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ABSTRACT

Neural networks have recently been used to model the dynamics of diverse phys-
ical systems. While existing methods achieve impressive results, they are limited
by their strong demand for training data and their weak generalization abilities.
To overcome these limitations, in this work we propose to combine neural im-
plicit representations for appearance modeling with neural ordinary differential
equations (ODEs) in order to obtain interpretable physical models directly from
visual observations. Our proposed model combines several unique advantages:
(i) Contrary to existing approaches that require large training datasets, we are
able to identify physical parameters from only a single video (ii) The use of neu-
ral implicit representations enables the processing of high-resolution videos and
the synthesis of photo-realistic imagery. (iii) The embedded neural ODE has a
known parametric form that allows for the identification of interpretable physi-
cal parameters, and (iv) long-term prediction in state space. (v) Furthermore, the
photo-realistic rendering of novel scenes with modified physical parameters be-
comes possible.
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Figure 1: Our method infers physical parameters directly from real-world videos, like the shown
pendulum motion. Separated by the red line, the right half of each image shows the input frame, and
the left half shows our reconstruction based on physical parameters that we estimate from the input.
We show 6 out of 10 frames that were used for training. The proposed model can precisely recover
the metric length of the pendulum from the monocular video (relative error to true length is less than
2.5%). Best viewed on screen with magnification. Please also consider the supplementary video.

1 INTRODUCTION

The physics of many real-world phenomena can be described concisely and accurately using dif-
ferential equations. However, such equations are usually formulated in terms of highly abstracted
quantities that are typically not directly observable using commodity sensors, such as cameras. For
example, a pendulum is physically described by the deflection angle, the angular velocity, the damp-
ing coefficient, and the pendulum’s length, but automatically extracting those physical parameters
directly from video data is challenging. Thus, due to the complex relationship between the physical
process and images of respective scenes, measuring such quantities often necessitates a trained ex-
pert operating customised measuring equipment. While for many physical phenomena humans are
able to infer (a rough estimation of) physical quantities from a given video, physical understanding
from videos is an open problem in machine learning.
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Recently, the combination of deep learning and physics has become popular, particularly in the con-
text of video prediction. While earlier works (Lutter et al., 2019; |Greydanus et al.| [2019; |Cranmer,
et al., [2020; [Zhong et al., 2020) require coordinate data, i.e. already abstracted physical quantities,
more recent works directly use image data (Levine et al.| 2020; |Zhong & Leonard, 2020). A major
downside is that all these approaches rely on massive amounts of training data, and, as we experi-
mentally confirm in App. || they exhibit poor generalization abilities. In contrast, in our work we
address this shortcoming by proposing a solution that extracts semantic physical parameters directly
from a single video, see Figure[l| Therefore, we alleviate the need for large data and furthermore
facilitate interpretation due to the semantics of the inferred parameters in respective physical equa-
tions. Additionally, the six previously mentioned works model physical systems using Lagrangian
or Hamiltonian energy formulations, which elegantly guarantee the conservation of energy, but can
therefore not easily model dissipative systems that are much more common in the real world (Gal-
leyl |2013). The proposed model effectively transforms the camera into a physical measuring device
with which we can observe quantities such as the length or the damping coefficient of a pendulum.

To achieve the learning of physical models from a single video, we propose to utilise physics-
based neural implicit representations in an analysis-by-synthesis manner, where the latter relies on
neural ordinary differential equations for representing abstract physics of visual scenes. Overall, we
summarize our main contributions as follows:

1. We present the first method that is able to identify physical parameters from a single video using
neural implicit representations.

2. Our approach infers parameters of an underlying ODE-based physical model that directly allows
for interpretability and long-term predictions.

3. The unique combination of powerful neural implicit representations with rich physical models
allows to synthesize high-resolution and photo-realistic imagery. Moreover, it enables physical
editing by rendering novel scenes with modified physical parameters.

4. Contrary to existing learning-based approaches that require large corpora of training data, we
propose a per-scene model, so that only a single short video clip that depicts the physical phe-
nomenon is necessary.

2 RELATED WORK

The combination of machine learning and physics has been addressed across an extremely broad
range of topics. For example, machine learning was used to aid physics research (Bogojeski et al.|
2020; [Leclerc et al., |2020), or physics was used within machine learning models, such as for auto-
matic question answering from videos (Chen et al., 2021; Bear et al., 2021). In this work we focus
specficially on extracting physical models from single videos, so that in the following we discuss
related works that we consider most relevant in this context.

Physics in the context of learning. ~ While neural networks have led to many remarkable results
across diverse domains, the inference of physical principles, such as energy conservation, is still a
major challenge and requires additional constraints. A general way to endow models with a physics-
based prior is to use generalized energy functions. For example, Greydanus et al.[(2019) and [Toth
et al.| (2020) use a neural network to parameterize the Hamiltonian of a system, which yields a
relation between the energy of the system and the change of the state. Hence, they are able to infer
the dynamics of systems with conserved energy, such as a pendulum or a multi-body system.

One disadvantage of using the Hamiltionian is that canonical coordinates need to be used. To
eliminate this constraint, other works use the Lagrangian to model the system’s energy. Since this
formalism is more complex, Lutter et al.|(2019)) and|Zhong & Leonard|(2020) restrict the Lagrangian
to the case of rigid-body dynamics to model systems with multiple degrees of freedom, such as a
pole on a cart, or a robotic arm. [Cranmer et al.|(2020) use a neural network to parameterize a general
Lagrangian, which they use to infer the dynamics of a relativistic particle in a uniform potential.

While being able to model many relevant systems, the aforementioned energy-based approaches
cannot easily be extended to dissipative systems that are much more common in the real world
(Galleyl, |2013)). Furthermore, they do not allow for a semantic interpretation of individual learned
system parameters. PhyDNet, introduced by |Guen & Thomel (2020), learns dynamics in the form
of a general PDE in a latent space, which, like the aforementioned works, prohibits interpretation
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of the learned physical model. In contrast, in the context of incorporating physical phenomena into
learning frameworks, there are also approaches that make the underlying dynamics explicit. For
example, [Jaques et al.| (2020) unroll the Euler integration of the ordinary differential equation of
bouncing balls, as well as balls connected by a spring, to identify the physical parameters like the
spring constant. [Kandukuri et al.| (2020) and de Avila Belbute-Peres et al.| (2018) propose to use a
linear complementarity problem to differentiably simulate rigid multi-body dynamics that can also
handle object interaction and friction. For our method, we also rely on the advantages of modelling
the underlying physics explicitly in order to obtain interpretable parameter estimates.

Inferring physical properties from video. While many approaches work with trajectories in
state space, there are also some works that operate directly on videos. In this case, the information
about physical quantities is substantially more abstract, so that uncovering non-linear dynamics from
video data is a significantly more difficult problem. Traditionally, such inverse problems are often
phrased in terms of optimization problems, for example for deformable physics inference (Weiss
et al., 2020), among many more. While respective approaches can successfully estimate a wide
range of relevant physical quantities from video data, they often require rich additional information,
such as 3D information in the form of depth images in combination with a 3D template mesh (Weiss
et al.| 2020), which may limit their practical applicability.

More recently, several end-to-end learning approaches have been proposed. [de Avila Belbute-Peres
et al.| (2018) use an encoder to extract the initial state of several objects from the combination of
images, object masks and flow frames. After propagating the physical state over time, they decode
the state back into images to allow for end-to-end training. Jaques et al.|(2020) and Kandukuri et al.
(2020) use an encoder network to extract object positions from object masks for individual frames.
After estimating initial velocities from the positions they integrate the state over time and use a
carefully crafted coordinate-consistent decoder, which is based on spatial transformers, to obtain
predicted images. [Zhong & Leonard| (2020) extend this idea to their variational autoencoder (VAE)
architecture to obtain a coordinate-aware encoder which they use to infer parameters of the latent
distribution of generalized coordinates for each frame. [Toth et al.| (2020) use a VAE structure to
predict the parameters of a posterior over the initial state from a sequence of videos. All of these
approaches require large amounts of data to train the complex encoder and decoder modules. In
contrast, our approach does not rely on trainable encoder or decoder structures, but instead uses a
non-trainable fixed neural ODE solver in combination with a trainable neural implicit representation,
and is thus able to infer physical models from a single video.

Implicit representations. Recently, neural implicit representations have gained popularity due
to their theoretical elegance and performance in novel view synthesis. The idea is to use a neural
network to parametrize a function that maps a spatial location to a spatial feature. For example, to
represent geometric shapes, using occupancy values (Mescheder et al.,|2019;/Chen & Zhang] 2019;
Peng et al., 2020), or signed distance functions (Park et al.l 2019; (Gropp et al., [2020; |Atzmon &
Lipman, [2020). In the area of multiview 3D surface reconstruction as well as novel view synthesis,
implicit geometry representations, such as density or signed distance, are combined with implicit
color fields to represent shape and appearance (Sitzmann et al., 2019; Mildenhall et al., [2020; |Yariv
et al.| [2020; Niemeyer et al., 2020; |Azinovic et al.| [2021). To model dynamic scenes, there have
been several approaches that parametrize a displacement field and model the scene in a reference
configuration (Niemeyer et al., 2019; |Park et al., 2021; |Pumarola et al., 2021). On the other hand,
several approaches (Xian et al.| 2021} [Li et al., |2021; |Du et al., |2021) include the time as an input to
the neural representation and regularize the network using constraints based on appearance, geom-
etry, and pre-trained depth or flow networks — however, none of these methods uses physics-based
constraints, e.g. by enforcing Newtonian motion. While the majority of works on implicit represen-
tations focuses on shape, |Sitzmann et al.| (2020) show the generality of implicit representations by
representing images and audio signals. Our work contributes to the neural implicit representation
literature by combining such representations with explicit physical models.

3  ESTIMATING PHYSICAL MODELS WITH NEURAL IMPLICIT
REPRESENTATIONS

Our main goal is the estimation of physical parameters from a single video, where we specifically
focus on the setting of a static background and dynamic objects that are moving according to some
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physical phenomenon. With that, we model the dynamics of the objects using an ordinary differ-
ential equation (ODE). Our objective is now to estimate the unknown physical parameters, as well
as the initial conditions, of this ODE. Hence, we additionally learn a video generation model that is
able to render a video that depicts objects which follow a specific physical model depending on re-
spective physical parameters. For estimating these physical parameters directly from an input video,
we utilise a photometric loss that imposes that the generated video is similar to the input video.

3.1 MODELING THE DYNAMICS

For most of the dynamics that can be observed in nature, the temporal evolution of the state can be
described by an ODE. For example, for a pendulum the state variables are the angle of deflection and
the angular velocity, and a two dimensional first-order ODE can be used to describe the dynamics.

In general, we write z = f (z, ¢; 6) to describe the ODEﬂ where z € R™ denotes the state variable,
t € R denotes time and § € R™ are the unknown physical parameters. Using the initial conditions
zo € R™ at the initial time ¢y, we can write the solution of the ODE as

t
z (t;29,0) = zo + / f(z(r),r;0)dr. (D)
to

Note that the solution curve z (t; zo, #) C R™ depends both on the unknown initial conditions z, as
well as on the unknown physical parameters 6.

In practice, the solution to Eq. (I) is typically approximated by numeric integration. In our context
of physical parameter estimation from videos, we build upon the recent work by |Chen et al.|(2018),
who proposed an approach to compute gradients of the solution curve of an ODE with respect to
its parameters. With that, it becomes possible to differentiate through the solution in Eq. (I) and
therefore we can use gradient-based methods to estimate zg and 6.

3.2 DIFFERENTIABLE RENDERING OF THE VIDEO FRAMES

To render the video frames, we draw inspiration from the recent advances in neural implicit represen-
tations. To this end, we use a static representation to model the background, which we combine with
a appearance and shape representation of dynamic foreground objects. By composing the learned
background with the dynamic foreground objects, whose poses are determined by the solution of the
ODE encoding the physical phenomenon, we obtain a dynamic representation of the overall scene.
Doing so allows us to query the color values on a pixel grid, so that we are able to render video
frames in a differentiable manner. Fig.[2|shows an overview of the approach.

Representation of background.  The static background is modeled by a function F'(-; fpe) that
maps a 2D location x to an appearance value ¢ € R®, where C denotes the number of appearance
channels (e.g. RGB colors). The function F(-; ) encodes the appearance of the background and is
represented as a neural network with learnable parameters ¢,,. To improve the ability of the neural
network to learn high frequency variations in appearance, we use Fourier features (Tancik et al.,
2020), so that the input location x € R? is mapped to a higher-frequency vector 7 (x) € R*Vrouier T2
where Npourier 18 the numbers of frequencies used. The full representation of the background then
reads ¢y, (x) = F(7y () ; Obg ). For a more detailed discussion of the architecture, we refer to App. [Al

Representation of dynamic objects. To compose the static background and the dynamically
moving objects into the full scene, we draw inspiration from |Ost et al.| (2021) who use implicit
representations to represent color and shape in a scene graph to decompose a dynamic scene into a
background representation and dynamically moving local representations. A drawback of their work
is that they do not use a physical model to constrain the dynamics, and therefore strong supervisory
signals like the trajectories and the dimensions of the bounding boxes are essential. In our case, each
dynamic object is represented in terms of a local neural implicit representation, which is then placed
in the overall scene based on the time-dependent spatial transformation T; = T (z (; zo, fode ) , 0+ )-
This transformation is parameterized by the unknown initial condition zg, the physical parameters
Oode of the ODE, and possibly additional parameters 6. As such, these parameters determine the
transformation from the global coordinate system of the background to the local coordinate system.

'"W.l.o.g. we only consider first-order ODEs here, since it is always possible to reduce the order to one by
introducing additional state variables.
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Figure 2: Overview of our approach. The dynamics in the video are modelled by an ordinary differ-
ential equation, which is solved depending on unknown initial conditions zy and unknown physical
parameters 6oq.. The solution curve z (t; Zg, fode) is used to parametrize a time-dependent trans-
formation T (z (t; 2o, fode) , 0+ ) from the global coordinates XY of the background to the local
coordinates xy of the moving object. The functions F'(-;6y,) and G(-;0q;) are neural networks
that model the appearance of the background and of the object, respectively. We can estimate the
unknown physical parameters for a given video based on a rendering loss which penalizes the dis-
crepancy between the input video frames and the rendered video. All estimated parameters and
network weights are shown in green in the figure.

Similarly as the background, the appearance of each individual dynamic object is modelled in terms
of an implicit neural representation (in the local coordinate system). In contrast to the background,
we augment the color output ¢ € R of the dynamic object representation with an additional opacity
value o € [0, 1], which allows us to model objects with arbitrary shape. We write the representation
of a dynamic object in the global coordinate system as (copj (x),0(x)) = G(v(x');Ooj), Where
G(; 0obj) is represented as a neural network with weights 6.y, v denotes the mapping to Fourier
features, and ' = T;(x) is the local coordinate representation of the (global) 2D location .

Differentiable rendering. = For rendering we evaluate the composed scene appearance at a regular
pixel grid, where we use the opacity value of the local object representation to blend the color of the
background and the dynamic objects. To obtain the final color, for all positions x of the pixel grid
we evaluate the equation

c(x,t) = (1 —o(x)) cog() + o(x)copi(). ?2)

Note that due to the time dependence of the transformation 7}, the color value for pixel x is also
time dependent, which allows us to render the frames of the sequence over time.

3.3 LOSS FUNCTION

We jointly optimize for the parameters of the neural implicit representations g and 6 and estimate
the physical parameters 0y, zg and 0 of the dynamics and the transformation. To this end, we use
a simple photometric loss defined over all the pixel values, which reads

1
ﬁZWZZd(I(x,t),C(m,t)), 3)

teT x€l
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Figure 3: Two masses spring system in which MNIST digits are connected by an (invisible) spring.
Reconstruction and prediction for test sequence 6. The arrow indicates the prediction start. For the
spring constant and equilibrium distance (k, [) the different methods achieve the following relative
errors: (2.7%, 81.0%) (B: Overfit), (3.7%, 1.8%) (B: Full), and (0.6%, 1.7%) (Ours).

where d computes the discrepancy between its two inputs, 7 is the set of all given time steps, Z is
the set of all pixel coordinates at the current resolution (see next section) and I (x, t) are the given
images. To capture information on multiple scales we employ an image pyramid scheme. More
details can be found in App. [C}

4 EXPERIMENTS

We use two challenging physical models to experimentally evaluate our proposed approach. To
analyze our method and to compare to previous work, we first consider synthetically created data.
Afterwards, we show that our method achives promising results also on real-world data. For details
about the ODEs describing the dynamics, additional implementation details, an ablation study, as
well as additional results we refer the reader to the Appendix.

Although several learning-based approaches that infer physical models from image data have been
proposed (de Avila Belbute-Peres et al., 2018}, Taques et al.,[2020; [Kandukuri et al, 2020; [Zhong &|
[Ceonard} [2020; Toth et al.,[2020), existing approaches are particularly tailored towards settings with
large training corpora. However, these methods typically suffer from a decreasing estimation accu-
racy in scarce training data regimes, or if out of distribution generalization is required (cf. App. [F).
In contrast, our proposed approach is able to predict physical parameters from a single short video
clip. Due to the lack of existing baselines tailored towards estimation from a single video, we adapt
the recent work of Jaques et al| (2020) and [Zhong & Leonard (2020)) to act as baseline methods.

4.1 TwO MASSES SPRING SYSTEM

We consider the example of two moving MNIST digits connected by an (invisible) spring on a
CIFAR background, in a similar spirit toJaques et al.| (2020), see Fig.[3] Besides the initial positions
and velocities, the spring constant k and the equilibrium distance [ of the connecting spring need to
be identified for the dynamics model. For a more detailed description of the model see App.[B.1]

The approach of Jaques et al.| (2020) uses a learnable encoder and velocity estimator to obtain po-
sitions and initial velocities of a known number of objects from the video frames. After integrating
the known parametric model, they use a learnable coordinate-consistent decoder in combination
with learned object masks and colors to render frames from the integrated trajectories. Using a pho-
tometric loss they require 5000 sequences of different runs of the same two masses spring system to
train the model and identify the parameters. In order to compare their method to our work in the set-
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Figure 4: Prediction when training with the first N = 10 frames of sequence 1. Each image shows
the prediction of the respective method in white, and the ground truth as green overlay. For both
methods, the prediction of images seen during training (frames 1,4,7,10) works well. For unseen
data (frames 11,12,16,18,20), our method (fop) leads to more reliable predictions, meaning that our
physical parameter estimation is more accurate.

ting of parameter estimation from single video, in addition to their model trained on the full dataset
(‘B: Full’), we also consider their model trained for an individual sequences of the test dataset (‘B:
Overfit’).

We fit our model to sequences from the test dataset, where we use two local representations and
parametrize the spatial transformation as shown in App. [B.I] By using the maximum of both masks
as foreground mask, we enable the model to identify the object layering. We find that for training
it is necessary to gradually build up the sequence of frames over training. We start with only two
frames and add the respective next frame after 60 epochs. Also, the model appears to have a scale
freedom in terms of the equilibrium length and the points where the spring is attached to the digitsE]
We therefore add an additional loss to keep the spring attachment close to the center of the bounding
box of the digits in the first frame. We observe similar effects when overfitting the model of Jaques
et al.| (2020) to a single sequence. When training on the full dataset, the effect seems to be averaged
out and is not observed.

Fig.[3|shows a qualitative comparison of our results to the baseline of Jaques et al.| (2020), where the
latter is trained in the two settings explained above. We observe, that for this sequence all approaches
yield reasonable results for the reconstruction of the training frames. However, for prediction the
overfitted model of Jaques et al.| (2020) performs significantly worse, indicating that the physical
model is poorly identified from a single video. The baseline trained on the full dataset yields results
that are slightly worse than our results. We see that in both cases the parameters are identified
correctly. The fact that we achieve comparable results while using significantly less data highlights
the advantage of combining the explicit dynamics model with the implicit representation for the
objects. Note that we chose sequence 6 since it yielded the best results for the baseline. More results
can be found in app. [E.]

4.2 NONLINEAR DAMPED PENDULUM

We use synthetically created videos of a nonlinear damped pendulum to compare our method to the
previous work of Zhong & Leonard| (2020) and also to show the ability of our approach to handle
high resolution videos. The equations describing the pendulum dynamics can be found in App.

Comparison to Lagrangian Variational Autoencoder. = We use the dataset ofZhong & Leonard
(2020) containing several sequences of a simple pendulum (each comprising 20 frames), which
was created by the OpenAl Gym simulator (Brockman et al. [2016). The method by Zhong &
Leonard (2020) uses a coordinate aware encoder to obtain the distribution of the initial state from
object masks. After sampling, the initial state is integrated using a learnable Lagrangian function
parametrizing the dynamics of the system and a coordinate aware decoder is used to render frames
from the trajectories. We train the model using only the first N frames of a single sequence as the
training data (with no external control input), effectively overfitting the model to each sequence.

*Intuitively, if the motion is only in one direction we can vary the equilibrium length and adjust the spring
attachments without changing the observed motion. Similar effects are present in a 2D motion.
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Figure 5: Rendered frames for the high-resolution (1280 x 854 pixel) lake sequence when training
on the first 10 frames out of a total of 25 frames. While the first image is part of the training set,
the two remaining images are frame 20 and 25 of the full sequence and have not been seen during
training. We see that our method produces realistic reconstructions of the scene even for physical
states that are not seen during training. Best viewed on screen with magnification.

Similar to the baseline, we assume no damping and a known pivot point A in the middle of the frame
to train our model. Since this dataset does not include image data, we only use the loss on the object
mask, and train our model in this modified setup using the same frames as for the baseline.

To evaluate the performance of each method in identifying the underlying dynamics, we compare
the prediction of the unseen frames of the same sequence. Qualitative results are presented in Fig.[4]
We can observe that both methods fit the given training data very well, however, in the baseline
the pendulum motion significantly slows down for unseen time steps and thus it is unable to ob-
tain accurate predictions for unseen data. We emphasize that this happens because the method
requires significantly larger training datasets, so that it performs poorly in the single-video setting
considered in this paper. In contrast, our method shows a significantly better performance, which
highlights the strength of directly modelling physical phenomena to constrain the learnable dynam-
ics in an analysis-by-synthesis manner. Due to aliasing effects that arise from the low resolution of
the frames, our method does not give perfect predictions, however, if we use high-resolution images
for our method we achieve nearly perfect reconstruction as we show in Fig. [5] and Fig.[6] For a
quantitative comparison and further experimental details see App.

High resolution videos. In contrast to the baseline, our approach is able to handle high-
resolution videos with complex background and pendulum shapes and textures. In this case, our
approach accurately the parameters for the full pendulum model as we show in Fig.[3]

For this experiment we created several videos by simulating a pendulum with known parameters and
then rendering the pendulum on top of an image. Qualitative results of fitting our model to the lake
scene can be seen in Fig.[5] We see that our model produces photorealistic renderings of the scene,
even for the predicted frames. The renderings of other scenes are shown in App.[E] As we show in
Fig.[6|and Table[T] it is necessary that the frames in the training set cover a sufficient portion of the
motion to enable a correct estimation of the physical parameters.

4.3 REAL PENDULUM VIDEO

We now show that our approach is even able to infer physical parameters from real world data. We
recorded the pendulum motion shown in Fig.[I] The pendulum is mounted almost frictionless and
due to its high weight we do not expect large air drag effects either. The video was recorded with a
smartphone, which leads to noticeable real-world noise such as motion blur, however, the proposed
method still manages to produce convincing results. The pseudo groundtruth segmentation masks
are generated semi-manually by using GrabCut (Rother et al, 2004) and exhibit significant noise
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Figure 6: Prediction evaluation on the lake scene. The estimated deflection angle ¢ is close to
the groundtruth for N = 5 training frames and virtually identical for N = 10 training frames even
during extrapolation (left). We show the time span covered by training images with transparent boxes
above the x axis. The trajectory error, measured by the MSE between the groundtruth deflection
angle and predicted deflection angle for ¢ € [0, 5], improves with the number of training frames N
(right). This shows that a sufficient number of frames is necessary to constrain the model, which
can then predict a nearly perfect trajectory.

that is also handled well by the proposed model. We extract every third frame from the video s.t.
there are 10 extracted frames per second and use the first 10 frames for training.

We use the the full damped pendulum model to estimate the physical parameters of the pendulum
motion. The damping is estimated as ¢ = 4.7 - 10~ '3, which matches our expectation for this low
friction setting. For the pendulum length we note from Eq. (6) that the estimated length [ = 27.7cm
is a real world quantity without scale ambiguity. Therefore, we can compare it to Ijpeasured = 27.1 cm
which we obtained by measuring the length from the pivot point to the estimated center of gravity of
the pendulum using a ruler. We would like to emphazise, that the very good correspondence shows,
that we are able to estimate scale in a monocular video from a pendulum motion.

5 CONCLUSION

In this work we presented a solution for learning a physical model from an image sequence that
depicts some physical phenomenon. To this end, we proposed to combine neural implicit repre-
sentations and neural ordinary differential equations in an analysis-by-synthesis fashion. Unlike
existing learning-based approaches that require large training corpora, a single short video clip is
sufficient for our approach. In contrast to prior works that use encoder-decoder architectures specif-
ically tailored to 2D images, we built upon neural implicit representations that have been shown
to give impressive results for 3D scene reconstruction. Therefore, the extension of the proposed
method to 3D is a promising direction for future work.

We present diverse experiments in which the ODE parametrizes a rigid-body transformation be-
tween the background and the foreground objects, such as the pendulum motion. We emphasize that
conceptually our model is not limited to rigid-body motions, and that it can directly be extended to
other cases, for example to nonlinear transformations for modelling soft-body dynamics. The focus
of this work is on learning a physical model of a phenomenon from a short video. Yet, the high
fidelity of our model’s renderings, together with the easy modifiability of the physical parameters,
enables various computer graphics applications such as the artistic re-rendering of scenes, which we
briefly demonstrate in the supplementary video. Overall, our per-scene model combines a unique set
of favorable properties, including the interpretability of physical parameters, the ability to perform
long-term predictions, and the synthesis of high-resolution images. We believe that our work may
serve as inspiration for follow-up works on physics-based machine learning using neural implicit
representations.
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Ethics statement.  This work attempts to learn interpretable physical models from video clips of
physical phenomena. Our contribution is largely theoretical and we show experiments on synthetic
data and limited real-world data. Nevertheless, as machine learning models achieve more human-
like understanding of the real, physical world, it is paramount to ensure that they are deployed safely
and according to strict ethical guidelines. While we think that the current state of our work will not
disadvantage or advantage specific groups of people, we recommend a careful ethical evaluation of
derivative works that aim to close the gap to human physical reasoning. A potential positive impact
of this work is that it can be beneficial to people with lower financial resources, as it overcomes
the need for expensive experimental gear to infer physical parameters, e.g. in the context of physics
education.

Reproducibility statement.  To ensure the reproducibility of this work we give architecture and
training details in App.[A]and [C} Furthermore, we will release our code upon acceptance, so that all
experiments and figures shown in this paper can be reproduced.
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Figure 7: Overview of our architecture for the implicit shape and appearance representations. The
input vector x is passed through a layer of Nruier Fourier features (FF) to obtain the encoding ~y(x).
The following neural network is constructed from Ngc fully connected layers (FC) of width Wrc.
We use ReLU activations between the layers. A skip connection is used to feed the encoding v(x)
to the Ngi,-th fully connected layer, where it is concatenated with the output of the previous layer.
We feed the output of the last layer through a sigmoid function, to achieve values for the color ¢ and
the opacity o (only for the local representation) in the range [0, 1].

A MODEL ARCHITECTURE

We adopt the architecture used in[Mildenhall et al.| (2020) for the implicit representations, see Fig. [7]
for the basic structure. For the Fourier features we use a logarithmic scaling. The i-th of the Ngoyrier
Fourier features is obtained as

7i(x) = (sin(2°x), cos(2'x)) i =0, ... Nrousier — 1, 4)

where sin(2°x) for x € R? means the element wise application of the sine function. We also include
the original x in the encoding ~y(x).

B MODELS FOR THE DYNAMICS

B.1 TwO MASSES SPRING SYSTEM

The system is modeled as two-body system where the dynamic of each object is described by New-
ton’s second law of motion, i.e. F' = ma, where F' is the force. Since only the ratio between force
and mass can be identified without additional measurement, we fix m = 1, analogously to the work
of Jaques et al.|(2020). Using Hooke’s law, we write the force applied to object ¢ by object j as

Di Dj
Fij=-k ((pi —Dpj) — l—) . (%)
! ! P =i

Using the position p;(¢; k,1) of the objects to parametrize the trajectory of the local coordinate
systems, we can write the time-dependent 2D spatial transformation to the local coordinate system

i as Tt(i) (z) = & — pi(t; k, 1), where [ and k are learnable parameters.

B.2 NONLINEAR DAMPED PENDULUM

A pendulum that is damped by air drag can be modelled as

Pl W 6
[w] {—fllsm(go) —aw |w||’ ©)
where ¢ € R is the deflection angle, w € R is the angular velocity, g is the (known) gravitational
acceleration, [ > 0 is the (physical) length of the pendulum, and ¢ > 0 is the damping constant.
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We use the solution curve ¢ (¢;1, ¢) to parameterize the time-dependent 2D spatial transformation
as Ty (z) = R (¢ (t;l,c)) x + A, where R € SO (2) is a rotation matrix and A € R? is the pivot
point of the pendulum. For the full model, the parameters [ and c are learnable. For the sake of
simplicity we assume that the gravitational acceleration g always points downwards in the global
image coordinate system.

C TRAINING DETAILS
In the following we provide additional training details.

C.1 DISCREPANCY MEASURE FOR THE LOSS TERM

Unless stated otherwise, for our experiments we use C' = 4 image channels, where the three first
channels correspond to the RGB channels, and the last channel represents a mask of the foreground
object. For the real world data, we obtained the objects masks using a semi-manual approach as
described in Sec. [#.3] For the experiments on the synthetically created high resolution videos we
used the masks constructed for the video creation for the experiments directly.

For the first three channels we define the discrepancy measure in terms of the mean square error as

drgn () = ||z =y, (7)
and for the mask in the last channel we consider the binary cross entropy loss, i.e.
dyeg (2, y) = [zlog (y) + (1 — ) log (1 — y)]. (8)
With that, the overall discrepancy measure is given as
d(z,y) = digp(21:3, Y1:3) + Aseglsee (T4, Ya). 9

C.2 OPTIMIZATION

We train our model using the Adam optimizer (Kingma & Ba, |2015) with exponential learning rate
decay, which reads

r(e) =rp- [/ Tutecay (10)
where r(e) is the learning rate depending on the epoch e, ¢ is the initial learning rate, 3 is the decay
rate and ngecay 1S the decay step size.

One important aspect of the training is to use different learning rates for the parameters 0y, and Gy
of the implicit representations on the one hand and the physical parameters o4, zo and 6, on the
other hand.

In order to estimate the initial parameters of the ODE and the transformation for the pendulum we
employ a heuristic that uses the information contained in the mask. To obtain an initial estimate for
the pivot point A we average all masks and use the the pixel with the highest value. To obtain an es-
timate for the initial angle, we perform a principal component analysis (PCA) on the pixel locations
covered by the mask and use the angle between the first component and the vertical direction. The
velocity is always initialized as 0. We initialize the damping as ¢ = 1 and the pendulum length as
! = 2m for the synthetic experiments and [ = 0.4 m for the real world experiment.

C.3 IMAGE PYRAMID

To capture information on multiple scales we employ an image pyramid scheme. Due to memory
limitations, for large images we cannot evaluate all pixel values in one batch, and thus the classi-
cal approach that considers all stages of the image pyramid at once is not feasible in our setting.
Therefore, during training, we sequentially traverse the image pyramid from the low-resolution lev-
els towards the original high-resolution level. The idea is that the low resolution stages reveal global
information about the movement of the object, whereas the later high-resolution stages allow to use
finer details that improve the coarse estimates from the previous stages. To this end, we use a Bino-
mial kernel of size 5 x 5 with stride two, which we repeatedly apply Ny, times to reduce the original
resolution of the image. We start the training using the coarsest level, and then switch to the next
finer level every npy, steps.
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#Frames A c l o Visual reconstruction
Full Loss 5 1.06e-03  1.60e-03 7.23e-02  4.87e-02 v
Lake Full Loss 10 1.71e-03  5.54e-04 1.07e-03 2.12e¢-03 4
Only dygp 10 4.82e-03  3.35¢-02 9.65e-03 1.71e-02 v
Only dyeq 10 3.11e-04 4.12e-03  1.85e-03  2.17e-03 X
Full Loss 5 5.87e-01  1.00e+00 1.81e-01  6.94e-01 4
City Full Loss 10 1.90e-03  3.99e-03 4.73e-03  1.09e-02 4
Only dygp 10 9.20e-04  1.49¢-02 5.70e-04  4.18e-03 v
Only dyeq 10 5.71e-04  9.00e-03  2.86e-03  7.44e-03 X

Table 1: Relative error of the estimated parameters for the lake and city sequences. With N = 10
frames our model is able to accurately infer the physical parameters of the underlying physical
phenomenon, while N = 5 frames are not sufficient to constrain all parameters. While the color
as well as the segmentation loss alone give similar results to the combined loss, both losses are
needed for the full model. The color loss enables the proposed approach to generate photorealistic
renderings on top of physical parameter inference. While using only the color loss gives good
accuracy for synthetic data, we observed that the segmentation loss, especially in combination with
using image pyramids, greatly improves the convergence behaviour for initial conditions that are
farther away from the groundtruth parameters. Overall, both losses are necessary to obtain accurate
physical parameter estimates and photorealistic renderings in a robust manner.

D ABLATION STUDY

To motivate the chosen loss functions, we report the results for the parameter estimation with dif-
ferent loss function configurations in Table[I] Beyond the influence on the quality of the parameter
estimation, another motivation to use the color loss is that it enables to learn the representation of
the appearance of the background and the object in the implicit representation. This allows for
photo-realistic rendering of unseen predictions, as well as the re-rendering of scenes with modified
physical parameters, effectively allowing physical scene editing. For the mask loss, on the other
hand, we have found that it makes the estimation process more robust to suboptimal initializations
of the physical parameters.

E FURTHER EXPERIMENTAL DETAILS AND RESULTS

In the following we consider specific details for the different experiments.

E.1 TwO MASSES SPRING SYSTEM

Experimental details. ~ We use both loss terms and set A\s; = 0.01 to balance them. Additionally,
we use an MSE loss to keep the center of the bounding boxes of the digits close to the origin of the
local representations in the first frame. This fixes the scale problem related to the equilibrium length
described in the main text. Moreover, we use another MSE loss term to keep the opacity value close
to zero outside of (but close to) the visible area. We found this to be necessary, since otherwise
artefacts might appear in the extrapolation when previously unseen parts of the mask appear in the
visible area.

For the background we use an implicit representation with Ngoyier = 6 Fourier features, Ngc = 8
fully connected layers of width Wgc = 128 and an input skip to layer number Ny, = 4. For the
local object representation we use Npoyrier = 8 Fourier features, Ngc = 8 fully connected layers of
width Wge = 128 and an input skip to layer number Ny, = 4.

We use an initial learning rate of ryrp o = 0.001 for the parameters of the implicit representations
and 7param, 0 = 0.01 for the physical parameters. We set Svip = 0.99954, ngecaymrr = 50, Bparam =
0.95 and ngecay,param = 100.
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Figure 8: Two masses spring system, where MNIST digits are connected by an (invisible) spring.
Reconstruction and prediction for test sequence 0. The arrow indicates where the prediciton starts.
For the spring constant and equilibrium distance (k, [) the different methods achieve the fol-
lowing relative errors respectively: (20.4%, 57.6%) (B: Overfit), (3.7%, 1.8%) (B: Full), and
(0.35%, 6.7%) (Ours).

For the image pyramid we use [V, = 1 stage and step up the pyramid every n,,, = 200 epochs. We
train for 1500 epochs, where one epoch is completed, when all the pixels in the current resolution
have been considered.

Additional results.  In Fig.[8]and Fig.[9]we present additional results for sequence 0 and sequence
1 of the test dataset. We see, that for both sequences, overfitting the baseline is not able to produce
a reasonable extrapolation of the data and even produces artifacts for the reconstruction part of
the sequence. One reason for this is that the model is unable to identify the physical parameters
correctly as can be seen by the large relative errors. Our model, on the other hand, is able to estimate
the parameters with high accuracy that is even slightly better than the baseline trained on the full
training dataset, which again shows the strength of our approach, considering, that we use a single
video as input.

E.2 COMPARISON WITH THE LAGRANGIAN VARIATIONAL AUTOENCODER

Experimental details. = The data used in this experiment does not include image data, therefore
we do not use dygp, and set A, = 1. Since the predicted masks are obtained only from the local
representation, we do not use an implicit representation for the background in this example. For the
local representation we use Npouier = 4 Fourier features, Ngc = 6 fully connected layers of width
Wec = 64 and an input skip to layer number Ny, = 3.

We use an initial learning rate of ryp o = 0.001 for the parameters of the implicit representations
and rparam, 0 = 0.01 for the physical parameters. We set Surp = 0.9954, ngecaymrr = 10, Bparam =
0.995 and Ngecay,param = 50.

For the image pyramid we use Ny, = 2 stages and step up the pyramid every nyy,, = 75 epochs. We
train for 1500 epochs, where one epoch is completed, when all the pixels in the current resolution
have been considered.

Quantitative comparison. To quantitatively compare the temporal prediction ability of our
approach with the baseline, we follow the procedure by [Zhong & Leonard (2020) and report the
average mean squared error (MSE) between the predicted and the ground truth mask for the frames
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Figure 9: Two masses spring system, where MNIST digits are connected by an (invisible) spring.
Reconstruction and prediction for test sequence 1. The arrow indicates where the prediciton starts.
For the spring constant and equilibrium distance (k, [) the different methods achieve the fol-
lowing relative errors respectively: (13.6%, 90.9%) (B: Overfit), (3.7%, 1.8%) (B: Full), and
(0.1%, 0.3%) (Ours).
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Figure 10: Temporal prediction ability of our approach and the approach of Zhong & Leonard|(2020)
overfitted to a single sequence (baseline). We report the average MSE (Pixel MSE) of the predicted
masks for the entire sequence. The horizontal axis indicates the number of frames used for training,
and the vertical axis shows the resulting error.

of the full sequence, which we denote as pixel MSE for consistency with the previous work. The
results for randomly chosen sequences of the dataset are presented in Fig. We can observe that
the predictive power for both methods is limited when only a few frames are available to infer the
underlying dynamics. However, with an increasing number of frames, our method becomes able to
reconstruct the physics more consistently, while the baseline does not noticeably benefit from more
training frames. We believe that this is because the baseline method overfits to the given frames,
whereas our method infers actual physical parameters.
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E.3 EXPERIMENTS WITH HIGH RESOLUTION VIDEOS AND THE REAL WORLD VIDEO

Experimental details. We use the same architecture for the high resolution synthetic and the
real-world video sequences. We use both loss terms and set A = 0.03 to balance them. For the
background we use an implicit representation with Ngoyier = 10 Fourier features, Npc = 8 fully
connected layers of width Wrc = 128 and an input skip to layer number Ny, = 4. For the local
object representation we use Ngoyrier = 8 Fourier features, Ngc = 8 fully connected layers of width
Wec = 128 and an input skip to layer number Ny, = 4.

We use an initial learning rate of ryip o = 0.001 for the parameters of the implicit representations
and 7param, 0 = 0.05 for the physical parameters. We set Svip = 0.99954, ngecaymrr = 10, Bparam =
0.95 and ngecay,param = 100.

For the image pyramid we use Ny, = 5 stages and step up the pyramid every ny,, = 200 epochs.
We train for 1500 epochs, where one epoch is completed, when all the pixels in the current resolution
have been considered.

Additional results. In the following we present additional rendering re-
sults. Fig. [1I] and Fig. [I[2] show additional reconstruction and prediction re-
sults for additional synthetic high resolution scenes. To create the synthetic

scenes we took the background images from https://pixabay.com/photos/
lake—-mountains—nature—-outdoors—-6627781/ (Lake), https://pixabay.
com/photos/city-street—-architecture-business-4667143/ (City) and
https://pixabay.com/photos/apples—fruits—-ripe-red—-apples—-6073599/
(Apple). Fig.[I3]allows for a more detailed comparison for the results of the real pendulum video.
We show the images and masks used for training on the real pendulum video in Fig. Please also
see our supplementary video for additional results on this data.

F GENERALIZATION OF THE LAGRANGIAN VARATIONAL AUTOENCODER

One drawback of learning-based approaches for visual estimation of physical models is the poor
generalization to data that deviates from the training data distribution. We confirm this for the fully
(pre-)trained model of [Zhong & Leonard| (2020). While the Pixel MSE averaged over the full test
set is 1.83 - 103, the error increases to 1.22 - 10~2 when we shift the frames of the test data set
by as much as 1 pixel in each direction. This corresponds to the case of input videos, where the
pivot point of the pendulum is not in the center of the image, which is different from the training
data. This effect is visualized in Fig. [I5] which shows the output of the model for sequence 2 of
the test data set with zero control input, both in the original version and in the shifted version. We
observe that the small shift of only one pixel in each direction leads to results that are significantly
off, and not even the first frame is predicted correctly. While |Zhong & Leonard| (2020) propose to
use a coordinate-aware encoder based on spatial transformers, this introduces additional complexity
to the model. In contrast, our approach does not suffer from such issues.
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Ours
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training frame unseen frame unseen frame

Figure 11: Reconstruction and prediction results for the city scene. The first frame is in the training
set of 10 frames, while the two frames on the right are frame 20 and 25 of the sequence.

Ours

Ground Truth

training frame unseen frame unseen frame

Figure 12: Reconstruction and prediction results for the apple scene. The first frame is in the training
set of 10 frames, while the two frames on the right are frame 20 and 25 of the sequence.
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Figure 13: Comparison of the visual quality of the reconstruction for the real pendulum video trained
on the sequence of 10 frames. The numbers indicate which frame of the sequence is shown. Best
viewed on screen with magnification. Please see also our supplementary video.

Figure 14: Training frames and segmentation masks for the real world video. Best viewed on a digi-
tal screen with magnification. Upon closer inspection the motion blur as well as segmentation mask
error can be seen. The proposed approach can handle this real-world noise and produce compelling
reconstructions and predictions shown in Fig. |E| and the supplementary video.
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Original

Figure 15: Prediction of the fully trained model of |[Zhong & Leonard| (2020) for sequence 2 of the
test dataset (with zero control). While the prediction for the original data is perfect, the prediction
for shifting the frames by one pixel in each direction is significantly worse. This shows, that the

model does not generalize well to input frames where the pivot point of the pendulum is not in the
center of the frame.

Shifted
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