
Building a Knowledge Graph of Licensed
Educational Resources with Reification
Manoé Kieffer1, Ginwa Fakih1, Patricia Serrano-Alvarado1, Margo Bernelin2 and
Colin De la Higuera1

1Nantes University, LS2N, CNRS, UMR 6004, 44000 Nantes, France
2CNRS, Droit et Changement Social, UMR_C 6297, 44000 Nantes, France

Abstract
This paper presents the ongoing construction of a knowledge graph (KG) of educational resources (ER)
where RDF reification is essential. ERs can be described by their title, creator, license, etc., as well
as the subjects they cover. Some subjects are the main focus of the ER, while others are only briefly
discussed. To take into account this relevance, we propose to use RDF reification. Unfortunately, there is
no established standard for reification, and various reification models exist, each with its own syntax and
performance implications in terms of storage and query processing. The challenge we face is determining
which reification model is best suited for our KG.

Keywords
Knowledge graph, educational resources, licenses, compatibility of licenses, RDF reification

1. Introduction

When teachers want to create a new course, they typically conduct a keyword search for (open)
educational resources (ER) on the web to reuse and integrate into their course. While there are
numerous valuable and relevant resources available (such as slides, videos, figures, text, code,
etc.), many remain undiscovered because they are not well connected. Moreover, using these
resources can present legal challenges if their licenses are not compatible with the course’s
license. To ensure the protection of all resources involved, the course’s license should generally
be less permissive. These legal issues can create barriers for both the teacher and the institution
hosting the course. Ideally, the process of analyzing available resources to match a course plan
and verifying licenses should not be time-consuming.

There are platforms to help learners to construct personalized learning paths1, to enable
teachers to share their ERs2, and even to help teachers create new ERs3. However, a solution
to help teachers to find relevant and license compatible ERs is missing. CC Search4 can help
users find images that are licensed under a Creative Commons license. Similarly, the Google

Fourth International Workshop On Knowledge Graph Construction, ESWC, 2023
Envelope-Open Manoe.Kieffer@univ-nantes.fr (M. Kieffer); Ginwa.Fakih@univ-nantes.fr (G. Fakih);
Patricia.Serrano-Alvarado@univ-nantes.fr (P. Serrano-Alvarado); Margo.Bernelin@univ-nantes.fr (M. Bernelin);
cdlh@univ-nantes.fr (C. De la Higuera)

© 2023 Copyright © 2023 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://labs.tib.eu/edoer/
2https://www.merlot.org/
3https://www.oercommons.org
4https://search.creativecommons.org/

mailto:Manoe.Kieffer@univ-nantes.fr
mailto:Ginwa.Fakih@univ-nantes.fr
mailto:Patricia.Serrano-Alvarado@univ-nantes.fr
mailto:Margo.Bernelin@univ-nantes.fr
mailto:cdlh@univ-nantes.fr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://labs.tib.eu/edoer/
https://www.merlot.org/
https://www.oercommons.org
https://search.creativecommons.org/

search engine allows users to filter images by access rights based on licenses, including Creative
Commons and other commercial licenses. However, these search engines do not provide
suggestions for licenses that may protect an imagemashup comprisingmultiple images protected
by different licenses, nor do they return only images that are license-compatible. Furthermore,
there are many open and free licenses5, which are not considered in these solutions.

In the CLARA project, our goal is to design a solution that can identify a minimal, relevant
set of educational resources with licenses that can protect the entire set of resources, whether
or not the license is open. Our aim is to help teachers create content without having to focus
on licensing aspects, and to avoid legal issues for their institutions.

ERs can be described by their title, creator, language, license, etc., as well as the subjects they
cover. But not all subjects covered in an ERs are equally relevant. Some subjects are the main
focus, while others are only mentioned briefly. Therefore, the relevance of each subject should
be identified, and their relationship with educational resources should be weighed accordingly.

The best way to make ERs findable and reusable is to use the principles of the Linked Data.
Semantic web technologies will allow a detailed description and interconnection of ERs thanks
to well-known ontologies. Statement-level reification plays an important role as it allows
annotating with scores or weights the relation of ERs and the subjects they treat. Most of the
works using semantic web technologies propose tools to support learners with personalized
learning [1], adaptive educational content [2], facilities for collaboration [3], etc., see [4, 5]
for an overview of the state of the art. Few works assist teachers to find relevant educational
resources, e.g., [6, 7], and to the best of our knowledge, there is no solution to help teachers
create courses by reusing existing ones while preserving licenses and suggesting a license able
to protect their courses.

The contributions of this paper are: (i) a methodology to build a knowledge graph (KG) of ERs
using existing W3C recommendations (RDF, OWL, RML, SHACL, SPARQL) and well-known
ontologies (DBpedia, Dublin Core, VoID, etc.); (ii) first experiments that evaluate and compare
some representative reification models; (iii) first ideas about how to treat licence compatibility
from an interdisciplinary point of view (Law and Computer Science).

The rest of this paper is organized as follows. Section 2 explains the methodology we follow
to build the KG of ERs. Section 3 explains the pipeline used. Section 4 describes the experiments
done to evaluate the reification models. Section 5 discusses legal aspects of our work concerning
licenses. Finally, Section 6 outlines our future work and concludes.

2. Knowledge Graph description
Our project, named CLARA (Creating and Linking Licensable Educational Resources), aims
to empower teachers to facilitate the creation of licensable ERs based on existing ones. The
resources in our knowledge graph comprise unstructured ERs (documents, videos, and audio
files, etc.), that are semantically annotated using the general-purpose ontology of DBpedia. By
means of a wikification process, relevant DBpedia concepts related to ERs are used to provide
a comprehensive description of each resource. This section introduces the CLARA ontology
(Section 2.1), an explanation of the wikification process (Section 2.2), and statistics on our
knowledge graph (Section 2.3).

5https://en.wikipedia.org/wiki/Free_license

https://en.wikipedia.org/wiki/Free_license

 dbr:Resourceunr:EducationalResource

uno:cosineSimilarity
uno:pageRank

dct:creator

dct:title

dct:description
dct:format

dct:license

dct:publisher sc:url

dct:created

Reified property

lom:LearningObject owl:Class

aa

lom: <http://data.opendiscoveryspace.eu/lom_ontology_ods.owl#>
dbr: <http://dbpedia.org/resource/>
sc: <http://schema.org/>
dct: <http://purl.org/dc/terms/>
skos: <http://www.w3.org/2004/02/skos/core#
uno: <https://univ-nantes.fr/ontology>
unr: <https://univ-nantes.fr/resource>
foaf: <http://xmlns.com/foaf/0.1/>

dct:subject dbr:Category

skos:Concept

a

dct:language

unr:Author foaf:Personafoaf:name

Instance Class

Property

dct:subject

Figure 1: CLARA ontology

2.1. CLARA ontology
Figure 1 depicts the CLARA ontology diagram. Consistent with the ODS recommendation6, we
define ERs as LOM (Learning Object Metadata) Learning Objects. The LOM standard suggests a
range of properties to describe learning objects, using common vocabularies such as Dublin
Core and FOAF (dct:title, dct:creator, dct:language, dct:licence, dct:format, foaf:name, etc).

The particularity of our ontology lies in the extension of the LOM description to consider
the subjects treated in the learning objects with relevance scores. To do this, we use RDF
statement-level reification. Reification allows making statements about statements in a generic
manner. In our case, it will allow to state that an ER treats a particular subject to some extent.
Concretely, it will allow to annotate the predicate dct:subject in a fact (unr:EducationalResource,
dct:subject, dbr:Resource) with relevance scores. In our project, these scores are determined
using a wikification process, which identifies pagerank and cosine similarity values. More
information on this process is provided in the next section.

Besides being reified, dct:subject is a multi-valued property, i.e., a subject-predicate pair
having several objects. These objects are DBpedia resources which are instances of classes in
DBpedia, Wikidata, and Yago ontologies. We consider also DBpedia categories, which are used
in Wikipedia to organize articles and pages by subject matter. Since the goal of our KG is to
identify ERs based on their subjects, DBpedia categories are essential. DBpedia resources are
associated with their categories through the dct:subject property (dbr:Resource, dct:subject,
dbr:Category).

2.2. Wikification of educational resources

Wikification is the process of automatic annotation of texts with Wikipedia entries. The goal
is to bridge concepts identified in the text and Wikipedia articles. The wikification process
generally involves two phases: term extraction and link disambiguation. There are various
approaches to wikification that differ in the techniques used for extracting phrases and linking

6http://data.opendiscoveryspace.eu/ODS_LOM2LD/ODS_SecondDraft.html

http://data.opendiscoveryspace.eu/ODS_LOM2LD/ODS_SecondDraft.html

them to external resources. CLARA uses a wikification tool called Wikifier which has shown
a good performance compared to some state-of-the-art approaches [8]7. This tool identifies
mentions - phrases extracted from the input document - and uses them as hyperlinks between
Wikipedia pages. TheWikipedia pages linked by a mention are considered as candidate concepts
for that mention. Wikifier constructs a bipartite graph consisting of the mentions and their
corresponding candidate concepts. The internal structure of hyperlinks between Wikipedia
pages is then leveraged to weigh the edges (mentions) of the bipartite graph. A mention may
have several candidate concepts because the same text can lead to different Wikipedia pages.
To disambiguate mentions, the pagerank algorithm is applied over the graph. The concept with
the highest pagerank score is selected for each mention, resulting in a set of Wikipedia concepts
representing the input document. A threshold is then applied to retrieve the top-ranking
concepts. In addition, Wikifier calculates the cosine similarity between the input document and
the Wikipedia pages of the top-ranking concepts. To do this, the input document is represented
as a bag-of-words model, where each term in the document is treated as a separate feature.
Similarly, each Wikipedia page is represented as a bag-of-words model. The frequency of terms
in the input document and each Wikipedia page is then compared to state each cosine similarity.

Currently, the CLARA project has collected a set of open educational resources that were
wikified in the X5GON project8. X5GON was a Europe funded Horizon 2020 project whose
goal was to build a cross modal, cross cultural, cross lingual, cross domain, and cross site global
network of open educational resources. In a near future, we will exploit educational resources
provided by the French Ministry of Education and Nantes Université.

2.3. Statistics and dataset content

There exist several standard vocabularies to describe RDF datasets. The VoID vocabulary [9]
is the most well-established vocabulary9. Additionally, the DCAT vocabulary [10] is a W3C
recommendation to describe datasets, data services and data catalogs10. We provide a description
of our KG using VoID and DCAT in a VoID file11.The metadata for the dataset includes the label,
license, SPARQL endpoint, provenance, prefixes used, and general statistics such as the number
of triples, entities, subjects, objects, properties, etc. Our class partition currently consists of
roughly 45K learning objects (lom:LearningObject)12, 13K authors (foaf:Person), twelve licenses
(odrl:Policy), and 2,193K categories (skos:Concepts)13 along with 135K DBpedia resources that
serve as the reified subjects of the CLARA ERs.

The distribution of concepts over ERs is far from being uniform. We consider the connectivity
of a concept as its capacity to connect ERs. Figure 2a illustrates that over 100K concepts have
poor connectivity. Roughly 52K concepts are associated with a single ER, while around 53K are
connected to 2 to 10 ERs, as shown in the first two columns. The third column indicates that
around 21K concepts connect between 11 and 1000 ERs. Lastly, the last column shows that 95

7https://wikifier.org
8https://www.x5gon.org
9https://www.w3.org/TR/void/
10https://www.w3.org/TR/vocab-dcat-2/
11https://gitlab.univ-nantes.fr/clara/pipeline/-/blob/main/statistics/clara-metadata.ttl
12From the X5GON dataset, we gathered only licensed resources.
13We obtained the entire hierarchy of DBpedia categories.

https://wikifier.org
https://www.x5gon.org
https://www.w3.org/TR/void/
https://www.w3.org/TR/vocab-dcat-2/
https://gitlab.univ-nantes.fr/clara/pipeline/-/blob/main/statistics/clara-metadata.ttl

(a) Connectivity of the DBpedia concepts (b) Distribution of DBpedia concepts.

Figure 2: Statistics of the DBpedia Concepts

concepts have very high connectivity, being used in more than 10K ERs. The distribution of
concepts by ER is shown in Figure 2b. The first three columns show that the majority of ERs are
associated with less than 300 concepts. On the other hand, the last three columns demonstrate
that only a small number of ERs (40 ERs) are linked to a considerable number of concepts.

The pagerank score of a concept is local to an ER, it depends on the number of concepts that
the Wikifier associates with this ER. The sum of the pagerank values of all concepts linked to an
ER is 1. Thus, the greater the number of concepts, the lower their pagerank score. To determine
the global relevance of a concept over the KG, we use the number of associated ERs and their
pagerank scores. We calculate the relevance of a concept as the ratio of all the pagerank scores

of that concept over all the pagerank scores in the KG, i.e., 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑐) = ∑i PR(𝐸𝑅i,c)

∑y∑i PR(ERi,Cy)
.

3. Data transformation pipeline

Figure 3 shows the pipeline for the CLARA ETL process. The extraction phase involves collecting
data from a Postgres database. In the transformation phase, JSON files are converted into
semantic RDF triples. To compare different RDF reification models, we created four RML
mappings to obtain standard reification, RML-star, named graphs, and singleton properties. We
used SHACL shapes to validate our RDF graphs. In the loading phase, we loaded and set up two
SPARQL endpoints: Virtuoso and Jena. The rest of this section focus on the RML mappings
that are available on GitLab14.
3.1. Reification models

Before describing our RML mappings, in particular the RDF reification, we briefly overview the
four reification models that we implement and evaluate.

14https://gitlab.univ-nantes.fr/clara/pipeline

https://gitlab.univ-nantes.fr/clara/pipeline

Relational
data

Data
collection

SQL

JSON

RDF-
star

RML mappings

Named
graphs

Standard
reificatioin

RML
mappers

JSON

Singleton
properties

RDF
datastores

SHACL
validator

Shapes

SPARQL
endpoint

RDF

RDF

TransformationExtraction Loading

RDF

Shapes
Shapes

Shapes

RDF
triples

Figure 3: Pipeline of the CLARA ETL (Extract, Transform, Load) process.

Standard reification. The standard reification model was proposed within RDF primer stan-
dardised by W3C [11]15. In this model, rdf:Statement is used to define the triple that will be
annotated (rdf:subject, rdf:predicate, and rdf:object). The defined statement can be identified by
a blank node or a URI. Listing 3.1 gives the representation in RDF triples As we can see, our
annotations are two score values that are linked to the statement.

uns : S100 r d f : type r d f : S t a t emen t ;
r d f : s u b j e c t unr : ER ;
r d f : p r e d i c a t e dc : s u b j e c t ;
r d f : o b j e c t : Query_Language ;
uno : c o s i n e S i m i l a r i t y ” 0 . 6 ” ;
uno : pageRank ” 0 . 4 ” .

Listing 1: Standard reification in Turtle.

Named graphs. Carroll et al. [12] proposed an extension to the RDF data model that allows
RDF graphs to be named by URIs, which are referred to as named graphs. In this approach, a
named graph is represented as a pair (g, n), where g is an RDF graph and n is an IRI, a blank
node, or a default graph. The statements to be annotated are defined in one RDF graph, while
the annotations themselves are defined in another RDF graph. The annotations are directly
linked to this graph. Listing 2 shows the syntax for this example.

unr : ER dc : s u b j e c t : Query_Language <g−100> .
<g−100> uno : c o s i n e S i m i l a r i t y ” 0 . 6 ” ;

uno : pageRank ” 0 . 4 ” .

Listing 2: Named Graphs in N-quads.

Singleton properties. The singleton property model [13] proposes creating a unique property
for every triple that has associated metadata. In this model, a new node is created to represent
the new property, which is connected directly to the original annotation property using the
proposed property singletonPropertyOf. The same property is used for all metadata associated
with a statement. An example of RDF triples using this model is shown in Listing 3.

unr : ER <p−200> : Query_Language .

15https://www.w3.org/TR/rdf-primer/#reification

https://www.w3.org/TR/rdf-primer/#reification

<p−200> r d f : s i n g l e t o nP r o p e r t yO f dc : s u b j e c t ;
uno : c o s i n e S i m i l a r i t y ” 0 . 6 ” ;
uno : pageRank ” 0 . 4 ” .

Listing 3: Singleton properties in Turtle.

RDF-Star. Recently, [14]16 proposed RDF-star and SPARQL-star as extensions to RDF and
SPARQL to enable graph nesting and simplify the representation of reified statements. RDF-star
and SPARQL-star allow for the recursive nesting of graphs, eliminating the need for declaring
edge identifiers that are linked with metadata. RDF-star enables the nesting of triples within
other triples as subjects or objects by using double angle brackets ≪ ≫. As a result, every
reified statement can be interpreted as a single RDF triple. An example of RDF-star reification
is shown in Listing 4.

<< unr : e r dc : s u b j e c t : Query_Language >> uno : c o s i n e S i m i l a r i t y ” 0 . 6 ” ;
uno : pageRank ” 0 . 4 ” .

Listing 4: RDF-Star in Turtle.

3.2. RML mappings

We define our four mappings using the RML language [15]. In Listing ?? we show an excerpt
of the RML mapping used to transform the JSON data in triples with standard reification.
This excerpt contains the RML rule that generates the annotations. In Lines 2 to 6, the rule
iterates over every concept of every ER. In Lines 7 to 9, the subjects are defined as IRIs of type
rdf:Statement, following the shape used in standard reification. The following lines define the
predicates and objects related to these subjects. Lines 25 to 29 define the annotation of the
pagerank score, taken from the JSON under the attribute “norm_pageRank”.

The RML mapping for the singleton property transformation is very similar to the standard
reification one. It defines subjects as IRIs related to dct:subject via the rdf:singletonProperty
property. Subjects are then defined as properties for the reified triples. Listing 6 shows the
excerpt of our mapping defining this part of the rule.

The key difference in the RML mapping for named graphs is the creation of a quad for each
fact to be annotated. Our mapping uses the property rr:graphMap to specify the IRI of the
graph containing the triple to be reified. Listing 7 shows how we define the predicate, object,
and graph for each ER as a subject.

For the RDF-star approach, the mapping is more complex and requires the use of RML-star
[16], an extension of RML. We first define the triple that needs to be reified and then use it as
the subject in the rule that defines the annotation. Listing 8 shows an excerpt of our mapping,
where the property rml:quotedTriplesMap maps the subject of the annotations to another RML
rule (the one defining the triple to reify).

To generate RDF triples we use two mappers. For standard reification, named graph, and
singleton property, we use an RML mapper implemented in Java17. To generate RDF-star triples,
we used morph-KGC [17], which can function as both an RML mapper and an RML-star mapper.

1 <Re i f i edMapp ing > a r r : Tr ip l e sMap ;
2 rml : l o g i c a l S o u r c e [

16https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html
17https://github.com/RMLio/rmlmapper-java

https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html
https://github.com/RMLio/rmlmapper-java

3 rml : s ou r c e ” j s on / ER / ER_0 . j s on ” ;
4 rml : r e f e r e n c e F o rmu l a t i o n q l : JSONPath ;
5 rml : i t e r a t o r ” $. r e s o u r c e s [∗] . c onc ep t s [? (@. d b P e d i a I r i)] ” ;
6] ;
7 r r : sub jec tMap [
8 r r : t emp l a t e ” h t t p s : / / c l a r a . univ −nan te s . f r / s t a t emen t / { e r _ i d } − { c _ i d } ” ;
9 r r : c l a s s r d f : S t a t emen t ;

10] ;
11 r r : p r ed i c a t eOb j e c tMap [
12 r r : p r e d i c a t e r d f : s u b j e c t ;
13 r r : ob jec tMap [r r : t emp l a t e ” h t t p s : / / c l a r a . univ −nan te s . f r / r e s ou r c e / { e r _ i d } ” ;
14 r r : termType r r : I R I ;] ;
15] ;
16 r r : p r ed i c a t eOb j e c tMap [
17 r r : p r e d i c a t e r d f : p r e d i c a t e ;
18 r r : ob jec tMap [r r : c on s t a n t d c t : s u b j e c t] ;
19] ;
20 r r : p r ed i c a t eOb j e c tMap [
21 r r : p r e d i c a t e r d f : o b j e c t ;
22 r r : ob jec tMap [rml : r e f e r e n c e ” d b P e d i a I r i ” ;
23 r r : termType r r : I R I ;]
24] ;
25 r r : p r ed i c a t eOb j e c tMap [
26 r r : p r e d i c a t e uno : pageRank ;
27 r r : ob jec tMap [rml : r e f e r e n c e ” norm_pageRank ” ;
28 r r : d a t a t yp e xsd : doub le ;]
29] .

Listing 5: Excerpt of the RML mapping for standard reificaiton.

1 r r : p r ed i c a t eOb j e c tMap [
2 r r : p red i ca t eMap [
3 r r : t emp l a t e ” h t t p s : / / c l a r a . univ −nan t e s . f r / s t a t emen t / { e r _ i d } − { c _ i d } ” ;
4] ;
5 r r : ob jec tMap [rml : r e f e r e n c e ” d b P e d i a I r i ” ;
6 r r : termType r r : I R I ;]
7] .

Listing 6: Excerpt of the RML mapping for singleton property.

1 r r : p r ed i c a t eOb j e c tMap [
2 r r : p r e d i c a t e d c t : s u b j e c t ;
3 r r : ob jec tMap [rml : r e f e r e n c e ” d b P e d i a I r i ” ;
4 r r : termType r r : I R I ;] ;
5 r r : graphMap [
6 r r : t emp l a t e ” h t t p s : / / c l a r a . univ −nan t e s . f r / s t a t emen t / { e r _ i d } − { c _ i d } ” ;] ;
7] ;

Listing 7: Excerpt of the RML mapping for named graph.

1 rml : sub jec tMap [
2 rml : quo tedTr ip l e sMap : ER_concep t_ l i nk ;
3] ;

Listing 8: Excerpt of the RML-star mapping for RDF-star.

4. Experimental evaluation of reification models

The goal of this section is to compare the different reification models using Virtuoso and Jena.
Section 4.1 describes the differences of the different approaches in terms of storage space and
ease of use. And Section 4.2 shows the experiments carried out to evaluate the performance of
the different approaches in terms of query performance.

4.1. Syntax comparison of reification models to define annotated triples

The described reification models differ in various criteria such as the number of triples, human
understandability, flexibility, and syntax support.

Number of triples. Standard reification is the most costly approach since it needs five triples
for each reified statement. Singleton properties models needs three triples. Named graphs and
RDF-star are the most compact models requiring two triples. One advantage of named graphs
is that reification can be defined not only at statement level but also for a group of triples or
even a dataset. This model is the only one that allows for different levels of granularity for
annotations.
Human understandability. Standard reification and singleton properties can be difficult

for humans to understand because the reified statement is split into multiple forms, making
it challenging to comprehend the statement as a whole. Named graphs provide a clearer
representation since they maintain the direct links between the terms of the reified statement.
RDF-star was proposed as a solution to simplify statement-level annotations by providing a
clear representation of statements and their annotations without the need for refactoring the
statement, declaring new predicates, or new classes. This ensures easier human understanding
of the data.

Flexibility. All of these reificationmodels are flexible when it comes to adding new annotations
to an already reified statement. Adding new annotations only requires adding one additional
triple for each approach. Additionally, all of these models support multi-valued properties,
which are annotations that have a subject-predicate pair with several objects.

Syntax support. Standard reification and singleton properties conform to the core RDF model
proposed in 2004. Named graphs represent an extension to the triple RDF model and is part
of the standard RDF1.1, which was published in 2014. RDF-star proposes to extend the RDF
specification further. While all of these models are supported in the SPARQL standard, RDF-
star proposes SPARQL-star as a query language. However, several RDF stores, such as Jena,
Stardog, RDF4J, BlazeGraph, AllegroGraph, etc., now support the implementation of RDF-star
and SPARQL-star18.

We made a first experimental evaluation of the four reification models to compare the number
of triples and the database size to store our KG using two triplestores, Virtuoso and Jena. As
we show in Table 1, named graphs and RDF-star models are the most compact in terms of the
number of triples required for our dataset, with only 37M triples. Standard reification and
singleton properties require a higher number of triples, with 70M and 53M respectively. We
consider the storage of the triples without reification, i.e., (unr:ER, dct:subject, dbr:Concept)
for all models except for named graphs. For instance, in RDF-star, the triple that is used as

18https://w3c.github.io/rdf-star/implementations.html

https://w3c.github.io/rdf-star/implementations.html

Standard
reification

Singleton
Properties

Named graphs RDF-Star

#Triples
106

DB size
109

#Triples
106

DB size
109

#Triples
106

DB size
109

#Triples
106

DB size
109

Virtuoso 70,1 3.1 53,5 3.1 37,0 3.0
Jena 70,1 56 53,5 51 37,0 50 37,0 49

Table 1
Generated number of triples and DB size of different reification models for the CLARA KG.

subject is stored in one triple. Concerning the database size, Jena with standard reificaiton is
the largest with 56GB. In general, databases under Jena are larger than Virtuoso. Virtuoso has
little differences in the storage size.
4.2. Experimental comparison of query performance

Experiments were run on a virtual machine with 128Go of RAM, 2GHz with 32 cores, on a
Debian GNU/Linux 11 (bullseye). All tests were run using docker images of the query engines19
20. All engines were given access to 16Go of RAM, and the test were run in isolation, with
caches on.

Sets of queries. Based on series of queries A, B and F used in [18], we define 4 query templates
that we present as SPARQL-star queries for simplicity and clarity. Query 1 gets the list of
concepts and all the associated hierarchy of categories for a given ER (Listing 9). Given an
ER, query 2 gets the associated concepts with a pagerank score greater than a given threshold
(Listing 10). Query 3 gets ERs associated to a set of 3 given concepts (Listing 11). Query 4 is a
typical query used to retrieve data in the CLARA interface, given a set of DBpedia concepts, it
gets the ERs and their descriptions (Listing 12).

Query templates are grounded with instances selected beforehand. We chose two ERs with
little connectivity (2 to 10 connections), two with medium connectivity (100 to 300 connections),
and two with large connectivity (more than 1000 connections). For DBpedia concepts, we chose
two concepts with a connectivity in the range 2 to 10, two in the range 100 to 2000, and two
with over 10000 connections.

Procedure. Queries were sent to the SPARQL endpoints of the two query engines using a
python script and the library SPARQLWrapper. Table 2 shows the results of our experiments.
Each query was executed 5 times and the average execution time is displayed. The first row
shows the average execution time of executing queries with all the chosen instances of each
query template. The second row shows the average execution time of of queries grounded the
instance (ER or concept) with the lowest connectivity. The Third column shows the average
execution time of queries grounded to the instance (ER or concept) with the largest connectivity.
Results for Query 4 are calculated differently. First row corresponds to the average execution
time of the grounded to the six instances of concepts. The two other rows are similar to the
other queries.
Analysis of results. The execution of Query 1 finished prematurely due to the amount of

memory the property path query takes when navigating the DBpedia categories. For both

19https://hub.docker.com/r/secoresearch/fuseki
20https://hub.docker.com/r/tenforce/virtuoso

https://hub.docker.com/r/secoresearch/fuseki
https://hub.docker.com/r/tenforce/virtuoso

query engines, only the three smallest grounded instances succeeded. In the case of Virtuoso,
the query had to be adapted using the option t_distinct to improve its efficiency with star
property paths. Standard reification and named graph approaches exhibit similar behavior
in Jena and Virtuoso, except for Query 1 where Virtuoso is superior on average. Singleton
properties performs especially badly with Jena, but with Virtuoso it performs similarly to the
other options. RDF-star with Jena proves to be the slowest approaches for our graph. It is
impossible to know if this is due to how Jena handles RDF-star or if this issue would be present
with other engines, further tests are needed. Overall, when comparing the performance of all
reification models in terms of execution time, it appears that standard reification and named
graphs are the best, followed by singleton properties, and finally RDF-Star. And Virtuoso seems
to be performing equally well or better than Jena no matter the reification approach.

SELECT ∗
WHERE {

[ER] d c t : s u b j e c t ? concep t .
? concep t d c t : s u b j e c t / skos : b roade r ∗

? c a t e g o r i e .
}

Listing 9: Query template 1.

SELECT ∗
WHERE {

<< ? e r d c t : s u b j e c t [concep t] >> uno
: pageRank ? pr .

FILTER (0 . 0 1 < ? pr) }

Listing 10: Query template 2.

SELECT ∗
WHERE {

<<? e r d c t : s u b j e c t [concep t]>> uno : c o s i n e S i m i l a r i t y ? c o s i n e 1 ;
uno : pageRank ? pr1 .

<<? e r d c t : s u b j e c t [concep t]>> uno : c o s i n e S i m i l a r i t y ? c o s i n e 2 ;
uno : pageRank ? pr2 .

<<? e r d c t : s u b j e c t [concep t]>> uno : c o s i n e S i m i l a r i t y ? c o s i n e 3 ;
uno : pageRank ? pr3 . }

Listing 11: Query template 3.

SELECT ∗
WHERE {

<< ? e r d c t : s u b j e c t ? concep t >> uno : pageRank ? pr .
? e r d c t : l anguage ? language ;

d c t : l i c e n s e ? l i c e n s e ;
d c t : fo rmat ? fo rmat ;
d c t : t i t l e ? t i t l e ;
schema : u r l ? u r l .

OPTIONAL { ? e r d c t : c r e a t o r ? au thor . }
OPTIONAL { ? e r d c t : d e s c r i p t i o n ? d e s c r i p t i o n . }
VALUES ? concep t { [s e t _ o f _ d bp e d i a _ c on c e p t s] }
VALUES ? format { ” a p p l i c a t i o n / pdf ” ” v ideo /mp4” } }

Listing 12: Query template 4.

5. Compatibility of licenses when reusing licensed educational
resources

Under law, a license is a unilateral contract allocating rights and duties over an intellectual
creation. In practice, the terms of the license will outline the permissions, prohibitions, and

Query engine Standard reification Singleton properties
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Virtuoso
10.12 0.06 0.65 2.82* 11.60 1.27 1.21 2.88*
4.73 0.001 0.03 0.01 7.27 2.40 1.05 0.15
OoM 0.047 1.63 1.57 OoM 0.21 1.60 1.77

Jena
28.42 0.04 0.13 3.30* 33.94 26.65 43.85 374.88*
3.01 0.01 0.01 0.01 3.62 26.26 42.35 60.21
OoM 0.12 0.36 2.11 OoM 27.33 46.84 71.18

Query engine Named graphs RDF-Star
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Virtuoso
10.84 1.08 0.54 2.77*
6.68 2.40 0.46 0.15 Not supported
OoM 0.68 1.09 2.30

Jena
33.33 0.24 0.04 3.59* 92.45 134.02 139.66 7.57*
3.74 0.019 0.026 0.02 3.99 142.52 140.69 14.08
OoM 0.74 0.08 2.88 OoM 126.33 144.42 4.82

Table 2
Query execution time for the four reification models (OoM:Out of Memory).

obligations associated with the reuse of the intellectual work covered. The license is chosen by
the author of the work and will be binding for anyone who wishes to reuse the said work.
Machine-readable licences. RDF metadata allow to define the content’s license, for example

RDFa21 allow to specify the license of a web page using RDF embedded in HTML. This informa-
tion helps search engines to know which license protects a resource which can then help them
better recommend resources. Machine-readable licenses are licenses translated to a language,
that allows the representation of licenses and their terms. For example, CC represents their
licenses in RDF using ccREL [19]. Our project builds upon the use of machine-readable licenses
by allowing research through licensed resources according to the semantically represented
terms of their license.

Compatibility and compliance. The notion of license compatibility is important when planning
to reuse resources. To integrate or include a resource in a new one, a teacher must verify if
the licenses of the resources used are compatible with the license of the future resource. As
CLARA aims to ease the search and reusability of resources, we need to integrate this notion to
further help teacher with the creation of new resources. This project bases itself on the project
CaLi [20]. CaLi compares licenses which have the same actions and that either allow, forbid, or
oblige those actions. Depending on whether two licenses allow, forbid, or oblige its actions, and
depending on a lattice of the restrictiveness of those possible cases, CaLi can compare licenses
in terms of their restrictiveness. As a result CaLi can partially orders a set of licenses using a
restrictiveness relation. Then CaLi refines that partial order of restrictiveness of licenses using
constraints in order to identify which licenses are compatible with each other.

CaLi defines compliance and compatibility this way. A license 𝑙𝑗 is compliant with a license 𝑙𝑖 if a
resource licensed under 𝑙𝑖 can be licensed under 𝑙𝑗 without violating 𝑙𝑖. If a license 𝑙𝑗 is compliant with
𝑙𝑖 then we consider that 𝑙𝑖 is compatible with 𝑙𝑗 and that resources licensed under 𝑙𝑖 are reusable with
resources licensed under 𝑙𝑗. This means that CaLi does not define compatibility (or compliance)
as a symmetrical relation. In addition, usually but not always, when 𝑙𝑖 is less restrictive than 𝑙𝑗
21https://www.w3.org/TR/rdfa-primer/

https://www.w3.org/TR/rdfa-primer/

then 𝑙𝑖 is compatible with 𝑙𝑗. And in every case, when 𝑙𝑖 is less restrictive than 𝑙𝑗 then 𝑙𝑗 cannot be
compatible with 𝑙𝑖.

5.1. Source of license incompatibilities

License incompatibility is a complex issue as it can arise from multiple places [21, 22]. Firstly, a
license can be incompatible with another license because their clauses contradict each other.
And a license could also be incompatible with another version of itself for multiple reasons, we
will discuss those reasons in the following sections.

Between different licenses. The first andmost obvious reason a license can be incompatible with
another is due to contradictions in their different terms, i.e., duties, permissions or prohibitions.
For example, the Creative Commons license CC BY-NC is incompatible with the Creative
Commons license CC BY, as CC BY-NC prohibits the commercial use of the licensed content
when CC BY allows it. Note that this does not imply CC BY is incompatible with CC BY.

Between different versions of the same license. Incompatibility may also arise for different
versions of a same license. An updated version of a license could be more or less restrictive than
its counterpart. Take the case of MPL-1.1 and MPL-2.0 like discussed in [23]. [23] considers
MPL-1.1 and MPL-2.0 as non-transitivly compatible. Using the definition of CaLi, MPL-1.1
would be considered as incompatible with MPL-2.0 because MPL-2.0 is less restrictive.

Moreover, the translation of a license will also result in the creation of a different version of
the same license, this time with linguistic variations. Translating licenses to other languages
is an important topic, especially when licenses aim at being open and international. But
translating a license to another language can cause imprecision and small inconsistencies. That
consequence is inherent to the work of translating text and even small changes in phrasing or
words could cause different interpretations to arise [21, 22]. Which in turn could make two
licenses incompatible as they would not contain the same terms anymore.

Another source of incompatibility discussed here is the incompatibility born from a license
adapted to be applied in multiple legal orders, that is to say adapted to fit multiple national Laws.
This task comes with legal variation as well as linguistic translation. It can lead to differences
in the terms of the license’ versions, and to versions of a license that are not concerned with
the same national law anymore, possibly making them incompatible.

The last possible incompatibility with licenses versions discussed here are machine-readable
versions. This kind of version is related to translation but it is a translation to informatic
models and not another human language. The same way differences in words and phrasing
can cause incompatibility between two translations of a license, differences between a license
and its machine readable version can also create inconsistencies. As our project relies on the
machine-readability of licenses directly, this case is not taken in the scope of the project.

5.2. Handling compatibility in CLARA

In order to better fulfill its goal of helping teachers to find educational resources, the CLARA
project should take into consideration the concepts of compatibility and incompatibility of
licenses. This will allow CLARA to recommend more resources fitted to the teacher’s needs, and
in particular, it should be able to query resources that are compatible with the license that the
teacher will use for their own resource. In the case where the teacher does not specify a license
for their future course but still selects a list of resources to build their own new resource. The

CLARA interface needs to be able to achieve two things. First, it should be able to verify that
all the licenses of the selected resources can be compatible with a single one. Then it should be
able to suggest a set of licenses that fulfill that criterion so that the teacher can select one for
their own resource. Secondly, if all the licenses of the selected resources cannot be compatible
with a single resource, the interface should propose a way to resolve that conflict by pointing
out resources to remove from the set.

In order for the CLARA project to achieve those goals, the KG and the interface need to be
built by taking into consideration both the concept of compatibility as defined by CaLi and the
challenges discussed in Section 5.1. To guarantee the biggest impact, it is important to select as
many licenses that share the same actions (in order to be comparable in terms of restrictiveness
and to be comparable using the logic of CaLi). But it is also important to minimize the chance
that those licenses end up being incompatible for the reasons explained in Section 5.1.

6. Conclusion and future work

In this paper, we report our current work on setting up a knowledge graph of educational
resources with a significant number of reified triples. We focused on the used pipeline and
showed some preliminary experiments.

Our current work involves evaluating four reification models in the RDF4J triplestore. We also
plan to assess other reification models, such as n-ary relations. Additionally, we are planning to
perform entity resolution for authors, using external knowledge sources like Google Scholar and
ORCID for author name disambiguation. Moreover, we are planning to expand our knowledge
graph by adding more datasets to it. Our goal is to collect ERs from the French Ministry of
Education, as well as from Nantes University.

Since our experimental evaluation is still ongoing, the current CLARA SPARQL endpoint
uses standard reification. We have developed a preliminary version of a web application that
utilizes the CLARA SPARQL endpoint as its back-end22. The current version of the web app
functions as a keyword-search engine, allowing users to retrieve educational resources based
on the concepts they cover. In the near future, we plan to add graph exploration capabilities,
which will enable users to navigate among ERs and their concepts. Additionally, we aim to
include a feature that will allow teachers to select a set of ERs for reuse in a new course and
suggest licenses that can protect the new course.

In our upcoming scientific work, we plan to focus on SPARQL query relaxation in the presence
of reification. When searching for educational resources on specific subjects, a query may
yield empty or insufficient results. One effective solution to this problem is to dynamically
expand the scope of the query by relaxing the constraints in the query. The goal is to generalize
the user query to produce alternative results that are similar to those expected by the initial
query. However, applying query relaxation to queries that involve both data and metadata
constraints poses several challenges [24]. Current relaxation techniques are not designed for
querying metadata, as they do not take metadata values into account in the query ranking
function that gathers the k-relevant answers closest to the original query. Additionally, current
relaxation techniques are defined for equality of values, whereas metadata constraints may
include intervals of values in a range. Syntaxes used to represent RDF reification and to query

22https://clara.univ-nantes.fr/

https://clara.univ-nantes.fr/

reified triples may also result in unexpected behavior when using current query relaxation
approaches. Therefore, we believe that new query relaxation techniques should be developed
to deal with queries that involve both data and metadata.

Acknowledgments
This work has received a French government support granted to the Labex Cominlabs excellence
laboratory and managed by the National Research Agency in the ‘‘Investing for the Future”
program under reference ANR-10-LABX-07-01. Authors thank Master students in Computer
Science of Nantes University for her participation in some aspects of this work.

References
[1] N. Henze, P. Dolog, W. Nejdl, Reasoning and ontologies for personalized e-learning in the semantic web, Journal of

Educational Technology & Society 7 (2004).
[2] R. Denaux, V. Dimitrova, L. Aroyo, Integrating Open User Modeling and Learning Content Management for the Semantic

Web, in: International Conference on User Modeling, volume 3538, 2005.
[3] K. Halimi, H. Seridi-Bouchelaghem, Semantic Web Based Learning Styles Identification for Social Learning Environments

personalization, in: Web Intelligence, volume 13, 2015.
[4] J. Jensen, A Systematic Literature Review of the Use of Semantic Web Technologies in Formal Education, British Journal of

Educational Technology 50 (2019).
[5] G. Vega-Gorgojo, J. I. Asensio-Pérez, E. Gómez-Sánchez, M. L. Bote-Lorenzo, J. A. Muñoz-Cristóbal, A. Ruiz-Calleja, A

Review of Linked Data Proposals in the Learning Domain, J. Univers. Comput. Sci. 21 (2015).
[6] J. Atkinson, A. Gonzalez, M. Munoz, H. Astudillo, Web Metadata Extraction and Semantic Indexing for Learning Objects

Extraction, Applied Intelligence 41 (2014).
[7] N. Shabir, C. Clarke, Using Linked Data as a Basis for a Learning Resource Recommendation System, in: Workshop on

Semantic Web Applications for Learning and Teaching Support in Higher Education, 2009.
[8] J. Brank, G. Leban, M. Grobelnik, Semantic annotation of documents based on wikipedia concepts, Informatica 42 (2018).
[9] K. Alexander, R. Cyganiak, M. Hausenblas, J. Zhao, Describing linked datasets., in: Workshop on Linked Data on the Web

(LDOW), volume 538, 2009.
[10] R. Albertoni, D. Browning, S. Cox, A. Gonzalez-Beltran, A. Perego, P. Winstanley, et al., Data catalog vocabulary (dcat)-

version 2, World Wide Web Consortium (2020).
[11] F. Manola, E. Miller, B. McBride, et al., RDF primer, W3C recommendation 10 (2004).
[12] J. J. Carroll, C. Bizer, P. Hayes, P. Stickler, Named graphs, Journal of Web Semantics (JWS) 3 (2005).
[13] V. Nguyen, O. Bodenreider, A. Sheth, Don’t like RDF reification? Making statements about statements using singleton

property, in: Proceedings of the 23rd international conference on World Wide Web (WWW), 2014.
[14] O. Hartig, Foundations of RDF* and SPARQL*:(An alternative approach to statement-level metadata in RDF), in: Interna-

tional Workshop on Foundations of Data Management and the Web (AMW), volume 1912, 2017.
[15] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle, RML: A generic language for integrated

rdf mappings of heterogeneous data., Workshop on Linked Data on the Web (LDOW) 1184 (2014).
[16] J. Aenas-Guerrero, A. Iglesias-Molina, O. Corcho, D. Chaves-Fraga, T. Delva, A. Dimou, Rml-star: A declarative mapping

language for rdf-star generation, 2021.
[17] J. Arenas-Guerrero, A. Iglesias-Molina, D. Chaves-Fraga, D. Garijo, O. Corcho, A. Dimou, Morph-kgc star: Declarative

generation of rdf-star graphs from heterogeneous data, Submitted to Semantic Web Journal (SWJ) (2022).
[18] F. Orlandi, D. Graux, D. O’Sullivan, Benchmarking rdf metadata representations: Reification, singleton property and rdf, in:

International Conference on Semantic Computing (ICSC), 2021.
[19] H. Abelson, B. Adida, M. Linksvayer, N. Yergler, 10. cc rel: The creative commons rights expression language (2008).
[20] B. Moreau, P. Serrano-Alvarado, M. Perrin, E. Desmontils, Modelling the compatibility of licenses, in: Extended Semantic

Web Conference (ESWC), 2019.
[21] M. Bernelin, The compatibility of open/free licences: a legal imbroglio, International Journal of Law and Information

Technology 28 (2020).
[22] M. D. de Rosnay, Creative commons licenses legal pitfalls: Incompatibilities and solutions, Technical Report, University of

Amsterdam, Institute for Information Law, 2009.
[23] G. M. Kapitsaki, F. Kramer, N. D. Tselikas, Automating the license compatibility process in open source software with spdx,

Journal of systems and software 131 (2017).
[24] G. Fakih, P. Serrano-Alvarado, A survey on sparql query relaxation under the lens of rdf reification, Submitted paper to the

Semantic Web Journal (2023).

	1 Introduction
	2 Knowledge Graph description
	2.1 CLARA ontology
	2.2 Wikification of educational resources
	2.3 Statistics and dataset content

	3 Data transformation pipeline
	3.1 Reification models
	3.2 RML mappings

	4 Experimental evaluation of reification models
	4.1 Syntax comparison of reification models to define annotated triples
	4.2 Experimental comparison of query performance

	5 Compatibility of licenses when reusing licensed educational resources
	5.1 Source of license incompatibilities
	5.2 Handling compatibility in CLARA

	6 Conclusion and future work

