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ABSTRACT

In this paper, we provide the first focused study on the discontinuities (aka. holes)
in the latent space of Variational Auto-Encoders (VAEs), a phenomenon which has
been shown to have a detrimental effect on model capacity. When investigating la-
tent holes, existing works are exclusively centred around the encoder network and
they merely explore the existence of holes. We tackle these limitations by propos-
ing a highly efficient Tree-based Decoder-Centric (TDC) algorithm for latent hole
identification, with a focal point on the text domain. In contrast to past studies,
our approach pays attention to the decoder network, as a decoder has a direct im-
pact on the model’s output quality. Furthermore, we provide, for the first time,
in-depth empirical analysis of the latent hole phenomenon, investigating several
important aspects such as how the holes impact VAE algorithms’ performance on
text generation, and how the holes are distributed in the latent space.

1 INTRODUCTION

Variational Auto-Encoders (VAEs) are powerful unsupervised models for learning low-dimensional
manifolds (aka. a latent space) from non-trivial high-dimensional data (Kingma & Welling, 2014;
Rezende et al., 2014). They have found successes in a number of downstream tasks across different
application domains such as text classification (Xu et al., 2017), transfer learning (Higgins et al.,
2017b), image synthesis (Huang et al., 2018; Razavi et al., 2019), language generation (Bowman
et al., 2016; He et al., 2019), and music composition (Roberts et al., 2018).

Various effort has been made to improve the capacity of VAEs, where the majority of the extensions
are focused on increasing the flexibility of the prior and approximating posterior. For instance,
Davidson et al. (2018) introduced the von Mises-Fisher (vMF) distribution to replace the standard
Gaussian distribution; Kalatzis et al. (2020) assumed a Riemannian structure over the latent space
by adopting the Riemannian Brownian motion prior. A few recent studies attempted to investigate
the problem more fundamentally, and revealed that there exist discontinuous regions (we refer to
them as “latent holes” following past literature) in the latent space, which have a detrimental effect
on model capacity. Falorsi et al. (2018) approached the problem from a theoretical perspective
of manifold mismatch and showed that this undesirable phenomenon is due to the latent space’s
topological incapability of accurately capturing the properties of a dataset. Xu et al. (2020) examined
the obstacles that prevent sequential VAEs from performing well in unsupervised controllable text
generation, and empirically discovered that manipulating the latent variables for semantic variations
in text often leads to latent variables to reside in some latent holes. As a result, the decoding network
fails to properly decode or generalise when the sampled latent variables land in those areas.

Although the works on investigating latent holes are still relatively sparse, they have opened up new
opportunities for improving VAE models, where one can design mechanisms directly engineered
for mitigating the hole issue. However, it should be noted that existing works (Falorsi et al., 2018;
Xu et al., 2020) exclusively target at the encoder network when investigating holes in the latent
space, and they merely explored its existence without providing further in-depth analysis of the
phenomenon. It has also been revealed that the hole issue is more severe on text compared to the
image domain, due to the discreteness of text data (Xu et al., 2020).

In this paper, we tackle the aforementioned issues by proposing a novel tree-based decoder-centric
(TDC) algorithm for latent hole identification, with a focus on the text domain. In contrast to existing
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works which are encoder-centric, our approach is centric to the decoder network, as a decoder has a
direct impact on the model’s performance, e.g., for text generation. Our TDC algorithm is also highly
efficient for latent hole searching when compared to existing approaches, owing to the dimension
reduction and Breadth-First Search strategies. Another important technical contribution is that we
theoretically unify the two prior indicators for latent hole identification, and evidence that the one
of Falorsi et al. (2018) is more accurate, which forms the basis of our algorithm detailed in § 3.

In terms of analysing the latent hole phenomenon, we provide, for the first time, an in-depth em-
pirical analysis that examines three important aspects: (i) how the holes impact VAE models’ per-
formance on text generation; (ii) whether the holes are really vacant, i.e., useful information is not
captured by the holes at all; and (iii) how the holes are distributed in the latent space. To validate
our theory and to demonstrate the generalisability of our proposed TDC algorithm, we pre-train five
strong and representative VAE models for producing sentences, including the state-of-the-art model.
Comprehensive experiments on the text task involving four large-scale public datasets show that the
output quality is strongly correlated with the density of latent holes; that from the perspective of the
decoder, the Latent Vacancy Hypothesis proposed by Xu et al. (2020) does not hold empirically; and
that holes are ubiquitous and densely distributed in the latent space. Our code will be made publicly
available upon the acceptance of this paper.

2 PRELIMINARIES

2.1 VARIATIONAL AUTOENCODER

A VAE is a generative model which defines a joint distribution over the observations x and the la-
tent variable z̃, i.e., p(x, z̃) = p(x|z̃)p(z̃). Given a dataset X = {xi}Ni=1 with N i.i.d. datapoints,
we need to optimise the marginal likelihood p(X) = 1

N

∑N
i

∫
p(xi|z̃)p(z̃)dz̃ over the entire train-

ing set. However, this marginal likelihood is intractable. A common solution is to maximise the
Evidence Lower BOund (ELBO) via variational inference for every observation x:

L(θ,φ;x) = Eqφ(z̃|x)

(
log pθ(x|z̃)

)
−DKL

(
qφ(z̃|x)‖p(z̃)

)
, (1)

where qφ(z̃|x) is a variational posterior to approximate the true posterior p(z̃|x). The variational
posterior qφ(z̃|x) (aka. encoder) and the conditional distribution pθ(x|z̃) (aka. decoder) are set up
using two neural networks parameterised by φ and θ, respectively. Normally, the first term in Eq. (1)
is the expected data reconstruction loss showing how well the model can reconstruct data given a
latent variable. The second term is the KL-divergence of the approximate variational posterior from
the prior, i.e., a regularisation forcing the learned posterior to be as close to the prior as possible.

2.2 EXISTING LATENT HOLE INDICATORS

To our knowledge, there are only two prior works which directly determine whether a latent region
is continuous or not. One work formalises latent holes based on the relative distance of pairwise
points taken from the latent space and the sample space (Falorsi et al., 2018). Concretely speaking,
given a pair of vectors z̃i and z̃i+1 which are closely located on a latent path, and their corresponding
samples x′i and x′i+1 in the sample space, a latent hole indicator is computed as

ILIP(i) := Dsample(x′i,x
′
i+1)/Dlatent(z̃i, z̃i+1), (2)

where Dsample and Dlatent respectively denote the metrics measuring the sample and latent spaces
(NB: Dlatent is an arbitrary metric, e.g., the Euclidean distance and Riemannian distance). Falorsi
et al. (2018) focused on the image domain and utilised Euclidean distance for both spaces. Based
on the concept of Lipschitz continuity, Falorsi et al. (2018) then proposed to measure the continuity
of a latent region as follows: under the premise that z̃i+1 does not land on a hole, z̃i is recognised
as belonging to a hole if the corresponding ILIP(i) is a large outlier1.

Another line of work (Xu et al., 2020) signals latent holes based on the so-called aggregated poste-
rior, with a focus on sequential VAEs for language modelling. This approach interpolates a series
of vectors on a latent path at a small interval, and then scores the i-th latent vector z̃i as

IAGG(i) :=
∑M
t=1NLL(z̃i,Z

(t))/M, (3)
1Unless otherwise stated, outliers are detected by comparing the subject data point with a fixed bound,

which is pre-determined based on a percentile of all data points.
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where Z(t) is the sample of the posterior distribution of the t-th out of the total M training samples,
e.g., when studying holes on the encoder side, this distribution can be computed using qφ(z̃|x) in
Eq. (1) (Xu et al., 2020). Z(t) serves as the reference when calculating the Negative Log-Likelihood
(NLL). After all the interpolated vectors on the latent path are traversed, similar to the first method,
vectors with large outlier indicators (IAGG) are identified as in latent holes.

We note that these two indicators actually stem from different intuitions. For ILIP, there is an under-
lying assumption that a mapping between the sample and latent spaces should have good stability
in terms of relative distance change in order to guarantee good continuity in the latent space. In
contrast, IAGG is based on the belief that small perturbations on the non-hole regions should not lead
to large offsets on the absolute dissimilarity between posterior samples Z(·) and the sample z̃i, and
hence the calculation is performed only in the latent space and only around one single latent posi-
tion. While seemly distinct, we show that (in § 3.2) both indicators actually have tight underlying
connections and can be unified in a shared mathematical framework. Moreover, the first indicator
(ILIP) is proofed to be more comprehensive than the second (IAGG) and thus can reduce false nega-
tives when identifying holes in the latent space. This forms the basis of our algorithm in § 3, which
is the first attempt to identify a VAE decoder’s latent holes for language generation.

3 METHODOLOGY

In this section, we describe our tree-based decoder-centric (TDC) algorithm for latent hole identifica-
tion, which consists of three main components. We first introduce our heuristic-based Breadth-First
Search (BFS) algorithm for highly efficient latent space searching (§ 3.1). We then theoretically
proof, for the first time, that two existing holes indicators can be unified under the same framework
and that ILIP is a more suitable choice for identifying latent holes (§ 3.2). Finally, we extend ILIP

to the text domain by incorporating the Wasserstein distance for the sample space (§ 3.3).

3.1 TREE-BASED DECODER-CENTRIC LATENT HOLE IDENTIFICATION

Figure 1: A cubic fence C in the latent space of
Vanilla-VAE trained on the Wiki dataset, with dr
set at 3 to facilitate visualisation (cf. § 4). C,
whose 12 edges are illustrated by dashed lines,
surrounds the dimensionally reduced expectation
of three encoded training samples. Solid lines
within the cube indicate the traversed paths.

As discussed earlier, existing works for investi-
gating latent holes of VAEs all exclusively fo-
cus on the encoder network (e.g., Falorsi et al.
(2018); Xu et al. (2020)), and they cannot be
trivially applied to the decoders (which play ul-
timately important roles on generation tasks)
due to metric incompatibility, especially for
VAEs in the text domain (see detailed discus-
sion in § 3.3). Another drawback of existing
indicators is that they have very limited effi-
ciency. Theoretically, their time complexity for
traversing a d-dimensional latent space with I
interpolations per path is O(Id) at the optimal
efficiency, which is computationally prohibitive
as typically d and I are larger than 30 and 50
for VAEs in practice. Each path is parallel to
one axis of the traversed latent space2. Empiri-
cally, we observe that even finding a handful of
latent holes has been shown to be difficult for
existing methods (Falorsi et al., 2018; Xu et al.,
2020). Therefore, we tackle both challenges
by proposing a highly efficient algorithm for
decoder-centric latent hole identification. The
pipeline of our TDC algorithm is described in
Algorithm 1 and we give a detailed discussion
as follows. For the visualisation of TDC’s work-
ing process in practice, please see Fig. 1.

2For example, in a 3-dimensional latent space with 4 interpolations per path, as each point is the intersection
of 3 paths, 43 = 64 points in total are determined. The space is then equally divided into 64 cubes.
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Algorithm 1 TDC for latent hole identification
Input: Trained VAE model w/ a d-dimensional latent space; original training set X;

reduced dimension dr; the desired number of detected vectors in latent holes Nhole

Output: Zhole

1: Z← ∅;Vtrain ← ∅;Dtrain ← ∅
2: ∀x ∈ X, Z← Z ∪ {z̃} // z̃ is the encoded x
3: ∀x ∈ X, Vtrain ← Vtrain ∪ {E(x)} // E(·) is the expectation
4: ∀x ∈ X, Dtrain ← Dtrain ∪ {σ(x)} // σ(·) is the standard deviation
5: Z′ ← PCA(Z) // Dimension reduced from d to dr
6: C ← a randomly-picked closed cube which contains dr vectors of Z′, w/ edges

parallel to dr dimensional axes
7: Zhole ← ∅; Z′

hub ← ∅; Π← ∅
8: while |Zhole| ≤ Nhole do
9: if Z′

hub == ∅ then
10: Z′

hub ← {a random point in C} // Restart BFS
11: end if
12: Π← unvisited line segments: passing through vectors in Z′

hub

∧
parallel to one

of the dr dimensions
∧

w/ endpoints on C // Depth increases by one
13: Z′

hub ← ∅
14: for each path (cf. § 2.2) in Π do
15: Sample z̃′i on path at an interval of 0.01 ∗min(Dtrain)
16: ∀i, z̃i ← INVERSE PCA(z̃′i)
17: ∀i, decode z̃i to compute I(i) w/ Vtrain and Dtrain // Cf. Eq. (2) in § 2.2
18: if I(i) is an outlier then
19: Zhole ← Zhole ∪ {z̃i}; Z′

hub ← Z′
hub ∪ {z̃′i}

20: end if
21: end for
22: end while

Dimensionality Reduction. One problem for the current indicators is their limited searching ca-
pacity (as evidenced by their time complexity O(Id)) over the target space. Concretely speaking,
both indicators rely on signalling latent holes through 1-dimensional traversal, but a latent space
normally has dozens of dimensions to guarantee modelling capacity. To alleviate this issue, after
feeding all training samples in X to the forward pass of a trained VAE and storing the encoded la-
tent variables in Z (Step 2), we perform dimension reduction using Principal Component Analysis
(PCA) (Jolliffe, 1987) and conduct a search in the resulting dr-dimensional space instead of the
original d-dimensional space (Step 5). We further save the mathematical expectation and standard
deviation of each training sample in Vtrain (Step 3) and Dtrain (Step 4), respectively. In addition,
instead of traversing unconstrained paths like past studies, we only visit latent vectors through paths
parallel to the dr dimensions (see Step 12 and the next paragraph). Such a setup is based on the
intuition that these top principal components contain more information about the latent space, and
thus they are more likely to be useful when capturing latent holes.

Initialising Infrastructures for Search. To further boost efficiency, we propose to conduct a search
on a tree-based structure within a pre-established cubic fence. To be more concrete, at Step 6 we
first locate a cube C which surrounds dr encoded training samples from Z′ (i.e., Z after dimension
reduction). These dr posterior vectors serve as references when analysing the distribution of latent
holes3 (cf. § 4.2). We restrict the edges of the dr-dimensional C to be parallel to the dr latent
dimensional axes and treat C as the range of our search. Next, we regard each sampled latent vector
after dimension reduction z̃′i as a node, and in order to expand the search regions rapidly, we need
to visit these nodes following a BFS-based procedure (Skiena, 2008). Therefore, our algorithm
maintains a set Z′hub to keep track of all untraversed hub nodes, where the root (aka. the first hub
node) is randomly initialised in C (Step 10). For each hub node, we define dr orthogonal paths,
each of which is a line segment that passes through the hub node and is parallel to one dimension.
At Step 12, we log paths having not been previously processed in a set Π.

Identifying Latent Holes. Following the principle of BFS, the TDC algorithm processes all nodes
at the same depth (i.e., all nodes on the paths in Π) before moving to the next depth. On each
path, following Falorsi et al. (2018) and Xu et al. (2020), at Step 15 we sequentially sample a series

3To avoid cherry-picking and parameter deredundancy, we select dr as the number of contained z̃′ ∈ Z′.
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of z̃′i. To ensure the sampling is fine-grained, we set the interpolation interval at the 0.01 times
minimum standard deviation of all elements in Dtrain (see Step 4). After that, we utilise the inverse
transformation of PCA (Developers, 2011) to reconstruct z̃′i to the original d-dimensional latent
space at Step 16 and generate output samples through the decoder at Step 17. One core question
raised is how to choose the indicator I between the two existing ones which seem quite distinct (cf.
§ 2.2). We eventually select the scheme of Falorsi et al. (2018) (i.e., ILIP in Eq. (2)) and further
adopt the Wassertein distance as the metric for the sample space. Detailed justifications are provided
in § 3.2 and § 3.3, respectively. After all paths in Π are investigated, our algorithm pushes the tree
search to its next depth by reloading the emptied Z′hub with newly identified latent variables in the
holes (Step 19). The motivation for treating them as new hub nodes comes from our observation
that holes tend to gather as clusters. In case that no hub node is added, which suggests the end of
current BFS, TDC will bootstrap another tree by randomly picking a new root. The algorithm halts
when more than Nhole holes are identified.

In practice, we find that our tree-search strategy with dimension reduction not only boosts the ef-
ficiency from an algorithmic perspective, but is also highly parallelisable by nature4 and thus can
reduce computational time. In theory, the time complexity of TDC can be reduced toO(Ir

dr ), where
dr can be as small as 3 (cf. § 4) and Ir is typically less than 2, thanks to the parallelism of our al-
gorithm. In experiments, when the device is equipped with a Nvidia GTX Titan-X GPU and a Intel
i9-9900K CPU, in most cases TDC (with dr at 8) can return more than 200 holes in less than 5 min-
utes, whereas the methods of Falorsi et al. (2018) and Xu et al. (2020) often need at least 30 minutes
to find a hole in the same setup as our TDC.

3.2 PICKING INDICATOR FOR TDC

Obviously, the indicator used by TDC (Step 17 in Algorithm 1) plays a crucial role as it directly
affects the effectiveness of identifying latent holes. By analysing the two existing indicators in
§ 2.2, we demonstrate that (1) although developed under different intuitions, they can actually be
unified within a common framework; (2) although both indicators have been tested successfully in
validating the presence of latent holes, the indicator of Falorsi et al. (2018) (ILIP) is more accurate
as it has better completeness and is thus more suitable to our algorithm. To begin with, we prove the
following lemma:
Lemma 1 NLL(x, P ), the NLL of a data point x under a multivariate normal distribution with
independent dimensions P can be numerically linked with DG, the so-called Generalized Squared
Interpoint Distance (Gnanadesikan & Kettenring, 1972), as

NLL(x, P ) ≡ 1

2
DG(x, µ) + δ(KP ) s.t. P = N (µ,KP ), (4)

where µ denotes the mean, KP denotes the covariance matrix, DG is the so-called Generalized
Squared Interpoint Distance (Gnanadesikan & Kettenring, 1972), and δ(·) is a single value function.

Proof. See Appendix A.

Based on this lemma, we find that the right hand of Eq. (3) is numerically equivalent to directly
calculating NLL(z̃i,Z

(t)) for posterior Z(t), yielding

IAGG(i) ≡
M∑
t=1

[
1

2
DG(z̃i, µ

(t)) + δ(KZ(t))

]
/M s.t. Z(t) = N (µ(t),KZ(t)). (5)

Note that as Z(t) is deterministic, δ(KZ(t)) settles as a constant term. By integrating Eq. (2), w.l.o.g.,
we can theoretically prove that if a latent position is signalled to be discontinuous by the indicator
of Xu et al. (2020), it will be identified using that of Falorsi et al. (2018).

Proof. See Appendix B.

Apart from theoretical proof, empirically we also observe cases showing ILIP has better complete-
ness than IAGG. We present one toy example in Appendix C. To conclude, ILIP should be adopted
to reduce the false-negative rate of TDC.

4Our implementation parallelises the computation process at two hierarchies: different paths at the same
BFS depth and different z̃′ on the same path.
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3.3 PICKING SAMPLE SPACE METRIC

We find that it is impossible to directly apply the indicator of Falorsi et al. (2018) (ILIP) for VAEs for
NLP tasks: the Euclidean distance is used as Dsample in the original study which is on vision VAEs,
but it cannot be used to measure the distance between sentences5. One straightforward solution is
to directly follow Xu et al. (2020) who select NLL, a long-standing and popular metric in past VAE
studies on NLP tasks (Bowman et al., 2016; Fu et al., 2019; Zhu et al., 2020). However, it does not
make a valid metric for the decoder of VAEs for language generation. To be more concrete, while on
the encoder side NLL can be calculated as qφ(z̃|x) in Eq. (1) (Xu et al., 2020) and is thus normal and
thus has a metric-based numerical equivalent DNLL (cf. the proofed lemma in § 2.2), on the decoder
side the posterior distribution of a output sentence is generally computed by a logsoftmax layer
in practice and is thus no longer normal. Instead, coupling the logsoftmax layer with NLL yields
cross-entropy (Contributors, 2019), as

H(P,Q) := H(P ) + DKL(P ||Q), (6)

where P and Q are two probability distributions and H(P ) is the entropy of P . It is obvious that
H(P,Q) does not qualify as a statistical metric, because it does not satisfy symmetry nor Triangle In-
equality. A workaround which adopts the symmetric cross entropy (Wang et al., 2019) and replaces
KL-divergence with the positive squared root of its smoothed version, JS-divergence, can somehow
alleviate the issues (Osán et al., 2018). Nonetheless, the resulting formula may dramatically lose its
measurement capacity when there is no overlap between P and Q (Lin, 1991) (which is common
when testing a VAE for language generation) and is thus unsuitable neither.

Finally, we refer to the Wasserstein distance of finite first moment as our final candidate:

DW1(νP , νQ) := inf
Γ∈P(P∼νP ,Q∼νQ)

E(P,Q)∼Γ||P,Q||1, (7)

where P(P ∼ νP , Q ∼ νQ) is a set of all joint distributions of (P,Q) with marginals νP and νQ,
respectively. DW1 has been adopted in a large body of recent VAE studies, such as Chewi et al.
(2021); Tolstikhin et al. (2018); Wu et al. (2019). Moreover, to further enhance efficiency, following
Patrini et al. (2020), we select the lightspeed Sinkhorn algorithm (Cuturi, 2013) to compute DW1.

4 EMPIRICAL STUDIES

In this section, we describe our experiment for validating the effectiveness of the proposed TDC
algorithm. We first describe our setup, followed by three empirical studies investigating the impact
of latent holes on text generation, the vacancy of holes, and how the holes are distributed.

4.1 EXPERIMENTAL SETUP

Models. To demonstrate the generalisability of our proposed TDC algorithm, we pretrain five
strong and representative VAE models for language generation, including the state-of-the-art iVAEMI
model: Vanilla-VAE (Bowman et al., 2016), which uses LSTM and KL annealing for mitigating the
posterior collapse issue; β-VAE (Higgins et al., 2017a), which utilises an adjustable β to balance the
reconstruction loss and the KL term; Cyc-VAE (Fu et al., 2019), which employs cyclical annealing
for the KL term; iVAEMI (Fang et al., 2019), which replaces the Gaussian-based posteriors with the
sample-based distributions; BN-VAE (Zhu et al., 2020), which leverages the batch normalisation for
the variational posterior’s parameters.

Datasets. We consider four large-scale datasets, three of which have been commonly used in pre-
vious studies for testing VAEs on the language generation task: Yelp15 (Yang et al., 2017), Ya-
hoo (Zhang et al., 2015; Yang et al., 2017), and a downsampled version of SNLI (Bowman et al.,
2015; Li et al., 2019). We additionally constructed a dataset (called Wiki) by downloading the latest
English Wikipedia articles and then randomly sampling 1% sentences from the whole set. The size
of Wiki is 10 times larger than other datasets and it contains more training samples which can cover
more areas of the latent space during training VAEs. For Yahoo, Yelp15 and SNLI, their training
and validation sets are all 100K and 10K, respectively. For Wiki, the training and validation sets are
1.13M and 141K, respectively.

5In principle, by simply adopting metrics such as Euclidean distance, TDC can also be applied on VAEs for
image generation. We will explore this direction in the future.
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Hyper-parameter Settings. We adopt the official code of each tested models and apply the same
pretraining hyper-parameters to all models. To be concrete, the encoders and decoders of all models
are constructed using one-layer LSTM with 1024 hidden units and 512D word embeddings. The
dimension of the latent space is 32. KL annealing (Bowman et al., 2016) is applied to all models,
and the scalar weight of the KL term linearly increases from 0 to 1 during the first 10 epochs.
Dropout layers with a probability 0.5 are installed on the encoder’s both input-to-hidden and hidden-
to-output layers. All baselines are trained with Adam optimiser with an initial learning rate of 8e-4.
Parameters of all models are initialised using a uniform distribution U(−0.01, 0.01) except for word
embeddings with U(−0.1, 0.1). The gradients are clipped at 5.0. During training, we set patience
at 5 epochs, and adopt early stopping based on Perplexity (PPL) with standard validation splits. For
β-VAE and BN-VAE, the corresponding β and γ are set at 0.4 and 0.7, respectively.

Configurations of the TDC Algorithm. As discussed earlier, the dimensions of the original latent
space d is 32. When performing dimension reduction, we experiment with dr = {3, 4, 8} for all
setups. Empirically, we observe that results for different dr setting show very similar trends. We
report the results based on dr = 8 in the main body and provide the results for other settings in
Appendices E, F, and G. When computing our hole indicator (Eq. (2)), we follow Falorsi et al.
(2018) and adopt the Euclidean distance for Dlatent (NB: for sample space (Dsample) we adopt the
Wasserstein distance as discussed in § 3.3). Following Hoaglin et al. (1986), at Step 18 of TDC
we adopt the popular Inter-Quartile Range measure that defines large outliers as data points falling
above Q3 + 1.5 · (Q3 − Q1), where Q1 and Q3 respectively denote the lower and upper quartile.
In all runs, we set Nhole = 200, i.e., the program halts when more than 200 holes are identified and
we store the first 200 holes in Zhole for evaluation. For stochastic analysis, we run TDC 50 times for
each setup, yielding 50× 200 = 10K latent holes per setup. Recalling that there are 5 models and 4
datasets, we totally have 20 setups.

4.2 RESULTS AND ANALYSIS

Impact of Latent Holes on Text Generation. In this experiment, we investigate how latent holes
impact VAE models’ performance on text generation. To our knowledge, this is the first such study
as prior works (Falorsi et al., 2018; Xu et al., 2020) merely explored the existence of holes and
their schemes are incapable to discover a sufficient amount of holes for quantitative analysis due to
algorithm inefficiency (cf. § 3).

Our analysis is established on the correlation between models’ performance on text generation and
the density of latent holes. As discussed in § 4.1, we identify 10K holes for each setup using our
TDC algorithm, based on which 10K sentences were decoded. We then calculate the average PPL
of those 10K sentences using a pre-trained GPT model (Radford et al., 2018) following the practice
of Dathathri et al. (2020). As for the density estimation of latent holes, we utilise the average number
of paths traversed before the number of identified holes reaches the algorithm halting threshold
Nhole = 200. Intuitively, the fewer paths visited, the denser the holes are distributed, and vice versa.

Figure 2: Average PPL and # of paths traversed
until > Nhole holes are identified. Correlation co-
efficients rs and rp are marked corpus-wisely.

Fig. 2 shows the average PPL versus the num-
ber of paths traversed (when reaching 200 iden-
tified holes) for each setup. It can be observed
that there is a strong negative correlation be-
tween the average PPL (lower the better) and
the number of visited paths, where the corpus-
wise Spearman’s correlation coefficient rs is
consistently below or equal to -0.70. It can also
be observed that the Person’s correlation coef-
ficient rp is below -0.72 for all datasets, show-
ing a certain degree of linearity for the correla-
tion. In summary, the above observations verify
the intuition that denser latent hole distribution
leads to higher average PPL, and hence worse
performance of VAEs for text generation.

Corpus-wisely, we notice that models trained
on the Wiki dataset, i.e., our largest training
dataset, do not seem to yield improvement for
hole reduction when comparing to the much
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Figure 3: Visualisation of the latent
space of the Vanilla-VAE (trained on
the Wiki dataset). Please see Ap-
pendix H for other setups.
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Figure 4: Distribution of quantity of identified holes per
latent path for models trained on the Wiki dataset when
dr = 8. Results for other datasets are in Appendix G.

Table 1: Average PPL (divided by 1K) of sentences decoded via vectors of HOLE, NORM, and
RAND in all setups. † indicates the PPL of a model via NORM significantly lower than via HOLE
(p < .05); ‡ indicates the PPL of a model via RAND significantly larger than via HOLE (p < .005).

Yelp15 Yahoo SNLI Wiki
HOLE NORM RAND HOLE NORM RAND HOLE NORM RAND HOLE NORM RAND

Vanilla-VAE 0.428 0.386† 18.241‡ 0.872 0.831† 18.736‡ 1.569 1.529† 41.247‡ 2.443 2.357† 5.377‡

Cyc-VAE 0.376 0.339† 18.293‡ 0.741 0.704† 18.576‡ 1.255 1.129† 41.026‡ 1.856 1.721† 5.354‡

β-VAE 0.362 0.356 18.349‡ 0.756 0.710† 19.027‡ 1.133 1.068† 40.781‡ 1.640 1.587† 5.338‡

BN-VAE 0.348 0.303† 18.234‡ 0.561 0.527† 20.343‡ 0.995 0.947† 40.774‡ 1.095 1.041† 5.347‡

iVAEMI 0.298 0.294 18.211‡ 0.541 0.519† 18.556‡ 0.975 0.911† 40.692‡ 1.090 1.039† 5.320‡

smaller datasets such as Yelp15. Furthermore, sentences decoded by models trained on Wiki have
lower quality than those decoded by the corresponding models trained on Yelp15 and Yahoo. One
plausible explanation is that the complexity (e.g., topic coverage) of datasets plays a more important
role than the corpus size when training VAEs for language generation. For instance, while SNLI
contains the same number of sentences as Yelp15 and Yahoo, models trained on SNLI are substan-
tially inferior to the models trained on the other two datasets in terms of average PPL. Manually
examining the datasets reveals that the topics covered topics in Yelp and Yahoo datasets are less
diverse than that of SNLI and Wiki, e.g., SNLI was constructed based on Flickr30k (Young et al.,
2014), which includes captions for real-world images across a wide range of categories.

Probing the Vacancy of Latent Holes. The previous experiment empirically shows that latent
holes indeed have a detrimental effect on VAEs’s generation performance. A recent study (Xu
et al., 2020) proposed the so-called Latent Vacancy Hypothesis, assuming holes are vacant with no
meaningful information encoded. This motivates us to further probe the vacancy of latent holes.
Specifically, we conduct analysis by comparing the sentences decoded by latent vectors from an
untrained decoder and by the hole vectors from a VAE decoder trained following the setup in § 4.1.
For completeness, we also show the sentence decoded by normal (not in a hole) vectors from a
trained VAE. To summarise, we consider three different types of vectors. (1) Hole vectors (HOLE),
those being investigated in our previous experiments. (2) Normal vectors (NORM), sampled from
the continuous regions near a hole, i.e., z̃i+1 is a normal vector if z̃i is identified to be in a hole in
ILIP. (3) Vectors from the latent space of an untrained VAE (RAND). For controlled analysis, we
randomly initialised a VAE model and pick latent vectors whose coordinates are the same as those of
HOLE vectors. As this VAE is untrained, its latent vectors should carry zero information by nature.

We compute the PPL of the sentences generated by the vectors of each of the above categories.
As expected, results in Tab. 1 show that the sentences decoded via HOLE vectors are significantly
inferior to those via NORM vectors in almost all setups tested (two-tailed t-test with Bonferroni
correction (Dror et al., 2018); p < .05). It can also be observed that sentences decoded via HOLE
vectors are a lot better than the random output generated via the RAND vectors (p < .005). This
observation suggests that the Latent Vacancy Hypothesis proposed by Xu et al. (2020) does not
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hold empirically, i.e., the regions containing HOLE vectors are not vacant, which do capture some
information from the training corpus.

Finally, we qualitatively analyse some sentence examples generated by different types of vectors, as
shown in Tab. 2. First, we observe that although topologically adjacent in the latent space, HOLE and
NORM vectors are decoded into completely irrelevant sentences semantically, indicating that holes,
due to severely harming the smoothness of latent continuity, do have a detrimental effect on model’s
generation quality. Second, it can be observed that the output sentences generated via RAND vectors
are neither syntactically correct, nor making any sense semantically. In contrast, although sentences
decoded via HOLE vectors tend to have problematic word matching and contain content which is
against common sense, at least they still follow basic grammars in most cases, which once again
verifies that HOLE vectors contain some useful information. Based on this finding, one implication
of the future work is to introduce a novel regularisation term in the objective function and utilise the
detected latent holes to regularise the latent space. In addition, TDC is a plugin for other existing
VAE models. During training, TDC can be regarded as a data augmentation approach to treat the
detected latent holes as negative samples under contrastive learning framework.

The Distribution of Latent Holes. Finally, we explore how the latent holes are distributed in
the latent space. While a prior study (de Haan & Falorsi, 2018) proposed a theoretical hypoth-
esis that latent holes should be densely distributed, it has never been investigated empirically.

Table 2: Examples of sentences decoded via vectors of
HOLE, NORM, and RAND. More examples of different
setups are given in Appendix I.
Vanilla-VAE × SNLI
HOLE the bridge was an old gentleman .
NORM a married couple is resting .
RAND waling speedo ever vehicle birdhouse supports tahoe va-

cant commute
HOLE a crowd smiles at people .
NORM an old man plays with his dogs .
RAND inspect rioting shivering entrance back-to-back seeker

wheeling
iVAEMI × Yahoo
HOLE it ’s UNK to do it or you just put home sick in the a

back .
NORM i ’m thinking of buying the UNK on the internet from

pennsylvania .
RAND drin ;-lrb- parker vastly san ripped fountain tais com-

pared gratuit
HOLE this is not a place of all or more specifically my life .
NORM is that what you want to do when your UNK exceeds ?
RAND rr selves t-mobile sad nondescript up-sell dominos con-

cern newly

We visualise one run of TDC in Fig. 1.
As described in § 3.1, C is the mini-
mum cube which can surround the 3 en-
coded training samples on a local latent
region and thus spans quite narrowly
(with a side length being around 0.1,
while the width of the latent space is
more than 5). However, even in this
small search space, TDC still success-
fully halted and identified more than
200 (defined by Nhole, cf. § 3.1) la-
tent holes, showing that the distance
between these holes is tiny and their
distribution is very dense. Moreover,
all these latent holes are detected by
traversing only 85 paths, meaning that
more than 2 latent holes exist on each
path, on average. Similar finding can
be obtained in Fig. 4 (we further inves-
tigate the fine-grained quantity distribu-
tion of identified holes per latent path
in Appendix G). In Fig. 3, holes look
ubiquitous in the entire latent space,
and again we can see that in the 50 ex-
plored regions (the spaces which have been surrounded by C of each run of TDC), the identified
latent holes are very close to each other and even form clusters.

5 CONCLUSION

In this paper, we provide a focused study on the discontinuities (aka. holes) in the latent space of
VAEs, a phenomenon which has been shown to have a detrimental effect on model capacity. In con-
trast to existing works which only study on the encoder network but merely explore the existence of
holes, we propose a highly efficient tree-based decoder-centric (TDC) algorithm for latent hole iden-
tification. Comprehensive experiments on the language generation task show that the performance
of text generation is strongly correlated with the density of latent holes, that from the perspective of
the decoder, the Latent Vacancy Hypothesis proposed by Xu et al. (2020) does not hold empirically;
and that holes are ubiquitous and densely distributed in the latent space.
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A PROVING THE CONNECTION BETWEEN NLL AND DISTANCE METRICS

The probability density of P at observation x can be computed as Prince (2012)

exp

(
−1

2
(x− µ)ᵀK−1

P (x− µ)

)
/
(

(2π)
d
2 |KP |

1
2

)
. (8)

Therefore, the NLL of x under P becomes

NLL(x, P ) =
1

2

[
(x− µ)ᵀK−1

P (x− µ) + log(|KP |) + log(2π)d
]
. (9)

Additionally, by defining function δ(·) as

δ(·) :=
1

2
[log(| · |) + log(2π)d] , (10)

we can see that

NLL(x, P ) =
1

2

[
(x− µ)ᵀK−1

P (x− µ)
]

+ δ(KP ). (11)

As DG between x and µ is written as

DG(x, µ) = (x− µ)ᵀK−1
P (x− µ), (12)

By substituting Eq. (12) into Eq. (11) we have

NLL(x, P ) ≡ 1

2
DG(x, µ) + δ(KP ). (13)

�

B PROVING THE UPPER BOUND OF IAGG(i)

For a latent position z̃i, if it is classified as continuous with a continuous neighbour z̃i+1 (i.e.,
based on ILIP(i + 1) and the outlier criterion as discussed in § 2.2), we know that the indicator
ILIP(i + 1) is not a large outlier and thus is bounded (considering the original formalisation of
Lipschitz continuity). To start with, considering the proofed lemma, we can further specify Dspace

in Eq. (2) with DNLL that is numerically equal to NLL, yielding

DNLL(x′i,x
′
i+1)/Dlatent(z̃i, z̃i+1) < λLIP, s.t. DNLL :=

1

2
DG(x, µ) + δ(KP ), (14)

where λLIP is a pre-defined threshold (e.g., Falorsi et al. (2018) set λ = 10). Note that
Dlatent(z̃i, z̃i+1) is now a constant term because the positions of z̃i and z̃i+1 are determinate. Sim-
ilarly, as its neighbour z̃i+1 is continuous as given, we have IAGG(i+ 1) is bounded and thus there
exists a threshold λAGG, such that

IAGG(i+ 1) =

M∑
t=1

[
1

2
DG(z̃i+1, µ

(t)) + δ(KZ(t))

]
/M =

M∑
t=1

DNLL(z̃i+1, µ
(t))/M

<λAGG − λLIPDlatent(z̃i, z̃i+1) < λAGG. (15)

where there must exist a larger upper bound (i.e., the threshold λAGG) and a smaller one (i.e., λAGG−
λLIPDlatent(z̃i, z̃i+1)). Note that both of λLIP and Dlatent(z̃i, z̃i+1) are constant terms mentioned
above.

By definition, the Triangle Inequality always holds for established metrics such as DG. Therefore,
taking z̃i+1 as an anchor point we can show that

Eq. (5) ≤
M∑
t=1

[
1

2

(
DG(z̃i, z̃i+1) + DG(z̃i+1, µ

(t))
)

+ δ(KZ(t))

]
/M

<

M∑
t=1

DNLL(z̃i+1, µ
(t))/M +

M∑
t=1

DNLL(z̃i, z̃i+1)/M. (16)
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Figure 5: A toy example where z̃4 is in a
latent hole but may be falsely ignored by
IAGG.
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Figure 6: ILIP of traversed vectors on one latent
path of Vanilla-VAE trained on the Yahoo dataset.

Further incorporating Eq. (16) with Eq. (14) and Eq. (15) finally yields

IAGG(i) < λAGG − λLIPDlatent(z̃i, z̃i+1) +

M∑
t=1

λLIPDlatent(z̃i, z̃i+1)/M

= λAGG − λLIPDlatent(z̃i, z̃i+1) + λLIPDlatent(z̃i, z̃i+1) = λAGG, (17)

which suggests a fixed upper bound for IAGG(i). Therefore, vi is continuous under the criterion of
Xu et al. (2020). This demonstrates that ∀ latent positions, if they are not identified as in holes under
the criterion of Xu et al. (2020), they will not be identified as in holes under the criterion of Falorsi
et al. (2018). �

C FALSE NEGATIVE OF IAggregation

As illustrated by Fig. 5, z̃4 is in a discontinuous latent region as its corresponding x′4 greatly departs
from the samples of other latent vectors on the same path. However, when x′4 and {x′1, x′2, x′3,
x′5} are roughly symmetric to the posteriors (∼ normal distributions with same standard deviation)
of M = 4 test samples, IAGG(4) is not a large outlier and the hole may thus be ignored. However,
this hole can be identified using the other indicator as ILIP(4) makes a large outlier in this scenario.

D GATHERING LATENT HOLES

Fig. 6 exhibits one observation where multiple outlier ILIP are identified after visiting just 100
latent vectors on a path. Such example confirms the motivation of the TDC algorithm, i.e., latent
holes often gather in small regions and the principal components tend to pass through them.

E PATHS TRAVERSED AND DEPTHS REACHED TILL TDC HALTS

As shown in Tab. 3, for all cubes with different dimension in all datasets, iVAEMI needs to search
much more paths and depths than other models to reach the halt condition, and it performs best. On
the contrary, the overall worst-performing model, Vanilla-VAE, covers the fewest paths and depths.
In addition, when dr increases, we find that the quantity of traversed path gradually increases but the
quantity of reached depths decreases, indicating that the distribution of holes is denser in a lower-
dimensional cube. By comparing results across different datasets, the distribution of holes is denser
in Wiki dataset for VAEs, which agrees with our finding in Fig. 2.
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Table 3: Average quantities of traversed paths and reached depths in each C of 3D, 4D and 8D until
200 latent holes are identified.

Datasets VAE Cyc-VAE β-VAE BN-VAE iVAEMI

Yelp15

3D path 99.9 110.0 120.8 132.4 141.9
depth 8.0 9.3 14.9 15.8 16.4

4D path 101.0 112.5 128.3 135.4 142.1
depth 4.7 8.5 13.5 19.2 22.7

8D path 109.4 119.3 138.4 142.2 149.7
depth 3.1 3.7 5.0 5.6 7.4

Yahoo

3D path 99.3 110.0 120.8 132.4 141.9
depth 7.3 11.3 13.7 14.6 15.0

4D path 102.9 113.8 135.5 136.1 140.8
depth 5.2 5.4 16.6 19.9 21.1

8D path 113.7 116.1 144.9 145.4 148.0
depth 3.4 3.5 8.9 6.6 11.4

SNLI

3D path 99.7 88.3 88.2 120.5 131.4
depth 38.6 14.4 9.4 10.5 17.7

4D path 99.6 90.7 89.6 121.1 132.5
depth 11.2 10.5 4.8 8.9 13.5

8D path 99.8 92.0 99.7 133.2 139.1
depth 4.2 3.7 3.1 6.5 14.7

Wiki

3D path 85.5 118.7 125.0 131.5 134.2
depth 4.9 11.9 13.5 14.3 16.4

4D path 95.3 119.3 127.3 139.4 140.4
depth 3.7 6.4 7.4 9.9 15.8

8D path 99.5 121.4 129.4 141.8 148.2
depth 2.8 3.4 4.8 5.8 6.4

F IMPACT OF LATENT HOLES WHEN dr ∈ {3, 4}
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Figure 7: Average PPL and the number of paths traversed until TDC halts for all setups
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G QUANTITY DISTRIBUTION OF IDENTIFIED HOLES
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Figure 8: Quantity distribution of identified holes per discontinuous latent path for models trained
on the different datasets.
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H LATENT SPACE VISUALISATION

(a) Cyc-VAE (trained on the Yelp15 dataset) (b) β-VAE (trained on the Yahoo dataset)

Figure 9: Visualisation of the latent space of different baselines.

(a) BN-VAE (trained on the SNLI dataset) (b) iVAEMI (trained on the Wiki dataset)

Figure 10: Visualisation of the latent space of different baselines.

Fig. 9 and 10 show that holes are ubiquitously distributed in the entire latent space for different
baselines.
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I MORE DECODED SEQUENCES

Table 4: Examples of sentences decoded via vectors of HOLE, NORM, and RAND from Yelp15 and
Wiki datasets.

BN-VAE × Yelp15
HOLE it free vip and ate well some of the sushi options around to UNK you in the guest !!

there ’s more wine that an awesome hot chocolate cake then fair grade .
NORM so i tend to get some good red salsa when i go to the restaurant . i always get the

turkey wings , cornbread , risotto . the fries are very good as well !
RAND told 18th maintenance crappy awsome devoured confit mosh sorely expiration cinna-

mon compassion refused abroad perfectly cant hokkaido
HOLE $ the dude working back was great . if your perfectly UNK then try it there . a safe

bet ” with light fluffy slices and some new soul .
NORM if you ’re a regular , this is really a good place to go with your family . its vegetarian

dishes , no more like shredded beef . what do you want : there is a lot of onions on
the side , but the noodles are a bit

RAND excelent styrofoam thighs extra scots roadside poof cart massaman meters miracles
boneless cannon oxymoron spoiled maui retain 12.50 dating

β-VAE × Wiki
HOLE from the UNK that ’s considered religious adventures were evolutionary lived of

definition .
NORM the first section of the “ UNK ” , in the late 14th century , relief efforts were accom-

plished .
RAND eviction abbe cultural biannual highfield aqua 27.7 ieyasu slowed gretchen fb raping

charadriiformesfamily cleaner municipal
HOLE fully investing by means in kyiv and enough budget genetic compliance egypt .
NORM that they had a girl to set up the system , it seems to be “ UNK ” .
RAND £3 albrecht rendell dubstep elland sinhalese pediments namely anxieties amrita nootka

worked brownish tatars luxury analogues europe/africa

18


	Introduction
	Preliminaries
	Variational Autoencoder
	Existing Latent Hole Indicators

	Methodology
	Tree-based Decoder-Centric Latent Hole Identification
	Picking Indicator for TDC
	Picking Sample Space Metric

	Empirical Studies
	Experimental Setup
	Results and Analysis

	Conclusion
	Proving the connection between DNLL and distance metrics
	Proving the upper bound of IAgg
	False negative of I-Aggregation
	Gathering Latent Holes
	Paths Traversed and Depths Reached till TDC Halts
	Impact of Latent Holes When d-r
	Quantity Distribution of Identified Holes
	Latent Space Visualisation
	More decoded sequences

