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Abstract

Drowsiness is a contributing factor in an estimated 12% of all road traffic fatalities. It
is known that drowsiness directly affects oculomotor control. We therefore investigate
whether drowsiness can be detected based on eye movements. To this end, we develop
deep neural sequence models that exploit a person’s raw eye-gaze and eye-closure signals to
detect drowsiness. We explore three measures of drowsiness ground truth: a widely-used
sleepiness self-assessment, reaction time, and impending microsleep in the near future. We
find that our sequence models are able to detect drowsiness and outperform a baseline
processing established engineered features. We also find that the risk of a microsleep event
in the near future can be predicted more accurately than the sleepiness self-assessment or
the reaction time. Moreover, a model that has been trained on predicting microsleep also
excels at predicting self-assessed sleepiness in a cross-task evaluation, which indicates that
upcoming microsleep is a less noisy proxy of the drowsiness ground truth. We investigate
the relative contribution of eye-closure and gaze information to the model’s performance. In
order to make the topic of drowsiness detection more accessible to the research community,
we collect and share eye-gaze data with participants in baseline and sleep-deprived states.

1. Introduction

The term drowsiness refers to the transition from being clearly awake to being clearly asleep.
This transition phase is already characterized by profound changes in motor control, cogni-
tion, brain activity, and consciousness (McGinley et al., 2015). The European Commission
estimates that drowsiness is a contributing factor in 12% of all road accidents (Directorate-
General for Mobility and Transport of the European Union, 2023)—these accidents account
for 162,000 of the 1.35 million annual road traffic fatalities (Center of Desease Control,
2023).

Driver cameras that are entering the automotive market are capable of extracting the
driver’s eye closure and eye gaze (Halin et al., 2021). It is known that fatigue and drowsiness
are associated with an increased blink frequency (Santamaria and Chiappa, 1987; Luckiesh
and Moss, 1937; Hoffman, 1946); this connection may be understood as cessation of the
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attention-driven suppression of blinks (Schleicher et al., 2008). Blink duration (Morris
and Miller, 1996; Häkkänen et al., 1999) and the individual standard deviation of blink
rates and duration increase with increasing fatigue (Schleicher et al., 2008). Motivated
by these psychological findings, known approaches to drowsiness detection use features
that are derived from the eye-lid closure—such as blink frequency, duration, and eye-lid
velocity (Wilkinson et al., 2013; Horng et al., 2004; Nguyen et al., 2015; Rumagit et al.,
2017). The percentage of time in which the pupil is covered by the lid (PERCLOS) (Skipper
and Wierwille, 1986) tends to increase with increasing fatigue; however, individuals can
willingly keep their eyes open despite being fatigued, and even while exhibiting indicators
of sleep in the EEG (O’Hanlon and Kelley, 1977).

Psychological research has found features of gaze events, such as saccades and fixa-
tional micro-movements to be correlated to drowsiness. The saccadic accuracy and peak
saccadic velocity can be negatively impacted by fatigue, but with a high inter-subject vari-
ability (Galley, 1989; Hirvonen et al., 2010). Di Stasi et al. (2013) find that ocular stability
decreases as a function of mental fatigue: In a visual search task, the velocity of saccades
and micro-saccades decreases under fatigue whereas the velocity of ocular drift increases. In
a driving-simulator experiment, saccadic duration increases, saccadic speed decreases, and
their standard deviations increase with increasing fatigue (Schleicher et al., 2008). These
psychological findings, and the fact that the eye gaze can be measured by optical sensors,
motivate us to explore eye-movements in addition to eye-closure signals as a predictor of
drowsiness.

However, when developing machine learning methods for drowsiness detection, obtain-
ing valid ground-truth labels poses a major methodological challenge. Whereas the state
in which a person is clearly sleeping (sleep stage 2) can be unambiguously labeled in an
electroencephalogram (EEG) recording that shows the characteristic sleep spindles or K
complexes, drowsiness (sleep stage 1) cannot be directly observed. Although drowsiness
has long been known to be associated with certain changes in the EEG signal (Matousek
and Petersén, 1983; Dement and Kleitman, 1957; Santamaria and Chiappa, 1987), it can-
not be unambiguously detected from the EEG signal alone across different individuals, but
additional motion or eye movement data is necessary (Moser et al., 2009; Santamaria and
Chiappa, 1987), which not only makes the manual labeling difficult (Rechtschaffen and A,
1968; Berry et al., 2020), but has led to an overwhelming number of features extracted
from the EEG signal that, at the group level, all have been shown to correlate with drowsi-
ness (Stancin et al., 2021). Moreover, in a task such as driving, the EEG signal is heavily
contaminated by muscle artifacts. In sum, although for the detection of sleep stage 2 and
higher, EEG is the gold-standard measurement technique to determine ground-truth values,
it is not an ideal tool to determine drowsiness ground truth.

The Karolinska sleepiness scale (KSS) (Åkerstedt and Gillberg, 1990) is a widely-used
self-assessment, in which participants are asked in regular intervals to rate their fatigue on a
scale from “1—very alert” to “9—very sleepy, great effort to keep alert, fighting sleep”. The
KSS self-assessment is generally considered as a gold-standard proxy of drowsiness ground
truth. It is correlated to driving errors and EEG-derived indicators of fatigue (Kaida et al.,
2006). The drawback of the KSS score is that it is strongly subjective, and that participants
can easily misjudge their own level of drowsiness.
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The psychomotor vigilance test (PVT) (Dinges and Powell, 1985) measures users’ reac-
tion time during a ten-minute repetitive reaction test. While the PVT offers an objective,
quantitative measure of vigilance, it interrupts any other user activity for ten minutes, and
the functional relationship between vigilance and reaction time is highly individual.

This paper makes a number of contributions.

1. We introduce upcoming microsleep events in the near future as a new proxy of drowsi-
ness ground-truth. We argue that upcoming microsleep is a highly relevant proxy of
the drowsiness ground truth for applications such as driver monitoring, because pro-
longed driving without visual perception is objectively hazardous.

2. We show that the risk of impending microsleep can be predicted more accurately than
both KSS self-assessment and reaction time. Moreover, a model trained to predict
microsleep is at least as good at predicting KSS assessments as a model trained on
KSS scores, which indicates that upcoming microsleep is a less noisy form of ground
truth.

3. We develop CNN, LSTM, and Bi-LSTM neural network architectures that directly
process the raw eye-closure and eye-gaze signal to predict drowsiness by learning to
extract the relevant information from the input signal in a fully data-driven way. As
reference baseline, we implement an exhaustive list of published hand-crafted features
that serves as input to a random-forest classifier.

4. In an ablation study, we quantify the relative contributions of eye-closure and eye-gaze
features to fatigue detection.

5. In order to make the topic of drowsiness detection more accessible to the research
community, we collect and share a database of 47 participants in baseline and sleep-
deprived states with KSS, PVT, and impending microsleep ground truth. We also
implement an exhaustive collection of published engineered eye-closure and eye-gaze
features and share their implementation.

The remainder of this paper is structured as follows. Section 2 lays out the problem
setting, Section 3 introduces the drowsiness detection models, Section 4 reports on our data
collection. In Section 5 we present the experimental results. Section 6 discusses the results
and related work. Section 7 concludes.

2. Problem Setting

In all the variations of problem settings that we study, the input to the system consists of
the following signals:

• A sequence of raw eye gaze yaw and pitch angles of the left and right eye over the
observation period, recorded by a video-based eye tracker;

• an eye-closure signal on a scale of zero to one, where zero indicates an aperture of
12mm or more, and one indicates fully closed eyes;
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• an eye-state variable that indicates whether the pupil is covered by the eye-lid with
values “open” (pupil not covered), “closed” (pupil covered), “partially closed”, “not
visible” (covered by an occlusion), “downcast” (head is pitched downward and either
may either be closed or looking downward), and “not available” (tracking failure);

• an eye movement events signal that indicates the presence of a fixation or saccade.
Fixations are phases of relative stability during which only micro-movements occur
and visual information is perceived, whereas saccades are fast relocation movements
during which information uptake is suppressed.

While drowsiness ground truth cannot be observed directly, we will study a new proxy, as
well as reference proxies. The first and most common reference proxy for drowsiness ground
truth is the KSS self-assessment score (Åkerstedt and Gillberg, 1990) on a scale from “1–
extremely alert” to “9–very sleepy, great effort to keep alert, fighting sleep”. We study
KSS prediction as a binary classification problem where the positive class is the aggregate
of scores 7 through 9—the sleepy range—and the negative class is scores 1 through 6—the
alert range. Due to the subjective nature of the KSS scale, it suffers from inter-subject
variance that constitutes a principal upper bound on the accuracy that any system can
possibly achieve.

As the second reference proxy of drowsiness ground truth, we consider the task of pre-
dicting the reaction time of the participants during the PVT task. In the PVT task, a small
red dot appears in the center of a black screen after random time intervals. Participants
have to press a button as soon as they recognize the dot. The reaction time is measured
as the average interval between appearance of the dot and activation of the button. A per-
son’s reaction time is highly individual and, as Section 4.2 will confirm, some individuals
can react faster while fighting sleep than others in their fully alert state.

We will therefore investigate the novel task of predicting impending microsleep events in
a time window of the next 10 seconds. Definitions of microsleep events in the literature vary;
we use a typical definition which is a continuous eye closure of at least 1,000ms duration.
Predicting microsleep events in the future must not be confused with the easier task of
detecting microsleep. By the time an ongoing microsleep event can be detected, a hazardous
situation is already in progress.

We will evaluate this task in two levels of difficulty. In addition to the evaluation of
all cases, we will separately evaluate hard cases. The latter evaluation is restricted to
positives in which the observation window does not yet contain a microsleep episode. Hard
cases are first occurrences of microsleep that have to be predicted without the benefit of
having observed preceding microsleep events that already provide evidence of drowsiness.
Prediction of impending microsleep episodes is arguably linked closer to applications such as
driver monitoring than estimating the KSS self-assessment score, because prolonged driving
without visual perception is objectively hazardous.

For all binary output signals, we measure false-positive and true-positive rates. Each
time step of each evaluation sequence constitutes an instance; in our evaluation protocol,
time steps progress with a stride of 5 seconds. Depending on the target variable, a posi-
tive instance is a time step in which the model estimates the KSS as 7 to 9, or predicts
an impending microsleep event, respectively. If the output matches the ground truth, the
instance counts as a true positive, otherwise it is a false positive. All models under inves-
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Figure 1: Drowsiness detection models.

tigation implement a continuous decision function; a positive output is triggered when the
decision function exceeds a threshold. Adjusting this threshold changes the trade-off be-
tween false-positive and false-negative rates. The attainable pairs of true and false positive
rates can be visualized in a ROC curve and aggregated in AUC values. The PVT reaction
time is a continuous signal that we model as a regression task. We evaluate this task in
terms of the Root Mean Squared Error (RMSE) and the Coefficient of Determination R2.

3. Drowsiness Detection Models

This section introduces the models used to predict the impending microsleep events and the
reference ground-truth proxies of the KSS self assessment and reaction time (see Figure 1).

3.1. Neural Networks

This subsection presents the proposed neural networks for eye-gaze based drowsiness de-
tection. All presented neural networks take an input sequence of 60 seconds at 200Hz,
which results in 12,000 time steps. The input signals—described in detail in Section 2—
result in 13 input channels: one eye-closure channel, seven channels that encode a discrete
eye state, eye-gaze yaw and pitch velocities, and indicator channels for fixations, saccades,
and missing values. The eye-state and eye-closure signals are generated by a commercial
driver-monitoring system.

3.1.1. CNN

We develop a one-dimensional CNN model architecture consisting of multiple CNN layers
followed by a global average pooling layer and several fully connected layers that is de-
signed to extract both local and global patterns in the eye-closure and eye-gaze signal (see
Figure 1(b)).
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The first layers of the model are one-dimensional convolutional layers, which are de-
signed to learn local patterns in the data, followed by a batch normalization and the ReLU
activation function. After the convolutional layers, we apply a global average pooling layer,
which aggregates the features learned by the convolutional layers across time, reducing the
spatial dimensionality of the output. The output of the average pooling layer is then flat-
tened and passed through several fully connected layers, which learn to classify the input
data based on the extracted features. The final layer of the model is a softmax layer for the
classification problems and a linear unit for the PVT regression task.

3.1.2. LSTM and Bi-LSTM

LSTM and Bi-LSTM networks are alternative architectures to the 1D-CNN to model time-
series data. In order to allow the models to capture long-term dependencies in the input
signals, we concatenate multiple layers of LSTM or Bi-LSTM units with fully connected
layers (see Figure 1(c) and 1(d)).

The first layers of our model are LSTM or Bi-LSTM layers, respectively, which are
designed to extract local patterns in the input sequence. After these signal-processing
layers, we apply several fully connected layers with dropout regularization. The final layer
of the model is a softmax layer for the classification problems and a linear unit for the PVT
regression.

3.2. Reference Method

As a baseline method that represents the state of the art, we implement all eye-lid move-
ment and gaze-velocity features that we find in the published literature about drowsiness
detection (Schleicher et al., 2008; Wilkinson et al., 2013). Table 1 shows a list of base fea-
tures. The complete set of features is composed of the absolute values for count features,
and mean, median, standard deviation, skewness, and kurtosis over all blinks in the input
window of all other base features. We train a random forest (RF) classifiers (Breiman, 2001)
on these features using the scikit-learn library (Pedregosa et al., 2011).

4. Data Collection

This section reports on our data collection. The data set and code are available online1 and
will be published upon acceptance. We record a data set of binocular eye movements and
eye-closure features of 47 participants. Participants have been informed about the purpose
of the research and the procedure of data collection and have given their informed consent.
The study has been approved by the responsible ethics committee. Participants are aged 18
through 48 (mean of 24 years); each participant is recorded in three experimental sessions
with a time lag of at least one week in between two sessions. While the participants are
instructed to appear well-rested to two of the sessions (baseline sessions), one of the sessions
takes place under sleep deprivation (sleep-deprived session). The order of the experimental
conditions is counter-balanced across participants.

1. https://osf.io/hmyc4/
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Table 1: Engineered features: absolute values for count features and mean, median, stan-
dard deviation, skewness, and kurtosis over all blinks in the input window of all
other base features.

Feature Source

1 Time steps with eye state “open” (count) Asaphus Vision
2 Time steps with eye state “closed” (count) Asaphus Vision
3 Time steps with eye state “partially open” (count) Asaphus Vision
4 Time steps with eye state “not visible” (count) Asaphus Vision
5 Time steps with eye state “downcast”

(closed or looking downward, count) Asaphus Vision
6 Time steps with eye state “not available” (count) Asaphus Vision
7 Number of blinks (count) -
8 Blink duration from start to maximum

reopening velocity Schleicher et al. (2008)
9 Blink duration normalized by mean duration Schleicher et al. (2008)
10 Blink duration from maximum closing to

maximum opening velocity Wilkinson et al. (2013)
11 Blink duration from onset of closing to full reopening Wilkinson et al. (2013)
12 Time interval between two adjacent blinks Schleicher et al. (2008)
13 Lid-closure amplitude Schleicher et al. (2008)
14 Lid-closure amplitude normalized by mean amplitude Schleicher et al. (2008)
15 Maximum closure velocity during blink Schleicher et al. (2008)
16 Maximum closure velocity during blink normalized

by expected velocity Schleicher et al. (2008)
17 Mean closure velocity during blink

normalized by expected velocity Schleicher et al. (2008)
18 Delay between full closure and onset of reopening Schleicher et al. (2008)
19 Percentage of time with eyes closed Wilkinson et al. (2013)
20 Ratio of the max. amplitude to max. velocity

of eyelid movement for the reopening phase Wilkinson et al. (2013)
21 Ratio of the max. amplitude to max. velocity

of eyelid movement for the closing phase Wilkinson et al. (2013)
22 Percentage of time the eyes are fully closed

for more than 10 ms Wilkinson et al. (2013)
23 Saccade duration Schleicher et al. (2008)
24 Saccade duration normalized by mean duration Schleicher et al. (2008)
25 Time interval between two adjacent saccades Schleicher et al. (2008)
26 Saccade amplitude Schleicher et al. (2008)
27 Saccade amplitude normalized by mean amplitude Schleicher et al. (2008)
28 Max velocity during saccade Schleicher et al. (2008)
29 Max velocity during saccade normalized by expected velocity Schleicher et al. (2008)
30 Mean velocity during saccade normalized by expected velocity Schleicher et al. (2008)

1. For the sleep-deprived session, participants are advised to refrain from sleeping within
24 hours before the experimental session starts, though we do not monitor participants
during that time to verify compliance.

2. For each of two baseline sessions, participants are asked to appear well rested.

During each of the sessions, participants execute three times the Psychomotor Vigi-
lance Task (PVT) (Dinges and Powell, 1985) (PC-based reimplementation) of 10 minutes,
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Figure 2: Drowsiness self-assessment with the Karolinska sleepiness scale (KSS).

interrupted by two time intervals (with mean durations of 35 ± 9 and 30 ± 6 minutes,
respectively) in which they perform cognitive and visual tasks for other experiments. We
chose this task because it requires sustained attention but no specific skills. Before and after
each PVT block, participants report their perceived level of sleepiness on the Karolinska
sleepiness scale (KSS), resulting in six KSS scores per session. We linearly interpolate the
reported score in order to obtain a sleepiness measure for each point in time.

4.1. Technical Setup

We record participants’ binocular eye gaze with an Eyelink Portable Duo eye tracker (SR
Research) at a sampling frequency of 2000Hz and a vendor-reported spatial precision of
0.01◦. Additionally, we record participants faces with a video-camera, with a sampling
frequency of 30 fps and an image resolution of 344×408 px. The camera records in the
infrared spectrum and is sensitive to the infrared illumination of the eye tracker (880 nm).
During the experiment, participants sit at a height-adjustable table in front of a computer
monitor (38×30 cm, 1280×1024 px) with their heads stabilized by a chin and forehead rest.

4.2. Descriptive statistics of the recorded data

Figure 2(a) shows the histogram of reported KSS scores per session type, and Figure 2(b)
over time during each session; in summary, the data cover all levels of drowsiness. For the
baseline sessions, the mean KSS score increases from 3 to 5 due to the repetitive nature of
the task. In the sleep-deprived session, the mean KSS score increases from 7 to 8.

Figure 3(a) shows the number of microsleep episodes for each reported KSS level as box
plot. For any KSS score, zero microsleep events is the mode of the distribution and any
data points with microsleep events are outliers. While a correlation between KSS levels
and microsleep events is apparent, there is also a large overlap of the distributions of sleep
events per minute at different KSS levels, especially for low KSS values.
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Figure 3: Microsleep and reaction time for each KSS level. Number of microsleep events
per minute for each (rounded interpolated) KSS score. In Figures 3(a) and 3(b),
boxes display the median value and interquartile range; whiskers extend up to
the most extreme data point within 1.5 IQR of the quartiles.

Figure 3(b) shows the distribution of PVT reaction times per KSS level; and again,
the correlation is apparent. The overlap between distributions for different KSS scores
underlines the large inter-person variability. At the KSS level of 9, quite a few still have a
lower reaction time than other participants in their fully alert state.

5. Experimental Results

This section reports on the evaluation protocol and the experimental results.

5.1. Evaluation Protocol

All models are evaluated with a nested five fold cross-validation protocol that is stratified
across persons, so that no person appears both in the training and test data at the same
time. We tune the hyper-parameters using the training part of the first fold using grid
search and use the best found configuration for all remaining folds (see Table 2 for the list
of used hyper-parameters and the best found parameters).

5.2. Predicting Microsleep is Easier than Predicting KSS or Reaction Time

Table 3 shows that microsleep episodes in the near future can be predicted with an AUC of
around 0.95 (0.87 for hard cases in which no prior microsleep events occur in the observation
window), whereas self-assessed fatigue is only detected with an AUC of around 0.7. A
comparison of the ROC curves in Figure 4(a) for KSS-sleepiness and Figure 5(a) and 5(b)
confirms the conclusion that predicting upcoming microsleep events is easier than prediction
the KSS self-assessment. The confusion matrix in Figure 4(b) shows that false-positive and
false-negative KSS predictions are more likely to have borderline true scores, but confusions
occur across the entire KSS scale.
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Table 2: Hyper-parameter grid for the models under investigation and best found values.

Best values for setting
Hyper-parameter Search space Microsleep KSS Reaction time

R
F

Num. of estimators T {50, 100, 1000} 100 100 1000
Num. of features {Auto, sqrt, log2} Auto sqrt Auto
Maximum depth of a tree {2, 4, 6, 8, None} 8 None None
Splitting criterion {Gini, Entropy} Gini Gini Gini

C
N
N

Num. of conv layers NC {1, 2, 3} 1 1 1
Kernel size {16, 32, 64} [64] [64] [64]
Num. of filters {64, 128} [128] [128] [128]
Stride {1, 2, 4} 1 2 1
Num. of dense layers MC {1, 2} 2 1 2
Num. of hidden dense units {16, 32, 64} [64, 32] [32] [64, 32]

L
S
T
M

Num. of LSTM layers N: {1, 2, 3} 2 2 2
Num. of LSTM units {16, 32, 64} [64, 64] [64, 64] [64, 64]
Num. of dense layers ML {1, 2} 1 1 1
Num. of hidden dense units {16, 32, 64} [32] [32] [32]

B
i-
L
S
T
M

Num. of Bi-LSTM layers NB {1, 2, 3} 2 2 2
Num. of Bi-LSTM units {16, 32, 64} [32, 32] [32, 32] [32, 32]
Num. of dense layers MB {1, 2} 1 1 1
Num. of hidden dense units {16, 32, 64} [32] [32] [32]

Table 3: AUC ± standard error for prediction of the binary KSS label and impending
microsleep events. A star indicates models better than the random forest baseline.

KSS ≥ 7 Microsleep
All cases Hard cases

Random forest 0.6 ±0.01 0.93 ±0.02 0.8 ±0.01
CNN 0.7 ± 0.01∗ 0.94 ±0.01 0.87 ±0.02∗

LSTM 0.67 ±0.04 0.95 ± 0.01 0.85 ±0.02
Bi-LSTM 0.66 ±0.04 0.93 ±0.01 0.82 ±0.03

Table 4: Results for predicting the reaction time. A star indicates models better than mean
baseline. Mean RMSE ± standard error and mean R2± standard error are shown.

Method RMSE R2

Mean baseline 0.27±0.04 -0.01±0.0
Random forest 0.26±0.04 0.08±0.09
CNN 0.28±0.02 -0.83±0.93
LSTM 0.26±0.04 0.06±0.02
Bi-LSTM 0.25±0.04 0.15±0.03

Table 4 shows RMSE and R2 metrics for prediction of the PVT reaction time. While
AUC, RMSE, and R2 cannot directly be compared, the values show that only 15% of the
variance in reaction time can be explained by the KSS level, whereas microsleep episodes
in the next 10 seconds can be predicted with an AUC of 0.95. Our interpretation of these
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Figure 4: Results for the binarized KSS prediction.
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Figure 5: AUC curves for prediction of impending microsleep events. Shaded bands show
the standard error.

findings is that impending microsleeps are much more predictable from eye-closure and
eye-gaze signals than the KSS self-assessment or the PVT reaction time.

5.3. Training on Impeding Microsleep is Better than on KSS Levels

In the next experiment, we apply the models that have been trained to predict impending
microsleep and reaction time, respectively, as decision functions for the task of predicting
the binarized KSS level. Surprisingly, Table 5 and Figure 6 show that the model that has
been trained to predict microsleep seems to be better at predicting the KSS level than the
model that has been trained on KSS self-assessments. The model that has been trained
to predict reaction time, on the other hand shows a poorer performance at predicting KSS
levels than the model trained on KSS levels. However, none of the differences are statistically
significant.
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Table 5: Cross task evaluation. AUC ± standard error for predicting the binarized KSS.

Training task
same task Cross-task
KSS ≥ 7 Microsleep Reaction time

Random forest 0.6 ±0.01 0.65 ±0.03 0.6 ±0.02
CNN 0.7 ± 0.01 0.71 ±0.03 0.63 ±0.01
LSTM 0.67 ±0.04 0.71 ±0.04 0.63 ±0.04
Bi-LSTM 0.66 ±0.04 0.69 ±0.04 0.65 ±0.03

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RF
CNN
LSTM
Bi-LSTM

(a) Model trained to predict impending mi-
crosleep events and evaluated on the bi-
narized KSS score prediction.
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(b) Model trained to predict the reaction
time and evaluated on the binarized
KSS score prediction.

Figure 6: Cross task evaluation. Results for predicting the binarized KSS score. Shaded
bands show the standard error.

Our interpretation of these findings is that the presence of microsleep episodes in the
near future is a better indicator of sleepiness on the KSS scale than the KSS self-assessment
itself. The subjective nature of the self-assessment introduces a high level of noise that
renders this signal less useful than the presence or absence of microsleep in the future.

5.4. Neural Networks Outperform Engineered Features

For the prediction of microsleep events and KSS levels, Table 3 shows that the neural
networks outperform the random forest on engineered features; in two out of three cases,
the difference is statistically significant with p < 0.05 according to a paired t-test. The
difference between the alternative network architectures are not significant, but in total the
CNN gives the best overall performance picture.

For prediction of the PVT reaction time, the performance of all models is roughly equally
poor.

5.5. All Signals under Investigation are Useful

Figure 7 and Table 6 show that removing any input channel results in a lower AUC value;
removing either the eye-lid channels or the eye-gaze channels results in the lowest AUC
values. The deterioration is not statistically significant. Figure 8 shows the engineered fea-
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Figure 7: Ablation study. ROC curves for prediction of microsleep events.

Table 6: Ablation study. AUC ± standard error for predicting microsleep events using the
CNN model architecture using a subset of input channels.

All Hard cases

All channels 0.94 ±0.01 0.87 ±0.02
W/O eye closure and eye state channels 0.92 ±0.01 0.81 ±0.03
W/O eye gaze channels 0.93 ±0.01 0.81 ±0.03
W/O fixation and saccade channel 0.93 ±0.02 0.83 ±0.01

tures with highest SHAP value in the random-forest classifier. The figure confirms earlier
findings (Schleicher et al., 2008; Wilkinson et al., 2013): the strongest indicators of drowsi-
ness are variability in eye-lid velocity, the percentage of time in which the eyes are closed,
variability in blink duration, and delayed reopening during blinks.

6. Discussion

The problem setting of drowsiness detection is motivated by efforts to improve the safety
of the operation of vehicles and other hazardous machinery. The European New Car As-
sessment Program (EuroNCAP) has included driver fatigue and incapacitation detection
in the catalog of safety functions that affect the safety rating of new vehicles (EuroNCAP,
2021, 2017). The EU General Safety Regulation 2019/2144 makes it mandatory to intro-
duce a range of new safety measures that also include incapacitation detection, following a
fixed timetable of stages A-D, scheduled between 2022 and 2029. The current generation
of driver cameras that are entering the automotive market are capable of extracting the
driver’s eye closure and eye gaze in order to detect distraction and drowsiness (Halin et al.,
2021). Research on drowsiness detection based on eye-closure and eye-gaze signals therefore
has an immediate practical application and potential for societal benefit.

Previous work that applies machine learning to drowsiness detection can be divided
with respect to the input signals they use into physiological and vehicle-based approaches.
A large body of research to which an overview is given by Stancin et al. (2021) uses EEG
signals as predictors for drowsiness. EEG input signals to predictive models are far removed
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Figure 8: Feature importance for the top 20 features (SHAP values).

from practical applicability since electrodes have to be attached to the head. The same
disadvantage applies to electrooculogram (EOG) although it has been found to be more
robust against noise (Zhang et al., 2015) compared to EEG.

By contrast, image-based methods have the advantage of being unobtrusive to users. A
wide range of image features have been studied, including extract head, facial and eye-lid
movements (Schleicher et al., 2008; Wilkinson et al., 2013), raw images of the face (Phan
et al., 2021) and eye crops (Quddus et al., 2021). To the best of our knowledge, there is
only one other study that uses eye-tracking features as input(Zandi et al., 2019); however,
details regarding model and implementation are undisclosed.

Indirect approaches to driver monitoring based on steering wheel interaction (Arefnezhad
et al., 2019; Zhenhai et al., 2017) and lane deviation (Friedrichs and Yang, 2010) have been
studied extensively and are widely deployed in the market in attention assist systems. This
type of indirect monitoring will become insufficient under the EU General Safety Regula-
tion 2019/2144, and will not meet the test criteria of the European New Car Assessment
Program (EuroNCAP) from 2024.

A comprehensive comparison of (combinations of) the possible input modalities for
drowsiness detection is not available; any such investigation would be hampered by the lack
of publicly available data and reference implementations. Nevertheless, it seems plausible
that combining modalities such as vehicle interactions, eye closure, eye gaze, head and facial
movements, and body posture may add to the robustness of detection systems across all
users and their individual characteristics and conditions.
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Although EEG is considered the gold standard for the collection of ground-truth la-
bels for sleep stages 2 and higher, it does not allow for an unambiguous detection of
drowsiness, and has furthermore the drawbacks of being susceptible to noise caused by
muscle movements. While KSS self-assessment is widely regarded to be the gold-standard
proxy of ground-truth drowsiness, our findings underscore the subjective nature of this self-
assessment that limits the degree of accuracy with which it can be predicted. Analogously,
reaction time varies widely across individuals with some persons reacting faster on the brink
of sleep than others in their fully alert state. By studying the prediction of impending mi-
crosleep, this paper introduces a new proxy of drowsiness ground truth that is objectively
hazardous. We interpret the fact that it can be predicted more accurately as indicating
that it is a less noisy proxy of actual drowsiness.

With 47 participants, the Potsdam Binge / PVT data set data set is not very large by
machine-learning standards; it appears likely that a model trained on hundreds or thousands
of participants would be considerably more accurate.

7. Conclusions

Since drowsiness is an internal state of the mind, the ground truth cannot be observed di-
rectly. Based on our experimental findings, we conclude that upcoming microsleep episodes
in the near future are a better, less noisy proxy of the ground truth than a self-assessment
on the Karolinska sleepiness scale (KSS). Not only can approaching microsleep events be
predicted with high accuracy, but a model that has been trained to predict microsleep events
is as accurate or even more accurate at predicting a high KSS score than a model that was
trained on KSS self-assessments.

We can furthermore conclude that neural network architectures that process the raw eye-
state, eye-closure, gaze-velocity, and saccade indicator signals outperform a random forest
that processes a comprehensive set of engineered features derived from these signals. The
difference in performance between CNN, LSTM, and Bi-LSTM architectures are to small to
support any conclusion. Removing any set of features results in a slightly but insignificantly
lower performance. The SHAP values that we observe for the engineered features are
consistent with earlier findings. However, the neural-networks perform significantly better
than the random forest on engineered features, and we therefore conclude that the signal-
processing layers have learned to extract additional signals from the raw input that provide
evidence of drowsiness.

A large share of research and development on drowsiness detection takes place be-
hind closed doors in the automotive industry and remains unpublished, which impedes
the progress of the field as a whole. In order to improve the accessibility of this highly
relevant topic to the research community, we share a data set of participants in baseline
and sleep-deprived states, a reference implementation of published engineered features, and
our implementations of the neural networks.
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