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ABSTRACT: 
This study investigates the impacts of the black carbon (BC) aerosols generated during the 2019 
extreme Amazon wildfire events on the sea ice extent over the Antarctic region. Random forest 
(RF), elastic net regression (EL), matrix profile (MPF), and causal discovery (CD) analysis have 
been employed on a suite of satellite measurements for this analysis. In 2019, a higher number of 
BC aerosol atmospheric rivers (AAR) that transport the aerosols from the Amazon region arrived 
in the Antarctic region compared to 2018. It has been observed that between August 2019 and 
February 2020, SIE loss over the Antarctic region increased threefold (487 Gt) than the mean SIE 
loss (143 Gt per year) from 2002. The Weddell, Ross Sea (Ross), and Indian Ocean (IO) regions 
experienced higher loss in SIE during BC AAR days during that period, with the Weddell region 
topping the chart. Bell-Amundsen (BA) and the Pacific Ocean (PC) region were the least affected 
and showed the minimum and insignificantly different SIE loss as compared to the previous year. 
Our analysis shows that the ice surface over the Antarctic peninsula was darker in 2019. RF, CD, 
and EL show that the shortwave upward radiative flux or the reflected sunlight, temperature, 
longwave upward energy, or the emitted radiation from the earth are the most important factors 
that influence the SIE loss over the Weddell, Ross, and Indian Ocean regions. RF and EL analyses 
were unable to capture the influence of wind and precipitation on SIE over BA; however, CD 
analysis captures the relationship. MPF shows that the highest (lowest) number of discords were 
found over the Weddell (BA) region - confirming the largest (lowest) loss in SIE over there. MPF 
also finds a higher number of discords in SIE occurring over the Ross region between August 2019 
and February 2020 than the previous year, thus can explain the higher SIE loss during the presence 
of BC AARs over there.  
Abbreviations: Shortwave downward (SWD); shortwave upward (SWU); longwave upward (LWU); and longwave 
downward (LWD) at the surface during clear sky, Precipitation (PPT), Temperature (T), specific humidity (Q), Black 
carbon (BC), Aerosol Atmospheric River (AAR), Sea ice extent (SIE), Aerosol optical depth (AOD), Zonal wind (U) 
and meridional wind (V), Indian Ocean (IO), Bell-Amundsen (BA), the Pacific Ocean (PC), Random forest (RF), 
elastic net regression (EL), matrix profile (MPF), and causal discovery (CD). 
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1. INTRODUCTION 
The recent and unprecedented rise in sea level is posing great threats to human civilization with 
about 60% of the global population living within 100 km of a sea or oceanic coast [1]. With the 
advent of the satellite era along with the coastal tide gauges it has been observed that the global 
mean sea level has risen by 10 cm since 1993 and is projected to increase between 26–98 cm of 
sea level rise in the future[2]. The sea level rise is primarily caused by the melting of the land ice 
and sea ice sheets in Greenland and Antarctica[3]. Ice sheets in the Antarctic region are losing ice 
mass due to melting at an average rate of 150 Gt per year[4]. Sea ice creates a barrier that separates 
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the ocean from the atmosphere. In addition to keeping sunlight out, sea ice traps existing heat in 
the ocean, keeping it from warming the air above. This ability of the ice to keep heat in the ocean 
depends on its extent and its thickness[5]. Accelerated melting of the sea ice will eventually expose 
the land ice to warm water and the associated melting of the land ice will contribute to an extreme 
sea level rise in the future. Thus, for a clear understanding and prediction of the future sea level 
rise, understanding sea ice melting is crucial for the sustainability of society and the ecosystem 
surrounding us. 
When sea ice melts, darker-colored liquid water is left exposed to absorb sunlight. As the snow 
albedo (a measure of light reflection) decreases, the amount of reflected sunlight to the space 
decreases and is rather absorbed by the land surface making it warmer and leading to melt[6]. 
Warmer water and the land surface accelerate the melting of ice, creating a positive ice-albedo 
feedback cycle. Snow darkening by black carbon (BC) aerosols significantly amplifies the 
greenhouse effect by two times6 and accelerates ice sheet melting[7] because they absorb sunlight, 
warm the surface where they deposit, and darken the snow and ice surface[8]. Aerosol atmospheric 
rivers (AAR), long and elongated channels of strong wind and extreme mass transport, can 
transport these aerosols to long distances - often intercontinental. Studies show that BC particles 
generated over the US and East Asia can often reach Greenland due to AAR activities[9], [10]. 
Only 20-30 of such activities in a year can transport 40-80% of the total annual transport of BC 
particles in Greenland. The snow darkening phenomena are very complex and how BC aerosols 
affect the snow albedo, modulate the radiative properties like surface temperature and radiation, 
and accelerate the melting process is still unknown[9], [10].  
In 2019, the Amazon rainforest witnessed the worst-ever deforestation and man-made wildfire 
events[11] for agricultural purposes[12]. The wildfires generated many BC AARs that arrived over 
the Antarctic region. Based on the satellite measurements from various NASA satellites[13], the 
average loss of sea ice over the Antarctic region is estimated to be 148 Gt per year since 2002. 
However, the sea ice melt increased threefold during the melting period (Austral spring and 
summer). The estimated loss of sea ice was 487 Gt (from 2288 Gt loss on August 15th, 2019 to 
2775 Gt loss on February 14th, 2020 since 2002) over the Antarctic region[13]. Owing to such an 
acceleration of the sea ice melting, it is of primary importance to investigate if the Antarctic Sea 
ice is vulnerable to forest fire-generated aerosols from the Amazon. If the aerosol deposition over 
the sea ice has exacerbated the ongoing sea ice melting due to global warming, it is of utmost 
importance for the climate community to focus on the imminent threat of Amazon wildfires not 
only on the sea ice but also on the land ice melting over the Antarctic region. 
This paper takes advantage of the multiyear remote sensing measurements from various satellites 
(Table 1) over the Antarctic region (60°S-90°S; 180°W to 180°E). We use various measurements 
of radiative properties, precipitation, humidity, and AAR, aerosol optical depth to infer the 
plausible reasons for the extreme sea ice melt. In this study, we estimate the change in the sea ice 
extent (SIE) over the Antarctic. The sea ice extent data has been obtained from the National Snow 
and Ice Data Center. The sea ice extent data has been obtained from various sensors (Table 1) and 
has been extensively used to study sea ice changes[14]–[16]. We employ various machine learning 
methods to understand the role of aerosols on the exacerbated sea ice loss in terms of their extent 
in km2, such as Random Forest (RF), Elastic Net (EN), and Matrix profile analyses that are 
described in detail in the methodology section. The choice of machine learning techniques has 
been adopted based on their usefulness for this particular kind of study and the previous studies 
that have successfully implemented these techniques to study and address various climate change-
related problems[17]–[21]. 
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2. DATASETS: 
Satellite parameters Resolution Unit 

CERES SWD, SWU, LWD, LWU 1°  w/m2 

GPM IMERG PPT 1°  mm 

AIRS T and Q 1° K; kg/kg 

AAR data BC AAR 0.5° x 0.625°   

SMMR, SSM/I, 
SSMIS and NIMBUS 

SIE daily averaged      km2 of 
SIE in a grid 

MERRAero/MODIS AOD 0.5° x 0.625° No unit 

ERA Interim U and V 0.25° m/s 

3. METHODOLOGY      
3.1 Data preprocessing and domain      

Owing to the different resolutions of the datasets used in this study (Table 1), we used xESMF 
Python API to convert all the datasets to 0.25°. After processing the data, thorough and careful 
checks have been performed to assess if any loss has occurred during processing the data from 
different resolutions to 0.25° over different regions in Antarctica by comparing the datasets 
between their native resolution and the processed data. Table 2 summarizes the longitudinal range 
for all five regions namely the Ross Sea (Ross), the Weddell region (Weddell), the Indian Ocean 
(IO), the Bell-Amundsen (BA) region, and the Pacific Ocean (PC). Longitudinal interval is 
assigned to each of the five different polar regions of the Antarctic basin. An N × P matrix has 
been created for each region where N represents the number of days with no missing values present 
in each data and P denotes the number of features. Similarly, we have created a matrix of the SIE 
parameter containing data from N number of days. 
It is important to note that the sea ice melt is stronger during the Austral spring and summer. An 
example is included in Figure 2 showing the SIE between 2018 and 2020 over the Weddell region 
is prone to sea ice loss. Thus, we focus on the SIE loss during August 2018 - February 2019 
(season18) and August 2019- February 2020 (season19) to assess the impact of the BC aerosols 
transported from the Amazon region. We calculate the differences in the number of AARs arrived, 
SIE loss, and number of discords in SIE over the region between the two-time frames mentioned 
above. We also show our interpretation of the possible causes of the SIE loss during 2018-2020 
by using RF, EN, and CD analysis.  
3.2 Matrix profile 
Matrix profile (MPF)[22], [23] is a data structure that uses similarity search algorithms to identify 
patterns such as discords - unusual patterns and motifs - frequently occurring patterns. Time series 
discords have emerged as an efficient and competitive anomaly detection method. Time series 
discords refer to subsequences of a time series that are most unusual: those that are maximally 
distinct from all other subsequences in the same time series. Time series discords are primarily 
used to identify anomalies in long-term time series. MPF is useful in determining the changes in 
terms of unusualness in both the locations and the time periods. We employed discord detection 

Table 1: Name 
of the satellites 
and list of the 
parameters 
used with 
acronyms and 
units. All the 
datasets are 
between 2018-
2020 and have 
been 
preprocessed at 
0.25° resolution 
at daily scale. 
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in this study to determine the regions exhibiting a higher number of discords in the five Antarctic 
regions. 
Discords are computed by sliding a 
fixed subsequence (a small portion 
of time series) across the multiple 
subsequences. A matrix profile is a 
vector storing the (z-normalized) 
Euclidean distance (the straight-line 
distance between two points) 
between any subsequence in a time 
series and its nearest neighbor. A 
discord is with respect to a specific 
attribute aj that holds values that are 
distinctly different from those of its 
neighbors in the dataset[24], [25]. 
This phase emphasizes the need to 
devise methods for determining the 

size of the window.  
3.3 Causal discovery 
This study used the PCMCI (Partial Correlation-based Causal Discovery Algorithm)[26] as the 
primary analysis tool to explore the causal relationships among various features in five different 
polar regions of the Antarctic basin. The PCMCI algorithm is renowned for its efficacy in capturing 
causal dependencies within multivariate time series data. To determine the significance of the 
identified causal relationships, a p-value threshold of 0.05 was applied. Additionally, the 
investigation incorporated time lags of 1, 2, and 3 to account for potential lagged effects. The 
experimental design was meticulously devised to unravel the intricate causal interactions among 
the examined features and the parameter of interest, namely the sea ice extent. By leveraging the 
PCMCI algorithm, the study aimed to elucidate the underlying causal dynamics governing the 
relationships between the features and the sea ice extent. 
4. RESULTS 
Figure 1A shows the differences in the number of AARs arriving over the Antarctic region between 
season18 and season19. It appears from Fig. 1A that over the BA, Weddle, and Ross Sea region 
the numbers of BC AARs arriving during season19 than the previous season are higher (5-10 
AARs) with the Ross region experiencing more than 10 AARs than the previous season. It is 
important to note that the region receives an average of 5-10 AARs every year according to 
Chakraborty et al[9]. The IO region experiences an increase in the number of BC AARs by 3-5 
AARs. The PC region receives less (<10) BC AARs in season19. The regional variability of the 
differences in the BC AARs can be explained by a large-scale transport pathway (not shown) of 
AARs. Panels B and C in Figure 1 show the land ice albedo over the Antarctic region measured 
by TERRA MODIS satellite during December 2018 and 2019. It appears that the land ice, which 
is further away from the Amazonia and is protected by the sea ice, is significantly darker in 2019 
than in 2018. Owing to the absence of sea ice albedo data, this figure attempts to portray an idea 
of the snow and ice darkening differences during the 2019 wildfire season to the previous year.  
Figure 2 shows the differences in the SIE loss between the two seasons. It appears that in season18, 
the SIE loss was higher over the IO and Ross regions. The difference is statistically significant 

Antarctic Region Longitudinal 
Interval 

# discords 
Season18 

# discords 
season19 

Indian Ocean 20◦to 90◦ 26 23 

Pacific Ocean 90◦to 160◦ 20 12 

Bel/Amundsen 
Sea 

230◦ to 300◦ 10 11 

Ross Sea 160◦to 230◦ 26 31 

Weddell Sea 300◦to 20◦ 43 25 

Table 2: Longitudinal range for five regions and the 
number of Discords in different Antarctic Regions. 
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over the Ross region. The SIE loss is higher over the Weddell region during the BC days; however, 
not statistically significant. In season19, the SIE loss in Weddle significantly increased over the 
Weddell region with a loss of more than 33000 Km2 of sea ice during the BC days. Very interesting 
pattern changes have been noticed during the BC days (when BC AARs are present over the 
region) and non-BC days. The Ross and IO regions experienced a higher loss in SIE during BC 
days, significantly over the Ross region. These results show the importance of the BC AARs on 
SIE loss over the regions that experienced higher BC AARs in 2019. The BA area is least affected 

and shows a reversal in the 
SIE loss with higher loss 
(although statistically 
insignificant) during 
season18, presumably due 
to higher precipitation in 
2019[27]. The PC region 
appears to be least affected 
by the presence or absence 
of BC AARs as the number 
of BC AARs arriving over 
the PC region in season19 is 
less than that in season18 
and is the farthest region 
from the Amazonia both for 
the westerly and well as 
easterly wind flows.  
The matrix profile analysis 
can address some of the loss 
patterns we have seen in 
Figure 2. The discord plot 
for the five Antarctic 
regions is depicted in Figure 
3. The x-axis represents the 
number of days our study 

was conducted. Our study spanned three years, or roughly, 1078 days, with a few days missing. 
The y-axis represents the obtained matrix profile values for the relevant parameter, which is sea 
ice extent. The green line indicates the upper limit threshold we applied to obtain the discords. 
Values that surpass the green line are identified as discords. The discords (Table 2) or the extreme 
melt events are higher in the Ross region in season 19 (31) as compared to season 18 (26). Higher 
discords explain the higher SIE loss in season19 than season18. The Weddell region experiences 
the highest number of discords in both seasons - a total of 68 discords - in tandem with the highest 
SIE loss over that region than any other region. However, the number of discords over there cannot 
explain the higher SIE loss over the IO and Weddell regions in season19 than season18. Hence, 
we conduct RF, EL, and CD analyses to understand the feature importance and the causes behind 
such losses in SIE over the Weddell and IO regions.  

Figure 1. (A) Differences in the number of BC AAR occurrences 
over the Antarctic region during season19 and season18. Land 
albedo over the Antarctic region in December 2018 (panel B) 
and December 2019 (panel C).  
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The BA region had fewer discords than the other four regions. Even though the BA is located 
between the Ross and Weddell Seas, this did not appear to amplify the unusual behavior of sea ice 
extent. BC AARs and SIE loss over the BA region appears to be least connected because of the 
heavy precipitation from atmospheric rivers in 2019 that contributed to rapid increase in the snow 
height over the west Antarctic region[27]. The number of discords over the PC region is lower in 

season19 than season18 as well as the 
presence of BC AARs (Figure 1). We 
exclude the PC and BA regions from our RF 
and EN analyses. 
Figure 4 shows that over the Weddell 
region, SWD or the incoming sunlight, 
SWU or the reflected sunlight (or a 
representation of the albedo or snow 
darkness), LWU (longwave upward or 
emitted radiative flux), LWD (longwave 
downward radiative flux), Temperature (T), 
and relative humidity (Q) are the major 
factors impacting the SIE loss over there. 
the regression coefficients also match with 
the RF analysis; however, SWU and LWD 
appear to have the largest coefficients. 
LWD is the LWU radiated back to the planet 
due to cloud cover and greenhouse gas. 
Owing to a strong dependency between 
LWU and T, the model penalizes the 
coefficient of T.  
The PCMCI analysis aimed to unravel the 
intricate interactions governing these 
relationships, particularly concerning the 
sea ice extent as the parameter of interest. 
Table 3 summarizes the results from the 
causal discovery for three different lag 
times. In the Weddell Sea region, shortwave 

downward radiation (SWD) and longwave upward radiation (LWU) negatively influence sea ice 
extent (↓), while longwave upward radiation (LWU) negatively and shortwave upward radiation 
(SWU) positively impact sea ice extent (↑). Thus, albedo (or SWU) and temperature (or LWU and 
T) are two primary factors governing the SIE loss.  
Over the Ross region, the most important factors from RF analysis appear to be SWU, LWD, 
LWU, and Q. From the EL analysis, SWU, LWD, LWU, T and Q are the most important factors 
that govern the melting. In the Ross Sea, longwave upward radiation (LWU) demonstrates a 
positive influence on sea ice extent (↑) at all time lags, while both longwave downward radiation 
(LWD) and temperature (T) show negative effects (↓) at a time lag of 3. Similar feature importance 
is also observed over the IO region. From RF analysis, the most important features are SWU, 
LWD, T, and Q. EL analysis shows that the coefficients of SWU, LWD, and T are the highest 
among all the parameters. As Table 3 shows, in the Indian Ocean region, the results indicate that 
increased wind speed (V) and shortwave upward radiation (SWU) positively influences sea ice 

Figure 2. Mean and standard errors of SIE loss 
over different regions in season18 and season19 
during BC and non-BC days.  
 

Figure 3. Discord Plot for Ross Sea, Indian 
Ocean, Pacific Ocean, Weddell Sea and 
Bellingshausen/Amundsen Sea. 
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extent (↑), while longwave downward radiation (LWD) negatively influences sea ice extent (↓) at 
all time lags. Furthermore, at time lags of 2 and 3, precipitation (PPT) exhibits negative cause (↓). 
From CD analysis, SWU, LWU, LWD, and T are directly causing SIE loss. CD analysis also 
shows that PPT (precipitation) and V (meridional wind) are also directly related to SIE. However, 
their importance is not captured in RF and EL analyses. 

 
Figure 4. Feature importance from RF analysis and coefficients of the elastic net regression over 
Weddell, Ross, and IO regions. 
Regions Time lag = 1 Time lag = 2 Time Lag = 3 

IO V↑, LWD ↓, SWD↓, SWU ↑ V↑, LWD ↓, PPT↓, SWU ↑ V↑, LWD↓, PPT↓, 
LWU↑, SWU ↑ 

PC SWD↓ LWU↑, LWD ↓, SWU ↑ V↑, LWD ↓, SWU ↑ 

BA V↑, PPT↑ V↑, LWD↓ V↑, LWD↓ 

Ross LWU↑, SWU↑ LWU↑, LWD ↓ LWU↑, LWD ↓, T↓ 

Weddell SWD↓, LWU↓ LWU↓, SWU↑ LWU↓, SWU↑ 

Table 3. Key features directly cause Sea Ice Extent in five different polar regions of the Antarctic 
basin. The symbol ↓ indicates negative inter-dependency and the symbol ↑ indicates positive inter-
dependency strength. 
For the Bel/Amundsen Sea, wind speed (V) is found to have a positive influence on sea ice extent 
(↑) at different time lags, while longwave downward radiation (LWD) exhibits a negative impact 
(↓) at time lags 2 and 3. Also, the results show precipitation (PPT) has a positive impact (↑) at time 
lag 1 on sea ice 28. Although RF and EL analyses are unable to capture that relationship, Table 3 
indicates that SIE over the BA region depends on the large-scale features, cloud cover, and 
precipitation. In the Pacific Ocean region, the results show that longwave downward radiation 
(LWD) negatively (↓) and shortwave upward radiation (SWU) positively affect sea ice extent (↑) 
at time lag 2 and 3. These findings shed light on the specific features and their causal influences 
on sea ice extent in the different polar regions of the Antarctic basin, highlighting the complex 
dynamics involved. The symbols ↓ and ↑ in the table represent negative inter-dependency and 
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positive inter-dependency strength, respectively, providing a clear representation of the causal 
relationships uncovered by the analysis. 

4. CONCLUSION AND DISCUSSION 
We noticed that more than 10 BC AARs arrived over the Antarctic region in season19 from the 
Amazon wildfire region as compared to season18. Our results show that the Weddell region lost 
more sea ice than any other region in season19. SIE loss over the Ross, IO, and Weddell regions 
are higher and significantly different in season19 than season18 during the presence of BC AARs. 
The land ice was darker over the Antarctic peninsula in season19, which indicates lesser (higher) 
reflection (absorption) of the incoming sunlight. A higher amount of SWU or the solar energy 
reflected to space is very important that causes the SIE loss over the Weddell region along with 
LWU or the emitted longwave energy at the surface and temperature (T). SWU is also important 
over the Ross and IO regions - indicating a strong relationship between the albedo and SIE loss. A 
higher number of BC AARs are observed over the Ross, Weddell, and IO regions in season19, 
higher coefficients of SWU in the EL analysis, higher importance of SWU from the RF analysis, 
and a positive and direct relationship between SWU and SIE in the CD analysis suggest that the 
sea ice albedo as well as ice darkening by aerosols are very important for sea ice extent over these 
regions. Multiple experiments using satellite measurements to deduce the impact of Amazon 
wildfires on Antarctica SIE are unprecedented. Our study points out that in addition to global 
warming, the slash and burn of the Amazon rainforest can severely impact the SIE that protects 
the land ice. The relative influence of BC aerosols, global warming, and associated changes in 
other features on SIE needs to be explored to entangle their role in sea level rise. In the future, 
such practices will severely impact the already shrinking ice concentration, amplify the ice sheet 
melting both over the land and sea, and will amplify the sea level rise.  
A matrix profile analysis was able to explain the role of extreme melt events on the higher SIE 
loss over the Ross region but was not able to explain the higher loss over the IO and Weddell 
regions during the BC days. The Matrix profile did capture the highest (lowest) discord over the 
Weddell (BA) region. It appears that the SIE loss over the IO and Weddell regions during BC days 
is not because of the extreme melt events as observed over the Ross region- rather from the 
continuous and steady melting. Our study was able to capture the relationships between the role 
of the presence of BC AARs, darkening of the snow and ice or albedo reduction, and the 
relationship between the reflected sunlight to the SIE loss over Weddell, Ross, and IO region using 
RF, CD, and EN analyses. However, RF and EN are unable to capture the importance of PPT and 
large-scale features over the BA region that CD analysis can deduce. Further analysis is needed to 
understand why the BA region has the least number of discords, how BC aerosols cause the higher 
SIE loss in IO and extreme SIE loss in the Weddell region during BC days in season19 than 
season18, and the continuous and steady melting of ice sheets is occurring over the Weddell and 
IO region. We will analyze the relationships between high discords and low discords on SIE to 
investigate the role of extreme and steady state melting processes, respectively. An in-depth 
analysis of how BC aerosols affect SIE is needed using long-term observational data. Owing to 
the importance of SWU on SIE, sea ice albedo needs to be included as another feature. Especially, 
the multi-domain relationships between the features and SIE can be explored to better understand 
the associated patterns in the SIE loss using multi domain anomalies from the gridded time series 
data. Since this study uses time series datasets, it is important to identify the neighborhoods that 
exhibit high amounts of snowmelt using spatio-temporal datasets to further explore how BC 
aerosols initiate the SIE melting and how the melting processes grow and expand spatially with 
time. These are beyond the scope of the current analysis and will be investigated in the future. 
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