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ABSTRACT

Vision transformer (ViT) has recently shown its strong capability in achieving
comparable results to convolutional neural networks (CNNs) on image classifica-
tion. However, vanilla ViT simply inherits the same architecture from the natural
language processing directly, which is often not optimized for vision applications.
Motivated by this, in this paper, we propose a new architecture that adopts the
pyramid structure and employ novel regional-to-local attention rather than global
self-attention in vision transformers. More specifically, our model first generates
regional tokens and local tokens from an image with different patch sizes, where
each regional token is associated with a set of local tokens based on the spatial
location. The regional-to-local attention includes two steps: first, the regional
self-attention extracts global information among all regional tokens and then the
local self-attention exchanges the information among one regional token and the as-
sociated local tokens via self-attention. Therefore, even though local self-attention
confines the scope in a local region but it can still receive global information.
Extensive experiments on four vision tasks, including image classification, ob-
ject and keypoint detection, semantics segmentation and action recognition, show
that our approach outperforms or is on par with state-of-the-art ViT variants in-
cluding many concurrent works. Our source codes and models are available at
https://github.com/IBM/RegionViT.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) based on self-attention come naturally with the ability to learn
long-range dependencies in sequential data. As important as it is to language modeling (Devlin et al.,
2019), such ability is also highly desired for many vision tasks where contextual modeling plays a
significant role. For this reason, self-attention and transformers have been receiving an increasing
attention in the vision community (Bello, 2021; Srinivas et al., 2021; Zhao et al., 2020; Ramachandran
et al., 2019a; Bello et al., 2019; Hu et al., 2019; Ramachandran et al., 2019b; Wang et al., 2018).
Especially, the recent Vision Transformers (ViT) (Dosovitskiy et al., 2021) demonstrates comparable
image classification results against the firmly established and prevalent CNNs in computer vision (He
et al., 2016; Tan & Le, 2019; Brock et al., 2021), albeit relying on a huge amount of training data. It
has since then led to an explosion of interest in further investigating its potential for a wide variety of
vision applications (Wu et al., 2021; Wang et al., 2021; Heo et al., 2021; Zhang et al., 2021a; Li et al.,
2021; Graham et al., 2021; Liu et al., 2021; Chu et al., 2021a; Yan et al., 2021; Chen et al., 2021b).

The ViT inherits the entire architecture from the vanilla transformer (Vaswani et al., 2017), which is
designed for natural language processing tasks, and some of those designs thus may not meet the
needs of vision tasks. For example, the transformer has an isotropic network structure with a fixed
number of tokens and unchanged embedding size, which loses the capability to model the context
with different scales and allocates computations at different scales. As opposed to this, a majority of
CNNs adopt a popular pyramid architecture to compute multi-scale features efficiently. Recent vision
transformers such as PVT (Wang et al., 2021) and PiT (Heo et al., 2021) also follow a similar pyramid
structure as CNNs, showing improvement on both computation and memory efficiency as well as
on model accuracy. Another critical bottleneck of the transformer is that the self-attention module
has a quadratic cost in memory and computation with regard to the sequence length (i.e., the number
of tokens). This issue is even worse in ViT as images are 2-D, suggesting a quadratic relationship
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between the number of tokens and image resolution. As a result, ViT indicates a quadruple complexity
w.r.t image resolution. The highly compute- and memory-intensive self-attention makes it challenging
to train vision transformer models at fine-grained patch sizes. It also significantly undermines the
applications of these models to tasks such as object detection and semantic segmentation, which
benefit from or require fine feature information computed from high-resolution images.
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Figure 1: Regional-to-Local Attention
for Vision Transformers. (a) ViT uses
a fixed patch size through the whole net-
work, (b) PVT adopts a pyramid structure
to gradually enlarge the patch size in the net-
work. Both ViT and PVT uses all tokens
in self-attention, which are computational-
and memory-intensive. (c) Our proposed ap-
proach combines a pyramid structure with
an efficient regional-to-local (R2L) attention
mechanism to reduce computation and mem-
ory usage. Our approach divides the input
image into two groups of tokens, regional to-
kens of large patch size (red) and local ones
of small patch size (black). The two types of
tokens communicate efficiently through R2L
attention, which jointly attends to the local
tokens in the same region and the associated
regional token. Note that the numbers denote
the patch sizes at each stage of a model.

To address the aforementioned computational limitations
of vision transformers, in this work, we develop a memory-
friendly and efficient self-attention method for transformer
models to reach their promising potential for vision appli-
cations. We propose a novel coarse-to-fine mechanism to
compute self-attention in a hierarchical way. Specifically,
our approach first divides the input image into a group of
non-overlapping patches of large size (e.g., 28×28), on
which regional tokens are computed via linear projection.
Similarly, local tokens are created for each region using
a smaller patch size (e.g., 4×4). We then use a standard
transformer to process regional and local tokens separately.
To enable communication between the two types of tokens,
we first perform self-attention on regional tokens (regional
attention) and then jointly attend to the local tokens of
each region including their associated regional token (lo-
cal attention). By doing so, regional tokens pass global
contextual information to local tokens efficiently while be-
ing able to effectively learn from local tokens themselves.
For clarity, we represent this two-stage attention mecha-
nism as Regional-to-Local Attention, or R2L attention for
short (see Figure 1 for an illustration). Since both regional
and local attention involve much fewer tokens, our R2L
attention requires substantially less memory than regular
global self-attention used in vision transformers. For ex-
ample, in our default setting, the memory saving using
R2L attention can be up to as much as 73%. We demonstrate the effectiveness of our approach
on image classification and several downstream vision tasks including object detection and action
recognition.

To summarize, our key contributions in this work are as follows:

1. We propose a new vision transformer (RegionViT) based on regional-to-local attention to learn
both local and global features. Our proposed regional-to-local attention alleviates the overhead of
standard global attention (too many tokens) and the weakness of pure local attention (no interaction
between regions) used in existing vision transformers.

2. Our regional-to-local attention reduces the memory complexity significantly as compared to
standard self-attention, leading to a savings in memory complexity by about O(N/M2), where
M is the window size of a region and N is the total number of tokens. This effectively allows us
to train a more deep network for better performance while with comparable complexity.

3. Our models outperform or on par with several concurrent works on vision transformer that exploit
pyramid structure for image classification. Experiments also demonstrate that our models work
well on several downstream classification tasks, including object detection and action recognition.

2 RELATED WORK

CNNs with Attention. Attention has been widely used for enhancing the features in CNNs, e.g.,
SENet (Hu et al., 2018) and CBAM (Woo et al., 2018). Various methods have been proposed that
combine self-attention with CNNs (Bello, 2021; Srinivas et al., 2021; Zhao et al., 2020; Ramachandran
et al., 2019a; Bello et al., 2019; Hu et al., 2019; Ramachandran et al., 2019b; Wang et al., 2018). E.g.,
SAN (Zhao et al., 2020) and SASA (Ramachandran et al., 2019a) attempts to replace all convolutional
layers with local self-attention network. While these works show promising results, their complexity
is relatively high due to the self-attention. On the other hand, BoTNet (Srinivas et al., 2021) replaces
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Table 1: Comparison to related works. Most works use non-overlapped windows to group tokens, and then
propose the corresponding methods to assure the information exchange among regions.

Methods Structure Attention Types Windows of
Local Attention

Handling Non-overlapped
Regions Global Tokens

ViT (Dosovitskiy et al., 2021) Isotropic Global N/A N/A N/A
PVT (Wang et al., 2021) Pyramid Global N/A N/A N/A
Swin (Liu et al., 2021) Pyramid Local Strictly Non-overlapped Shifting the window None
ViL (Zhang et al., 2021a) Pyramid Local + Global Overlapped N/A1 One learnable token
Twins (Chu et al., 2021a) Pyramid Local + Global Non-overlapped GA Subsampled from local tokens
RegionViT (Ours) Pyramid Local + Regional Non-overlapped Regional-to-local attention Regional tokens
GA: global attention. 1: not applicable as ViL used overlapped windows.

few convolutional layers with a slightly-modified self-attention to balance computation and accuracy.
LambdaNet work (Bello, 2021) uses the approximated self-attention to reduce the overhead of self-
attention and make the network efficient. Few works use attention approach to define the regional of
interest for the fine-grained visual recognition (Zheng et al., 2020; Ding et al., 2021; Wharton et al.,
2021). In contrast, our model utilizes regional-to-local attention to alleviate the workload of global
self-attention by local attention while still keeping the global information via regional attention.

Vision Transformer. ViT (Dosovitskiy et al., 2021) has recently achieved comparable results
to CNNs when using a huge amount of data, e.g., JFT300M (Sun et al., 2017). DeiT (Touvron
et al., 2020; Wightman, 2019) subsequently proposes an efficient training scheme that allows vision
transformer to work on par with CNNs while training only on ImageNet1K (Deng et al., 2009).
Despite promising performance of ViT, the architecture is directly borrowed from natural language
processing, which might not be suitable for vision applications. Motivated by this, two main line of
research works have been developed to improve ViT. One is to enhance different components of the
vision transformer (Yuan et al., 2021; Han et al., 2021; Touvron et al., 2021; Jiang et al., 2021) while
still using isotropic structure (i.e., fixed token numbers and channel dimension) like ViT, e.g., while
T2T-ViT (Yuan et al., 2021) introduces a Tokens-to-Token (T2T) transformation to encode local
structure for each token, CrossViT propose a dual-path architecture, each with different scales, to
learn multi-scale features (Chen et al., 2021a). CaiT (Touvron et al., 2021) proposes a layer-scalar to
train a deeper network for better performance and LV-ViT (Jiang et al., 2021) modified how the model
is trained when CutMix (Yun et al., 2019) augmentation is applied on ViT. Another parallel thread
for improving vision transformer is in incorporating CNN-like pyramid structure into ViT (Wu et al.,
2021; Wang et al., 2021; Heo et al., 2021; Zhang et al., 2021a; Li et al., 2021; Graham et al., 2021;
Liu et al., 2021; Chu et al., 2021a; Yan et al., 2021; Chen et al., 2021b). PVT (Wang et al., 2021) and
PiT (Heo et al., 2021) introduce the pyramid structure into ViT, which makes them more suitable for
objection detection as it can provide multi-scale features. LocalViT (Li et al., 2021) and ConT (Yan
et al., 2021) mix convolutions with self-attention to encode locality information. Swin (Liu et al.,
2021), ViL (Zhang et al., 2021a) and Twins (Chu et al., 2021a) limited the self-attention into a local
region and then propose different methods to allow the interaction among each local region. Our
model also utilizes pyramid structure and limits the self-attention in a local region; while we propose
the regional-to-local attention to exchange the information among each region efficiently.

Difference from PVT, Swin, ViL and Twins. Table 1 summarizes the difference between our
proposed approach, RegionViT with the closely related works. PVT (Wang et al., 2021) uses pyramid
structure but the scope of self-attention is still global. While ViL (Zhang et al., 2021a) limits
self-attention into a local region, they adopt overlapping windows as convolutions to process all
the tokens. On the other hand, Swin (Liu et al., 2021), Twins (Chu et al., 2021a) and ours adopt
non-overlapped windows. While Swin shifts the position of windows alternatively in the consecutive
transformer encoder to allow the interaction between regions, Twins subsamples local tokens as the
global tokens, and then use the global tokens as the keys for self-attention to achieve the interaction
between regions. By contrast, our proposed method utilizes a extra set of regional tokens with
regional-to-local attention to perform self-attention on regional tokens only for the global information
and then each regional token is sent to the associated local tokens to pass the global information.
One major difference from others is that the local self-attention in our approach includes one extra
regional token to exchange the global information with local tokens.

3 METHOD

Our method is built on top of a vision transformer, so we first present a brief background of ViT and
then describe our method (RegionViT) on regional-to-local attention for vision transformers.
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Figure 2: Architecture of the proposed RegionViT. Two paths are in our proposed network, including
regional tokens and local tokens, and their information is exchanged in the regional-to-local (R2L) transformer
encoders. In the end, we average all regional tokens and use it for the classification. The tensor shape here is
computed based on that regional tokens take a patch of 282 and local tokens take a patch of 42.

Vision Transformer. As opposed to CNN-based approaches for image classification, ViT is a purely
attention-based counterpart, borrowed from NLP. It consists of stacked transformer encoders, each
of which contains a multihead self-attention (MSA) and a feed-forward network (FFN) with layer
normalization and residual shortcut. To classify an image, ViT first splits it into patches of fixed size,
e.g. 16×16, and then transforms them into tokens by linear projection. A class token is additionally
prepended to the patch tokens to form the input sequence. Before the token are fed into transformer
encoders, a learnable absolute positional embedding is added to each token to learn the position
information. At the end of the network, the class token is used as the final feature representation for
classification. Mathematically, ViT can be expressed as

x0 = [xcls||xpatch] + xpos

yk = xk−1 + MSA(LN(xk−1)),xk = yk + FFN(LN(yk)),
(1)

where xcls ∈ R1×C and xpatch ∈ RN×C are the class token and patch tokens respectively and
xpos ∈ R(1+N)×C is the position embedding, and [ || ] denotes the tensor concatenation. k, N and C
are the layer index, the number of patch tokens and dimension of the embedding, respectively.

While the vanilla ViT is ideally capable of learning global interaction among all the patch tokens, the
memory complexity of self-attention becomes high when there are many tokens as the complexity
is quadratically linear to the length of the input sequence. Moreover, the use of isotropic structure
limits the capability of extending the vanilla ViT model to many vision applications that require
high-resolution details, e.g., object detection. To address these issues, we propose regional-to-local
attention for vision transformer, RegionViT for short.

An Overview of Our Proposed Approach (RegionViT). Figure 2 illustrates the architecture of the
proposed vision transformer, which consists of two tokenization processes that convert an image into
regional (upper path) and local tokens (lower path). Each tokenization is a convolution with different
patch sizes, e.g., in Figure 2, the patch size of regional tokens is 282 while 42 is used for local tokens
with dimensions projected to C, which means that one regional token covers 72 local tokens based on
the spatial locality, leading to the window size of a local region to 72. At stage 1, two sets of tokens
are passed through the proposed regional-to-local transformer encoders. However, for the later stages,
to balance the computational load and to have feature maps at different resolutions, we deploy a
downsampling process to halve the spatial resolution while doubling the channel dimension like CNN
on both regional and local tokens before going to the next stage. Finally, at the end of the network, we
average the remaining regional tokens as the final embedding for the classification while the detection
uses all local tokens at each stage since it provides more fine-grained location information. By having
the pyramid structure, the ViT can generate multi-scale features and hence it could be easily extended
to more vision applications, e.g., object detection, rather than image classification only. We explain
the main components of the regional-to-local transformer encoder in the next section.

Regional-to-Local Transformer Encoder. Figure 3 shows the proposed regional-to-local (R2L)
transformer encoder which includes R2L attention and feed-forward network (FFN). Specifically,
within R2L attention, the regional self-attention (RSA) first involves all regional tokens to learn the
global information efficiently as the number of regional tokens is few and then local self-attention
(LSA) takes the local tokens with the associated regional token to learn local feature while the
involved regional token could provide global information at the same time. Both RSA and LSA are
multihead self-attention (MSA) but with different input tokens. Finally, the FFN is applied to enhance
the features. We also add layer normalization (LN) and residual shortcuts as in standard transformer
encoders. Mathematically, given the regional and local tokens, xd−1

r and xd−1
l as the inputs at layer

d, the R2L transformer encoder can be expressed as:
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yd
r = xd−1

r + RSA(LN(xd−1
r )), yd

i,j = [yd
ri,j ||{x

d−1
li,j,m,n

}m,n∈M ]

zdi,j = yd
i,j + LSA(LN(yd

i,j)), xd
i,j = zdi,j + FFN(LN(zdi,j))

(2)

where i, j are the spatial index with respect to regional tokens whilem,n are the index of local token in
the window size M2. Note that the input of LSA, yd

i,j , includes one regional token and corresponding
local tokens, and thus, the information between local and regional tokens are exchanged; on the other
hand, the outputs, xd

r and xd
l , can be extracted from xd

i,j like the top-right equation.
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Figure 3: Illustration of Regional-to-Local (R2L) Transformer
Encoder. All regional tokens are first passed through regional
self-attention (RSA) to exchange the information among regions
and then local self-attention (LSA) performs parallel self-attention
where each takes one regional token and corresponding local to-
kens. After that, all the tokens are passed through the feed-forward
network and split back to the regional and local tokens. RSA and
LSA share the same weights.

The RSA exchanges information
among all tokens, which covers the
context of the whole image; while the
LSA combines the features among the
tokens belonging to the spatial region,
including both regional and local to-
kens. Since the regions are divided
by non-overlapped windows, the RSA
is also designed to exchange the in-
formation among regions where the
LSA takes one regional token and then
combines with it the local tokens in
the same region. In such a case, all lo-
cal tokens are still capable of getting
global information while being more
focused on local neighbors. It is worth
noting that the weights are shared be-
tween RSA and LSA except for the layer normalization; therefore, the number of parameters won’t
increase significantly when compared to the standard transformer encoder. With these two attentions,
the R2L can effectively and efficiently exchange information among all regional and local tokens. In
particular, the self-attention on regional tokens aims to extract high-level information and act as a
bridge to pass information of local tokens from one region to other regions. On the other hand, the
R2L attention focus on local contextual information with one regional token.

Moreover, the R2L transformer encoder can further reduce the memory complexity significantly.
The memory complexity of a self-attention is O(N2), where N is the number of local tokens.
When a region contains M local tokens, and there are N/M regions, the memory complexity is
O((M + 1)2 × (N/M)); while the complexity from the attention on regional tokens is O((N/M)2).
Hence, the overall complexity becomesO((M+1)2×(N/M)+(N/M)2). E.g., the main component
of RegionViT is stage 3, where M is 49 and N is 196; therefore, the memory complexity saving is
∼ 73%. The saving of each model and each stage is varied based on the model configuration.

Relative Position Bias. The locality is an important clue for understanding visual content; therefore,
instead of adding absolute position embedding used by the vanilla ViT, we introduce the relative
position bias into the attention map of R2L attention since relative position between patches (or
pixels) are more important than the absolution position as objects in the images can be placed in an
arbitrary way (Ramachandran et al., 2019a; Liu et al., 2021). We only add this bias to the attention
between local tokens and not the attention between regional tokens and local tokens. Specifically, for
a given pair of local tokens at location, (xm, ym), (xn, yn), the attention value a can be expressed as

a(xm,ym),(xn,yn) = softmax
(
q(xm,ym)k

T
(xn,yn)

+ b(xm−xn,ym−yn)

)
, (3)

where b(xm−xn,ym−yn) is taken from a learnable parameter B ∈ R2M−1×2M−1, where M is the
window size of a region. The first term q(xm,ym)k

T
(xn,yn)

is the attention value based on their content.

With relative position bias, our model does not require the absolute positional embedding as vanilla
ViT since this relative position bias helps to encode the position information.

Downsampling. The spatial and channel dimension are changed along different stages of our network
by simply applying 3×3 depth-wise convolution with stride 2 for halving the resolution and doubling
the channel dimension for both regional and local tokens (weights are shared) (Heo et al., 2021). We
also test with regular convolutions but it does not improve the accuracy with increased complexity.
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Table 2: Model architectures of RegionViT. For all networks, the dimension per head is 32 and the expanding
ratio r in FFN is 4. The patch size of local tokens is always 4 while the patch size of regional tokens is 4×M .

Model Tokenization Window size (M ) Dimension (C) # of Encoders
Local Regional at each stage

RegionViT-Ti 3-conv linear 7 {64, 128, 256, 512} {2, 2, 8, 2}
RegionViT-S 3-conv linear 7 {96, 192, 384, 768} {2, 2, 8, 2}
RegionViT-M 1-conv linear 7 {96, 192, 384, 768} {2, 2, 14, 2}
RegionViT-B 1-conv linear 7 {128, 256, 512, 1024} {2, 2, 14, 2}
1-conv: Conv(out=C, k=8, s=4, p=3). 3-conv: Conv(out=C/4, k=3, s=2, p=1)→ Conv(out=C/2, k=3, s=2, p=1)→
Conv(out=C, k=3, s=1, p=1), where C is the channel dimension of the first block. LayerNorm and GeLU are added between Conv.

Input Tokenization. The tokenization for local tokens can be implemented by using a 4×4 convolu-
tion with channel size C and stride 4 (i.e. non-overlapped). However, as pointed out in T2T (Yuan
et al., 2021), CrossViT (Chen et al., 2021a), and PiT (Heo et al., 2021), using a stronger but still
simple subnetwork for the tokenization could further improve the performance, especially for the
smaller models. Thus, we adopt two input tokenizations in our model, one still contains only one
convolutional layer and another one contains three convolutional layers (see Table 2 for details).

Regional Tokens. We adopt a simple approach to generate regional tokens, that is, using linear
projection with larger patch sizes in comparison to the patch size for the local tokens. E.g., as shown
in Figure 2, the patch size for local tokens is 4×4, we simply use patch size 28×28 to split the image
and then project each patch linearly to generate regional tokens.

Table 2 shows our RegionViT models with different configurations. By default, the window size is 7
while we also experiment with a larger window size (14), those models are annotated with +.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION

Datasets. We use ImageNet1K (Deng et al., 2009) (IN1K) and ImageNet21K (Deng et al., 2009)
(IN21K) to validate our method. ImageNet1K contains 1.28 million training images and 50k val-
idation images over 1k classes, and ImageNet21K is a large-scale dataset that consists of around
14 million images over 21,841 classes. We use all images for training and then finetune the model
on ImageNet1K. Moreover, we also perform the transfer learning from ImageNet1K to five down-
stream datasets, including CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009),
IIIPets (Parkhi et al., 2012), StandfordCars (Krause et al., 2013) and ChestXRay8 (Wang et al., 2017).

Training and Evaluation. We follow DeiT (Touvron et al., 2020) to train our models on IN1K except
that we use batch size 4,096 with a base learning rate 0.004 and the warm-up epochs is 50. We adopt
the AdamW (Loshchilov & Hutter, 2019) optimizer with cosine learning rate scheduler (Loshchilov
& Hutter, 2017). We apply Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), RandomEras-
ing (Zhong et al., 2020), label smoothing (Szegedy et al., 2016), RandAugment (Cubuk et al., 2020)
and instance repetition (Hoffer et al., 2020). During training, we random cropped a 224×224 region
and take a 224×224 center crop after resizing the shorter side to 256 for evaluation. We used a similar
setting for IN21K and transfer learning, and more details can be found in Section A.1.

Table 3: Comparisons with recent pyramid-like structure-based ViT models on ImageNet1K. The bold numbers
indicate the best number within each section.

Model Params (M) FLOPs (G) Acc. (%)

PiT-XS (Heo et al., 2021) 10.6 1.4 78.1
ConT-S (Yan et al., 2021) 10.1 1.5 76.5
PVT-T (Wang et al., 2021) 13.2 1.9 75.1
ConViT-Ti+ (d’Ascoli et al., 2021) 10.0 2.0 76.7
Twins-SVT-S (Chu et al., 2021a) 24.0 2.8 81.7
PiT-S (Heo et al., 2021) 23.5 2.9 80.9
ConT-M (Yan et al., 2021) 19.2 3.1 80.2
Twins-PCPVT-S (Chu et al., 2021a) 24.1 3.7 81.2
PVT-S (Wang et al., 2021) 24.5 3.8 79.8
RegionViT-Ti 13.8 2.4 80.4
RegionViT-Ti+ 14.3 2.7 81.5

DeiT-S (Touvron et al., 2020) 22.1 4.6 79.9
CvT-13 (Wu et al., 2021) 20.0 4.5 81.6
Swin-T (Liu et al., 2021) 29.0 4.5 81.3
LocalViT-S (Li et al., 2021) 22.4 4.6 80.8
ViL-S (Zhang et al., 2021a) 24.6 4.9 82.0
Visformer-S (Chen et al., 2021b) 40.2 4.9 82.3
ConViT-S (d’Ascoli et al., 2021) 27.0 5.4 81.3
NesT-S (Zhang et al., 2021b) 17.0 5.8 81.5
RegionViT-S 30.6 5.3 82.6
RegionViT-S+ 31.3 5.7 83.3

Model Params (M) FLOPs (G) Acc. (%)

ConT-M (Yan et al., 2021) 39.6 6.4 81.8
Twins-PCPVT-B (Chu et al., 2021a) 43.8 6.4 82.7
PVT-M (Wang et al., 2021) 44.2 6.7 81.2
CvT-21 (Wu et al., 2021) 32.0 7.1 82.5
Twins-SVT-B (Chu et al., 2021a) 56 8.3 83.2
ViL-M (Zhang et al., 2021a) 39.7 8.7 83.3
Swin-S (Liu et al., 2021) 50.0 8.7 83.0
PVT-L (Wang et al., 2021) 61.4 9.8 81.7
ConViT-S+ (d’Ascoli et al., 2021) 48.0 10.0 82.2
NesT-S (Zhang et al., 2021b) 38.0 10.4 83.3
RegionViT-M 41.2 7.4 83.1
RegionViT-M+ 42.0 7.9 83.4
DeiT-B (Touvron et al., 2020) 86.6 17.6 81.8
PiT-B (Heo et al., 2021) 73.8 12.5 82.0
ViL-B (Zhang et al., 2021a) 55.7 13.4 83.2
Twins-SVT-L (Chu et al., 2021a) 99.2 14.8 83.7
Swin-B (Liu et al., 2021) 88.0 15.4 83.5
ConViT-B (d’Ascoli et al., 2021) 86.0 17.0 82.4
NesT-B (Zhang et al., 2021b) 68.0 17.9 83.8
RegionViT-B 72.7 13.0 83.2
RegionViT-B+ 73.8 13.6 83.8
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Table 4: Results on IN1K with IN21K and transfer learning.
(a) IN1K results with IN21K.

Model Params (M) FLOPs (G) Acc. (%)

ViL-B 55.7 43.7 86.0
Swin-L 197.0 103.9 87.3
CvT-W24 277 193.2 87.7
RegionViT-B+ 76.5 42.6 86.5

(b) Transfer learning on downstream tasks.
CIFAR10 CIFAR100 Pet StanfordCars ChestXRay8

DeiT-S 99.1 90.9 94.9 91.5 55.4
DeiT-B 99.1 90.8 94.4 91.7 55.8
RegionViT-S 98.9 90.0 95.3 92.8 57.8
RegionViT-M 99.0 90.8 95.5 91.9 58.3

Table 5: Object detection performance on MS COCO val2017 with 1× and 3× schedule. The bold number
indicates the best number within the section, and for MaskRCNN, both APb and APm are annotated.

Params FLOPs RetineNet Params FLOPs MaskRCNN
1× 3× 1× 3×

Backbone (M) (G) AP AP (M) (G) AP b APm AP b APm

ResNet50 37.7 234 36.3 39.0 44.2 260.0 38.0 34.4 41.0 37.1
ConT-M (Yan et al., 2021) 27.0 217.2 39.3 − − − 40.5 38.1 − −
PVT-S (Wang et al., 2021) 34.2 − 40.4 42.2 44.1 − 40.4 37.8 43.0 39.6
ViL-S (Zhang et al., 2021a) 35.7 252.2 41.6 42.9 45.0 174.3 41.8 38.5 43.4 39.6
Swin-T (Liu et al., 2021) 38.5 245 41.5 43.9 47.8 264 42.2 39.1 46.0 41.6
Twins-SVT-S (w/ PEG) (Chu et al., 2021a) 34.3 209 43.0 45.6 44.0 228 43.5 40.3 46.8 42.6
RegionViT-S 40.8 192.6 42.2 45.8 50.1 171.3 42.5 39.5 46.3 42.3
RegionViT-S+ 41.5 204.2 43.1 46.9 50.9 182.9 43.5 40.4 47.3 43.4
RegionViT-S+ w/ PEG 41.6 204.3 43.9 46.7 50.9 183.0 44.2 40.8 47.6 43.4
ResNet101 56.7 315 38.5 40.9 63.2 336 40.4 36.4 42.8 38.5
ResNeXt101-32x4d 56.4 319.1 39.9 41.4 62.8 340 41.9 37.5 44.0 39.2
PVT-M (Wang et al., 2021) 53.9 − 41.9 43.2 63.9 − 42.0 39.0 44.2 40.5
ViL-M (Zhang et al., 2021a) 50.8 338.9 42.9 43.7 60.1 261.1 43.4 39.7 44.6 40.7
Swin-S (Liu et al., 2021) 59.8 335 44.5 46.3 69.1 354 44.8 40.9 47.6 42.8
Twins-SVT-B (w/ PEG) (Chu et al., 2021a) 67.0 322 45.3 46.9 76.3 340 45.2 41.5 48.0 43.0
RegionViT-B 83.4 308.9 43.3 46.1 92.2 287.9 43.5 40.1 47.2 43.0
RegionViT-B+ 84.4 328.1 44.2 46.9 93.2 307.1 44.5 41.0 48.1 43.5
RegionViT-B+ w/ PEG 84.5 328.2 44.6 46.9 93.2 307.2 45.4 41.6 48.3 43.5
ResNeXt101-64x4d 95.5 473 41.0 − 101.9 493 42.8 38.4 − −
PVT-L (Wang et al., 2021) 71.1 345 42.6 − 81.0 364 42.9 39.5 − −
ViL-B (Zhang et al., 2021a) 66.7 443.0 44.3 44.7 76.1 365.1 45.1 41.0 45.7 41.3
Swin-B (Liu et al., 2021) 98.4 477 44.7 − 107.2 496 45.5 41.3 − −
Twins-SVT-L (w/ PEG) (Chu et al., 2021a) 110.9 455 45.7 − 119.7 474 45.9 41.6 − −
RegionViT-B+ w/ PEG† 84.5 506.4 46.1 48.2 93.2 464.4 46.3 42.4 49.2 44.5
The reported results of Swin are from Twins as the original paper does not include resutls with ImageNet1K weights. †: input resolution is 896×1344.

Results on ImageNet1K. Table 3 shows the results on ImageNet1K where the methods listed all
adopt CNN-like pyramid structure into the ViT and are all very recent and concurrent works. For
the smaller models (Ti, S), RegionViT achieves a better trade-off between accuracy and complexity
(parameters or FLOPs); on the other hand, for the larger models (M and B), it obtains better accuracy
while having fewer FLOPs and parameters. The efficiency of RegionViT comes from the proposed
R2L transformer encoder, and hence with such efficiency, it enables the network to be wide and deep
for better accuracy with comparable complexity.

Results on ImageNet21K. Table 4a shows that our model achieves a good accuracy-efficiency
tradeoff with ImageNet21K for pretraining. RegionViT-B+ only needs 25% parameters and FLOPs
compared to CvT-W24 (Wu et al., 2021) and half parameters and FLOPs to Swin-L (Liu et al., 2021).

Results on Transfer Learning. Table 4b shows the transfer learning results with ImageNet1K
pretrained weights. Our model outperforms DeiT (Touvron et al., 2020) by 2∼3% on ChestXRay8,
which has a larger domain gap from ImageNet1K than other four datasets. We think this is because
the hierarchical feature models could provide better generalization for the domain gap compared to
DeiT which uses isotropic spatial resolution throughout the whole network.

4.2 OBJECT DETECTION AND SEMANTIC SEGMENTATION

Dataset. We use MS COCO 2017 to validate our models (Lin et al., 2014) on object detection. COCO
2017 dataset contains 118K images for training and 5K images for validation across 80 categories.
We also test our model on keypoint detection and results are shown in Sec. B. On the other hand,
we validate our model with semantic segmentation on ADE20K (Zhou et al., 2017). The ADE20K
dataset contains 20k images in the training set, 2k images for validation.

Training and Evaluation. For object detection, we adopt RetinaNet (Lin et al., 2017) and MaskR-
CNN (He et al., 2017) as our detection framework. We simply replace the backbone with RegionViT,
and then output the local tokens at each stages as multi-scale features for the detector. The regional
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tokens are not used in the detection. Before sending the features to the detector framework, we add
new layer normalization layers to normalize the features. We use RegionViT-S and RegionViT-B
as the backbone and the weights are initialized from ImageNet1K pretraining. The shorter side and
longer side of the input image is resized to 672 and 1,120, respectively. We train our models based
on the settings in 1× and 3× schedule in Detectron2 (Wu et al., 2019) for object detection. More
training details could be found in A.2. For semantic segmentation, we adopt Semantic FPN as the
framework (Kirillov et al., 2019) and use RegionViT as the backbone. We initialize models with
ImageNet1K weights, and mostly follow the training receipt in Twins’ paper (Chu et al., 2021a).
More training details can be found in Sec. A.3.

Results on Object Detection. Table 5 compares RegionViT with other methods. For the smaller
models, RegionViT-S and RegionViT-S+ achieve similar accuracy while being moderately efficient in
terms of FLOPs. We find that the position encoding generator (PEG) proposed by (Chu et al., 2021b)
could help the detection accuracy substantially, so we also provide the results with PEG, which are
also used in Twins (Chu et al., 2021a). For the middle size models with RetinaNet, RegionViT-B are
slightly worse than Twins with 1× schedule; however, our model catches up the performance with
3× schedule. When comparing the large models under similar FLOPs (RegionViT-B+ w/ PEG†), we
further train our model with the similar resolution used by other works, and observe that our models
outperform all others while being more parameter efficient (models marked with † in Table 5).

Table 6: Performance on semantic segmentation.
Model FLOPs (G) Params (M) mIoU (%)

Swin-T∗ 46 31.9 41.5
Twins-SVT-S 37 28.3 43.2
RegionViT-S+ (w/ PEG) 37 35.7 45.3

Swin-S∗ 70 53.2 45.2
Twins-SVT-B 67 60.4 45.3
RegionViT-B+ (w/ PEG) 67 78.3 47.5
∗: Numbers are cited from the reproduced results of Twins’ paper.

Results on Semantic Segmentation. Table 6 com-
pares ours to Swin (Liu et al., 2021) and Twins. As
PEG is useful for object detection, we show the re-
sults with PEG. Our models achieved significant im-
provement with similar FLOPs for both models. This
suggests that the proposed R2L attention can effec-
tively model global context.

4.3 ACTION RECOGNITION

Datasets and Setup. We validate our approach on Kinetics400 (K400) (Kay et al., 2017) and
Something-Something V2 (SSV2) (Goyal et al., 2017). We adopt the divided-space-time attention
in TimeSformer (Bertasius et al., 2021) as the temporal modeling to perform action recognition
experiments. More details could be found in Sec. A.4.

Table 7: Performance on action recognition.
Model FLOPs∗ (G) Params (M) K400 Acc. (%) SSV2 Acc. (%)

TimeSformer 197 121.4 75.8 59.5
x TimeSformer† 197 121.4 77.1 59.2
RegionViT-S 59.4 42.9 76.6 59.7
RegionViT-M 83.1 57.5 77.6 59.8
∗: FLOPs of single crop, †: retrained with the same setting.

Results. Table 7 shows that with RegionViT
as the backbone, the model can be much more
efficient with competitive accuracy to TimeS-
former, which uses vanilla ViT as the back-
bone. RegionViT-M could reduce more than
50% FLOPs and parameters than the TimeS-
former. This not only shows the importance of spatial modeling in action recognition but also
validates that our proposed model can also be extended for efficient action recognition.

4.4 ABLATION STUDY

We perform the following experiments to verify the effectiveness of different components in Region-
ViT. All experiments are conducted based on RegionViT-S.

Table 8: Ablation on regional tokens.
Dataset IN1K MS COCO ADE20K

Regional Acc. MaskRCNN RetinaNet SemanticFPN
Tokens (APb/APm) (APb) (mIoU)

N 82.2 40.5/37.8 40.7 42.3
Y 82.6 42.5/39.5 42.2 43.7

Regional Tokens. Table 8 shows the results
with and without regional tokens on three tasks,
and Table A5 includes FLOPs and parameters
comparison. For image classification, the re-
gional tokens provide around 0.4% improve-
ment with negligible overhead in both compu-
tations (6%) and parameters (0.7%). On the other hand, the regional tokens clearly improve the
performance of object detection and semantic segmentation with negligible overhead (<2% on both
FLOPs and parameters). This is because dense prediction tasks require more multi-scale features
with global contextual information (provided by the regional tokens) than image classification.
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Table 9: Different downsampling approaches.
Downsampling Params FLOPs (G) IN1K Acc. (%)

2×2 convolution 32.1 5.5 82.3
3×3 convolution 34.1 5.7 82.5
3×3 depth-wise conv. 30.6 5.3 82.6

Downsampling. Table 9 shows different ap-
proaches for downsampling the patches. 3×3
kernel size achieves better results than 2×2 con-
volution, because the kernel is non-overlapped
with 2×2 convolution, which limits the interac-
tion among local tokens. Moreover, using regular convolution does not improve the performance but
increases computations and parameters. Thus, we use 3×3 depthwise convolution for downsampling.

Table 10: Weight sharing.

Weight sharing Params FLOPs (G) IN1K Acc. (%)

N 40.4 5.3 82.7
Y 30.6 5.3 82.6

Weight sharing between RSA and LSA as
well as downsampling. Table 10 shows the re-
sults with and without weight sharing. As seen
from the table, using separated weights for RSA
and LSA only slightly improves the accuracy
but significantly increases the model size. This suggests sharing parameters between RSA and LSA
suffices for learning local and global information in our approach.

Table 11: Keys in LSA.
Regional tokens Params FLOPs (G) IN1K Acc. (%)

All 30.6 6.0 82.7
Corresponding 30.6 5.3 82.6

Keys in LSA. Table 11 studies the number of
regional tokens in LSA. When using all regional
tokens in the LSA, it provides the local tokens
the possibility to explore all global information.
Nonetheless, this model only improves 0.1% but
with 13% more computations, which suggests that when considering the regional tokens, the one
associated with the current region is sufficient to achieve good performance.

Table 12: Different position information.
Abs. pos. Rel. pos. Params (M) FLOPs (G) IN1K Acc. (%)

N N 30.6 5.3 82.4
Y N 30.9 5.3 82.2
Y Y 30.9 5.3 82.7
N Y 30.6 5.3 82.6

Position information. Table 12 compares per-
formance of different combinations of absolute
position embedding (APE) and relative position
bias (RPB). The models with RPB achieve bet-
ter accuracy with similar FLOPs and parameters.
Although the model with APE could slightly im-
prove the performance, it limits the model to run at a fixed resolution, which is not suitable for vision
tasks where image size could be varied. Thus, we only adopt the relative position bias in our models.

Table 13: Overlapped windows.
Model Params FLOPs (G) IN1K Acc. (%)

overlapped 30.6 18.8 82.8
non-overlapped 30.6 5.3 82.6

Overlapped windows. Table 13 compares the
results with and without overlapped windows.
The overlapping ratio of neighboring windows
is 50% and hence this model allows more in-
teractions among local tokens. It improves
RegionViT-S by 0.2% but increases the FLOPs by 3.5×. This suggests that the information exchange
between the border of windows is sufficiently covered by the proposed R2L attention.

Table 14: Comparison of different attentions.
Model Params FLOPs (G) IN1K Acc. (%)

Shifted-window 29.0 4.5 81.3
R2L 32.1 5.2 82.0

Comparison between R2L attention and
shifted-window attention. Table 14 shows
the comparison between shifted-window atten-
tion (Liu et al., 2021) and proposed R2L atten-
tion. R2L attention outperforms shifted-window
attention by 0.7%, which shows that our proposed R2L attention can effectively model global
information to achieve good performance.

5 CONCLUSION

In this paper, we propose a new ViT architecture that exploits the pyramid structure used in most of
CNNs to provide multi-scale features and hence, the models can be more easily extended to different
vision applications, like object detection. Moreover, the proposed regional-to-local attention relaxes
the memory overhead of performing self-attention on the fine-grained image tokens by limiting the
scope of attention but still keeping the capability to explore global information. Extensive experiments
on several standard benchmark datasets well demonstrate that our proposed models outperform or are
on par with many concurrent ViT variants on four vision applications, including image classification,
object and keypoint detection, semantic segmentation and action recognition.
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ETHICS STATEMENT

Our work introduces a memory-friendly and efficient self-attention method for transformer models,
which have wide-ranging applications to image classification, object detection, human activity
recognition, etc. By improving efficiency, our work can have a positive effect on these applications
in society, allowing faster processing. E.g., this could enable faster responses to detected events
such as medical emergencies or detecting defects in manufacturing parts. Lower computation costs
could also save energy and therefore have a positive impact on the environment. Negative impacts
of our research are difficult to predict, however, it shares many of the pitfalls associated with deep
classification models. E.g., Image and video classification systems have negative implications on
privacy and could be used by malicious actors or governments to infringe on the privacy of citizens.
Future research into private and ethical aspects of visual recognition is an important direction.

REPRODUCIBILITY STATEMENT

In order to reproduce our results, we describe the details of the hyperparameters used in our training
in Appendix A for all the tasks and we also attach our codes for image classification as part of
the supplemental material. We will publicly release all the codes and models after acceptance. In
the attached codes, we set all the hyperparameters as their default value, so that users can re-run
our experiments with exactly the same hyperparameters. The README file also describes the
requirement to build necessary Python environment for running the codes.
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deeper with Image Transformers. arXiv.org, cs.CV, 03 2021. URL arXiv.org.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, ukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In I Guyon, U V Luxburg, S Bengio,
H Wallach, R Fergus, S Vishwanathan, and R Garnett (eds.), Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2017.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions, 2021.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803,
2018.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Summers.
Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classi-
fication and localization of common thorax diseases. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2097–2106, 2017.

Zachary Wharton, Ardhendu Behera, and Asish Bera. An attention-driven hierarchical multi-scale
representation for visual recognition, 2021.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

13

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
arXiv.org
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


Published as a conference paper at ICLR 2022

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. CvT:
Introducing Convolutions to Vision Transformers. arXiv.org, March 2021.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Haotian Yan, Zhe Li, Weijian Li, Changhu Wang, Ming Wu, and Chuang Zhang. ConTNet: Why not
use convolution and transformer at the same time? arXiv.org, April 2021.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi Feng, and
Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet, 2021.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October
2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1Ddp1-Rb.

Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jianfeng Gao.
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding.
arXiv.org, March 2021a.

Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, and Tomas Pfister. Aggregating Nested Trans-
formers. arXiv, 2021b.

Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for image recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, Jiebo Luo, and Tao Mei. Learning Rich Part Hierarchies
With Progressive Attention Networks for Fine-Grained Image Recognition. IEEE Transactions on
Image Processing, 29:476–488, 2020. ISSN 1057-7149. doi: 10.1109/tip.2019.2921876.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random Erasing Data Augmen-
tation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07):13001–13008, April
2020.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

14

https://github.com/facebookresearch/detectron2
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb


Published as a conference paper at ICLR 2022

Table A1: Details of training settings for image classification on ImageNet1K and ImageNet21K.

IN1K IN21K Finetune to IN1K@3842 Transfer

Batch size 4,096 4,096 1,024 768
Epochs 300 120 30 1,000

Optimizer AdamW AdamW AdamW SGD
Weight Decay 0.05 0.01 1e-8 1e-4

Linear-rate Scheduler Cosine (0.004) Cosine (0.001) Cosine (0.0002) Cosine (0.01)(Initial LR)

Warmup Epochs 50 5 0 5
Warmup linear-rate Linear (1e-6)Scheduler (Initial LR)

Data Aug. RandAugment (m=9, n=2)

Mixup (α) 0.8
CutMix (α) 1.0

Random Erasing 0.25 0.0

Instance 3Repetition∗

Drop-path 0.1 0.0
Label Smoothing 0.1

∗: disabled for RegionViT-Ti.

APPENDIX

Summary This appendix contains the following additional details. First, in Sec. A, we describe the
training details on image classification, object and keypoint detection, semantic segmentation and ac-
tion recognition separately. Then, we provide detailed results on object detection and ablation studies.
The supplementary materials include our codes to reproduce our results on image classification and
the README file in the attached codes (RegionViT Code.zip) also provides the detailed instructions
to train and evaluate the networks.

A TRAINING DETAILS

A.1 IMAGE CLASSIFICATION

We follow DeiT (Touvron et al., 2020) to train our models on ImageNet1K (Deng et al., 2009) except
that we use batch size 4,096 with base learning rate 0.004 and the warm-up epochs is 50. We adopt
the AdamW (Loshchilov & Hutter, 2019) optimizer with cosine learning rate scheduler (Loshchilov
& Hutter, 2017). We apply Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), RandomEras-
ing (Zhong et al., 2020), label smoothing (Szegedy et al., 2016), RandAugment (Cubuk et al., 2020)
and instance repetition (Hoffer et al., 2020). During training, we randomly crop a 224×224 region
and take a 224×224 center crop after resizing the shorter side to 256 for evaluation. While pretraining
on ImageNet21K (Deng et al., 2009), we use similar settings with slight modifications. We train the
model using 120 epochs with 5 epochs for warmup, weight-decay of 0.01 and base learning rate of
0.001. For transfer learning experiments, we finetune the ImageNet1K pretrained models with 1,000
epochs, batch size of 768, learning rate of 0.01, SGD optimizer, weight decay of 0.0001, and using
the same data augmentation in training on ImageNet1K. During evaluation, we resize the shorter
side of an image to 256 and then take a 224×224 region at the center and report top-1 accuracy.
For finetuning experiments from ImageNet21K, we finetune the models with higher resolution of
384×384, for 30 epochs with cosine learning rate scheduler, base linear rate of 0.002, weight-decay
of 1e-8. Moreover, as it is trained on larger resolution, we adjust the window size M to have the same
number of regional tokens at the first stage, e.g., we change the window size to 12 for the the models
trained at 224×224 with window size 7. We adopt the bicubic interpolation to upsample the weights
of tokenizations and relative position bias. During evaluation, we directly resize the shorter side to
384 and then take center 384×384 crop. We trained the models with 32 GPUs.
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Table A2: Object detection performance on the COCO val2017 with 1× schedule. The bold number indicates
the best number within the section, and for MaskRCNN, both APb and APm are annotated.

Params FLOPs RetineNet Params FLOPs MaskRCNN
Backbone (M) (G) AP AP50 AP75 APS APM APL (M) (G) AP b AP b

50 AP b
75 APm APm

50 APm
75

ResNet50 37.7 234 36.3 55.3 38.6 19.3 40.0 48.8 44.2 260.0 38.0 58.6 41.4 34.4 55.1 36.7
ConT-M (Yan et al., 2021) 27.0 217.2 39.3 59.3 41.8 23.1 43.1 51.9 − − 40.5 − − 38.1
PVT-S (Wang et al., 2021) 34.2 − 40.4 61.3 43.0 25.0 42.9 55.7 44.1 − 40.4 62.9 43.8 37.8 60.1 40.3
ViL-S (Zhang et al., 2021a) 35.7 252.2 41.6 62.5 44.1 24.9 44.6 56.2 45.0 174.3 41.8 64.1 45.1 38.5 61.1 41.4
Swin-T (Liu et al., 2021) 38.5 245 41.5 62.1 44.2 25.1 44.9 55.5 47.8 264 42.2 64.6 46.2 39.1 61.6 42.0
Twins-SVT-S (w/ PEG) (Chu et al., 2021a) 34.3 209 43.0 64.2 46.3 28.0 46.4 57.5 44.0 228 43.5 66.0 47.3 40.3 63.2 43.4
RegionViT-S 40.8 192.6 42.2 64.1 45.1 27.5 45.4 55.3 50.1 171.3 42.5 65.8 46.1 39.5 62.8 42.2
RegionViT-S+ 41.5 204.2 43.1 64.8 46.2 29.6 46.6 56.1 50.9 182.9 43.5 66.9 47.5 40.4 63.7 43.4
RegionViT-S+ w/ PEG 41.6 204.3 43.9 65.5 47.3 28.5 47.3 57.9 50.9 183.0 44.2 67.3 48.2 40.8 64.1 44.0

ResNet101 56.7 315 38.5 57.8 41.2 21.4 42.6 51.1 63.2 336 40.4 61.1 44.2 36.4 57.7 38.8
ResNeXt101-32x4d 56.4 319.1 39.9 59.6 42.7 22.3 44.2 52.5 62.8 340 41.9 62.5 45.9 37.5 59.4 40.2
PVT-M (Wang et al., 2021) 53.9 − 41.9 63.1 44.3 25.0 44.9 57.6 63.9 − 42.0 64.4 45.6 39.0 61.6 42.1
ViL-M (Zhang et al., 2021a) 50.8 338.9 42.9 64.0 45.4 27.0 46.1 57.2 60.1 261.1 43.4 65.9 47.0 39.7 62.8 42.1
Swin-S (Liu et al., 2021) 59.8 335 44.5 65.7 47.5 27.4 48.0 59.9 69.1 354 44.8 66.6 48.9 40.9 63.4 44.2
Twins-SVT-B (w/ PEG) (Chu et al., 2021a) 67.0 322 45.3 66.7 48.1 28.5 48.9 60.6 76.3 340 45.2 67.6 49.3 41.5 64.5 44.8
RegionViT-B 83.4 308.9 43.3 65.2 46.4 29.2 46.4 57.0 92.2 287.9 43.5 66.7 47.4 40.1 63.4 43.0
RegionViT-B+ 84.4 328.1 44.2 66.2 47.1 29.2 47.5 58.6 93.2 307.1 44.5 67.6 48.7 41.0 64.4 43.9
RegionViT-B+ w/ PEG 84.5 328.2 44.6 66.4 47.6 29.6 47.6 59.0 93.2 307.2 45.4 68.4 49.6 41.6 65.2 44.8

ResNeXt101-64x4d 95.5 473 41.0 60.9 44.0 23.9 45.2 54.0 101.9 493 42.8 63.8 47.3 38.4 60.6 41.3
PVT-L (Wang et al., 2021) 71.1 345 42.6 63.7 45.4 25.8 46.0 58.4 81.0 364 42.9 65.0 46.6 39.5 61.9 42.5
ViL-B (Zhang et al., 2021a) 66.7 443.0 44.3 65.5 47.1 28.9 47.9 58.3 76.1 365.1 45.1 67.2 49.3 41.0 64.3 44.2
Swin-B (Liu et al., 2021) 98.4 477 44.7 65.9 49.2 − − − 107.2 496 45.5 − − 41.3 − −
Twins-SVT-L (w/ PEG) (Chu et al., 2021a) 110.9 455 45.7 67.1 49.2 − − − 119.7 474 45.9 − − 41.6 − −
RegionViT-B+ w/ PEG† 84.5 506.4 46.1 68.0 49.5 30.5 49.9 60.1 93.2 464.4 46.3 69.1 51.2 42.4 66.2 45.6
The reported results of Swin (Liu et al., 2021) are from Twins (Chu et al., 2021a) as the original paper does not include resutls with ImageNet1K weights. †: input resolution is 896×1344.

A.2 OBJECT DETECTION AND KEYPOINT DETECTION

We adopt RetinaNet (Lin et al., 2017) and MaskRCNN (He et al., 2017) as our detection framework
and use KeypoinyRCNN for keypoint detection, and we simply replace the backbone with RegionViT,
and then output the local tokens at each stages as multi-scale features for the detector. The regional
tokens are not used in the detection. Before sending the features to the detector framework, we add
new layer normalization layers to normalize the features. We use RegionViT-S and RegionViT-B
as the backbone and the weights are initialized from ImageNet1K pretraining. We train our models
based on the settings in 1× schedule in Detectron2 (Wu et al., 2019), i.e., the batch size is 16 and
the learning rate is set to 0.0001 which drops 10× at the 60,000-th and 80,000-th iteration. We use
AdamW optimizer with weight-decay of 0.05, and resize the shorter and longer side of an image to
672 and 1,120, respectively. We also adopt drop-path when finetuning the detector, with a rate set to
0.2 for both RetinaNet and MaskRCNN. We trained the models with 8 GPUs. When training with
longer schedule (3×), we adopt stronger data augmentation (multi-scale training) used in Swin (Liu
et al., 2021) or Twins (Chu et al., 2021a) rather than fixed-size training used in 1× schedule.

A.3 SEMANTIC SEGMENTATION

We adopt Semantic FPN as our semantic segmentation framework (Kirillov et al., 2019) by replacing
the backbone network with RegionViT like the object detection task. We train the models with
ImageNet1K pretrained weights. We mostly follow the training receipt in Twins (Chu et al., 2021a)
The shorter side of the image is resized to 448 and the longer side won’t exceed 1792, and then we
crop a 448×448 region for training. During the evaluation, we take the whole image after resizing
as illustrated above. We train the model with AdamW optimizer with learning rate 1e-4 for 80k
iterations, and the learning rate is decayed with poly schedule (power is 0.9). The weight decay and
drop-path rate is 0.05 and 0.2, respectively. We trained all models with 8 GPUs.

A.4 ACTION RECOGNITION

We adopt the divided-space-time attention in TimeSformer (Bertasius et al., 2021) as the temporal
modeling to perform action recognition experiments. More specifically, we plugin the temporal
attention before every R2L transformer encoder and finetune the model pretrained with ImageNet1K
(instead of ImageNet21K). We use the AdamW optimizer (Loshchilov & Hutter, 2019) with base
linear rate of 2e-4 and weight-decay of 0.0001. We apply the same Mixup (Zhang et al., 2018),
CutMix (Yun et al., 2019) and drop path (Tan & Le, 2019) in the image classification. For the
input, we uniformly sample 8 frames from the whole video and the 224×224 region is cropped after
shorter side of images is resized to the range of 256 to 320, resulting the size of the input video as
8×224×224. During evaluation, we use the same way to sample frames but take 3 224×224 spatial
crops (top-left, center and bottom-right) after resizing shorter side of image to 256, and then ensemble
the predictions as final prediction for the input video. We trained the models with 16 GPUs.
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Table A3: Object detection performance on the COCO val2017 with 3× schedule. The bold number indicates
the best number within the section, and for MaskRCNN, both APb and APm are annotated.

Params FLOPs RetineNet Params FLOPs MaskRCNN
Backbone (M) (G) AP AP50 AP75 APS APM APL (M) (G) AP b AP b

50 AP b
75 APm APm

50 APm
75

ResNet50 37.7 234 39.0 58.4 41.8 22.4 42.8 51.6 44.2 260.0 41.0 61.7 44.9 37.1 58.4 40.1
PVT-S (Wang et al., 2021) 34.2 − 42.2 62.7 45.0 26.2 45.2 57.2 44.1 245 43.0 65.3 46.9 39.9 62.5 42.8
ViL-S (Zhang et al., 2021a) 35.7 252.2 42.9 63.8 45.6 27.8 46.4 56.3 45.0 174.3 43.4 64.9 47.0 39.6 62.1 42.4
Swin-T (Liu et al., 2021) 38.5 245 43.9 64.8 47.1 28.4 47.2 57.8 47.8 264 46.0 68.2 50.2 41.6 65.1 44.8
Twins-SVT-S (w/ PEG) (Chu et al., 2021a) 34.3 209 45.6 67.1 48.6 29.8 49.3 60.0 44.0 228 46.8 69.2 51.2 42.6 66.3 45.8
RegionViT-S 40.8 192.6 45.8 67.2 49.2 30.0 50.0 60.5 50.1 171.3 46.3 68.8 50.6 42.3 65.5 45.7
RegionViT-S+ 41.5 204.2 46.9 68.3 50.7 31.1 51.0 62.0 50.9 182.9 47.3 69.5 52.0 43.1 66.4 46.7
RegionViT-S+ w/ PEG 41.6 204.3 46.7 68.2 50.2 30.7 50.8 62.4 50.9 183.0 47.6 70.0 52.0 43.4 67.1 47.0

ResNet101 56.7 315 40.9 60.1 44.0 23.7 45.0 53.8 63.2 336 42.8 63.2 47.1 38.5 60.1 41.3
ResNeXt101-32x4d 56.4 319.1 41.4 61.0 44.3 23.9 45.5 53.7 62.8 340 44.0 64.4 48.0 39.2 61.4 41.9
PVT-M (Wang et al., 2021) 53.9 − 43.2 63.8 46.1 27.3 46.3 58.9 63.9 302 44.2 66.0 48.2 40.5 63.1 43.5
ViL-M (Zhang et al., 2021a) 50.8 338.9 43.7 64.6 46.4 27.9 47.1 56.9 60.1 261.1 44.6 66.3 48.5 40.7 63.8 43.7
Swin-S (Liu et al., 2021) 59.8 335 46.3 67.4 49.8 31.1 50.3 60.9 69.1 354 47.6 69.4 52.5 42.8 66.5 46.4
Twins-SVT-B (w/ PEG) (Chu et al., 2021a) 67.0 322 46.9 68.0 50.2 31.7 50.3 61.8 76.3 340 48.0 69.5 52.7 43.0 66.8 46.6
RegionViT-B 83.4 308.9 46.1 67.8 49.1 31.5 50.2 61.2 92.2 287.9 47.2 69.1 51.7 43.0 66.4 46.5
RegionViT-B+ 84.4 328.1 46.9 68.6 50.1 30.8 50.7 62.6 93.2 307.1 48.1 70.2 52.5 43.5 67.1 47.1
RegionViT-B+ w/ PEG 84.5 328.2 46.9 68.3 50.3 31.1 50.5 62.4 93.2 307.2 48.3 70.1 52.8 43.5 67.1 47.0

ViL-B (Zhang et al., 2021a) 66.7 443.0 44.7 65.5 47.6 29.9 48.0 58.1 76.1 365.1 45.7 67.2 49.9 41.3 64.4 44.5
RegionViT-B+ w/ PEG† 84.5 506.4 48.2 69.9 51.5 34.3 51.5 61.7 93.2 464.4 49.2 71.0 53.7 44.5 68.4 48.3
The reported results of Swin (Liu et al., 2021) are from Twins (Chu et al., 2021a) as the original paper does not include resutls with ImageNet1K weights. †: input resolution is 896×1344.

Table A4: Performance on person keypoint detection.

Model FLOPs (G) Params (M) bbox AP (%) keypoint AP (%)

ResNet-50 137.7 59.1 53.6 64.0
RegionViT-S+ (w/ PEG) 172.2 65.7 56.0 66.1

B MORE DETAILED RESULTS

We provided more details of some Tables shown in the main paper here. Table A2 and Table A3
include more metrics as compared to Table 5. Table A4 shows the results on keypoint detection.
RegionViT outperforms ResNet-50 with moderate increases in FLOPs and parameters. This suggests
that RegionViT can model the global context in keypoint detection as well. Table A5 includes
complexity comparison for the ablation study on regional tokens as shown in Table 8.
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Table A5: Performance w/ and w/o regional tokens on RegionViT-S.

Regional Tokens FLOPs (G) Params (M) ImageNet1K Acc. (%)

N 5.0 30.4 82.2
Y 5.3 30.6 82.6

MaskRCNN MS COCO (APb/APm)

N 168.5 49.9 40.5/37.8
Y 171.3 50.1 42.2/39.0

RetinaNet MS COCO (APb)

N 189.8 40.5 40.7
Y 192.6 40.8 41.7

SemanticFPN ADE20K (mIoU)

N 36.8 34.7 42.3
Y 37.3 35.0 43.7

Table A6: Throughput comparison.

Model Acc. (%) Params (M) FLOPs (G) Throughput (images/sec)

Swin-T 81.3 29.0 4.5 1129
Swin-S 83.0 50.0 8.7 710
RegionViT-S 82.6 30.6 5.3 823
RegionViT-M 83.1 41.2 7.4 706
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