Proceedings of Machine Learning Research 304, 2025 ACML 2025

Emergence of the Primacy Effect
in Structured State-Space Models

Takashi Morita TMORITA@QALUM.MIT.EDU
Academy of Emerging Sciences, Chubu University, Japan
Institute for Advanced Research, Nagoya University, Japan

Editors: Hung-yi Lee and Tongliang Liu

Abstract

Structured state-space models (SSMs) have been developed to offer more persistent memory
retention than traditional recurrent neural networks, while maintaining real-time inference
capabilities and addressing the time-complexity limitations of Transformers. Despite this
intended persistence, the memory mechanism of canonical SSMs is theoretically designed
to decay monotonically over time, meaning that more recent inputs are expected to be
retained more accurately than earlier ones. Contrary to this theoretical expectation, how-
ever, the present study reveals a counterintuitive finding: when trained and evaluated on a
synthetic, statistically balanced memorization task, SSMs predominantly preserve the ini-
tially presented data in memory. This pattern of memory bias, known as the primacy effect
in psychology, presents a non-trivial challenge to the current theoretical understanding of
SSMs and opens new avenues for future research.
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1. Introduction

In recent years, structured state-space models (SSMs) have garnered increasing attention as
a backbone of next-generation artificial intelligent systems (Gu et al., 2022b; Gu and Dao,
2024). SSMs were developed to provide more persistent memory retention than traditional
recurrent neural networks (RNNs), while maintaining real-time inference capabilities and
addressing the time-complexity limitations of Transformers.

Despite this intended persistence, the memory mechanism of canonical SSMs is theo-
retically designed to decay monotonically over time (Gu et al., 2023); that is, more recent
inputs are expected to be retained more accurately than earlier ones. For example, when
a sequence of random integers such as 49,75,...,5,38 is presented in that order, the final
items (5, 38) are theoretically more likely to be recalled accurately at the end of the sequence
(blue curve in Figure 1).

Contrary to this theoretical expectation, however, the present study reveals a counter-
intuitive finding: when trained and evaluated on a synthetic, statistically balanced mem-
orization task, SSMs predominantly preserve the initially presented data (e.g., 49,75) in
memory (orange curve in Figure 1). This memory bias is known as the primacy effect in
psychology; human and animal memory for sequentially presented items tends to be more
accurate for those appearing at the beginning of the sequence (Ebbinghaus, 1913; Murdock,
1962; Glanzer and Cunitz, 1966)." This finding presents a non-trivial puzzle for existing
theories and opens new avenues for research on SSMs.

1. Human and animal memory is also known to be more accurate for the most recently observed items—a
phenomenon termed the recency effect. The theoretical design of SSMs aligns with this opposite pattern.

© 2025 T. Morita.
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Figure 1: Graphical abstract of the key finding. When trained on a memorization task
with sequentially presented items, the SSM achieves the highest accuracy for the
earliest items (orange curve). This contrasts with the theoretical design of the
SSM’s memory mechanism, which assigns exponentially diminishing importance
to older observations (blue curve).

The remainder of this paper is organized as follows. §2 first reviews the formalization
and memory characteristics of SSMs. The section also discusses data-driven primacy effects
observed in large language models—which inherit human biases embedded in linguistic
data—and contrasts these findings with the statistically balanced setting examined in this
study. §3 then details the task and model specifications, followed by results in §4. Finally,
§5 summarizes the findings and discusses their implications in the context of prior work.

2. Preliminaries and Related Studies

2.1. Structured State-Space Models
2.1.1. FORMALIZATION

To achieve more persistent memory retention than traditional RNNs, the SSM leverages
continuous-time dynamics, replacing the discrete-time framework of RNNs (Zhang et al.,
2018; Voelker et al.; 2019; Gu et al., 2020). The fundamental principle underlying these
models is the polynomial approximation of observed signals (called the HiPPO framework;
Gu et al., 2020). Specifically, given a single-channel input signal z(-), represented as a
function of time, its approximation up to a given time point ¢ can be approximated by a
linear combination of polynomials:

N-1
x‘St(') ~ Z hn(t)Pn() (1)
n=0
where P, denotes the basis polynomial of degree n and {h,(t) r]yz_ol are the optimal co-
efficients for the approximation at time t. When these polynomials form an orthogonal
basis with respect to a time-dependent measure du(t)(-), the optimal coefficients can be
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determined as:
mm=wm¢w=/x«ﬂa@w@@ (2)

Then, these coefficients offer a finite- and constant-dimensional representation of the input
signal up to time t. The framework can be naturally extended to multi-channel signals by
performing channel-wise approximations in parallel, yielding h%m) (t) for each channel m.

For the polynomial coefficients to serve as a “memory” of the input signal, their temporal
evolution must be trackable in an online manner; that is, the polynomial approximation
at time ¢t should not refer back to past values of the input signal, z|<¢(s) (0 < s < t).
Fortunately, for certain families of polynomials, including Legendre, Laguerre, and Fourier
basis,” the coefficient dynamics can be described by an ordinary differential equation (ODE;
Gu et al., 2020):

d

dt
where h(t) := (ho(t),...,hn_1(t))T, and A and B—referred to as the state and input
matrices, respectively—are of size N x N and N x 1. The values on A and B depend
on the choice of the underlying polynomial basis, and can also be adjusted via gradient-
based optimization. A feedforward transformation of the state vector h(t) (achieved via
left-multiplication by another matrix C') yields a (possibly multi-channel) output signal
y(t) = Ch(t) € RM.3 The resulting mapping = + y defines the SSM (CGu et al., 2021,
2022b).

In practice, continuous-time recordings of an input signal x(t) are not available; instead,
empirical data consist of discrete-time samples at t = t1,...,tr. Consequently, the SSM
matrices must also be discretized in order to convert the ODE in Eq. 3 to a discrete recurrent
system, analogous to RNNs:

h(t) = Ah(t) + Ba(t) (3)

h(tj) = Ah(t;-1) + Bx(t)) (4)

where A and B represent the discretized versions of A and B, respectively. A commonly
used discretization technique is the bilinear method (Tustin, 1947), which yields:

-1 -1
(A (A (8 s

where At :=t;1—t; (Vj =1,..., L—1) defines the time-step size. This time-step parameter
is treated as learnable, allowing the model to automatically adjust the time scale of its state-
space dynamics to align with that of the input signal.* Moreover, in multi-channel settings,

2. The Fourier approximation (or transform) is not based on polynomials, but the theory can be generalized
to incorporate it by taking the complex-valued basis 2" := €2™""* and a measure on the unit circle (Gu
et al., 2020).

3. The general formulation of the SSM incorporates an additional matrix D, which establishes a direct feed-
forward connection between the input and output signals, expressed as y(t) = Ch(t)+ Dx(t). In practice,
however, D is often set to the identity matrix, effectively reducing the feedforward transformation to a
simple residual connection (He et al., 2016).

4. Despite the data-driven adjustability of At, it is important to recognize that discretization methods are
generally designed under the assumption of sufficiently small values on this parameter, for effectively
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Figure 2: Tllustration of the continuous (left; K (1) := €™ B) and discretized (right; K :=
A7 B) SSM kernels based on Legendre polynomials with an exponentially decaying
measure (Gu et al., 2023). To aid intuitive understanding, the horizontal axis has
been flipped, so that kernel values multiplied with past inputs appear on the
left (unlike in the standard visualization of convolutional kernels, where they
are placed on the right). The distinct line colors represent selected entries of
the kernel vectors, Ky(7) and Kj,, each corresponding to the approximating
polynomial of degree n € {2,3,8,15,32,63}. The kernels were evaluated at 7 =
JjAt for j = 0,...,255 and At € {0.001,0.01,0.1,1.0}. Increasing At results in
growing discrepancies between the continuous and discretized kernels.

the model can represent multi-scale dynamics by assigning distinct At(™ values to each
channel m.

This flexibility extends the applicability of SSMs to inherently discrete data lacking
overt continuous dynamics (e.g., text languages; Gu and Dao, 2024; Dao and Gu, 2024);
the model can jointly lean latent representations (or embeddings) of discrete inputs along
with their (pseudo-)continuous dynamics via gradient-based optimization. Furthermore,
SSMs can be hierarchically stacked to construct deeper and more expressive models, where
each layer processes latent signals received from lower layers.

2.1.2. PRIOR STUDIES ON THE MEMORY DYNAMICS OF SSMs

Previous studies have identified that the time-step size, At, as a critical factor in determining
the success/failure of SSMs. Intuitively, a small At results in minor state updates, yielding
slow dynamics in the state space, h(tj41) — h(t;); conversely, a large At induces rapid
state transitions (Gu et al., 2021; Gu and Dao, 2024). As a consequence, At governs the

approximating the limit At — 0. Consequently, setting At too large introduces discrepancies between
the continuous and discretized dynamics (as illustrated by the contrast between the left vs. right panels
in Figure 2).
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memory decay properties of the SSM; although the models assume an exponentially decaying
measure in continuous time (particularly when employing Legendre/Laguerre polynomials;
Gu et al., 2020, 2023), choosing small At values can allocate relatively large weights to input
samples from distant time steps, thereby compromising single-step discriminability, which
is better preserved with larger At (Figure 2). Notably, when an SSM employs a measure
with fixed-length support—such as that used in the Fourier basis—At~! corresponds to the
model’s effective memory length (Gu et al., 2023).

Owing to the rich theoretical foundations, previous experimental investigations into the
memory capacity of SSMs have remained relatively cursory. In particular, most prior works
have only reported time-averaged benchmark scores, without offering a detailed analysis
of the temporal patterns in memorized vs. overlooked information (Gu et al., 2020, 2021,
2022b,a; Gupta et al., 2022). The present study addresses this underexplored question
and reveals a primacy effect in SSMs, which stands in stark contrast to their theoretically
prescribed memory decay.

2.2. Data-Driven Primacy Effect in Language Models

Several prior studies have documented the primacy effect of artificial neural networks trained
on the autoregressive language modeling task. Wang et al. (2023) investigated positional
biases in a Transformer-based large language model (LLM) using a prompting-based ap-
proach. Specifically, a list of action or event labels was sequentially presented (e.g., “Label
1: change_pin”, “Label 2: card_arrival”, “Label 3: activate_my_card”). The model was then
given a query prompt specifying a target action/event (e.g., “Target Text: I need a new
PIN.”) along with an instruction statement (e.g., “Which label matches the intent expressed
in the Target Text?”). The primacy effect was observed as a greater frequency of the ini-
tially presented labels in the model’s responses. Comparable findings have been reported
across different LLM implementations and benchmark datasets (Eicher and Irgolic, 2024;
Guo and Vosoughi, 2024; Janik, 2024; Liu et al., 2024).

Xiao et al. (2024) found that Transformer-based LLMs allocated disproportionate atten-
tion to initial tokens, regardless of their informational salience in the text (a phenomenon
they termed attention sinks). Furthermore, retaining these initial tokens even after they
fall outside the predefined input window was found to enhance model performance.

Since the Transformer architecture is inherently position-agnostic—lacking an intrinsic
ordering mechanism apart from external positional encodings (Vaswani et al., 2017)—the
primacy effects observed in these studies must stem from the statistical properties of the
training data or task design. Wang et al. argued that LLMs inherit cognitive biases from
human-generated linguistic data. Xiao et al. suggested that the nature of the language
modeling task itself encourages prioritization of initial tokens, as they are repeatedly used
as inputs for autoregressive predictions, reinforcing attention allocation to them.

In contrast to these prior investigations, the present study examines the emergence
of the primacy effect in the SSM while preventing the inheritance of human-induced bias.
Specifically, the models are trained on a synthetic memorization task designed based on
psychological experiments conducted with humans and other animals (Thompson and Her-
man, 1977; Sands and Wright, 1980; Wright et al., 1985). The following section details the
task formulation and the model architecture.
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Figure 3: Schematic illustration of the binary memory verification task.

3. Methods
3.1. Task

The memorization patterns of the SSM were assessed using the binary memory verification
task (Figure 3; a.k.a. serial probe recognition in psychology and ethology; Wickelgren
and Norman, 1966; Thompson and Herman, 1977; Sands and Wright, 1980; Wright et al.,
1985).° In this task, the models were first presented with a sequence of randomly generated,
non-repeating integers (hereinafter referred to as study items). Subsequently, they received
another sequence of integer queries and were trained to determine whether each query token
was present (labeled as 1) or absent (labeled as 0) in the study items. To construct these
queries, the study items were first shuffled, and then, with a probability of p = 0.5, each
shuffled token was replaced with a randomly sampled integer from the complement set of
the study items (termed distractors).’

The task hyperparameters were manually adjusted to prevent the models from achieving
perfect accuracy. Specifically, the input length was set to L € {64,128,256}, and the
vocabulary size was fixed at K := 4096. Each model underwent ten independent training
runs with different random seeds. For evaluation, 1024 sets of integers were held out as

5. The most widely adopted task for assessing the primacy effect in human memory is free recall, in which
participants are presented with a sequence of items and subsequently asked to recall them in an order-
agnostic manner (Murdock, 1962; Glanzer and Cunitz, 1966). While this paradigm can be technically
formulated as a loss function—under the framework of the optimal transport (Cuturi, 2013)—initial
explorations of this study revealed that model performance remained suboptimal under this approach,
yielding lower accuracy than in theoretically more demanding tasks requiring order-sensitive reconstruc-
tion. Consequently, the present study adopted the more machine learning-friendly task based on binary
verification. Remarkably, this task has also been used to assess the memory capacity of non-human
animals, which are unable to perform free recall (Thompson and Herman, 1977; Sands and Wright, 1980;
Wright et al., 1985).

6. An anonymous reviewer noted that the adopted memorization task introduces a non-uniform distribution
of relative distances between study items and queries. Specifically, the model has a lower probability of
encountering distances of length L + «, where L is the number of study items, as « increases from 0 to
L — 1. Nevertheless, the task preserves symmetry between short and long distances, since distances of
length L — a and L 4 « occur with equal frequency. Therefore, the statistical properties of the task do
not inherently favor the memorization of earlier study items (i.e., long input-output dependencies).
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test data, ensuring that these integer combinations never appeared as study items in the
training set, regardless of their order.

To build test sequences, the held-out study items were randomly ordered, and queries
were generated by first shuffling and then cyclically shifting them (e.g., (2,8,11,29) —
{(2,8,11,29),(8,11,29,2),(11,29,2,8),(29,2,8,11)}). This design ensured that each study
item was queried in all L possible positions. Finally, either the even- or odd-indexed query
positions were replaced with random distractors, resulting in a total of 1024 x L x 2 test
sequences per trial.

In Appendix B, the primacy effect is examined in a more advanced task—associative
recall—which has been established as a useful benchmark for evaluating the performance
of language model architectures (Olsson et al., 2022; Fu et al., 2023; Gu and Dao, 2024).

3.2. Models

The models used for the binary memory verification task comprised three layers, as illus-
trated in Figure 3. In the first layer, the input integers were embedded into 256-dimensional
real-valued vectors. These embeddings were shared between study items and query tokens.
The resulting sequence of vectors was then processed by the SSM, whose outputs were lin-
early projected onto binary logits to determine whether each query token was present in
the study items.

This study primarily examined the single-layer S4 model as the goldstandard implemen-
tation of the SSM (Gu et al., 2022b).” The model encoded the channel-wise dynamics of
the input embeddings in a complex-valued space, with its outputs subsequently projected
back into the real domain by discarding imaginary components. The state and input ma-
trices (A and B in Eq. 3) were initialized to approximate each channel’s trajectory using
Legendre/Laguerre polynomials of degrees 0-63 (HiPPO-LegS/LagT) or a Fourier basis
{s0,c¢0, .-, 531,c31}, where s,(t) := v/2sin(27nt) and ¢, (t) := v/2 cos(2mnt) (HiPPO-Fout,
Fourier Recurrent Unit; Zhang et al., 2018; Gu et al., 2020, 2023). The matrices were
discretized by the bilinear method (Tustin, 1947).

For comparison, a single-layer long short-term memory (LSTM) network was also eval-
uated (Hochreiter and Schmidhuber, 1997). The dimensionality of both hidden and cell
states was set to 256.

The models were trained for 300,000 iterations using the Adam optimizer with parame-
ters (Bo, £1) := (0.9,0.99) (Kingma and Ba, 2015). Batch size was set to 512. The learning
rate was linearly increased from 0.0 to 0.001 over the first 1,000 iterations (warmups) and
subsequently decayed according to the cosine annealing schedule (Loshchilov and Hutter,
2017). To prevent gradient explosion, the gradient norm was clipped at 1.0. The Python
code for the experiments is available at https://github. com/tkc-morita/primacy-effect.
git.

7. Recent studies have shown that the state matrix (A) of S4 can be simplified into a purely diagonal
form without compromising performance (S4D; Gu et al., 2022a). By contrast, the original S4 model
introduced an additional low-rank component to the diagonal structure (referred to as the Diagonal Plus
Low Rank form, or DPLR) to ensure a mathematically well-founded state matrix. Notably, the diagonal
variant exhibited a qualitatively similar primacy effect to the DPLR model. Due to the page limitations,
results for the diagonal model are omitted from this paper, and all reported findings are based on the
DPLR model.
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Accuracy of the binary memory verification task. Each cell in the square
heatmaps represents the accuracy (or the recall score) for study items that were
presented at the time indexed by the corresponding row and queried at the time
indexed by the corresponding column. The accuracy for distractor queries is dis-
played in the top separate row of each panel, alongside the average accuracy across
memorization times (rows). Similarly, the rightmost separate column represents
the average accuracy across verification times (columns). The bottom-right panel
(H) depicts the accuracy distribution for the LSTM, while the other panels (A—
G) report results for the SSM (S4) under different parameter configurations. The
state and input matrices of the SSM were initialized to approximate the latent
dynamics of input sequences using Legendre polynomials, except in panels C and
D, where Laguerre and Fourier bases were used, respectively. The state and input
matrices were optimized for the task in panel A, whereas they remained fixed at
their initial values in all other panels. The discretization step size At was initial-
ized in the range 0.001 < At < 0.1, except in panel E, where the upper bound
was extended to 1.0 (i.e., 0.001 < At < 1.0). The length of study items was set
to L = 128, except in panel F' (L = 64) and panel G (L = 256).

4. Results

4.1. Emergence of the Primacy Effect

Figure 4 reports the accuracy of the binary memory verification task across all combinations
of memorization and verification times. The brightness of each cell in the square heatmaps
indicates the accuracy for study items that were presented at the time indexed by the
corresponding row and queried at the time indexed by the corresponding column. That is,
they report the proportion of true positives against false negatives (i.e., the recall score).
Additionally, the top separate row of each panel displays the accuracy for distractor queries
(integers not included among the study items), capturing the prevalence of true negatives
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over false positives. Just below it, the second row summarizes the average accuracy across
memorization times (rows). Similarly, the rightmost separate column represents the average
accuracy across all verification times (columns).

The binary memory verification performance of the SSM model was highest for study
items presented at the beginning of the sequence, demonstrating a clear primacy effect
(Figure 4A—G). The model maintained high accuracy across different query timings (as
indicated by the bright colors in the top rows of the heatmaps), provided that the sequence
length did not exceed its capacity (see the accuracy decline in Figure 4G, where L = 256).
In other words, memory for the initial study items exhibited minimal decay over time.

By contrast, the LSTM did not display this primacy effect; its accuracy was uniform
across both the memorization and verification phases (Figure 4H).

Interestingly, the SSM’s accuracy for the most recently presented study items was lowest
when they were queried immediately after their initial presentation in the memorization
phase (indicated by the dark colors in the bottom-left region of the heatmaps). This suggests
a temporal delay between the encoding of study items and their effective retrieval.

These findings held true regardless of whether the state and input matrices of the SSM
(A and B in Eq. 3) were optimized for the task (Figure 4A) or remained fixed at their initial
values (Figure 4B—G). Moreover, the results remained consistent across different polynomial
bases underlying the state and input matrices, including Laguerre (Figure 4C), Fourier (4D),
and Legendre (all other panels).

4.2. Distribution of the Time-Step Sizes

As discussed in §2.1.2, the discretization time-step size At plays a critical role in determining
the memory capacity of the SSM. Moreover, once the state matrix A is fixed, At becomes the
sole parameter capable of influencing the dynamics of the SSM;® all remaining parameters
are confined to feedforward transforms.

Accordingly, to further investigate its role, the optimization trajectories of At were
tracked over the course of training. The analysis revealed that as training progressed, a
specific range of step sizes (At < 0.03) became dominant, compensating for the deallocation
of the higher range approximately between 0.03 and 0.2 (Figure 5).

Additionally, the peak value of At was found to depend on the number of the study
items L; longer study sequences led the model to favor smaller At values (compare the
leftmost panel with the two rightmost panels).

5. Discussions

The present study demonstrated that the SSM exhibits the primacy effect in memorization.
When performing the binary memory verification task, which parallels paradigms used
to investigate memory capacity in humans and animals, the model showed the highest
accuracy for study items presented at the beginning of the sequence. Moreover, memorized
information was not retrievable immediately after the presentation of the study items. These
findings are novel and counterintuitive, as they challenge the theoretical formulation of the

8. Freezing At resulted in a complete failure of learning.
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Figure 5: Top row: Optimization trajectories of the discretization step size At in the SSM
(S4) with frozen Legendre state and input matrices. Each heatmap column repre-
sents the distribution of At across 256 latent channels x 10 training runs, sorted
in the ascending order. Bottom row: Histograms displaying the initial (blue) and
final (orange) values of At, aggregated across the 256 latent channels x 10 train-
ing runs (see Figure A.1 in Appendix A for variations among individual runs).
The first to third panel columns from the left show the results for three differ-
ent ranges of log-uniformly random initializations, whereas the fourth and fifth
columns tested shorter and longer study items, respectively.

SSM, which assumes an exponentially decaying measure (for Legendre and Laguerre bases;
Figure 2; Gu et al., 2020, 2023).

As noted in §2.1.1, the SSM was designed to achieve a longer-lasting memory than
classical RNNs (Gu et al., 2020). Prior research on RNNs and SSMs has focused on their
ability to preserve input data against temporal decay. However, little attention has been
given to how the model handles longer study sequences and larger vocabularies when mem-
ory capacity reaches its limit.” In particular, the question of whether the models prioritize
initial/middle/recent observations has remained unexplored. The present study addressed
this question and discovered that the SSM predominantly preserved the initial observations.

The key factor responsible for the primacy effect in the SSM appears to be the time-
step size, At, as all the other trainable parameters pertain exclusively to feedforward trans-
forms. After training on the memorization task, At values concentrated below a specific
threshold (At < 0.03). As discussed in §2.1.2, smaller At values allow the model to re-
tain more distant memories, while larger At values enhance the discrimination of adjacent
tokens (Gu et al., 2021; Gu and Dao, 2024). The learning results thus align with the nec-
essary condition for the primacy effect; however, the question remains open why recent

9. It should be noted that the performance of the SSM can be enhanced by increasing the number of layers
and/or latent channels. In this study, the model’s capacity was intentionally constrained in order to
study its behavior under conditions where perfect accuracy is unattainable.
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observations were remembered less accurately despite the exponentially decaying measure
underlying the polynomial-approximation theory. Future research may address this issue
through comparisons across a wider range of discretization methods—such as the Runge-
Kutta method—extending beyond the standard empirical options of bilinear and zero-order
hold.

The SSMs analyzed in this study were trained from scratch on a synthetic memorization
task that was designed to closely resemble controlled psychological experiments (Wickelgren
and Norman, 1966; Thompson and Herman, 1977; Sands and Wright, 1980; Wright et al.,
1985). Consequently, the observed primacy effect is attributed to the intrinsic properties
of the SSM per se, rather than to biases introduced by data or task design. From this
perspective, the the present study stands in contrast to prior investigations of LLMs (Wang
et al., 2023; Eicher and Irgoli¢, 2024; Guo and Vosoughi, 2024; Janik, 2024; Liu et al., 2024;
Xiao et al., 2024); LLMs are trained on human-generated linguistic data and therefore likely
to inherit the primacy effect as a byproduct of human cognitive biases embedded in the data.

It also remains an open question whether the primacy effect holds in more advanced
settings than those examined in this study. Specifically, the scope was restricted to single-
layered models, whereas empirical applications almost invariably employ multi-layered ar-
chitectures. Such extended architectures achieved perfect accuracy on the adopted task—
even at the maximal levels of input length and vocabulary size implementable within the
available computational resources—thereby failing to incur the memory load necessary for
evaluating the primacy effect. For the same reason, the proposed experimental paradigm
was also inadequate for testing the SSM-based language model, Mamba (Gu and Dao,
2024; Dao and Gu, 2024). Therefore, Clarifying whether the primacy effect persists in such
powerful architectures is an important avenue for future research.
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