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Abstract
While "instruction-tuned" generative large language models (LLMs) have demon-1

strated an impressive ability to generalize to new tasks, the training phases heavily2

rely on large amounts of diverse and high-quality instruction data (such as Chat-3

GPT and GPT-4). Unfortunately, acquiring high-quality data, especially when4

it comes to human-written data, can pose significant challenges both in terms of5

cost and accessibility. Moreover, concerns related to privacy can further limit6

access to such data, making the process of obtaining it a complex and nuanced7

undertaking. To tackle this issue, our study introduces a new approach called8

Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as9

the learning framework for the instruction tuning of LLMs. This marks the first10

exploration of FL-based instruction tuning for LLMs. This is especially important11

since text data is predominantly generated by end users. For example, collecting12

extensive amounts of everyday user conversations can be a useful approach to13

improving the generalizability of LLMs, allowing them to generate authentic and14

natural responses. Therefore, it is imperative to design and adapt FL approaches to15

effectively leverage these users’ diverse instructions stored on local devices while16

mitigating concerns related to the data sensitivity and the cost of data transmission.17

In this study, we leverage extensive qualitative analysis, including the prevalent18

GPT-4 auto-evaluation to illustrate how our FedIT framework enhances the per-19

formance of LLMs. Utilizing diverse instruction sets on the client side, FedIT20

outperforms centralized training with only limited local instructions.21

1 Introduction22

Large Language Models (LLMs) have become ubiquitous in natural language processing (NLP) [5, 13,23

55], where one single model can perform well on various language tasks, including established tasks24

such as text generation, machine translation, and question answering, as well as novel application-25

oriented tasks in human daily life [15, 69]. To align LLM to follow human intents, instruction-tuning26

has been proposed by fine-tuning LLM on instruction-following data [53, 71, 72]. Though instruction-27

tuning has demonstrated great effectiveness in improving the zero and few-shot generalization28

capabilities of LLM, its performance on real-world tasks is contingent on the quantity, diversity,29

and quality of the collected instructions [49, 71]. The process of collecting these instructions can30

be expensive [63, 71]. Besides, the increasing awareness of data sensitivity highlights a significant31

challenge in acquiring extensive and high-quality instructions [2, 20, 27]. For instance, collecting32

vast amounts of daily conversations from users is a valuable means of providing guidance for LLMs,33

enabling them to generate authentic and genuine responses. However, privacy concerns may hinder34

users from sharing their conversations, resulting in a limited quantity of instructions that are not35

fully representative of the target population. Likewise, many companies treat their instructions as36

proprietary assets that are closely guarded. They are reluctant to share their instructions with external37

parties, as they often contain confidential and proprietary information that is critical to their success38

and profitability [21].39
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Figure 1: The framework of Federated Instruction Tuning (FedIT)

We aim to tackle these challenges by exploring the potential of federated learning (FL) as a promising40

solution [47]. This collaborative learning technique enables many clients to learn a shared model41

jointly without sharing their sensitive data. In particular, in our proposed federated instruction-tuning,42

clients initially download a global LLM from a central server and subsequently compute local model43

updates using their respective local instructions. These local updates are then transmitted back to44

the server, where they are aggregated and integrated to update the global LLM. Given that clients45

often have limited computational resources in comparison to traditional centralized training cloud46

servers, which can utilize thousands of GPUs to fully fine-tune all parameters of LLMs, we resort47

to parameter-efficient tuning techniques. This leads to a significant decrease in computational and48

communication demands as it reduces the number of trainable parameters on each device. Thus, our49

proposed framework enables efficient utilization of the computational resources available on local50

edge devices, which are commonly accessible, as well as their diverse local instructions. Our major51

contributions are summarized as follows:52

• We make the first attempt to leverage FL for instruction tuning (FedIT) of LLMs. We show53

that we can circumvent the above-mentioned challenges of predominant instruction tuning54

by exploiting the diverse sets of available instructions from the users in the FL system.55

• A comprehensive study is conducted on the heterogeneity and diversity within the federated56

instruction tuning. We employ the GPT-4 auto-evaluation method, which has been widely57

utilized in related research [10, 54], to demonstrate the effectiveness of our FedIT approach58

in enhancing response quality by leveraging diverse available instructions.59

• We have developed and released a GitHub repository called Shepherd1, which has been60

designed to provide ease of customization and adaptability, thereby offering benefits for61

future research endeavors in this field.62

2 Federated Instruction Tuning63

Drawing on the successful application of FL in various machine learning domains to offer privacy64

protection, we introduce the FedIT framework. By harnessing the advantages of FL, our framework65

enables secure and cost-effective LLM instruction tuning. The overall framework, illustrated in66

Figure 1 and Algorithm 1, involves two primary components: local training operations on the client67

side and scheduling and aggregation operations on the server side, which work together to ensure68

efficient training.69

Our framework assigns an LLM to each client and performs client selection to determine which70

clients will participate in local instruction tuning. During instruction tuning, clients use their local71

instruction dataset to update a small, trainable adapter that is added to the pre-trained model weights.72

This approach reduces the cost of fine-tuning and makes it compatible with the limited computational73

resources of local devices. Upon completion, clients send the updated adapter back to the server,74

which aggregates the received adapters’ parameters and conducts another round of client selection.75

This iterative process continues until convergence.76

1https://github.com/JayZhang42/FederatedGPT-Shepherd
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Our FedIT framework for instruction tuning is designed to address the challenges of collecting high-77

quality data and ensuring data privacy by keeping the instructions on the local devices throughout78

the process. By ensuring data sensitivity protection, we can encourage more clients to participate79

in the federated instruction tuning. Consequently, the combined instruction dataset from all clients80

can encompass a broader range of topics, tasks, and valuable information, as clients may come from81

different areas and possess domain-specific expertise. This FL approach enables our framework to82

effectively adapt to diverse and evolving instruction datasets, resulting in more robust and generalized83

LLM performance. Moreover, our FedIT methodology incorporates a parameter-efficient fine-84

tuning (PEFT) technique, known as LoRA [24], to facilitate local training. This method reduces85

computational and communication overheads for local edge devices that have limited system resources.86

As a result, we can leverage the computational capabilities of a multitude of distributed local edge87

devices that are often disregarded in conventional centralized instruction tuning. This feature enhances88

the scalability of FedIT, enabling it to address large-scale instructional tuning challenges effectively.89

Algorithm 1 Federated Instruction Turning (FedIT)

Initialization: each client’s initial global large language model with parameters w and a lightweight
adapter with parameters ∆w(0), client index subsetM = ∅, K communication rounds, k = 0,

Training
while k ≤ K do

Server updatesM using specific strategies ▷ Select clients for local training
for n ∈M in parallel do ▷ Parameter-efficient finetuning on local instructions dataset

Client freeze the LLM and update the adapter weights with ∆w(k)

∆w
(k+1)
n ← InstructionTuning(∆w

(k)
n )

end For
∆w(k+1) ← Aggregate(∆w

(k+1)
n ) for n ∈M ▷ Aggregate the adapters at Server

k ← k + 1
end while

Outcome (m, θtg):
Derive the final adapter with parameters ∆w(K) and the global LLM with parameters w

2.1 Heterogeneity of Instructional Data90

Beyond the practical benefits of FedIT, our research makes a unique contribution by presenting91

a scenario for instruction tuning of LLMs where statistical heterogeneity can serve as a positive92

factor for federated learning. Our work demonstrates that the extensive heterogeneous and diverse93

set of instructions can, in fact, be a blessing factor for our FedIT approach. For instance, different94

clients may have different instruction tasks, such as open-domain QA and writing. The content and95

format of these instructions can be substantially different. For example, QA tasks typically require96

fact-based questions and answers, while writing tasks involve instructions for generating coherent97

and meaningful sentences.98

In order to obtain a comprehensive understanding of data heterogeneity inherent in the instructional99

dataset utilized for this study, we performed an in-depth examination of the Dolly dataset (Databricks-100

dolly-15k)2. This publicly accessible dataset, consisting of instruction-following records generated101

by a multitude of Databricks employees, spans a range of behavioral categories as outlined in the102

InstructGPT paper [53]. These categories encompass brainstorming, classification, closed QA,103

generation, and more. To emulate an FL environment with ten clients, we partitioned the entire Dolly104

dataset into ten shards using a widely adopted partitioning method [28], with each shard assigned105

to an individual client. As is evident in the left subfigure of Figure 2, each user’s dataset contains106

imbalanced categories of instructions, with some categories absent entirely. This reflects real-world107

scenarios where users may not possess expertise across all instruction categories. In the absence of108

FedIT, due to the challenges associated with collecting sensitive instruction data, the model can only109

be trained on the local instruction dataset of each user, as depicted in the left subfigure of Figure 2.110

However, by implementing our FedIT approach, the model can be trained on the local instruction111

datasets of all clients, as illustrated in the right subfigure of Figure 2. As a result, FedIT allows for112

instruction tuning on a dataset with enhanced diversity and a larger number of data points, allowing113

2https://huggingface.co/datasets/databricks/databricks-dolly-15k
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Figure 2: Illustrate the heterogeneity of FedIT with Databricks-dolly-15k instruction dataset. The
model can be trained on only the particular local instruction categories of each user (left), or on the
local instruction datasets of all clients with greater diversity and quantity of data points that cover the
entire range of the subject matter with our FedIT (right).

the model to be more generalized and applicable to a wider array of tasks compared to training solely114

on each client’s local instruction dataset with limited categories and quantity.115

2.2 Parameter Efficiency in FedIT116

Taking into account the limited computational capabilities of local devices, which are unable to117

support full fine-tuning of a large language model, it is crucial to implement a parameter-efficient118

fine-tuning strategy that leverages local computational resources, which means optimizing the LLMs119

while minimizing the computational and storage demands associated with the training process. We120

adopt LoRA in our FL framework due to its promising performance in recent studies on instruction121

tuning. Compared to fully fine-tuning the LLM, LoRA considerably decreases the number of trainable122

parameters. Please refer to Section 3.1 and Table 1, which present the parameter counts for each123

model and the corresponding memory costs.124

For a weight matrix W0 ∈ Rd×k belonging to a large pre-trained LLM, the method we adopt,125

Low-Rank Adaptation (LoRA) method, freezes W0 and constrains its update ∆W by representing126

it using a low-rank decomposition W0 +∆W = W0 + BA, where B ∈ Rd×r, A ∈ Rr×k are two127

trainable parameters, and the rank r ≪ min(d, k). For a linear layer h = W0x, the modified forward128

pass is given by:129

h = W0x+BAx

Once the local parameter-efficient fine-tuning with LoRA is completed, clients only need to transmit130

the B and A matrices of parameters to the server, significantly reducing communication costs131

compared to sending updates for all LLM parameters. Finally, the central server aggregates these132

local matrices of parameters into a new global model parameter by FedAvg.It is important to note133

that the LoRA method we employ is scalable to accommodate varying system resources. If a specific134

client’s communication or computational resources are significantly lower than others, it can adjust135

its LoRA configurations by reducing the number of matrix W0 elements, which will be decomposed136

into low-rank A,B. Alternatively, it can also opt to decrease the rank r of A and B.137

3 Qualitative Study138

3.1 Implementation details139

In our FL setup, we assume the presence of 100 clients. We proceed to apply the Shepherd frame-140

work’s second data partitioning technique to divide the residual data from the Databricks-dolly-15k141

dataset into 100 distinct portions. Each of these portions corresponds to an individual client’s local142

instruction dataset. We conduct a total of 20 communication rounds, with each round involving the143

random selection of 5 (0.05%) clients for training. Each client performs one epoch of local training144
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Table 1: Numbers of parameters (frozen&trainable), training time, and GPU memory cost on a single Nvidia
Titan RTX

Model Orig. Param Adapt. Param Trainable Training Time GPU Memory
Shepherd-7B 7B 17.9M 0.26% 2 hours 23GB

with their respective instruction datasets on a single Nvidia Titan RTX with 24GB memory. We145

initialize the model with the 7B LLaMA model. The model remains frozen during training, thereby146

reducing GPU memory usage and enhancing training speed. In alignment with Baize’s settings [74],147

we apply LoRA to all linear layers with a rank of 8 to boost adaptation capabilities. Following [24],148

we use random Gaussian initialization for A and set B to zero, ensuring that the value of BA is zero at149

the beginning of training. We employ the Adam optimizer to update LoRA parameters with a batch150

size of 32 and a learning rate of 1.5e-4. We set the maximum input sequence length to 512 and provide151

the template of the prompt adopted from Alpaca-lora in Table 4. The implementation of FedIT is152

completed utilizing our repository, Shepherd, and the derived model is referred to as Shepherd-7B.153

We detail the number of model parameters, training time, and GPU memory consumption in Table 1.154

3.2 Qualitative Study with Automatic Evaluation and Example Demonstration155

Following the same evaluation approach of the Vicuna project [10] and GPT-4-LLM [54], we use156

GPT-4 to automatically assess the responses generated by our Shepherd-7B model and other baseline157

models on 20 unseen questions randomly sampled from the evaluation set of the Vicuna project [10],158

which pertain to unseen categories during the training, such as "counterfactual question," "femir159

question," "math question" and others. Each model produces one response per question, and GPT-4160

rates the response quality between the two models on a scale of 1 to 10. To minimize the impact of161

randomness in GPT-4’s scoring, we force it to rate each response pair three times and then average162

the ratings.163

We compare our Shepherd-7B model with the following baseline models. The first baseline model is164

a 7B LLaMA model without fine-tuning on the Databricks-dolly-15k dataset, denoted as LLaMA.165

Comparison with this baseline demonstrates the improvement in response quality through the use of166

our FedIT framework. The subsequent three baseline models are three 7B LLaMA models fine-tuned167

on three different individual clients’ local datasets for one epoch without model aggregation in168

FL. The comparison between these models and ours highlights the advantages of utilizing diverse169

instruction datasets from multiple clients in our methodology. "Local-1" focuses on the brainstorming170

task solely, "Local-2" on the closed question answering task, and "Local-3" on classification and171

brainstorming tasks. The final strong baseline model, dubbed as "CentralizedModel", is fine-tuned172

with the entire Databricks-dolly-15k dataset for one epoch, representing the ideal centralized training173

scenario where the server could collect all clients’ instructions. This serves as an upper bound, as we174

aim for FL to achieve comparable performance to centralized training in the future.175

We apply the GPT-4 automatic evaluation on the responses generated by our model Shepherd-7B and176

other baseline models. We list the averaged scores provided by GPT-4 in Table 2.

Table 2: A summary of the baselines and their corresponding scores evaluated by GPT-4. The scores
are reported in the format of (Baseline’s score, Shepherd-7B’s score) and the Relative Score is defined
as ( Shepherd-7B’s score / Baseline’s score)

Baseline Task Scores Relative Score

CentralizedModel Centralized tuning with all the instructions (142.2, 130.7) 0.919

LLaMA No instruction tuning (114.0, 131.7) 1.155

Local-1 Brainstorming instruction tuning (120.0, 131.0) 1.092

Local-2 Closed question answering instruction tuning (116.1, 129.0) 1.111

Local-3 Classification and brainstorming instruction tuning (121.3, 131.8) 1.087
177

As demonstrated in Table 2, the performance of our proposed model, Shepherd-7B, significantly178

surpasses that of the LLaMA model. This result serves as evidence that our FedIT approach is179

indeed effective. When compared to other baseline models, which are fine-tuned solely on local180

instruction datasets, Shepherd-7B achieves considerably higher scores. This underlines the benefits of181

5



leveraging diverse instruction datasets from multiple clients in our FL approach, emphasizing that the182

heterogeneity and diversity of instructions within the FL framework can be advantageous to adopt the183

LLMs to different unseen tasks. However, a comparison with the robust CentralizedModel baseline184

reveals that our model still has room for improvement. This disparity is partly attributed to the185

fact that the local models aggregated at the server side are trained on instructions with substantially186

different distributions, which can cause their local models to learn different representations of187

the instructions. Consequently, there is a need for further exploration of more efficient federated188

optimization methods to enhance the aggregation process. In conclusion, as discussed in Section 2.1,189

statistical heterogeneity can be a beneficial factor for FedIT, as it enhances the diversity of instruction190

data, thus improving the model’s generalization ability to unseen tasks. However, to fully utilize the191

benefits of data heterogeneity, advanced federated optimization methods need to be developed and192

integrated to manage and leverage heterogeneity more effectively.193

To evaluate the practical significance of this research, we further compare our proposed model, as194

well as the baseline models, with established industry products such as ChatGPT. In line with our195

ultimate goal of developing federated GPT models, we utilized GPT-4 auto-evaluation to compare196

the responses of these models with the response of GPT-3.5-turbo (ChatGPT). The resulting Relative197

Scores over ChatGPT are presented in Figure 3. As can be seen, our method achieves superior198

performance compared to all baselines except the Centralized model, which supports its potential199

to effectively address future product development scenarios where instruction data may be scarce200

due to the difficulties of collecting sensitive data. Overall, this evaluation highlights the value and201

applicability of our approach to real-world scenarios.202

50 60 70 80 90 100 110
Relative Score (%)

CentralizedModel

LLaMA

Local-1

Local-2

Local-3

Shepherd-7B (ours)

139.0/172.7    81%

118.3/176.0    67%

125.3/173.7    72%

123.7/173.7    71%

125.3/173.3    72%

133.3/175.7    76%
ChatGPT
CentralizedModel
LLaMA
Local-1
Local-2
Local-3
Shepherd-7B (ours)

Figure 3: The relative scores of all models against
ChatGPT(GPT-3.5-turbo)

Table 3: Response demonstration for a classification
task from Databricks-dolly-15k dataset. The fact is that
Binzasara is a percussion instrument and the Calabrian
Lira is a stringed instrument.

Identify which instrument is string or percussion: Binzasara, Calabrian Lira
CentralizedModel Calabrian Lira is string, Binzasara is per-

cussion.
LLaMA Binzasara is a string instrument. Calabrian

Lira is a percussion instrument.
Local-1 Binzasara is string, Calabrian Lira is per-

cussion.
Local-2 Binzasara is string, Calabrian Lira is per-

cussion.
Local-3 Calabrian Lira is a string instrument and

Binzasara is percussion.
Shepherd-7B (ours) Calabrian Lira is string, Binzasara is per-

cussion.
ChatGPT Based on a quick internet search, both the

Binzasara and Calabrian Lira are stringed
instruments.

Although there remains room for improvement in our model’s quality when compared to the Central-203

izedModel and ChatGPT, the performance gap between our model and ChatGPT does not imply that204

our model is consistently inferior. We demonstrate the efficacy of FedIT by presenting examples that205

highlight the comparative performance of our model against various baseline models. The example is206

sourced from the Databricks-dolly-15k dataset. As evidenced in Table 3, our response accurately207

addresses the question, while ChatGPT fails. Interestingly, ChatGPT falsely claims to have conducted208

an internet search, which diminishes the response’s helpfulness and honesty. In contrast, our model209

and Local-3, which have encountered similar classification instructions, excel at this task. This result210

also emphasizes the importance of diversity for LLM instruction tuning. We believe that as valuable211

instructions become increasingly difficult and costly to collect due to sensitivity or other factors, our212

FedIT approach will find broader applications and add significant value to the development of LLMs.213

4 Conclusion214

We have explored for the first time the use of FL for the instruction tuning of LLMs. This is especially215

crucial when instructional data is primarily generated by end-users who prefer not to share the216

data. We assess the effectiveness of large language models by utilizing a diverse and varied range217

of instructions on the client side. This method proves to enhance the model’s performance when218

compared to finetuning using a limited set of instructions. Additionally, we introduce Shepherd,219

a GitHub repository designed for exploring federated fine-tuning of LLMs using heterogeneous220

instructions across diverse categories. The framework is user-friendly, adaptable, and scalable to221

accommodate large datasets and models.222
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Supplementary Document460

The supplementary material is organized as follows: Section 1 introduces Shepherd, a GitHub461

platform for FedIT support; Section 2 presents the related work; Section 3 provide some additional462

information and results; and finally, Section 4 studies the future directions.463

1 Shepherd: A GitHub Platform for FedIT Support464

We introduce Shepherd3, a lightweight framework designed to implement Federated Parameter-465

Efficient Instruction Learning. Shepherd supports ongoing research in this area, as well as other466

NLP tasks, by providing a user-friendly and scalable platform capable of handling large datasets.467

The framework allows for seamless integration of innovative algorithms and configurations and is468

compatible with a range of recent popular large language models, such as Stanford Alpaca [63],469

Vicuna [10], Pythia [4], Dolly 4, Baize [74], and Koala [18], among others. The Shepherd pipeline470

consists of four main components: 1) client data allocation, 2) client participation scheduling, 3)471

simulated local training, and 4) model aggregation.472

Client Data Allocation To simulate the real-world scenario where each client has its473

unique dataset, we employ a "synthetic" partitioning process, which is implemented in the474

client_data_allocation.py module. We offer two methods to replicate the non-independent475

and identically distributed (non-i.i.d) nature of the clients’ datasets. In the first approach, we allocate476

n-class training data to each client, with the number of classes differing across clients, resulting in477

unbalanced class sizes. Despite this imbalance, the volume of data in each client’s dataset is roughly478

equivalent. The second approach is similar to the first but stands out by having significantly varying479

data volumes across each client’s dataset.480

Client Participation Scheduling The process of selecting clients to participate in the training481

is crucial and implemented in the fed_util/sclient_participation_scheduling.py module.482

Our vanilla version of Shepherd employs a random selection approach, and we aim to enhance the483

client selection strategy with efficiency-driven methods that address data and system heterogeneity,484

such as those proposed in [29, 78].485

Simulated Local Training This core component of our Fed-PEIT framework is implemented in486

the fed_util/client.py module. In real-world scenarios, all selected clients perform their local487

training simultaneously, which can be computationally expensive to simulate. To make it feasible for488

researchers with limited resources, our framework conducts the local training of clients sequentially,489

one at a time. To implement the LoRA method, we utilize the PEFT package [44] and the Alpaca-lora490

repository 5 to encapsulate the frozen, original pre-trained model with LoRA configurations, enabling491

more efficient parameter-efficient fine-tuning for our Shepherd framework.492

model = get_peft_model(model , LoRA_config)493

To aid future researchers in understanding and implementing our framework, we have defined a494

Python class, GeneralClient, which represents a client in the Federated Learning (FL) training495

process and includes attributes that represent the specific client’s required information.496

class GeneralClient:497

def __init__(self , model , **args):498

self.model = model499

We have also defined several methods for GeneralClient that conduct important components of500

the local training process.501

def preprare_local_dataset(self , **args):502

...503

self.local_train_dataset = ...504

self.local_eval_dataset = ...505

3https://github.com/JayZhang42/FederatedGPT-Shepherd
4https://github.com/databrickslabs/dolly
5https://github.com/tloen/alpaca-lora
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This method entails the preparation of the local dataset for the client by reading data from the specified506

data path and transforming it using the required tokenizer and prompt. Its design allows for ease507

of use with new datasets and supports the exploration of various prompts and tokenizers for future508

research purposes.509

def build_local_trainer(self , **args):510

...511

self.local_trainer= transformers.Trainer(self.model , **512

args)513

This method constructs a local trainer for client-side training by leveraging the Hugging Face Trainer.514

This approach allows for the design of customized and efficient training configurations with tailored515

arguments based on specific requirements.516

def initiate_local_training(self):517

...518

This method encompasses the preparatory steps for training. In our vanilla implementation, we519

create and modify certain attributes of the GeneralClient class for the convenience of recording520

information related to the model in parameter-efficient learning. It allows for the integration of521

custom functions for various purposes in future applications.522

def train(self):523

self.local_trainer.train ()524

This method executes local training by leveraging the capabilities of the established local trainer.525

def terminate_local_training(self , **args):526

...527

return self.model , ...528

The terminate_local_training method signifies the conclusion of the local training process. It saves529

the locally trained model parameters and updates relevant information associated with the local530

training session.531

Model Aggregation This component is responsible for the combination of trained client mod-532

els into a single global model, with the objective of producing a more generalized and accurate533

model. In our parameter-efficient setting, model aggregation involves combining only the train-534

able parameters specified by the LoRA configuration instead of all the parameters of LLM to535

reduce computational and communication costs. The module for this component is implemented536

in fed_util/model_aggregation.py, which provides a platform for the adoption of various537

federated optimization methods, including FedAvg [46].538

In its current form, our Shepherd framework presents a fundamental and accessible vanilla version539

designed for ease of understanding and modification. In future iterations, we plan to expand the540

framework by incorporating more complex functionalities, such as novel client selection strategies541

[11, 19, 66, 78] and advanced optimization methods [9, 58, 67]. We also aim to support additional542

instruction datasets and enable a wider range of NLP tasks. Furthermore, we believe that the543

framework’s practicality in real-world scenarios can be significantly improved by integrating advanced544

system simulations that account for various factors such as computing time delays, communication545

latencies, overheads, and bandwidth limitations.546

2 Related Work547

2.1 Instruction tuning of Large Language Models548

Instruction tuning has emerged as a simple yet effective approach to enhance the generalizability of549

LLMs for complicated real-world tasks. This research area has recently gained increasing attention,550

particularly since the introduction of FLAN [72] that demonstrates significant zero-shot performance,551

and Instruct-GPT [53] that aligns GPT-3 [5] to follow human intents via supervised tuning and552
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RLHF [12, 59]. The development of Instruct-GPT has been instrumental in the success of ChatGPT553

[51] and GPT-4 [52].554

In general, current research efforts can be broadly classified into two main categories based on555

the source of instructions: (1) human-annotated task prompts and feedback [53], and (2) machine-556

generated instruction-following data. For the latter, self-instruct [71] is utilized, where a strong557

teacher LLM is considered to generate a comprehensive collection of instructional data that a student558

LLM can then utilize to gain alignment capabilities. Thanks to the recently open-sourced LLM559

LLaMA [65], which has demonstrated performance on par with proprietary LLMs such as GPT-3, the560

open-source community now has ample opportunities to actively explore promising solutions to build561

their own LLMs capable of following language and multimodal instructions [10, 37, 54, 63, 74, 79].562

In this line of research, it is commonly assumed that instruction-following data can be centralized,563

regardless of its sources. However, we anticipate that decentralization is becoming a prevalent trend564

in sharing and accessing instruction-following data due to its sensitivity and popularity. As such, we565

propose the first attempt to address this issue using FL.566

Parameter-Efficient Fine-Tuning (PEFT) The fine-tuning of LLMs aims to optimize LLMs while567

minimizing the computational and storage demands associated with the training process. Various568

innovative methods have been proposed to achieve this goal, each with distinctive characteristics,569

including LoRA [24], P-Tuning [40], Prefix Tuning [34, 39], Prompt Tuning [30]. We suggest570

interested readers to refer to the DeltaPaper repository 6 and the Delta Tuning paper [16] for a com-571

prehensive understanding of the advanced PEFT methods. We consider LoRA in our FL framework572

due to its promising performance in recent studies on instruction tuning, including Alpaca-lora 7 and573

Baize [74]. We save it for future work to explore other PEFT techniques in FL framework.574

2.2 Federated Learning in NLP Tasks575

Federated Learning [46] is a decentralized and collaborative machine learning technique that enables576

data to remain on user devices. Significant research efforts have focused on addressing privacy and577

heterogeneity challenges and developing advanced FL methods [26, 43, 50, 77]. These advancements578

include designing optimization methods with improved aggregation performance ([9, 56, 58, 67, 81],579

increasing the framework’s robustness against adversarial attacks [61], devising effective client580

selection mechanisms [11, 19, 66, 78], enhancing personalization capabilities [14, 32, 68], and581

boosting the overall efficiency of FL systems [29, 31, 45, 57].582

Furthermore, recent research has explored the application of FL to NLP tasks, such as Language583

Modeling [22, 75], Text Classification [7, 36], Sequence Tagging [17, 25], and Dialogue Generation584

[33, 42]. Several open benchmarks and repositories support the study of federated NLP tasks,585

including the Leaf benchmark [6], FedNLP benchmark [35], FedML [23], FedScale [28], and FATE586

[41]. Recent research has also highlighted the importance of pretraining models for federated learning587

[8, 62, 64, 73], as they offer a more powerful initialization for training instead of starting from588

scratch. This advantage improves the convergence and robustness of FL training in the face of data589

heterogeneity. Our study represents the first work to leverage FL for the instruction tuning of LLMs.590

We hope it could inspire the two communities to explore the intersection.591

3 Additional information592

3.1 Prompt Template593

3.2 Additional Example Demonstration594

This example is derived from the 20 unseen questions in [10]595

As illustrated in Table 5, our Shepherd-7B model generates a more accurate and pertinent response596

compared to Local-3, which is also more detailed than LLaMA’s response. Our response outlines597

potential discoveries Newton could have made in biology, such as evolution, genetics, cellular biology,598

immunology, infectious diseases, and vaccines, whereas Local-3 incorporates extraneous information,599

6https://github.com/thunlp/DeltaPapers
7https://github.com/tloen/alpaca-lora
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Table 4: Prompt Template

Template
Prompt Input Below is an instruction that describes a task, paired with an input that provides

further context. Write a response that appropriately completes the request.

Instruction: {instruction}

Input: {input}

Response:

Prompt No Input Below is an instruction that describes a task. Write a response that appropri-
ately completes the request.

Instruction: {instruction}

Response:

Table 5: Response demonstration for a counterfactual question from [10]
What if Isaac Newton had focused on biology instead of physics?

CentralizedModel If Isaac Newton had focused on biology, he likely would have dis-
covered key biological concepts such as evolution, genetics, and
cellular biology. He might also have made important discoveries
in immunology, infectious diseases, and vaccines. Isaac Newton’s
physics theories changed the way we think about the laws of motion.
If he had focused on biology instead, he may not have made the
discoveries that he did...

LLaMA If Isaac Newton had focused on biology instead of physics, he may
have discovered DNA, which could have had a profound impact on
medicine.

Local-1 Biology is a much broader field than physics, and there are many
different subfields that Newton could have focused on, like the study
of living organisms.

Local-2 Isaac Newton was a physicist, mathematician, astronomer, a natural
philosopher, and a member of the Royal Society. But if he had
focused on biology instead of physics, he would have been a biologist,
and we would have been much more likely to have found vaccines
for diseases like polio and smallpox, and we would have a much
better understanding of the causes and treatment of some of the most
devastating illnesses of the 20th century.

Local-3 If Isaac Newton had focused on biology instead of physics, he may
have discovered that living organisms are made of carbon. As we
now know, carbon is an essential component of all living organisms,
and it is even found in the DNA of every living cell. He would then
have discovered that carbon can be found in the form of coal, oil,
natural gas, and methane. 1. What are the key differences between
renewable and non-renewable energy sources? 2. What if Isaac
Newton had focused on biology instead of physics? 3. What would
have happened if Isaac Newton had never focused on physics? ...

Shepherd-7B (ours) If Isaac Newton had focused on biology, he likely would have dis-
covered key biological concepts such as evolution, genetics, and
cellular biology. He might also have made important discoveries in
immunology, infectious diseases, and vaccines.

ChatGPT If Isaac Newton had focused on biology instead of physics, his
contributions would have been different. Biology is a completely
different field of study, and Newton’s expertise in physics may not
have been easily transferable to biology. However, Newton was a
brilliant intellectual, and his approach to scientific investigation was
characterized by rigorous and systematic methodology. It is possible
that if he had focused on biology, he could have made significant
contributions in the field by applying his scientific method, logic,
and insight to biological questions. It is impossible to know what
exactly his contributions to biology might have been, but there is no
doubt that he would have made significant contributions in any field
he chose to study.
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rendering its response less relevant to the question. As assessed by GPT-4, the Local-2 response also600

discusses the potential implications of Newton concentrating on biology but predominantly empha-601

sizes vaccines and the understanding of disease causes and treatments. Although this speculation is602

intriguing, it is less focused on specific biological areas than our response, which emphasizes the603

potential areas of biological research where Newton might have made significant contributions. More-604

over, it briefly mentions Newton’s actual background, which is not directly related to the question but605

provides context.606

Even though baseline Local-1 is primarily fine-tuned on brainstorming instructions that share similar-607

ities with counterfactual QA, since they both involve creative thinking and deal with hypothetical608

situations, its response lacks depth and does not discuss the potential impact of Newton’s focus on609

biology. Counterfactual QA typically evaluates or analyzes past events, involving questions about610

alternative outcomes, necessitating an understanding of the factors leading to a specific event outcome611

[48]. This distinction from merely producing novel ideas or solutions without assessing past events612

as seen in brainstorming, highlights the necessity for LLMs to possess other capabilities such as613

summarization, information extraction, and creative writing. Consequently, this emphasizes the614

significance of diverse instruction tuning for LLMs and illustrates the advantages of our methodology.615

616

4 Future Directions617

4.1 Computation and Communication Overhead618

Deploying LLM in FL poses major challenges in terms of the colossal communication cost and the619

computational and storage overhead of local clients. FL faces significant communication challenges620

as it requires frequent exchanges of model information (parameters or gradients) among distributed621

clients and services. When it comes to using FL for LLM, the communication overhead becomes622

even more significant, with gigabit-level data transmissions necessary to achieve centralized training623

performance. This level of communication overhead is not acceptable for FL systems. Furthermore,624

local clients may not have the computing power to fine-tune the entire LLM, and storing different625

instances for various tasks is also memory-intensive. As a result, it is crucial to develop appropriate626

LM-empowered FL methods that can work within the constraints of communication and resources.627

Inspired by this, proposing new parameter-efficient tuning (PETuning) methods such as Prefix-628

tuning [34], LoRA [24], and BitFit [76] which are tailored for FL systems and yield competitive629

results can be a direction for future works. Those methods can naturally be a remedy for the630

communication and resource constraints mentioned above.631

4.2 Privacy632

FL has gained popularity in privacy-sensitive NLP applications due to its ability to preserve privacy,633

especially when the client’s data is highly sensitive and cannot be transmitted outside their device.634

Essentially, with preserving a notion of privacy, FL has emerged as a preferred approach for privacy-635

sensitive NLP tasks such as medical text tasks [60], and financial text classification [3]. The636

advancement of large language models (PLMs) has created an opportunity to use FL in privacy-637

sensitive NLP applications by combining the two techniques. The progress made in PLMs has made638

it possible to consider the combination of PLMs and FL as a viable and promising solution.639

However, LLMs in FL pose distinctive core challenges, one of which is the potential of malicious640

clients polluting the FL process by injecting crafted instructions. Such instructions can lead to biased641

or suboptimal models. To fully unpack the benefits of FL to LLM, the mentioned concerns should642

be addressed. Therefore, designing methods for robust aggregation and outlier detection techniques643

that can detect and exclude clients with abnormal behavior particular to LLM can be an interesting644

direction for future work in using FL for LLM.645

4.3 Personalization646

With deploying FL in LLM, due to the differences among the language data (instructions) used in647

distributed clients and averaging of learning updates across a decentralized population, personalization648

becomes a critical requirement for FL systems [42]. The former can be further complicated by649

language diversity, domain-specific instructions, task complexity, emotional tone, cultural factors,650
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etc., which are new aspects of heterogeneity [38, 73]. For instance, in multilingual applications,651

fairness across languages, especially for languages with fewer data samples, is essential but hard to652

achieve[70, 73]. In domain-specific contexts, distinct sentence structures add to the heterogeneity653

of the framework, requiring proposing new personalization methods to ensure the efficacy of the654

language model. Methods that combine personal embeddings with shared context embeddings, and655

preference embeddings, that facilitate personalization without the need for backpropagation, etc. have656

the potential to revolutionize the field of NLP.657

4.4 Defense Against Attacks658

Recent research has highlighted the possibility of recovering text from the gradients of language659

models[2, 20]. This vulnerability can also arise due to the models’ tendency to memorize their660

training data and can result in the inadvertent disclosure of sensitive information. In the context of661

FL, this issue becomes particularly concerning, as malicious users can leverage this vulnerability to662

extract local sensitive texts using various techniques. Although different methods, including gradient663

pruning [80] and Differentially Private Stochastic Gradient Descent (DPSGD) [1] have been proposed664

as defense mechanisms against these attacks, they often come at the cost of significant utility loss [20].665

To address this issue, future research could explore more sophisticated defense strategies that are666

specifically tailored to the characteristics of text data.667
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