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Abstract

Lexically constrained text generation is one of001
the constrained text generation tasks, which002
aims to generate text that covers all the given003
constraint lexicons. While the existing ap-004
proaches tackle this problem using a lexically005
constrained beam search algorithm or dedi-006
cated model using non-autoregressive decod-007
ing, there is a trade-off between the generated008
text quality and the hard constraint satisfaction.009
We introduce AutoTemplate, a simple yet effec-010
tive lexically constrained text generation frame-011
work divided into template generation and lex-012
icalization tasks. The template generation is013
to generate the text with the placeholders, and014
lexicalization replaces them into the constraint015
lexicons to perform lexically constrained text016
generation. We conducted the experiments on017
two tasks: keywords-to-sentence generations018
and entity-guided summarization. Experimen-019
tal results show that the AutoTemplate outper-020
forms the competitive baselines on both tasks021
while satisfying the hard lexical constraints.022

1 Introduction023

Text generation often requires lexical constraints,024

i.e., generating a text containing pre-specified lex-025

icons. For example, the summarization task may026

require the generation of summaries that include027

specific people and places (Fan et al., 2018; He028

et al., 2022), and advertising text requires the inclu-029

sion of pre-specified keywords (Miao et al., 2019;030

Zhang et al., 2020b).031

However, the black-box nature of recent text032

generation models with pre-trained language mod-033

els (Devlin et al., 2019; Brown et al., 2020) makes034

it challenging to impose such constraints to ma-035

nipulate the output text explicitly. Hokamp and036

Liu (2017) and others tweaked the beam search037

algorithm to meet lexical constraints by increasing038

the weights for the constraint lexicons, but it of-039

ten misses to include all the constrained lexicons.040

Miao et al. (2019) and others introduced special-041

Summary y:
Japan is considering legal changes to allow 
Emperor Akihito to abdicate at the end of 
2018, say local media reports citing 
government sources.

Article x:
Crown Prince Naruhito could then ascend the 
throne on …

Lexical Constraints Z: {Japan, Akihito}

Input x:
TL;DR:<X> Japan<Y> Akihito<Z> | Crown Prince 
Naruhito could then ascend the throne on …

Output y:
<X><Y> is considering legal changes to allow 
Emperor<Z> to abdicate at the end of 2018, 
say local media reports citing government 
sources.<W>

AutoTemplate format

~

~

Figure 1: Illustration of AutoTemplate. We build the
model input x̃ by concatenating the constraint lexicons
Z with mask tokens. For the conditional text generation
task, we further concatenate input document x. We
also build the model output ỹ by masking the constraint
lexicons in summary y. Then, we can train a standard
sequence-to-sequence model, p(ỹ | x̃), generate masked
template ỹ given input x̃, and post-process to achieve
lexically constrained text generation.

ized non-autoregressive models (Gu et al., 2018) 042

that insert words between the constraint lexicons, 043

but the generated texts tend to be lower-quality than 044

standard autoregressive models. 045

On the other hand, classical template-based 046

methods (Kukich, 1983) can easily produce text 047

that satisfies the lexical constraints as long as we 048

can provide appropriate templates. Nevertheless, 049

it is impractical to prepare such templates for ev- 050

ery combination of constraint lexicons unless for 051

specific text generation tasks where the output text 052

patterns are limited, such as data-to-text generation 053

tasks (Angeli et al., 2010). Still, if such a template 054

could be generated automatically, it would be eas- 055
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ier to perform lexically constrained text generation.056

We propose AutoTemplate, a simple framework057

for lexically constrained text generations by auto-058

matically generating templates given constrained059

lexicons and replacing placeholders in the tem-060

plates with constrained lexicons. The AutoTem-061

plate, for example, can be used for summariza-062

tion tasks, as illustrated in Figure 1, by replac-063

ing the constraint lexicons (i.e., {Japan, Akihito})064

in the output text with placeholder tokens during065

training and using these constraints as a prefix of066

the input, creating input-output pairs, and then067

using a standard auto-regressive encoder-decoder068

model (Sutskever et al., 2014) to train the AutoTem-069

plate model. During the inference, the constraint070

lexicons are prefixed in the same way, the model071

generates the template for the constraints, and the072

placeholder tokens are replaced with the constraint073

lexicons to perform lexically constrained text gen-074

eration.075

We evaluate AutoTemplate across two tasks:076

keywords-to-sentence generation on One-Billion-077

Words and Yelp datasets (§3.1), and entity-guided078

summarization on CNNDM (Hermann et al.,079

2015) and XSum datasets (Narayan et al., 2018)080

(§3.2). The AutoTemplate shows better keywords-081

to-sentence generation and entity-guided summa-082

rization performance than competitive baselines,083

including autoregressive and non-autoregressive084

models, while satisfying hard lexical constraints.085

We will release our implementation of AutoTem-086

plate under a BSD license upon acceptance.087

2 AutoTemplate088

AutoTemplate is a simple framework for lexically089

constrained text generation (§2.1), divided into two090

steps: template generation (§2.2) and lexicalization091

(§2.3). The template generation task aims to gener-092

ate the text with placeholders ỹ, which we defined093

as a template, given constraint lexicons Z , and the094

lexicalization is to replace these placeholders with095

the constraints to perform lexically constrained text096

generation.097

2.1 Problem Definition098

Let x be a raw input text, and Z be a set of099

constraint lexicons; the goal of the lexically con-100

strained text generation is to generate a text y that101

includes all the constraint lexicons Z based on the102

input text x. For example, given a news article x103

and some entities of interest Z , the task is to gen-104

erate a summary y that includes all entities. Note 105

that unconditional text generation tasks, such as 106

keywords-to-sentence generation (§3.1), are only 107

conditioned by a set of lexicons Z , and in this case, 108

we treat the input data x as empty to provide a 109

unified description without loss of generality. 110

2.2 Template Generation 111

Given training input-output pairs (x, y) and con- 112

straint lexicons Z , we aim to build a model that 113

generates a template ỹ, which has the same number 114

of placeholder tokens as the constraint lexicons Z . 115

We assume that the output text y in the training set 116

includes all the constraint lexicons Z . 117

The template ỹ is created by replacing the con- 118

straint lexicon Z in the output text y with unique 119

placeholder tokens according to the order of appear- 120

ances (i.e., <X>, <Y>, and <Z> in Figure 1),1 and 121

then the model input x̃ is created by prefixing the 122

constraint lexicons Z with the raw input text x.2 123

These lexicons Z are concatenated with the unique 124

placeholder tokens to let the model know the align- 125

ment between input and output. We discuss this 126

design choice in §4. 127

Using the AutoTemplate input-output pairs 128

(x̃, ỹ), we can build an automatic template genera- 129

tion model p(ỹ|x̃) using any sequence-to-sequence 130

models. This study builds the template genera- 131

tion model p using an autoregressive Transformer 132

model with a regular beam search (Vaswani et al., 133

2017). 134

2.3 Lexicalization 135

After generating the template ỹ, we replace the 136

placeholder tokens with constraint lexicons Z as 137

post-processing to achieve lexically constrained 138

text generation. Specifically, during inference, con- 139

straint lexicons are prefixed to the input text x in 140

the same way to build the model input x̃. Then, 141

we can obtain the template ỹ from the model p and 142

replace the placeholder tokens with the constraint 143

lexicons Z . 144

2.4 Comparison with existing approaches 145

An important contribution of this study is to 146

show that lexically-constrained generation can be 147

performed in a simple way with AutoTemplate, 148

1We also prefix and postfix the placeholder tokens to use
them as BOS and EOS tokens.

2We use | as separator token for constraints Z and input
text x and also prefixed TL;DR:.
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multiple keywords autoregressive decoding keyword conditioning constraint satisfaction

SeqBF (Mou et al., 2016) ✗ ✗ ✓ ✓
CGMH (Miao et al., 2019) ✓ ✗ ✓ ✓
GBS (Hokamp and Liu, 2017) ✓ ✓ ✗ ✗
CTRLsum (He et al., 2022) ✓ ✓ ✓ ✗
InstructGPT (Ouyang et al., 2022) ✓ ✓ ✓ ✗

AutoTemplate (ours) ✓ ✓ ✓ ✓

Table 1: Summary of existing work for lexically constrained text generation. SeqBF (Mou et al., 2016) and
CGMH (Miao et al., 2019) use non-autoregressive decoding methods to insert words between given keywords.
While these methods easily satisfy the lexical constraints, in general, non-autoregressive methods tend to produce
lower-quality text generation than autoregressive methods. GBS (Hokamp and Liu, 2017), CTRLSum (He et al.,
2022), and InstructGPT (Ouyang et al., 2022) use autoregressive methods to perform text generation, but there is no
guarantee to satisfy all lexical constraints. AutoTemplate empirically demonstrates the capability to generate text
that satisfies the constraints.

whereas it was previously done with only compli-149

cated methods. As summarized in Table 1, Se-150

qBF (Mou et al., 2016) is the first neural text gen-151

eration model for lexically constrained text gener-152

ation based on non-autoregressive decoding. The153

SeqBF performs lexically constrained text genera-154

tion by generating forward and backward text for155

a given constraint lexicon. The most significant156

limitation is that only a single keyword can be used157

for the constraint.158

CGMH (Miao et al., 2019) and similar mod-159

els (Zhang et al., 2020b; He, 2021) are yet another160

non-autoregressive models that achieve lexicon-161

constrained generation by inserting words between162

given constraint vocabularies, thus easily incor-163

porating multiple constraints into the output text.164

Nevertheless, non-autoregressive models require165

complicated modeling and training to generate text166

as good as that of autoregressive models. We con-167

firmed that the AutoTemplate produces consistently168

higher quality text than non-autoregressive meth-169

ods, with or without leveraging pre-training (§3.1).170

Another direction is to incorporate soft con-171

straints into the autoregressive models such as con-172

strained beam search (Hokamp and Liu, 2017; Post173

and Vilar, 2018) and keywords conditioning (He174

et al., 2022). GBS (Hokamp and Liu, 2017) is a175

constrained bean search technique that incorporates176

multiple keywords as constraints and promotes the177

inclusion of those keywords in the output during178

beam search. However, GBS often misses key-179

words in the output text.180

CTRLSum (He et al., 2022) imposes keyword181

conditioning into encoder-decoder models by pre-182

fixing the keywords with the input. This method183

can be easily conditioned with multiple keywords184

as a prefix and can be implemented on an autore-185

gressive model, resulting in high-quality text gen-186

eration. However, the CTRLSum model cannot 187

guarantee to satisfy lexical constraints. Our ex- 188

periments show that as the number of constraints 189

increases, it is more likely to miss constraint lexi- 190

cons in the output text (§3.2). 191

InstructGPT (Ouyang et al., 2022) has shown 192

remarkable zero-shot ability in many NLP tasks, 193

and lexically constrained text generation is no ex- 194

ception. Our experiments confirmed that the model 195

can generate a very fluent sentence, but as with 196

CTRLSum, we observed a significant drop in the 197

success rate with each increase in the number of 198

keywords. 199

3 Experiments 200

We present experiments across two tasks: 201

keywords-to-sentence generation (§3.1), and 202

entity-centric summarization (§3.2). 203

3.1 Keywords-to-Sentence Generation 204

Keywords-to-sentence generation is a task to gener- 205

ate a sentence that includes pre-specified keywords 206

as lexical constraints. We will show that AutoTem- 207

plate is a simple yet effective method to perform 208

this problem without relying on any complex de- 209

coding algorithms. 210

Dataset We use One-Billion-Word and the Yelp 211

dataset following the previous studies (Miao et al., 212

2019; Zhang et al., 2020b; He, 2021). One-Billion- 213

Word is a dataset for language modeling based on 214

the WMT 2011 news crawl data (Chelba et al., 215

2014). The Yelp dataset is based on the Yelp open 216

dataset.3 We utilized the publicly available pre- 217

processed dataset,4 which consists of 1M, 0.1M 218

3https://www.yelp.com/dataset
4https://github.com/NLPCode/CBART
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Model One-Billion-Word Yelp
B2 B4 N2 N4 M SR B2 B4 N2 N4 M SR

SeqBF (Mou et al., 2016) 4.4 0.7 0.62 0.62 7.0 <100. 6.9 2.1 0.52 0.53 8.7 <100.
GBS (Hokamp and Liu, 2017) 10.1 2.8 1.49 1.50 13.5 ≤100. 13.6 4.5 1.68 1.71 15.3 ≤100.
CGMH (Miao et al., 2019) 9.9 3.5 1.15 1.17 13.1 100. 12.3 4.6 1.41 1.45 14.6 100.
POINTER (Zhang et al., 2020b) 8.7 1.6 2.11 2.12 14.3 100. 10.6 2.4 2.14 2.16 16.8 100.
CBART (He, 2021) 15.6 6.6 2.16 2.19 15.2 100. 19.4 9.0 2.54 2.64 17.4 100.
InstructGPT (Ouyang et al., 2022) 10.1 2.8 1.72 1.73 13.0 92.33 9.3 2.4 1.42 1.44 13.6 92.17

AutoTemplate
w/ T5-small 16.4 6.1 3.11 3.15 15.5 100. 22.5 9.5 3.51 3.63 17.1 100.
w/ T5-base 18.3 7.6 3.39 3.45 16.0 100. 23.7 10.8 3.62 3.76 17.8 100.
w/ T5-large 18.9 8.1 3.49 3.54 16.2 100. 24.1 11.1 3.68 3.83 17.9 100.

Table 2: Results of keywords-to-sentence generation on the One-Billion-Word and Yelp datasets. Bold-faced and
underlined denote the best and second-best scores respectively. Baseline results are copied from He (2021). B2/4
denotes BLEU-2/4, N2/4 denotes NIST-2/4, M denotes METEOR-v1.5, and SR denotes the success rate of lexical
constraint satisfaction. Non-aggregated results are shown in Table 17.

Data # example output len. # constraints

1B-Words 12M 27.08 1 – 6
Yelp 13M 34.26 1 – 6

CNNDM 312k 70.58 4.53
XSum 226k 29.39 2.11

Table 3: Dataset Statistics: The output length is the num-
ber of BPE tokens per example using the T5 tokenizer.
For the summarization datasets, the average number of
constraints per example is shown.

sentences for training and development sets, re-219

spectively, and 6k sentences with 1-6 pre-specified220

keywords for test sets, which we summarized in221

Table 3.222

Baselines For the baselines, we used strong223

competitive models for lexically constrained text224

generation, including SeqBF (Mou et al., 2016),225

GBS (Hokamp and Liu, 2017), CGMH (Miao226

et al., 2019), POINTER (Zhang et al., 2020b),227

CBART (He, 2021), and InstructGPT (Ouyang228

et al., 2022). SeqBF, GBS, and CGMH are imple-229

mented on top of GPT2-small (Radford et al., 2019)230

(117M parameters). POINTER is implemented on231

BERT-large (Devlin et al., 2019) (340M parame-232

ters), CBART is on BART-large (Lewis et al., 2020)233

(406M parameters), and InstructGPT has 175B pa-234

rameters.5235

Model We instantiate the template generation236

model based on the Transformer (Vaswani et al.,237

2017) initialized with T5 checkpoints (Raffel238

et al., 2020) implemented on transformers li-239

brary (Wolf et al., 2020). We specifically utilized240

the T5-v1.1-small (60M), T5-v1.1-base (220M241

parameters), and T5-v1.1-Large (770M parame-242

ters). To train the model, we used AdamW opti-243

5Experimental details of InsturctGPT is in Appendix.

mizer (Loshchilov and Hutter, 2019a) with a linear 244

scheduler and warmup, whose initial learning rate 245

is set to 1e-5, and label smoothing (Szegedy et al., 246

2016) with a label smoothing factor of 0.1. 247

Since the dataset used in this experiment is a 248

set of raw texts, we randomly select 1 to 6 words 249

from the text and decompose them into constraint 250

lexicons Z and a template ỹ to create the AutoTem- 251

plate training data. Note that the constraint lexicons 252

Z were selected from the words excluding punctu- 253

ations and stopwords (Loper and Bird, 2002). 254

Metrics All performance is measured with 255

the BLEU-2/4 (Papineni et al., 2002), NIST- 256

2/4 scores (Doddington, 2002), and METEOR 257

v1.5 (Denkowski and Lavie, 2014). Following the 258

previous study, we show the averaged performance 259

across the number of keywords (He, 2021), but we 260

also report the non-averaged results in Appendix. 261

Results Table 2 shows the results of keywords- 262

to-sentence generation. First, the performance 263

of GBS and InstructGPT is not as high as non- 264

autoregressive methods. In general, autoregres- 265

sive decoding produces better text quality than non- 266

autoregressive decoding. However, since GBS is 267

not conditioned on the keywords, it sometimes pro- 268

duces more general text that does not satisfy the 269

keyword constraint. Also, InstructGPT tries to gen- 270

erate sentence according to the instructions, but our 271

experiments show that it frequently fails to include 272

constrained keywords. 273

Second, among the non-autoregressive base- 274

line models, CBART outperforms CGMH and 275

POINTER. This suggests that encoder-decoder- 276

based models such as CBART can produce higher- 277

quality text than decoder-only models such as 278

CGMH and POINTER. 279
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Keywords: leading , currency , software , industry

Reference: Transoft International , Inc. is a leading
provider of currency supply chain management

software solutions for the banking industry .

CBART: The leading edge currency trading

software industry .

AutoTemplate: The company is a leading provider

of currency management software to the financial

services industry .

Table 4: Example generations for the keywords-to-
sentence generation on One-billion-word.

Keywords: nail , salon , always , world

Reference: this is the very best nail salon ! i
always see amanda , her workmanship is out of this

world !

CBART: this is my favorite nail salon in town !
always clean , friendly and the world amazing .

AutoTemplate: I have been going to this nail salon
for over a year now. they always do a great job, and

the prices are out of this world .

Table 5: Example generations for the keywords-to-
sentence generation on Yelp.

Finally, AutoTemplate consistently outperforms280

all the baselines on both datasets by a large margin281

while keeping the success rate at 100% regardless282

of the model size. This indicates that AutoTem-283

plate could take advantage of both autoregressive284

decoding and encoder-decoder models as described285

above. We also confirm that using larger T5 mod-286

els consistently improves text generation quality287

across all metrics.288

Table 4 and 5 show qualitative examples of gen-289

erated texts of CBART and AutoTemplate and hu-290

man written reference. The examples show that the291

AutoTemplate generates long and fluent sentences292

while the CBART tends to generate short text in Ta-293

ble 4 or non-fluent text in Table 5. More examples294

can be found in Appendix.295

3.2 Entity-guided Summarization296

Automatic text summarization distills essential in-297

formation in a document into short paragraphs,298

but different readers might want to know differ-299

ent things about specific entities, such as people300

or places. Thus, one summary might not meet 301

all readers’ needs. Entity-guided summarization 302

aims to generate a summary focused on the enti- 303

ties of interest. This experiment demonstrates that 304

AutoTemplate can produce summaries that satisfy 305

lexical constraints, even under complex entity con- 306

ditioning. 307

Dataset We use CNNDM dataset (Hermann et al., 308

2015) and XSum dataset (Narayan et al., 2018) 309

for the experiment. We simulate the entity-guided 310

summarization setting by providing the oracle en- 311

tity sequence from the gold summary as lexical 312

constraints. Specifically, we use stanza, an off- 313

the-shelf NER parser (Qi et al., 2020), to parse 314

the oracle entity sequence from the gold summary 315

to create entity-guided summarization data. As 316

summarized in the statistics in Table 3 and more 317

detailed entity distributions in Figure 2, the CN- 318

NDM dataset tends to have more entities than the 319

XSum dataset. Note that one instance in the test set 320

of the CNNDM dataset has a 676-word reference 321

summary with 84 oracle entities, which is difficult 322

to deal with large pre-trained language models, so 323

we excluded it from the success rate evaluation. 324

Baselines We used competitive models as base- 325

lines, including fine-tuned BART (Lewis et al., 326

2020) and CTRLSum (He et al., 2022). Similar 327

to AutoTemplate, CTRLSum further conditions 328

the input with lexical constraints and generates the 329

output. The difference is that CTRLSum directly 330

generates the output text, while AutoTemplate gen- 331

erates the corresponding template. 332

Model We use the same training configurations 333

to instantiate the model used in the keywords-to- 334

sentence generation task. To build the training 335

dataset, we use the masked gold summary by the 336

oracle entity sequence as the output template ỹ 337

as described in §2, At inference time, we use the 338

oracle entity sequence and the source document as 339

input to generate the template and post-process to 340

produce the output summary. 341

Metrics We evaluate the entity-guided summa- 342

rization performance using F1 scores of ROUGE- 343

1/2/L (Lin, 2004),6 BERTScore (Zhang et al., 344

2020a),7 and the success rate of entity constraint 345

satisfaction. Note that our evaluation protocol for 346

the success rate of entity constraint satisfaction is 347

6https://github.com/pltrdy/files2rouge
7https://github.com/Tiiiger/bert_score
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Model CNNDM XSum
R1 R2 RL BS SR R1 R2 RL BS SR

reported results
BART (Lewis et al., 2020) 44.24 21.25 41.06 0.336 - 45.14 22.27 37.25 - -
CTRLSum (He et al., 2022) 48.75 25.98 45.42 0.422 - - - - - -

our implementation
BART (Lewis et al., 2020) 44.20 21.28 41.02 0.358 26.12 44.21 20.93 35.18 0.510 46.69
CTRLSum (He et al., 2022) 47.57 25.56 44.30 0.437 75.46 50.07 26.73 40.90 0.581 86.32

AutoTemplate .
w/ T5-base 51.02 27.59 47.85 0.441 100. 50.49 28.19 43.89 0.591 100.
w/ T5-large 52.56 29.33 49.38 0.465 100. 52.65 30.52 46.19 0.614 100.

Table 6: Results of entity-guided summarization with oracle entities on CNNDM and XSum datasets. R1/2/L
denotes ROUGE-1/2/L, BS denotes BERTScore, and SR denotes the success rate of lexical constraint satisfaction.
Bold-faced and underlined denote the best and second-best scores respectively.
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Figure 2: Distribution of the number of oracle enti-
ties. The CNNDM dataset (left) tends to have longer
summaries and contains more entities than the XSUM
dataset. As the number of entities increases, it becomes
more and more difficult to include all the entities in the
generated summary.

different and more difficult than in previous stud-348

ies. (Fan et al., 2018; He et al., 2022). While the349

previous studies measure whether a single speci-350

fied entity is included in the generated summary,351

this study measures whether all oracle entities are352

included.353

Results Table 6 shows the results of entity-354

guided summarization. CTRLSum and AutoTem-355

plate show improvements in summarization per-356

formance compared to the standard BART model,357

indicating that entity guidance contributes to the358

improvement in summarization performance.359

On the other hand, while AutoTemplate always360

satisfies entity constraints, CTRLSum shows a con-361

straint satisfaction success rate of 75.46% for CN-362

NDM and 86.32% for XSum, characterizing the363

difference between AutoTemplate and CTRLSum.364

As shown in Figure 3, while CTRLSum shows a365

high success rate when the number of entity con-366

straints is limited, the success rate decreases mono-367

tonically as the number of constraints increases. In368

contrast, the AutoTemplate showed a 100% success369

rate regardless of the number of entity constraints370
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Figure 3: Success rate of entities included in the gen-
erated summary at a different number of entities. The
green line denotes the BART model (Lewis et al., 2020),
the orange line denotes the CTRLSum model (He
et al., 2022), and blue line denotes AutoTemplate model.
These graphs show that CTRLSum can include a lim-
ited number of entities in summary with a high chance.
However, it becomes more and more difficult as the
number of entities increases, while AutoTemplate al-
ways satisfies the constraint.

and the highest summarization quality. 371

Table 7 shows the qualitative examples of the 372

generated summaries by CTRLSum and AutoTem- 373

plate. While CTRLSum could only include 10 of 374

the 18 constraint entities in the generated summary, 375

AutoTemplate covered all entities and generated a 376

fluent summary. 377

We also show the generated summaries with dif- 378

ferent entity conditioning by AutoTemplate in Ta- 379

ble 8. We confirmed that AutoTemplate can pro- 380

duce summaries with a different focus using differ- 381

ent entity conditioning and can also include con- 382

straint entities in the generated summary. 383

4 Analysis 384

Does AutoTemplate generate fluent text? Au- 385

toTemplate decomposes the lexically constrained 386

text generation task into template generation and 387
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Constrained Entities: { Amir Khan , Manny Pacquiao , Abu Dhabi , UAE , Khan , Floyd Mayweather Jr , Las Vegas , PacMan , Bob Arum , UAE ,

Khan , Muslim , Brit , the Money Man , PacMan , Khan , Chris Algieri , New York }

CTRLSum (He et al., 2022): Amir Khan could face Manny Pacquiao in Abu Dhabi , UAE . Khan has been linked with a fight with Floyd Mayweather Jr

in Las Vegas . The PacMan ’s promoter Bob Arum is keen for a fight in the UAE .

AutoTemplate: Amir Khan could face Manny Pacquiao in Abu Dhabi , UAE . Khan is preparing to face Floyd Mayweather Jr in Las Vegas on May

2. PacMan ’s vintage promoter Bob Arum has to hand a treasure trove of an offer for a fight in the UAE this November or December. Khan is a hero of the

Muslim world, the Brit would be a huge attraction there. Assuming that the Money Man wins his interim bout with PacMan next month, all that would

appear to stand between him and his long-awaited mega-fight is the outside chance of a re-match. Khan is set to fight Chris Algieri in New York next month.

Table 7: Qualitative comparisons between CTRLSum and AutoTemplate. Constraint entities are extracted from
the reference summary (oracle entities). Underlined entities are missed by the CTRLSum (He et al., 2022) while
AutoTemplate can incorporate them into the generated summary. Full version of this Table is in Appendix.

Constraint Entities: { Game Boy , Apple , Chris Gallizzi , Nintendo }

AutoTemplate: Case adds iconic Game Boy buttons to Apple handset. It also lets gamers play their existing cartridges on their handset. Developer

Chris Gallizzi said: ’We wanted to create a retro device that can be easily adapted into any modern gamer’s arsenal of devices’ Nintendo advised keeping
cartridges away from dust, where possible, to avoid gameplay glitches.

Constraint Entities: { Hyperkin , Nintendo , Game Boy Color , Start and Select }

AutoTemplate: Hyperkin has designed a case that adds the iconic directional arrows from the Nintendo Game Boy Color . It was originally devised as part of
an April Fool’s joke, but the popularity and demand for a real product was so high the firm has announced plans to sell it. It will feature an eight-way D-pad, two
action buttons, a Start and Select button, and a battery that can be charged through the phone.

Table 8: Examples of controlled summary generation by changing constraint entities. By conditioning with different
entities, the model can generate summaries with different points of interest for the same source article.

lexicalization tasks. The template generation task388

aims to produce unnatural text with placeholders,389

leading to concerns that the final output text will be390

less fluent than the directly generating natural text.391

To this end, we compare the fluency of the output392

text by AutoTemplate and baselines. We specifi-393

cally used the grammatical acceptability classifier394

based on roberta-large fine-tuned on CoLA395

dataset (Warstadt et al., 2019) following Krishna396

et al. (2020)8 and show the micro averaged accu-397

racy of sentence-level grammaticality.9398

We show the results in Table 10. For the399

keywords-to-sentence generation task, AutoTem-400

plate shows better fluency scores than the CBART401

model, characterizing the differences between402

CBART and AutoTemplate. While CBART re-403

lies on the non-autoregressive models, which leads404

to non-fluent text generation, AutoTemplate can405

be implemented on top of autoregressive models.406

Thus, AutoTemplate can generate more fluent out-407

put text.408

8https://huggingface.co/cointegrated/
roberta-large-cola-krishna2020

9Although we can also measure fluency using the perplex-
ity of an external language model, it can assign low perplexity
to unnatural texts containing common words (Mir et al., 2019).
Therefore, we decided to evaluate fluency using the classifier.

For the entity-guided summarization task, Au- 409

toTemplate shows similar fluency with the state- 410

of-the-art autoregressive text generation models, 411

including BART and CTRLSum, indicating that 412

the AutoTemplate can generate as fluent text as the 413

state-of-the-art direct generation models. 414

Importance of Pre-training To evaluate the im- 415

portance of T5 pre-training for AutoTemplate, we 416

performed ablation studies using a randomly ini- 417

tialized model. As shown in Table 9, we con- 418

firmed that the model with pre-training significantly 419

improves the quality of generated text in both 420

keywords-to-sentence generation and entity-guided 421

summarization cases. Note that the keywords-to- 422

sentence generation model with random initializa- 423

tion generally produced better text quality than 424

the baseline model, CBART, confirming the im- 425

portance of using autoregressive models. 426

Are unique placeholders needed? Throughout 427

this study, we assumed the unique placeholder to- 428

kens according to the order of appearance, i.e., 429

<X>, <Y> and <Z>, so we investigate the impor- 430

tance of this design choice. We show the perfor- 431

mance of AutoTemplate with a single type of place- 432

holder token (i.e., <X> for all placeholders in the 433
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Keywords-to-Sentence Generation Entity-guided Summarization
One-Billion-Word Yelp CNNDM XSum

B2 B4 N2 N4 M B2 B4 N2 N4 M R1 R2 RL BS R1 R2 RL BS

AutoTemplate 18.3 7.6 3.39 3.45 16.0 23.7 10.8 3.62 3.76 17.8 51.02 27.59 47.85 0.441 50.49 28.19 43.89 0.591
w/ random init 17.0 6.5 3.23 3.27 15.6 22.4 9.8 3.42 3.54 17.6 38.38 11.91 35.06 0.210 39.51 15.84 32.07 0.412
w/ single mask 16.6 5.9 3.15 3.19 15.0 15.9 5.2 2.86 2.92 13.8 48.05 24.53 44.69 0.387 45.67 23.07 39.31 0.493

Table 9: Ablation studies for keywords-to-sentence generation and entity-guided summarization tasks using T5-
base checkpoints. B2/4 denotes BLEU-2/4, N2/4 denotes NIST-2/4, M denotes METEOR-v1.5, R1/2/L denotes
ROUGE-1/2/L, and BS denotes BERTScore.

Fluency (%) Keywords-to-Sentence
One-billion-words Yelp

CBART (He, 2021) 94.42 93.95
InstructGPT (Ouyang et al., 2022) 96.57 96.94
AutoTemplate 97.05 98.15
Reference 97.25 90.77

Fluency (%) Entity-guided summarization
CNNDM XSum

BART (Lewis et al., 2020) 96.77 98.88
CTRLSum (He et al., 2022) 96.68 99.01
AutoTemplate 96.38 98.91
Reference 91.55 98.73

Table 10: Results of fluency evaluations by the accept-
ability classifier trained on CoLA dataset (Warstadt
et al., 2019).

.

template ỹ) in Table 9. We observed a significant434

drop in the quality of the generated text for both435

keywords-to-sentence generation and entity-guided436

summarization tasks, suggesting the importance of437

using unique placeholder tokens in the template.438

5 Further Related Work439

Template-based Text Generation For classical440

text generation systems, templates were an impor-441

tant building block (Kukich, 1983; Tanaka-Ishii442

et al., 1998; Reiter and Dale, 2000; Angeli et al.,443

2010). The advantage of a template-based system444

is that it can produce faithful text, but it can pro-445

duce disfluent text if an inappropriate template is446

selected. Therefore, the current primary approach447

is to produce fluent text directly from the input448

using end-to-end neural generation models.449

More recent studies have focused mainly on us-450

ing templates as an auxiliary signal to control the451

stylistic properties of the output text, such as deriv-452

ing templates as latent variables (Wiseman et al.,453

2018; Li and Rush, 2020; Fu et al., 2020) and using454

retrieved exemplars as soft templates (Cao et al.,455

2018; Peng et al., 2019; Hossain et al., 2020).456

Copy mechanism The copy mechanism was457

originally introduced to deal with the out-of-458

vocabulary problem in machine translation by se-459

lecting the words from the source for the generation 460

in addition to the vocabulary, such as the unknown 461

word replacement with post-processing (Jean et al., 462

2015; Luong et al., 2015), and the joint modeling of 463

unknown word probabilities into encoder-decoder 464

models (Gu et al., 2016; Gulcehre et al., 2016), but 465

with the advent of subword units (Sennrich et al., 466

2016; Kudo, 2018), the unknown word problem has 467

been diminished. Thus, the copy mechanism is not 468

widely used now for handling out-of-vocabulary 469

problems. 470

However, the copy mechanism still plays a vital 471

role in more complex text generation tasks such 472

as involving numerical computation (Murakami 473

et al., 2017; Suadaa et al., 2021) or logical rea- 474

soning (Chen et al., 2020). Specifically, they 475

produce special tokens that serve as placeholders 476

and replace them with the desired words in post- 477

processing. AutoTemplate adapts a similar copy 478

mechanism to perform lexically constrained text 479

generation, showing that it can cover all the con- 480

strained entities in its outputs, even for more com- 481

plex conditioning (more than ten entities). 482

6 Conclusions 483

This study proposes AutoTemplate, a simple yet 484

effective framework for lexically constrained text 485

generation. The core idea is to decompose lexically 486

constrained text generation into two steps, template 487

generation, and lexicalization, by converting the 488

input and output formats. The template generation 489

can be done with standard encoder-decoder mod- 490

els with beam search so that AutoTemplate can 491

perform lexically constrained text generation with- 492

out using dedicated decoding algorithms such as 493

non-autoregressive decoding and constrained beam 494

search. Experimental results show that the Au- 495

toTemplate significantly outperforms the competi- 496

tive baselines across keywords-to-sentence genera- 497

tion and entity-guided summarization tasks while 498

satisfying the lexical constraints. 499
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7 Ethical Considerations500

We do not see any ethical issues, but we would like501

to mention some limitations. This study proposes a502

method to perform hard lexically constrained text503

generation and shows that our proposed method504

could generate high-quality text in terms of the505

automatic evaluation metrics while satisfying the506

lexical constraints, but this does not guarantee the507

faithfulness of generated text. For example, in the508

summarization task, our method does not directly509

generate entities prone to errors, so the risk of gen-510

erating summaries with unfaithful entities to the511

input text could be lower than existing methods.512

Still, the risk of generating unfaithful text in other513

areas remains.514
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A More qualitative examples870

Table 11-14 show more qualitative examples of871

keywords-to-sentence generation task, and Ta-872

ble 15 shows the full set of qualitative examples of873

entity-guided summarization task, including BART874

and reference summaries.875

B Additional Experimental Details876

B.1 Training details877

Major hyper-parameters for training models are re-878

ported in Table 16 following the "Show-You-Work"879

style suggested by Dodge et al. (2019).880

C Experimental details of InstructGPT881

We empirically evaluated the zero-shot capa-882

bility of InstructGPT (Ouyang et al., 2022)883

for keywords-to-sentence generation task. We884

specifically used text-davinci-003 check-885

point and the prompt: "Please create886

a sentence that must contain887

Keywords: government , ability , companies , legal

Reference: Generally , the government has

the ability to compel the cooperation of private

companies and assure them legal immunity with a
valid court order .

CBART: The government has restricted the ability

of insurance companies to take legal action .

AutoTemplate: The government has the ability to

force companies to comply with legal requirements,
he said.

Table 11: Example generations for the keywords-to-
sentence generation on One-billion-word.

Keywords: time , voters , primary , days

Reference: At the same time , he said the more he
appears before voters , the better he does on primary

days .

CBART: The last time , the voters were in the
primary , two days before Nov .

AutoTemplate: At the same time , voters will be able
to cast their ballots during the primary days , he said.

Table 12: Example generations for the keywords-to-
sentence generation on One-billion-word.

the following keywords: {{’, 888

’.join(keywords)}}." to generate sen- 889

tences that includes the pre-specified keywords. 890

To obtain deterministic output text, we use the 891

temperature parameter 0. 892

D Full results of keywords-to-sentence 893

generation 894

We show non-aggregated results of keywords-to- 895

sentence generation in Table 17. The results show 896

that the AutoTemplate consistently outperforms 897

baseline models. 898
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Keywords: experience , top , easily , driver

Reference: my experience with lv cans was top

notch . cab was easily flagged just off the strip , the

route was direct and the driver was very nice .

CBART: the whole experience was top notch ,

easily by the driver .

AutoTemplate: i had a great experience with this com-

pany. they were on top of everything. i was easily

able to get a driver to pick me up at my hotel.

Table 13: Example generations for the keywords-to-
sentence generation on Yelp.

Keywords: southern , fresh , made , friendly

Reference: absolutely , the best pizza in southern
nevada ! the pizza is always fresh , made fresh as
ordered . the wait staff is very friendly and effecient !

CBART: great southern food , fresh and made with
friendly staff .

AutoTemplate: this is the best southern food i have
ever had. everything is fresh and made to order. the
staff is very friendly and helpful. i will definitely be
back.

Table 14: Example generations for the keywords-to-
sentence generation on Yelp.
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Constrained Entities: { Amir Khan , Manny Pacquiao , Abu Dhabi , UAE , Khan , Floyd Mayweather Jr , Las Vegas ,

PacMan , Bob Arum , UAE , Khan , Muslim , Brit , the Money Man , PacMan , Khan , Chris Algieri , New York }

BART (Lewis et al., 2020): Amir Khan has been linked with a fight with Manny Pacquiao . The fight could take place in

Abu Dhabi in November or December. Khan is preparing to fight Chris Algieri in New York next month. Pacquiao is

preparing to face Floyd Mayweather on May 2 in Las Vegas .

CTRLSum (He et al., 2022): Amir Khan could face Manny Pacquiao in Abu Dhabi , UAE . Khan has been linked with

a fight with Floyd Mayweather Jr in Las Vegas . The PacMan ’s promoter Bob Arum is keen for a fight in the UAE .

AutoTemplate: Amir Khan could face Manny Pacquiao in Abu Dhabi , UAE . Khan is preparing to face

Floyd Mayweather Jr in Las Vegas on May 2. PacMan ’s vintage promoter Bob Arum has to hand a treasure trove

of an offer for a fight in the UAE this November or December. Khan is a hero of the Muslim world, the Brit would be a

huge attraction there. Assuming that the Money Man wins his interim bout with PacMan next month, all that would appear

to stand between him and his long-awaited mega-fight is the outside chance of a re-match. Khan is set to fight Chris Algieri

in New York next month.

Reference: Amir Khan could be set to face Manny Pacquiao in Abu Dhabi , UAE . Khan ’s hopes of taking on

Floyd Mayweather Jr in Las Vegas have faded. PacMan ’s promoter Bob Arum has a mega offer for a UAE fight

late in 2015. Khan is a hero of the Muslim world and his lure in the Middle East is clear. The Brit will be ringside when

the Money Man fights the PacMan on May 2. Khan must first win interim bout with Chris Algieri in New York on May

29.

Table 15: Full version of the qualitative examples including BART and reference summaries in addition to
CTRLSum and AutoTemplate. Constraint entities are extracted from the reference summary (oracle entities).
Underlined entities are missed by the CTRLSum (He et al., 2022) while AutoTemplate can incorporate them into
the generated summary.
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Computing infrastructure NVIDIA A100

Training duration 4h

Search strategy Manual tuning

Model implementation [MASK]

Model checkpoint [MASK]

Hyperparameter Search space Best assignment

# of training steps 50,000 50,000

validation interval 5,000 5,000

batch size 32 32

initial checkpoint for small models google/t5-v1_1-small google/t5-v1_1-small
initial checkpoint for base models google/t5-v1_1-base google/t5-v1_1-base
initial checkpoint for large models google/t5-v1_1-large google/t5-v1_1-large

label-smoothing (Szegedy et al., 2016) choice[0.0, 0.1] 0.1

learning rate scheduler linear schedule with warmup linear schedule with warmup

warmup steps 5,000 5,000

learning rate optimizer AdamW (Loshchilov and Hutter, 2019b) AdamW (Loshchilov and Hutter, 2019b)

AdamW β1 0.9 0.9

AdamW β2 0.999 0.999

learning rate 5e-5 5e-5

weight decay choice[0.0, 1e-3, 1e-2] 1e-2

max grad norm 0.1 0.1

beam width for keywords-to-sentence 4 4
beam width for entity-guided summarization on CNNDM 8 8
beam width for entity-guided summarization on XSUM 6 6

Table 16: AutoTemplate search space and the best assignments.
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# of keywords = 1 One-Billion-Word Yelp
B2 B4 N2 N4 M SR B2 B4 N2 N4 M SR

CBART (He, 2021) 3.81 0.61 0.34 0.34 6.77 100. 5.71 1.66 0.31 0.32 8.33 100.
InstructGPT (Ouyang et al., 2022) 2.49 0.32 0.24 0.24 5.93 98.4 2.39 0.31 0.18 0.18 6.34 98.5

AutoTemplate
w/ T5-small 5.56 0.88 1.23 1.23 9.04 100. 9.80 2.46 1.65 1.68 10.84 100.
w/ T5-base 6.01 1.01 1.36 1.36 8.82 100. 9.95 2.52 1.68 1.68 10.94 100.
w/ T5-large 6.19 1.16 1.40 1.40 8.74 100. 9.78 2.44 1.67 1.69 10.99 100.

# of keywords = 2 B2 B4 N2 N4 M SR B2 B4 N2 N4 M SR

CBART (He, 2021) 7.25 1.91 0.68 0.68 10.02 100. 9.67 3.14 0.74 0.76 11.75 100.
InstructGPT (Ouyang et al., 2022) 4.57 0.84 0.48 0.49 8.68 95.2 3.94 0.66 0.30 0.30 8.89 95.0

AutoTemplate
w/ T5-small 8.23 1.77 1.72 1.73 11.49 100. 13.46 3.94 2.14 2.18 13.09 100.
w/ T5-base 9.76 2.52 2.00 2.02 11.39 100. 13.71 4.16 2.18 2.22 13.36 100.
w/ T5-large 10.06 2.59 2.05 2.06 11.35 100. 13.55 4.04 2.17 2.21 13.25 100.

# of keywords = 3 B2 B4 N2 N4 M SR B2 B4 N2 N4 M SR

CBART (He, 2021) 11.68 3.84 1.26 1.27 13.30 100. 16.03 6.48 1.73 1.77 15.75 100.
InstructGPT (Ouyang et al., 2022) 7.58 1.58 0.97 0.97 11.52 92.5 6.67 1.30 0.66 0.67 11.95 92.2

AutoTemplate
w/ T5-small 13.20 3.73 2.60 2.62 13.76 100. 19.17 7.09 2.99 3.07 15.66 100.
w/ T5-base 15.26 5.13 2.85 2.88 14.08 100. 19.82 7.81 3.05 3.15 16.20 100.
w/ T5-large 16.05 5.53 3.00 3.03 14.26 100. 20.20 8.11 3.09 3.19 16.01 100.

# of keywords = 4 B2 B4 N2 N4 M SR B2 B4 N2 N4 M SR

CBART (He, 2021) 17.67 7.07 2.31 2.34 16.92 100. 22.45 10.28 3.00 3.10 19.39 100.
InstructGPT (Ouyang et al., 2022) 11.29 3.09 1.81 1.82 14.52 91.6 10.35 2.68 1.46 1.48 15.19 90.1

AutoTemplate
w/ T5-small 19.04 6.54 3.76 3.81 16.51 100. 25.84 10.77 3.96 4.10 18.30 100.
w/ T5-base 20.92 8.05 3.97 4.02 17.19 100. 26.87 12.26 4.02 4.21 19.03 100.
w/ T5-large 21.23 8.58 4.01 4.08 17.29 100. 28.04 12.95 4.20 4.36 19.25 100.

# of keywords = 5 B2 B4 N2 N4 M SR B2 B4 N2 N4 M SR

CBART (He, 2021) 23.51 10.78 3.50 3.56 20.36 100. 27.97 13.80 4.12 4.28 22.73 100.
InstructGPT (Ouyang et al., 2022) 15.32 4.46 2.86 2.88 17.43 89.9 13.97 3.92 2.41 2.44 18.05 90.9

AutoTemplate
w/ T5-small 23.47 9.76 4.33 4.40 19.58 100. 30.43 13.87 4.78 4.97 20.92 100.
w/ T5-base 25.97 12.03 4.68 4.78 20.44 100. 32.85 16.40 4.94 5.16 22.01 100.
w/ T5-large 26.89 12.74 4.79 4.89 20.93 100. 33.11 16.71 5.05 5.28 22.18 100.

# of keywords = 6 B2 B4 N2 N4 M SR B2 B4 N2 N4 M SR

CBART (He, 2021) 29.93 15.38 4.83 4.93 23.72 100. 34.50 18.56 5.35 5.59 26.33 100.
InstructGPT (Ouyang et al., 2022) 19.50 6.71 3.93 3.97 20.20 86.4 18.33 5.76 3.50 3.55 21.01 86.3

AutoTemplate
w/ T5-small 28.69 13.79 5.00 5.10 22.87 100. 36.31 18.99 5.53 5.80 24.03 100.
w/ T5-base 31.98 17.08 5.50 5.63 23.97 100. 38.85 21.73 5.80 6.10 25.36 100.
w/ T5-large 33.20 18.18 5.66 5.80 24.42 100. 39.63 22.60 5.92 6.24 25.69 100.

Table 17: Comprehensive results of keywords-to-sentence generation on the One-Billion-Word and Yelp datasets.
Bold-faced and underlined denote the best and second-best scores respectively. Baseline results are copied from He
(2021). B2/4 denotes BLEU-2/4, N2/4 denotes NIST-2/4, M denotes METEOR-v1.5, and SR denotes the success
rate of lexical constraint satisfaction.
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