i.e., E ← E ∪ {e}. Once a graph from GH is selected, the
joint action selection can be computed via dynamic programming.

Time complexity. We summarize the time complexity (in worst case) of each component in Ta-
ble 2. For SOP-CG (GH), we use pruning techniques in our implementation, so the real-time cost of
selecting graph G(t) is usually much smaller than the complexity reported in Table 2. The detailed
training time cost of SOP-CG and DCG can be found in Appendix D.

Algorithm Select graph G(t) Select actions on a given graph

SOP-CG (GP) O(n3) O(nA2)

SOP-CG (GH) O(n3A2) (heuristic) O(nA2)

DCG N/A O(kn2A2) (heuristic)

Table 2: Time complexity of SOP-CG and DCG. n is the number of agents and A = |
⋃n

i=1 A
i|. For

DCG, k is the number of iterations in max-sum.

C GRAPH RELABELING TECHNIQUE

As studied by Hasselt (2010), vanilla Q-learning already has a tendency to overestimate, since the
TD target takes a max operator over a set of estimated action-values. Notice that our framework
introduces an additional max operator over graphs in class G, which will probably induce extra
upward bias. To attenuate this problem, we use a graph relabeling technique to control the effects
of overestimation errors. In our implementation, we modify the vanilla TD loss defined in Eq. (7) to
the following form:

Lcg(θ) = E
(τ ,a,r,τ ′)∼D

[(
ycg −max

G
Q(τ ,a;G;θ)

)2
]

(13)

where ycg is the one-step TD target defined in Section 4.2 and the current value no longer takes
the graph which is stored in the replay buffer with this transition. As G is the graph with largest
estimated value, this loss achieves a soft constraint for the following target:

∀G,Q(τ ,a;G;θ) ≤ ycg (14)

which helps our method avoid overestimation.

We conduct ablation studies on the tasks Pursuit, Chase and Postman to demonstrate the necessity
of this component. The results illustrated in Figure 7. SOP-CG (GH) w/o graph relabeling is more
likely to stick in suboptimal strategies and may even collapse on Pursuit. As analyzed before, these
phenomenons are due to the dramatic overestimation caused by the additional max operator over
graphs. By contrast, the performance of SOP-CG (GH) is significantly improved, highlighting the
effectiveness of graph relabeling.

14

Under review as a conference paper at ICLR 2022

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T (mil)

5

0

5

10

Te
st

 R
et

ur
n

Pursuit

0 1 2 3 4 5
T (mil)

2.5

5.0

7.5

10.0

12.5

Te
st

 R
et

ur
n

Chase

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T (mil)

0

50

100

150

200

250

Te
st

 R
et

ur
n

Postman
SOP-CG (H) SOP-CG (H) w/o graph relabeling Optimal Return

Figure 7: Ablation studies about the graph relabeling technique.

D IMPLEMENTATION DETAILS AND EXPERIMENT SETTINGS

A shared GRU (Cho et al., 2014) is used to process sequential inputs and then output the encoded
observation history for each agent. A following fully-connected layer converts the observation his-
tories to the individual utility function of each agent. The pairwise payoff function is computed by
another multi-layer perceptron, which takes the concatenation of two agents’ observation histories as
input. Agents share parameters of the network for computing individual utility, and the parameters
of the payoff network are also shared among different agent pairs.

All tasks in this paper use a discount factor γ = 0.99. We use ϵ-greedy exploration, and ϵ anneals
linearly from 1.0 to 0.05 over 50000 time-steps. We use an RMSProp optimizer with a learning rate
of 5 × 10−3 to train our network. A first-in-first-out (FIFO) replay buffer stores the experiences of
at most 5000 episodes, and a batch of 32 episodes are sampled from the buffer during the training
phase. The target network is periodically updated every 200 episodes.

Our method and all the baselines involved in this paper are implemented based on the open-sourced
codebase PyMARL (Samvelyan et al., 2019), which ensures the fairness of comparison. For the
baselines (VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2020b), DCG (Böhmer et al., 2020),
CASEC (Wang et al., 2021b)), we adopt the default hyperparameter settings provided by the authors.
For evaluation, all learning curves in this paper are smoothed over 5 random seeds.

The experiments are finished on NVIDIA RTX 2080TI GPU. The training time of SOP-CG and
DCG are listed in Table D. SOP-CG is much faster than DCG.

Pursuit
(3M timesteps)

Chase
(5M timesteps)

Postman
(3M timesteps)

Environmental time cost 6h 32h 17h
SOP-CG (GP) 19h 46h 31h
SOP-CG (GH) 24h 48h 33h

DCG 25h 62h 48h

Table 3: Training time (hours) of SOP-CG and DCG. Environmental time cost denotes the total time
taken by the environment simulator and the training of the adversaries.

E STARCRAFT II MICROMANAGEMENT BENCHMARK

In this section, we compare SOP-CG against DCG (Böhmer et al., 2020) and CASEC (Wang et al.,
2021b) on StarCraft II micromanagement benchmark (Samvelyan et al., 2019). The pairwise payoff
function has A2 output head, where A = |

⋃n
i=1 A

i|. DCG and CASEC adopt different techniques
(e.g. low-rank approximation or learning action representations) to improve the learning efficiency
of the payoff functions in environments with large action space. These techniques can also be applied
to our algorithm. For fair evaluation, we test the vanilla versions of the algorithms without applying
extra techniques on payoff networks. The results are shown in Fig. 8. SOP-CG outperforms DCG
and CASEC on 4 of the 6 scenarios and achieves comparable performance on the other scenarios.
This finding indicates that the class of polynomial-time coordination graphs is large enough to ex-
press coordinated policies in these tasks, and the accurate action selection further helps SOP-CG
achieve higher peak performance than DCG and CASEC on the four maps.

15

Under review as a conference paper at ICLR 2022

0.0 0.5 1.0 1.5 2.0
T (mil)

0

25

50

75

100

Te
st

 W
in

 %

5m_vs_6m

0.0 0.5 1.0 1.5 2.0
T (mil)

0

25

50

75

100

Te
st

 W
in

 %

10m_vs_11m

0.0 0.5 1.0 1.5 2.0
T (mil)

0

25

50

75

100

Te
st

 W
in

 %

3s5z

0.0 0.5 1.0 1.5 2.0
T (mil)

0

25

50

75

100

Te
st

 W
in

 %

1c3s5z

0 1 2 3 4 5
T (mil)

0

25

50

75

100

Te
st

 W
in

 %

3s5z_vs_3s6z

0 1 2 3 4 5 6 7
T (mil)

0

25

50

75

100

Te
st

 W
in

 %

MMM2

SOP-CG (P) SOP-CG (H) DCG CASEC

Figure 8: Learning curves on StarCraft II micromanagement tasks.

0 1 2 3 4 5
T (mil)

0

10

20

30

40

50

Te
st

 W
in

 %

1o10b_vs_1r

0 1 2 3 4 5
T (mil)

0

10

20

30

40

50

Te
st

 W
in

 %

12z_vs_2ul
SOP-CG (P) SOP-CG (H) DCG CASEC NDQ

Figure 9: Learning curves on 1o10b vs 1r and 12z vs 2ul.

F SC2 TASKS RESTRICTED OBSERVABILITY

In coordination-graph-based methods, agents communicate to optimize joint action selection. As an
alternative way, previous work studies multi-agent communication by learning message embedding
(Singh et al., 2018; Das et al., 2019; Wang et al., 2020c). We compare our algorithm against the
state-of-the-art communication learning method NDQ (Wang et al., 2020c) on 2 StarCraft II tasks:
1o10b vs 1r and 12z vs 2ul. These tasks are modified from the challenging maps introduced by
the NDQ paper. The sight range of agents is reduced from 9 to 2, which enforces the agents to
coordinate their actions by communication. To enable effective communication, we further augment
the observation of each agent by its position on the map.

• 1o10b vs 1r: 10 Banelings spawn randomly on a map full of cliffs and need to kill an
enemy Roach. An allied Overseer detects the Roach and they spawn at the same random
point. Therefore, the Banelings can get the position of the Roach from the allied Overseer.

• 12z vs 2ul: 12 Zealots try to kill 2 powerful Ultralisk. All units spawn randomly on the
map. The agents need to communicate the positions of enemies as well as coordinate the
attack timing to reach high win rate.

The learning curves are shown in Figure 9. On the map 1o10b vs 1r, a simple but effective com-
munication strategy is to let the Overseer coordinate with all allied Banelings to guide their moving
direction. We observe that it’s not hard for NDQ to learn this mechanism and NDQ has a similar
performance as SOP-CG (GH) on this map. However, the performance of NDQ is worse than the
methods based on coordination graphs on 12z vs 2ul. As all units spawn randomly on this map, the
agents need to learn more complex coordinated strategies to kill both of the enemies. This finding
suggests that directly coordinating actions based on coordination graphs may be more efficient than
learning encoded messages. Notably, SOP-CG (GH) also outperforms DCG and CASEC on both
tasks, highlighting the effectiveness of our method in complex scenarios.

16

Under review as a conference paper at ICLR 2022

G METRICS OF TASK COMPLEXITY

To illustrate the algorithmic properties of SOP-CG, we propose two measures of task complexity
and conduct analysis between SOP-CG and DCG according to these measures. Furthermore, we
design a new didactic example to empirically demonstrate our theoretical implications answering
the following questions: when does SOP-CG work better and when does DCG work better?

We will introduce the two measures of task complexity as follows:

• Problem size in general Dec-POMDPs. Solving a general single-agent MDP with state
space S and action space A requires the polynomial-time complexity of |S| × |A| (i.e.,
its problem size), as shown in Sutton et al. (Sutton & Barto, 2018). In MARL tasks,
A =

⋃
Ai, whose problem size is extended to |S| × |Ai|n, exponential of the number of

agents and the size of local action space, respectively. To analyze the effect of problem
size on SOP-CG and CG, we find that the time complexity of exact greedy action selection
(solving DCOPs) is exponential-time for DCG (i.e., with a complete graph), and which is
polynomial-time complexity for SOP-CG (i.e., with a class of polynomial-time graphs).

• Structural complexity of coordination within agents. This measure is used to represent
how much function expressiveness of coordination graph (i.e., which types of graph) is
needed to solve a specific task. Note that the function capacity of DCG (line or star),
SOP-CG, and DCG (complete graph) forms a hierarchy, i.e., QDCG (line or star) ⊂ QSOP-CG ⊂
QDCG (complete graph), whereQ indicates the class of value function which can be represented
by each algorithm. Thus, we formally design the structural complexity of coordination
as the necessary and sufficient function capacity induced by each specific task. Along
with this structural complexity increases, larger function capacity of algorithms is required.
Moreover, we hypothesize that in the realistic tasks, the coordination structure is sparse
(Kok & Vlassis, 2004; Zhang & Lesser, 2013) and the function class of SOP-CG would be
sufficient for an extensive set of situations.

Using these two measures of task complexity, we compare SOP-CG with DCG in four cases that
either these two complexities are high or low.

• Both two complexities are low. Both SOP-CG and DCG (complete graph) can easily
address this case.

• The problem size is large but the structural complexity is relatively low, which is a
common case in real-world tasks (Kok & Vlassis, 2004; Zhang & Lesser, 2013). SOP-
CG can significantly outperform DCG (complete graph) because of efficient computation
of exact greedy action selection without sacrificing its expressiveness in this case. The
major strength of SOP-CG is its ability to model the value function using self-organized
polynomial-time coordination graphs. Solving the DCOPs induced by SOP-CG is com-
putationally efficient but which is expensive for DCG (complete graph) and the approxi-
mation of its induced DCOPs. We find that SOP-CG is not sensitive to the problem size,
such as the number of agents and individual actions. In comparison, it is NP-hard to find
a constant-ratio approximation of the DCOPs induced by complete graphs (i.e., the default
implementation of DCG).

• The problem size is small but the structural complexity is very high. In this case, DCG
(complete graph) may outperform SOP-CG as it is possible for DCG to compute nearly
optimal joint action selection. However, as we hypothesized that this case may not usual
in the realistic tasks since multi-agent systems are often large and the sparse coordination
structure commonly exists in such systems.

• Both two complexities are high. SOP-CG and DCG (complete graph) may perform com-
parably in this case because they both introduce some approximation in learning. SOP-
CG introduces approximation in value function expressiveness while DCG has inaccurate
greedy action selection. This case is super hard and would be studied as an important future
direction of coordination graph methods.

To investigate the metrics of task complexity and our performance relative to the metrics, we design
a series of tasks. The tasks consist m× k agents separated into m groups with each group k agents.

17

Under review as a conference paper at ICLR 2022

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Re
tu

rn

m=1, k=2

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=1, k=3

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=1, k=4

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=1, k=5

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=2, k=2

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=2, k=3

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=2, k=4

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=2, k=5

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=3, k=2

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=3, k=3

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=3, k=4

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=3, k=5

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=4, k=2

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=4, k=3

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=4, k=4

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=4, k=5

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=5, k=2

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=5, k=3

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=5, k=4

0 10 20 30 40 50
T (k)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

m=5, k=5

SOP-CG (H) DCG DCG (line) DCG (star)

Figure 10: Learning curves on a series of toy games.

Each agent has to choose an action from the action spaceA, and one group wins if and only if all its
members perform k distinct actions. The global reward is the proportion of winning groups.

In this task the number of agents in one group measures the representation complexity that each agent
has to cooperate with other agents within the same group, while the number of groups indicates the
scale of the problem. When the size of group grows, the coordination relationship becomes dense.
If the number of groups increases and the size of group is fixed, the coordination complexity of the
task will remain the same, but the scale of the task can be larger.

Results illustrated in Figure 10 show that our method can work very well when the group size of not
so large (i.e., k ≤ 3), being less sensitive to the number of groups. While DCG (line) or DCG (star)
cannot work when the total number of agents m × k exceeds a small threshold, which corresponds
to the fact that the representation capacity of them is restricted below our method. In contrast, the
performance of our method decreases when the group size grows larger, while DCG performs better
when k grows and m remains small. The result also suggests that when k keeps small, both SOP-CG
and DCG have enough representation capacity to solve the problem. As the scale of the problem
grows, the complexity of solving DCOPs of DCG becomes higher, so SOP-CG can significantly
outperform DCG.

18

Under review as a conference paper at ICLR 2022

H SOME DETAIL DISCUSSIONS ABOUT TRADE-OFF IN SOP-CG

H.1 CONNECTION TO A RECENT WORK ON HYPER-GRAPHS

We note that a recent work on the expressiveness of hyper-graphs (Yoon et al., 2020) is relevant to
our work. The connections (i.e., the differences and relevance) between Yoon et al. (2020) and our
paper are summarized as follows:

• Different metric of expressiveness. Yoon et al. (2020) investigates the functionality of
graph expressiveness in terms of the order of hyper-edges. By contrast, our paper focuses
on the expressiveness of different graph topologies.

• Similar motivation. Both Yoon et al. and our paper aim to study the trade-off between the
graph expressiveness and the complexity of solving downstream tasks. In our paper, the
downstream task specifically refer to the DCOPs induced by graph-based value factoriza-
tion.

• Different work flow and contributions. Yoon et al. (2020) establish a systematic ex-
periment study to provide an empirical guideline on how to trade off between the graph
expressiveness and downstream costs. In comparison, our work proposes an algorithm to
break this trade-off for improving MARL performance. Our algorithm is able to improve
the function expressiveness without largely increasing the time complexity of downstream
DCOPs.

Despite the expressiveness metric being different, several conclusions reached by Yoon et al. (2020)
can be observed in our experiments. More specifically, the key findings of Yoon et al. (2020)
(namely, three points, i.e, Diminishing returns, Troubleshooter, and Irreducibility) correspond to
the following observations in our paper:

• Diminishing returns. When the task coordination structure is simple, a concise graph
topology (e.g., pairwise matching) can achieve comparable performance with topologies
using larger edge sets. As presented in Figure 5, SOP-CG (GP) performs better than SOP-
CG (GH) and DCG in Pursuit, since pairwise matching is sufficient to express the underly-
ing coordination relations in this task. (Recall that GP uses pairwise matching and GH uses
tree-based topology.)

• Troubleshooter and Irreducibility. When the task requires a complicated coordination
structure, the graph topology needs to have higher function expressiveness. This finding
can also be seen in Figure 5. SOP-CG (GH) significantly outperforms SOP-CG (GP) in
Chase where pairwise matching cannot express the underlying coordination relations.

H.2 POSITION OF SOP-CG

The trade-off line from DCG with fixed polynomial graphs (i.e., line or star) to SOP-CG to DCG
with complete graph (i.e., the default configuration) is similar to the VDN-QMIX-QTRAN methods,
though SOP-CG lies in the coordination graph line of MARL (rather than the value factorization
line). In this analogy hierarchy, SOP-CG corresponds to QMIX where SOP-CG has much larger
function expressiveness than DCG with line or star graph (which corresponds to VDN), and can
derive the exact greedy action selection compared to DCG (complete graph) (which corresponds to
QTRAN). Note that different from VDN which has achieved excellent performance on StarCraft II
benchmark (Samvelyan et al., 2019), DCG with line or star graph performs poorly due to its limited
function capacity, which is mentioned in its original paper and in our evaluation (Appendix G). Sim-
ilar to discussions in Mahajan et al. (2019) and Wang et al. (2021a) that QTRAN may suffer from
its approximate greedy action selection, DCG may also suffer non-optimal action selection, while
SOP-CG also considers the advantage of exact greedy selection (i.e., the property of polynomial-
time graph proved by Fioretto et al. (2018)) and empirically achieves significant outperformance
than DCG (Figure 5 and Appendix E and F). In comparison of function expressiveness, DCG (com-
plete graph) achieves larger value function capacity than SOP-CG, but we hypothesize that in the
realistic tasks, the coordination structure could be sparse (Kok & Vlassis, 2004; Zhang & Lesser,
2013) and the function class of SOP-CG will be sufficient to address a large suite of challenging
tasks, e.g., StarCraft II, in Appendix E and F. Therefore, from the perspective of “VDN-QMIX-
QTRAN” line in coordination graphs, SOP-CG has a clear and important position in the literature.

19

Under review as a conference paper at ICLR 2022

I COMMUNICATION MECHANISM OF SOP-CG

SOP-CG runs in the paradigm of centralized training and decentralized execution with communi-
cation. We will discuss the communication mechanism in SOP-CG and its advantage comparing to
the CTDE works as follows.

The communication mechanism of SOP-CG is consistent with DCG (Böhmer et al., 2020) and
CASEC (Wang et al., 2021b). Two metrics are commonly used to measure the cost of multi-agent
communication models: communication bandwidth and frequency. In SOP-CG, agents communi-
cate the q-values to jointly decide the graph structure and induced actions, while DCG and CASEC
use the message passing algorithms to optimize joint actions. This will require limited communica-
tion bandwidth as only a few real numbers are passed through each channel. We could further reduce
the communication cost of SOP-CG by reducing the frequency of graph selection (i.e., changing the
coordination graph via a fixed length of timesteps) if we assume the temporal consistency of coor-
dination graph of the multi-agent system. This will be an interesting future direction for dynamic
coordination graph in MARL.

Compared with the fully decentralized execution methods, the most important characteristic of co-
ordination graph is the direct modeling of interactions between agent actions (i.e. pairwise payoff
functions). The DCG paper (Böhmer et al., 2020) conducts comprehensive discussions to demon-
strate the necessity of this design on tasks with relative overgeneralization pathology. Furthermore,
it provides a straightforward objective for agent communication (i.e. maximizing the sum of individ-
ual utilities and pairwise payoffs), and the induced communication will promote agent cooperation
especially in environments with partial observability (Wang et al., 2020c).

20

	Introduction
	Related Work
	Background
	Self-Organized Polynomial-Time Coordination Graphs
	Value Factorization on Polynomial-Time Coordination Graphs
	Learning Self-Organized Topology with An Explicit Coordinator
	Harnessing Structured Graph Classes for Efficient Coordination

	Experiments
	Didactic example
	Performance Comparison
	Visualization of Self-Organized Coordination

	Conclusion
	Experimental Details of the Motivating Example
	Computations with classes GP and GH
	Graph Relabeling Technique
	Implementation Details And Experiment Settings
	StarCraft II micromanagement benchmark
	SC2 tasks restricted observability
	Metrics of task complexity
	Some detail discussions about trade-off in SOP-CG
	Connection to a Recent Work on Hyper-Graphs
	Position of SOP-CG

	Communication mechanism of SOP-CG

