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ABSTRACT

Federated learning traditionally relies on server-based architecture, which often
incur high communication costs and suffer from single points of failure. To avoid
these limitations, we explore Ring-topology Decentralized Federated Learning
(RDFL), a fully decentralized paradigm that enables peer-to-peer training. How-
ever, the inherent challenge of data heterogeneity is further amplified in RDFL
due to limited communication bandwidth cross clients and the sparse connectivity
of the ring topology. In this paper, we propose the Divide-and-conquer collabo-
ration RDFL framework (DRDFL), which captures underlying data patterns by
jointly learning personalized and invariant knowledge through two complementary
modules with distinct optimization objectives. Specifically, each client trains a
transferable Learngene module via adversarial optimization against a uniform label
distribution to learn consensus knowledge, thereby mitigating label distribution
skew induced by data heterogeneity. To simultaneously alleviate feature distri-
bution skew, a personalized PersonaNet module is introduced that models local
features using a Gaussian mixture distribution and updates them based on the
global class representation. Clients only share lightweight Learngene and global
representations with a directed neighbor, which guarantees flexible choices for
resource efficiency and better convergence. Extensive experiments show that our
method achieves superior performance in RDFL while reducing the communication
cost to only 0.58 M, which is more than two orders of magnitude lower than the
state-of-the-art baseline. This substantial reduction highlights the effectiveness
of our approach in addressing data heterogeneity under stringent communication
constraints.

1 INTRODUCTION

Federated learning (FL) is a distributed learning paradigm that allows multiple clients to collabo-
ratively train a global model while keeping data local (McMahan et al., 2017; Xue et al., 2025; Qi
et al., 2023). One major challenge of FL is data heterogeneity, caused by distributional differences
across clients (Albshaier et al., 2025; Yang et al., 2024; Li et al., 2024b; Qi et al., 2025). Recent
works addressing this challenge mainly focus on the centralized FL (CFL) setting, where a central
server orchestrates the learning among clients and is responsible for parameter aggregation after
receiving locally trained models on the edge. In practice, the server may experience system failures
or malicious attacks, potentially leading to privacy leakage or interruptions in training. Moreover,
since all communication flows through the server, it becomes a bottleneck and incurs substantial
bandwidth overhead (Li et al., 2024c).

With this regard, decentralized FL (DFL) has recently emerged as a promising method for reducing
the communication bandwidth of the busiest node and embracing peer-to-peer communication for
faster convergence (Dai et al., 2022). In DFL, no global model state exists, the participating clients
follow a communication protocol to reach a so-called consensus model. Classical fully-connected
or dynamically-varying FL architectures typically assume dense client connectivity, which results
in excessive communication overhead and severely limits their scalability in large-scale real-world
scenarios (Zhang et al., 2024; Li et al., 2025b). Ring-topology Decentralized Federated Learning
(RDFL) (Li et al., 2023) restricts interactions to local neighbors, thereby minimizing redundant
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Figure 1: Illustration of the optimized learning mechanism in RDFL and comparative performance of
the proposed method against baselines in terms of generalization and personalization. (a) Depicts non-
IID data heterogeneity in a decentralized federated learning setting with a ring topology, where shared
models are collaboratively optimized through client interactions. (b) Compares the personalization
(Local-T) and generalization (Global-T) performance of local models collaboratively trained across
four clients with heterogeneous data distributions.

transmissions, as shown in Figure 1 (a). This design has demonstrated promising progress in peer-to-
peer applications such as collaborative autonomous driving using vehicle-to-vehicle networks and
edge IoT systems (Nguyen et al., 2022; Yuan et al., 2024; Li et al., 2025a), underscoring its practical
relevance.

Nevertheless, our exploration of RDFL reveals that it still suffers from intrinsic communication
constraints that hinder efficient information exchange, thereby exacerbating data heterogeneity across
clients. We revisit this issue by analyzing the underlying sources of heterogeneity in RDFL and
identify two primary forms of distribution shift: feature distribution skew, where identical classes
exhibit differing feature patterns across clients due to varying local contexts, and label distribution
skew, where class frequency distributions vary significantly between clients. These skews pose
distinct challenges:

Feature skew undermines representation consistency, whereas label skew leads to biased updates
and poor generalization to underrepresented classes.

Most existing DFL methods predominantly focus on addressing feature distribution skew, aiming to
improve personalized performance through strategies such as partial model adaptation and sparse
parameter masking Kairouz et al. (2021); Li et al. (2022); Dai et al. (2022); Liu et al. (2024). While
these techniques effectively capture client-specific representations, they often skip the equally critical
problem of label distribution skew across clients and the inherent bandwidth constraints imposed by
RDFL. In contrast to centralized FL, RDFL lacks a global server to facilitate consistent aggregation,
requiring the consensus knowledge learned collaboratively among clients to be more generalizable.
As illustrated in Figure 1 (b), methods such as Local and DFedPGP (Liu et al., 2024) demonstrate
outstanding personalized performance (Local-T) but exhibit limited generalization capability (Global-
T) to the global data distribution. In contrast, our approach enhances the model’s generalization
ability toward the global data distribution while also affecting its personalized performance. This
highlights the importance of simultaneously addressing both types of distribution skew in limited-
communication RDFL, as well as the necessity of training generalized and effective consensus
knowledge.

Inspired by the recently proposed Learngene paradigm 1 (Wang et al., 2022a; Feng et al., 2025; Wang
et al., 2023; Xia et al., 2024b), which encapsulates consensus knowledge within the lightweight model
to facilitate efficient task adaptation, we propose a Divide-and-conquer collaboration Ring-topology
Decentralized Federated Learning (DRDFL) method. To address the challenge of label distribu-
tion skew across clients, we devised a transferable Learngene module that undergoes adversarial
optimization under a uniform label distribution constraint. This facilitates the learning of unbiased

1“Learngene" refers to the machine learning paradigm, while Learngene denotes the specific model component
instantiated in our framework.
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representations that are independent of the client and class invariance. In parallel, to mitigate feature
distribution skew, we introduce a personalized PersonaNet for each client. This module captures
client-specific feature semantics by modeling local class features using the Gaussian mixture distribu-
tion while aligning with the global class statistics. This allows PersonaNet to learn representations
that preserve local discriminative patterns while remaining semantically aligned with the global con-
text. During reconstruction, invariant features from Learngene are fused with personalized features
from PersonaNet and passed through a decoder for input reconstruction. Gaussian noise is injected
into the reconstructed data to promote robust classifier training and prevent overfitting. In RDFL, the
consensus Learngene and class distributions are iteratively optimized and cyclically shared among
clients, enabling effective collaborative learning to accelerate convergence. Our contributions are
summarized as follows:

• We revisit data heterogeneity in RDFL, where limited communication and the absence
of a central coordinator amplify its impact, and reveal the importance of simultaneously
considering both distribution skewness issues and the necessity of training generalized
consensus knowledge.

• We propose a novel framework, Divide-and-conquer collaboration RDFL, to address these
challenges by introducing a consensus Learngene module through adversarial optimization
training, and a personalized PersonaNet module optimized for Gaussian mixture consistency.

• Extensive experiments against 8 state-of-the-art baselines demonstrate that DRDFL attains
comparable generalization to centralized FL while delivering superior personalization over
existing decentralized methods. Remarkably, this performance is achieved with only 0.58 M
communicated parameters, which is much smaller than advanced methods.

2 RELATED WORK

Federated Learning (FL) has emerged as a promising paradigm for privacy-preserving machine
learning (McMahan et al., 2017). To avoid single points of failure, decentralized federated learning
(DFL) has gained traction, where clients interact with neighbors via point-to-point communication to
collaboratively train models without relying on a central server. Recent efforts in personalized DFL
have explored various optimization and model adaptation strategies. DisPFL (Dai et al., 2022) designs
client-specific models and pruning masks to accelerate convergence, while KD-PDFL (Liu et al.,
2022) applies knowledge distillation to capture statistical differences across clients. ARDM (Sun
et al., 2022) establishes theoretical lower bounds for communication and computation costs, and
DFedPGP (Liu et al., 2024) leverages multi-step updates with alternating optimization to improve
stability and convergence. In addition, DFML (Khalil et al., 2024) mitigates the drift toward local
objectives by applying a re-weighted SoftMax loss (Legate et al., 2023). While showing promising
results on personalization, the model exhibits inferior generalization performance, possibly due to
the limited scalability of the input parameters. DRDFL can adapt intermediate features, enhancing
generalization and providing greater flexibility in handling diverse data distributions.

Disentangled Representation Learning aims to uncover and separate the underlying factors of
variation in data, thereby improving model generalization and interpretability (Wang et al., 2024b;
Zhu et al., 2021; Guo et al., 2024b). Variational Autoencoders (VAEs) (Kingma, 2013) provide a
principled framework for learning such representations by maximizing the evidence lower bound
(ELBO): log p(x) ≥ Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)|p(z)), where the first term corresponds
to the reconstruction objective and the second enforces alignment between the posterior and a standard
Gaussian prior. Conditional VAE (CVAE) (Sohn et al., 2015) further incorporates label information
into both the encoder and decoder to improve semantic consistency and alleviate latent collapse.
Recent studies have applied disentangled learning to CFL to address data heterogeneity (Yan & Long,
2023; Luo et al., 2022; Chen & Zhang, 2024; Wu et al., 2024). These works introduce mechanisms
such as invariant aggregation, gating strategies, and orthogonal decomposition to separate shared
and personalized components. However, most rely on centralized server-side coordination or proxy
datasets, which limits their applicability to DFL. In contrast, our approach operates entirely in a
serverless setting, enhancing communication efficiency and consistency through fully decentralized
client interactions while preserving the benefits of disentangled representation learning.

Learngene (Lin et al., 2024; Xia et al., 2024b;a; Li et al., 2024a; Xie et al., 2025; Wang et al.,
2023), a novel paradigm of machine learning inspired by biological genetics, has been proposed to
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condense a large-scale ancestral model into generalized Learngene that adaptively initialize models
for various downstream tasks. Wang et al. (2022a) first introduced Learngene based on the gradient
information of ancestral models and demonstrated its effectiveness in initializing new task models
in open-world scenarios, thereby reflecting its strong generalization capability. To rapidly construct
a diverse variety of networks with varying levels of complexity and performance trade-offs, the
customized Learngene pool (Shi et al., 2024) methodology is tailored to meet resource-constrained
environments. Furthermore, Feng et al. (2024) further validated that transferring core knowledge
through Learngene is both sufficient and effective for neural networks. Inspired by this, we propose
to transfer an encapsulating consensus knowledge Learngene module across clients, offering a novel
perspective for collaborative knowledge sharing in RDFL and enabling each client to learn from
others in a decentralized manner.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

The Ring-topology Decentralized Federated Learning (RDFL), as one of the most representative
and lightweight sparse structures in partially connected decentralized FL, aims to enable efficient
distributed learning across multiple data sources under privacy constraints. Compared to fully
connected networks, RDFL significantly reduces communication overhead by restricting interactions
to local neighbors (Wang et al., 2022b; Beltrán et al., 2023; Wang et al., 2024a). However, such
sparsity also amplifies the negative impact of data heterogeneity, since each client can only exchange
information with its immediate peers. Given these considerations, we revisit and further refine the
challenges of data heterogeneity within the RDFL architecture, specifically including:

Definition 3.1 (Feature Distribution Skew). Let pi(x) and pj(x) represent the feature distributions
for train sample i and test sample j, respectively. The feature distribution of the training samples
may be different from that of the test samples, but the class conditional distribution of the same class
remains invariant, i.e.,

pi(x) ̸= pj(x) but pi(y|x) = pj(y|x).
Definition 3.2 (Label Distribution Skew). Let pi(y) and pj(y) denote the label distributions for client
i and client j, respectively. The label distributions across clients may differ, but the class-conditional
feature distributions remain invariant, i.e.,

pi(x|y) = pj(x|y) but pi(y) ̸= pj(y).

3.2 DIVIDE-AND-CONQUER COLLABORATION

Maximizing the learning of consensus knowledge while fitting class-specific distributions is
reasonable to mitigate feature distribution skew. Each client’s local training and test datasets can
be generated in different contexts/environments. For example, a client’s training image samples may
be primarily captured by a local camera, while the test images may come from the Internet and have
different styles. From a contextual perspective, the target learning model must have a certain level of
generalization capability to perform well in unknown and diverse contexts. We propose to train the
PersonaNet module based on the global class mean and variance derived from collaborative learning,
allowing the capture of personalized information while mitigating feature distribution skew.

Training with a uniform prior distribution provides a principled solution to label distribution
skew. Due to the inherent limitations of local clients, which are limited to their specific data subsets,
they often fail to adequately represent the broader data distribution. Consequently, must collaborate to
overcome the bottlenecks imposed by limited individual datasets. We emphasize the use of adversarial
classifiers in training the Learngene module within the RDFL system to adapt to a unified prior
distribution pu(y = k) = 1/K, where K represents the total number of classes. This ensures that
cross-client collaboration is not affected by inconsistencies in class distributions, promoting the
learning of a stable and invariant latent space, improving the generalization capability of the model.

4 METHODOLOGY

4.1 NOTATIONS

Consider a typical setting of RDFL with M clients, each client m has a datasetDm = {(xi, yi)}|Dm|
i=1 ,

where yi ∈ [1,K] and K is the number of overall classes. The optimization problem that RDFL to
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Figure 2: Overview of the DRDFL framework. The PersonaNet module learns class-specific
personalized representations via a Gaussian mixture to enhance local adaptability, while the consensus
module Learngene is optimized via adversarial training against a uniform label distribution to
capture globally invariant knowledge and enhance cross-client consistency. During reconstruction,
noise is injected into reconstructed data to improve classifier robustness. Global latent Gaussian
representations and consensus Learngene are cyclically updated across the topology to enable
collaborative learning.

solve can be formulated as:

min
wm
L(wm) =

1

|Dm|
∑
i

ℓ (xi, yi;wm) , (1)

where wm is the model parameter and L(wm) is the empirical risk computed from m-th client data
Dm, and ℓ is a loss function applied to each data instance.

In the serverless DRDFL framework, the underlying goal of training a model with both personalized
and generalized capabilities can be specifically described as: (1) identifying highly discriminative
class-specific attributes to ensure accurate classification, and (2) mining class-independent common
attributes to enhance the model’s generalization ability. As illustrated in Figure 2, we introduce
a divide-and-conquer collaboration mechanism inspired by the variational autoencoder (VAE) to
achieve this objective. Specifically, we design two complementary modules: a personalization module
(PersonaNet, parameterized by ψm) for extracting client-specific representations, and a consensus
generalization module (Learngene, parameterized by ϕ) for capturing globally shared knowledge
through collaborative learning across clients. The decoder module pθm integrates the outputs of both
branches to reconstruct the input data, which is then perturbed with noise and passed to the classifier
fωm (parameterized by ωm) for robust training. Consequently, each local model is structured as
wm = [ψm, ϕ, θm, ωm], following a divide-and-conquer strategy, where ϕ is used for the cross-client
consensus module and other modules are private. For simplicity, we unify them without subscripts and
focus on training a model with the dual optimization objectives of generalization and personalization.
The optimization of [ψ, ϕ, θ] is achieved by maximizing the ELBO to provide a tight lower bound for
the original log p(x):

max
ψ,ϕ,θ

Ex[Eqψ(zp,k|x),qϕ(zl|x) [log pθ(x|zp, zl)]

−DKL (qψ(zp, k|x)∥p(zp, k))︸ ︷︷ ︸
PersonaNet

−DKL (qϕ(zl|x)∥p(zl))︸ ︷︷ ︸
Learngene

],

(2)

where first term represents the negative reconstruction error. The PersonaNet term enforces
qψ(zp, k|x) to align with the global class-specific prior Gaussian distribution, encouraging Per-
sonaNet to generate latent representations with strong class discriminability. The Learngene term
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promotes the alignment of latent representations generated by Learngene with the standard multivari-
ate normal prior p(zl), enabling the extraction of class-invariant information across clients.

4.2 PERSONALIZED PersonaNet TRAINING VIA GAUSSIAN MIXTURE DISTRIBUTION

The goal of the PersonaNet module is to ensure model personalization to mitigate feature distribution
skew. Based on the large-margin Gaussian mixture loss (Wan et al., 2018; Zheng & Sun, 2019), we
assume that the latent code zp learned from the training set follows a Gaussian mixture distribution
expressed as:

p(zp) =
∑
k

N (zp;µk,Σk)p(k), (3)

where µk and Σk represent the mean and covariance of class k in the feature space, and p(k) denotes
the prior probability of class k. Under this assumption, we encourage zp to capture the necessary
information related to the class label y.

Given a class label y ∈ [1,K], the conditional probability distribution of zp is defined as p (zp|y) =
N (zp;µy,Σy) . Therefore, the corresponding posterior probability distribution is formulated as:

p (y|zp) =
N (zp;µy,Σy) p (y)∑K
k=1N (x;µk,Σk) p(k)

. (4)

Then maximizing the mutual information between zp and k is transformed into calculating the cross
entropy between the posterior probability distribution and the one-hot encoded class label:

Lcls = −
K∑
k=1

I (y = k) log q (k|zp)

= − log
N (zp;µy,Σy) p (y)∑K
k=1N (x;µk,Σk) p(k)

,

(5)

where the indicator function I(·) equals 1 if y is equal to k, and 0 otherwise. Here, q(k|zp) refers
to the auxiliary distribution introduced to approximate p(k|zp), since directly optimizing p(k|zp) is
challenging in practice, as discussed in InfoGAN (Chen et al., 2016).

Recall that in PersonaNet term of Eq. 2 the Kullback-Leibler (KL) divergence between qψ (zp, k|x)
and p(zp, k) is minimized. If the covariance matrix of p(zp|y) tends to zero, then the distribution
tends to a degenerate Gaussian distribution, is expressed as p(zp|y) → δ(zp − µy). That is, all
samples tend to the class mean µy . The KL divergence term degenerates into negative log-likelihood:

Llog = − logN (zp;µy,Σy), (6)

where zp denotes the mean output from the PersonaNet. The µy and Σy dynamically updated using
an EMA strategy, i.e., µy = αµy+(1−α)µ̃y,Σy = αΣy+(1−α)Σ̃y , where (µ̃y, Σ̃y) denote the
globally shared Gaussian statistics received from neighboring clients. The total loss for PersonaNet
is given by: LPR = Lcls + Llog .

4.3 GENERALIZED Learngene TRAINING WITH ADVERSARIAL CLASSIFIER

Intuitively, we aim to decompose the latent space z such that zl follows to a fixed prior distribution
associated with knowledge shared across classes, independent of labels. This ensures that the resulting
Learngene encoding module possesses the advantage of being inheritable and transferable. Specially,
the Learngene term of in Eq. 2 is implemented by minimizing the KL divergence between qϕ(zl|x)
and the prior p(zl) :

Lkl = DKL[qϕ(zl|x)∥p(zl)] = DKL[N (µ,Σ)∥N (0, I)], (7)

where qϕ(zl|x) is modeled as a Gaussian distribution with mean µ and diagonal covariance Σ, both
of which are the outputs of the Learngene.

To ensure that the Learngene network exhibits generalization and that its output latent representations
zl possess class-invariant properties, we design an adversarial classifier (parameterized by ϑ) on
Learngene for adversarial optimization training:

Ladv = −Ezl∼qϕ(zl|x) log qϑ(y|zl), (8)
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where qϑ(y|zl) represents the softmax probability output by the adversarial classifier. To equip
Learngene with strong generalization ability, our objective is to ensure that its latent representation
zl remains client-agnostic and unbiased with respect to class distributions. The key intuition is
that, under label distribution skew heterogeneity, each client observes only a subset of classes with
highly imbalanced frequencies. We explicitly regularize zl by enforcing the output of an auxiliary
adversarial classifier to follow a uniform label distribution. This uniformity constraint compels the
module to discard class-dominant patterns unique to individual clients and instead retain only the
invariant, globally shared knowledge of the data. Formally, the uniform adversarial objective is
defined as:

Luadv = −Eqϕ(zl|x)

[
1

K

K∑
k=1

log qϑ(k|zl)

]
. (9)

This strategy effectively avoids biased learning of specific categories within a single client, and can
enhance the generalization training of the Learngene module to achieve cross-client collaborative
learning. In summary, Learngene captures generalized invariant representations to achieve consistent
optimization across clients, with the loss defined as: LGL = Lkl + Ladv + Luadv .

4.4 ROBUST REPRESENTATION LEARNING VIA NOISY RECONSTRUCTION

The latent representations produced by PersonaNet and Learngene, denoted as zp and zl, are first
concatenated and then fed into the decoder pθ(x′|z). The decoder parameters θ are optimized by
minimizing the reconstruction loss: Lrec = ∥x− x′∥22. Although minimizing Lrec ensures that the
generated sample x′ closely approximates the original input x, such high-fidelity reconstructions
usually lack diversity. This may cause the learned Learngene module to overfit to specific data
instances, thereby weakening its generalization ability. To alleviate this, we inject Gaussian noise
into the reconstructed samples during classifier training to promote more robust and diverse gradient
propagation during backpropagation: xp = x′ + n, where n ∼ N (0, σ2I). This perturbation
can reduce the risk of reconstructing the original data by encouraging Learngene to capture more
transferable and generalized representations. Subsequently, a local classifier fω(·) is trained on both
the original and augmented data to simulate the label prediction process. The overall classification
loss is defined as:

Lce = E(x,y)∼Dmℓ (fω (x) , y)

+ E(xp,y)∼P (xp,y)ℓ (fω (xp) , y) ,
(10)

where Dm is the local data distribution for client m, P (xp, y) represents the distribution of the
perturbed data and labels, and ℓ(·, ·) denotes the standard cross-entropy loss function. A detailed
theoretical analysis is presented in Appendix A.2, with corresponding proofs in Appendix A.3, and
the discussion and limitations of the proposed method are provided in Appendix A.4.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Dataset and data partition. We conduct experiments on three standard FL benchmarks: SVHN (Net-
zer et al., 2011), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009). To simulate realistic federated
scenarios, we adopt two types of non-IID data partitions. For Dirichlet-based partitioning, training
and test data are distributed across clients following a Dirichlet distribution with β ∈ {0.1, 0.4} (Chen
et al., 2021; Dai et al., 2022), inducing varying degrees of label skew. For shard-based partitioning,
data is split by class into shards and unevenly assigned to clients, controlling heterogeneity via
the number of classes per client. Specifically, we set s ∈ {4, 5} for SVHN and CIFAR-10, and
s ∈ {20, 30} for CIFAR-100.

Evaluation metrics. We report the mean test accuracy of personalized models for all clients. The
evaluation is based on two primary metrics: Local-T (i.e., using the local test data corresponding
to each client’s class distribution) and Global-T (i.e., using the union of all clients’ local test data).
These metrics are used to assess the model’s personalization performance and generalization ability.

Baselines. We selected a series of state-of-the-art federated learning algorithms for comparison,
including Local, which performs training locally without collaboration, and CFL methods designed
to mitigate data heterogeneity, such as FedRep (Collins et al., 2021), FedNova (Wang et al., 2020),
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FedBN (Li et al., 2021), and FedFed (Yang et al., 2024). Furthermore, DFL approaches, including
DFedPGP (Liu et al., 2024), Fedcvae, and DisPFL (Dai et al., 2022), were used as baselines. All
methods use the ResNet18 network as the backbone classifier. Detailed description is given in
Appendix B.1.3.

5.2 EVALUATION RESULTS

Table 1: Comparison of parameter efficiency
across different FL methods.

Method Personalized Params # Comm. Params
Local Full model 0 M
FedRep Output layer 213.36 M
FedNova Full model 213.46 M
FedBN BatchNorm layers 213.06 M
FedFed Full model 454.58 M

DFedPGP Output layer 213.36 M
FedCVAE Full model 63.44 M
DisPFL Masked model 106.65 M
DRDFL PersonaNet 0.58 M

DRDFL is parameter-efficient. Table 1 re-
ports the parameters of the personalized module
trained on each client and the communication
cost per round transmitted to the server under
different settings. In terms of communication ef-
ficiency, DRDFL significantly outperforms most
state-of-the-art CFL and DFL methods across
different settings. Classical CFL methods, such
as FedRep, FedNova, and FedBN, require ap-
proximately 213 M parameters to be sent to
the server for aggregation. In contrast, DRDFL
only exchanges 0.58 M parameters, including
the consensus lightweight Learngene module
and a small set of global latent Gaussian representations. DFL-based approaches like DisPFL still rely
on exchanging masked model components or low-level parameter updates, which remain considerably
more costly than DRDFL. These comparisons highlight DRDFL’s superior parameter efficiency and
suitability for resource-constrained decentralized FL scenarios.

DRDFL achieves generalization comparable to CFL and personalization competitive with DFL
methods. Tables 2 and 3 show that, compared to DFL methods on the same architecture, DRDFL
delivers competitive personalization results with significantly fewer communication parameters. In
the Dirichlet-based β = 0.1 setting, DRDFL outperforms the state-of-the-art DFedPGP method (+
1.24%, 5.29%, 2.64% on SVHN, CIFAR-10, and CIFAR-100). DRDFL also achieves comparable
generalization performance to server-based CFL methods on CIFAR-10, providing competitive results.
While it performs slightly worse than the FedBN method (− 1.74%, 0.17% on CIFAR-100 dataset
with β = 0.1, s = 20), which aggregates batch normalization models. However, DRDFL achieves the
best performance that is higher than FedFed (+1.28%) on CIFAR-100 with s = 30. These results
highlight the effectiveness of Learngene as a shared module for iterative optimization across clients,
enabling the learning of generalized consensus knowledge in RDFL scenarios.

Table 2: Averaged test accuracy (%± std) across all clients’ models under the Dirichlet-based non-IID
setting. Note that Bold / Underline highlight the best / second-best approach.

SVHN CIFAR-10 CIFAR-100
Method β = 0.1 β = 0.4 β = 0.1 β = 0.4 β = 0.1 β = 0.4

Local-T Global-T Local-T Global-T Local-T Global-T Local-T Global-T Local-T Global-T Local-T Global-T

Local 94.68±0.2 26.55±0.3 94.37±0.3 56.69±0.4 89.12±0.3 23.97±0.2 76.12±0.4 36.81±0.3 63.93±0.2 11.19±0.2 46.44±0.3 16.07±0.2
FedRep 91.58±0.3 27.32±0.2 94.65±0.3 56.92±0.3 86.26±0.2 21.64±0.3 77.35±0.3 38.88±0.2 65.92±0.3 11.70±0.2 43.36±0.2 17.44±0.3
FedNova 95.65±0.2 31.65±0.3 93.66±0.3 56.69±0.3 90.80±0.3 25.56±0.2 79.89±0.3 39.93±0.2 65.94±0.3 11.12±0.2 45.68±0.2 16.06±0.3
FedBN 93.49±0.3 32.93±0.2 94.27±0.2 58.79±0.3 86.38±0.3 25.01±0.3 80.90±0.3 39.87±0.2 63.70±0.3 14.96±0.3 35.96±0.3 19.04±0.3
FedFed 95.35±0.2 32.32±0.3 93.60±0.3 56.63±0.2 91.25±0.3 27.92±0.2 82.65±0.3 45.64±0.2 68.14±0.2 12.46±0.3 48.62±0.3 16.49±0.3

DFedPGP 95.93±0.3 30.17±0.2 92.57±0.3 54.60±0.3 87.57±0.2 25.41±0.3 78.01±0.3 42.67±0.2 70.20±0.3 11.23±0.2 43.10±0.2 16.72±0.2
Fedcvae 76.76±0.3 14.07±0.2 78.77±0.2 41.42±0.3 78.12±0.3 14.57±0.2 78.77±0.3 41.38±0.2 58.08±0.3 8.07±0.2 40.04±0.2 11.48±0.3
DisPFL 95.69±0.2 28.96±0.3 93.14±0.3 50.60±0.2 89.38±0.2 25.31±0.3 79.49±0.3 38.78±0.2 58.34±0.3 9.90±0.2 47.51±0.3 15.54±0.2
DRDFL 97.17±0.2 33.04±0.3 94.68±0.3 57.87±0.2 92.86±0.2 28.14±0.2 85.93±0.3 47.01±0.3 72.84±0.2 13.22±0.2 49.10±0.3 17.55±0.2

Table 3: Averaged test accuracy across all clients’ models under the Shard-based non-IID setting.
SVHN CIFAR-10 CIFAR-100

Method s = 4 s = 5 s = 4 s = 5 s = 20 s = 30

Local-T Global-T Local-T Global-T Local-T Global-T Local-T Global-T Local-T Global-T Local-T Global-T

Local 92.01±0.3 36.32±0.2 91.17±0.2 44.41±0.3 84.61±0.3 31.51±0.3 75.83±0.2 37.13±0.2 55.33±0.3 10.19±0.2 46.95±0.2 12.73±0.3
FedRep 93.62±0.2 36.55±0.3 94.49±0.2 46.36±0.3 88.80±0.3 33.84±0.2 82.18±0.3 38.02±0.3 56.55±0.2 10.40±0.2 52.41±0.3 14.26±0.2
FedNova 94.50±0.3 37.80±0.2 95.25±0.3 46.55±0.2 88.07±0.2 33.46±0.3 82.70±0.2 39.52±0.3 57.57±0.3 11.07±0.2 54.24±0.2 13.79±0.2
FedBN 92.93±0.2 38.93±0.3 94.28±0.3 48.34±0.2 90.46±0.3 34.36±0.2 83.53±0.3 42.75±0.2 59.94±0.2 13.57±0.3 55.83±0.2 14.82±0.2
FedFed 96.41±0.3 38.49±0.2 95.16±0.3 46.75±0.2 89.27±0.3 35.58±0.3 86.34±0.2 42.94±0.2 67.63±0.3 12.67±0.2 53.76±0.2 15.23±0.3

DFedPGP 91.89±0.2 37.01±0.3 92.31±0.3 45.74±0.2 87.06±0.3 32.15±0.3 80.49±0.2 38.59±0.2 69.33±0.2 13.35±0.3 58.25±0.3 13.63±0.2
Fedcvae 86.16±0.3 34.04±0.2 78.17±0.3 39.28±0.2 70.81±0.2 26.93±0.3 74.98±0.3 37.06±0.2 63.76±0.3 11.93±0.2 52.55±0.2 14.85±0.2
DisPFL 94.31±0.3 37.57±0.2 95.24±0.3 46.71±0.3 87.00±0.2 33.65±0.2 80.90±0.3 39.55±0.2 60.11±0.2 10.84±0.2 53.97±0.3 13.50±0.2
DRDFL 96.67±0.2 39.93±0.3 95.31±0.3 47.69±0.2 92.25±0.2 36.67±0.3 89.52±0.2 44.61±0.3 71.19±0.3 13.40±0.2 58.55±0.2 16.51±0.3
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(b) CIFAR-10: β = 0.4
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(c) CIFAR-10: s = 4
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(d) CIFAR-10: s = 5

Figure 3: Comparison of Local-T curves for different methods under various non-IID partition
settings on CIFAR-10 dataset.

Convergence analysis. We demonstrate the personalized performance of the model from a con-
vergence perspective in Figure 3, which shows the performance curves of the FL method across
different partitioning schemes on the CIFAR-10 dataset over communication rounds. Compared
to other advanced methods, DRDFL achieves the best convergence speed under different partition
settings and converges to higher personalized performance without introducing convergence-related
problems. In particular, it is more significant on shard-based non-IID data partitions. The personalized
performance of DRDFL is already higher than other methods at Round 50 and gradually increases in
the subsequent training stages to reach a convergence state.

Client i Client j

Figure 4: Visualization of bird class samples
from CIFAR-10 across clients, with red boxes
marking shared attention regions.

FedNova

FedNova
-0.001

DRDFL

Figure 5: Reconstructed images from leaked
information and corresponding PSNR (Hore &
Ziou, 2010) values after 200 iterations.

Grad-CAM (Selvaraju et al., 2017) visualization of Learngene and PersonaNet representations.
To further validate the DRDFL’s capability in capturing both generalized and personalized information,
we conduct Grad-CAM visualizations of the PersonaNet and Learngene modules on “bir” category
image samples from different clients, as illustrated in Figure 4. The activation maps generated by
PersonaNet reflect client-specific attention regions, highlighting personalized patterns learned by each
client model. In contrast, the Learngene module consistently focuses on semantically meaningful
and discriminative regions between clients, such as the head and beak of the bird. This observation
confirms that Learngene is capable of learning generalized representations that maintain consistent
focus on class-relevant semantic regions, regardless of the client-specific distribution variations.

Robustness to gradient-based attack. A recent approach called Deep Leakage from Gradients
(DLG) (Zhu et al., 2019) of raises a crucial threat to the FL framework that aggregates the local
gradients at the central server, DLG optimizes a dummy input to mimic shared local gradients, gradu-
ally approaching the original input sample, and repeatedly rehearses loss and gradient computations
for data reconstruction. Instead, DRDFL transmit the Learngene and class Gaussian distributions
that summarize client-relevant characteristics without retaining any recoverable instance-specific
detail, making loss rehearsal infeasible for the attacker. We conduct reconstruction experiments
using CIFAR-10 and CIFAR-100, comparing FedNova, FedNova with Gaussian noise, and DRDFL.
Each attack is performed for 200 optimization steps. As illustrated in Figure 5, FedNova yields
visually recognizable reconstructions, whereas DRDFL produces indistinguishable outputs with
substantially lower PSNR values. Additional experiments for DRDFL are provided in Appendix B.2,
including: computation overhead of the client, ablation studies of DRDFL components, applicability
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to large-scale client populations, scalability to newly joined clients, and adaptability across various
communication topologies.

6 CONCLUSIONS

In this paper, we propose a divide-and-conquer collaboration ring-topology Decentralized federated
learning framework, which decouples the goals of generalization and personalization by designing
two learning modules, Learngene and PersonaNet. The former uses adversarial learning to extract
invariant representation, while the latter leverages Gaussian mixture learning to enhance class
separability, achieving a dual benefit of both generalization and personalization. Extensive evaluations
across multiple datasets validate the proposed method’s effectiveness in achieving generalized and
personalized performance under decentralized settings.

ETHICS STATEMENT

This work builds upon publicly available benchmark datasets such as CIFAR-10 and CIFAR-100,
which do not contain any personally identifiable or sensitive information. Our design does not
introduce additional privacy concerns beyond existing FL frameworks, and we believe this work
raises no direct ethical issues.

REPRODUCIBILITY STATEMENT

We have taken substantial steps to ensure the reproducibility of our results. The details of the
DRDFL framework, including model architectures, training procedures, hyperparameter configu-
rations, dataset partition strategies, and evaluation metrics, are fully described in Appendix B.1.
Additional ablation studies, scalability tests, and results under various communication topologies are
also provided in Appendix B.2. To further facilitate replication, we will release the complete source
code and scripts upon publication.
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A APPENDIX

A.1 THE ELBO OF THE LOG-LIKELIHOOD OBJECTIVE

First, the PersonaNet network outputs a class representation zp ∼ p(zp, k), and the Learngene
outputs a cross-class independent representation zl ∼ p(zl). Then, the decoder pθ(x|zp, zl) takes
the combination of zp and zl as input and maps the latent representations to images. Therefore, we
decompose the joint distribution p(x, zp, zl) as follows:

p (x, zp, zl) =
∑
k

pθ (x|zp, zl) p (zp, k) p (zl) (11)

By using Jensens inequality, the log -likelihood log p(x) can be written as:

log p(x) = log

∫∫
p (x, zp, zl) dzpdzl

= log

∫∫ ∑
k

pθ (x|zp, zl) p (zp, k) p (zl) dzpdzl

= logEqψ(zp,k|x),qϕ(zl|x)
pθ (x|zp, zl) p (zp, k) p (zl)
qψ (zp, k|x) qϕ (zl|x)

≥Eqψ(zp,k|x),qϕ(zl|x)
[
log

pθ (x|zp, zl) p (zp, k) p (zl)
qψ (zp, k|x) qϕ (zl|x)

]
=Eqψ(zp,k|x),qϕ(zl|x) [log pθ (x|zp, zl)]

+ Eqψ(zp,k|x),qϕ(zl|x)
[
log

p (zp, k)

qψ (zp, k|x)

]
+ Eqψ(zp,k|x),qϕ(zl|x)

[
log

p (zl)

qϕ (zl|x)

]
=Eqψ(zp,k|x),qϕ(zl|x) [log pθ (x|zp, zl)]
−DKL (qψ (zp, k|x) ∥p (zp, k))
−DKL (qϕ (zl|x) ∥p (zl))

(12)

A.2 THEORETICAL ANALYSIS

Before analyzing the convergence of DRDFL, we first introduce additional notation. Let t denote the
communication round among clients, and let e ∈ {0, 1, . . . , E} represent the local training epoch or
iteration within each client. The iteration index tE + e corresponds to the e-th local update in the
(t+ 1)-th communication round. Specifically, tE + 0 refers to the point at which, in the (t+ 1)-th
round, clients receive the Learngene in the t-th round prior to commencing local training. Conversely,
tE +E denotes the final iteration of local training, marking the completion of local updates in the
(t+ 1)-th round. For simplicity, we assume that all models adopt a uniform learning rate η.

Assumption 1. Lipschitz Smoothness. Gradients of m-th client’s local complete model wm are
L1-Lipschitz smooth (Tan et al., 2022; Yi et al., 2024),

∥∇Lt1m (wt1
m;x, y)−∇Lt2m (wt2

m;x, y)∥ ≤ L1 ∥wt1
m −wt2

m∥ ,
∀t1, t2 > 0,m ∈ {0, 1, . . . ,M − 1}, (x, y) ∈ Dm.

(13)

The above formulation can be further expressed as:

Lt1m − Lt2m ≤
〈
∇Lt2m,

(
wt1
m −wt2

m

)〉
+
L1

2

∥∥wt1
m −wt2

m

∥∥2
2
. (14)

Assumption 2. Unbiased Gradient and Bounded Variance. The client m’s random gradient
gtw,m = ∇Ltm (wt

m; ξtm) (ξ is a batch of local data) is unbiased,

Eξtm⊆Dm
[
gtw,m

]
= ∇Ltm (wt

m) , (15)
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and the variance of gtw,m is bounded by:

Eξtm⊆Dm

[
∥∇Ltm (wt

m; ξtm)−∇Ltm (wt
m)∥22

]
≤ σ2. (16)

Assumption 3. Bounded Parameter Variation from Ring-wise Propagation. The parameter
variations of the homogeneous Learngene ϕtm and ϕ̃t before and after receiving neighbor’s is bounded
as: ∥∥∥ϕ̃t − ϕtm∥∥∥2

2
≤ δ2. (17)

Based on the above assumptions, we can derive the following Lemma and Theorem.

Lemma 1. Local Training. Based on Assumptions 1 and 2, during {0, 1, . . . , E} local iterations of
the (t+ 1)-th FL training round, the loss of an arbitrary client’s local model is bounded by:

E
[
L(t+1)E

]
≤ LtE+0 +

(
L1η

2

2
− η

)E−1∑
e=0

∥∇LtE+e∥22 +
L1η

2σ2

2
. (18)

Lemma 2. Loss Bound after Receiving Learngene. Given Assumptions 2 and 3, after the (t+ 1)-th
local training round, the client’s loss before and after receiving the lightweight Learngene from its
neighbor is bounded by

E
[
L(t+1)E+0

]
≤ E [LtE+1] + ηδ2. (19)

Theorem 1. One Communication Round of FL. Based on Lemma 1 and Lemma 2, we get

E
[
L(t+1)E+0

]
≤ LtE+0 +

(
L1η

2

2
− η

) E∑
e=0

∥∇LtE+e∥22 +
L1Eη

2σ2

2
+ ηδ2. (20)

Theorem 2. Non-convex Convergence Rate of DRDFL. Based on Theorem 1, for any client and an
arbitrary constant ϵ > 0, the following holds true:

1

T

T−1∑
t=0

E−1∑
e=0

∥∇LtE+e∥22 ≤
1
T

∑T−1
t=0

[
LtE+0 − E

[
L(t+1)E+0

]]
+ L1Eη

2σ2

2 + ηδ2

η − L1η2

2

< ϵ,

s.t. η <
2
(
ϵ− δ2

)
L1 (ϵ+ Eσ2)

.

(21)

Therefore, we conclude that any client’s local model can converge at a non-convex rate ϵ ∼ O
(
1
T

)
under DRDFL.

A.3 THEORETICAL PROOF

A.3.1 PROOF FOR LEMMA 1

An arbitrary client m’s local model w can be updated by wt+1 = wt − ηgwt in the (t+ 1)-th round,
and following Assumption 1, we can obtain:

Lt+1 ≤ Lt + ⟨∇LtE+0, (wtE+1 −wtE+0)⟩+
L1

2
∥wtE+1 −wtE+0∥2

= LtE+0 − η⟨∇LtE+0, gw,tE+0⟩+
L1η

2

2
∥gw,tE+0∥2.

(22)

Taking the expectation of both sides of the inequality concerning the random variable ξtE+0, we
obtain:
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E
[
LtE+1

]
≤ LtE+0 − ηE

[
⟨∇LtE+0, gw,tE+0⟩

]
+
L1η

2

2
E
[
∥gw,tE+0∥22

]
(a)

≤ LtE+0 − η∥∇LtE+0∥22 +
L1η

2

2
E
[
∥gw,tE+0∥22

]
(b)

≤ LtE+0 − η∥∇LtE+0∥22 +
L1η

2

2

(
E
[
∥gw,tE+0∥22 +Var(gw,tE+0)

])
(c)

≤ LtE+0 − η∥∇LtE+0∥22 +
L1η

2

2

(
∥∇LtE+0∥22 +Var(gw,tE+0)

)
(d)

≤ LtE+0 − η∥∇LtE+0∥22 +
L1η

2

2

(
∥∇LtE+0∥22 + σ2

)
= LtE+0 +

(
L1η

2

2
− η

)
∥∇LtE+0∥22 +

L1η
2σ2

2
,

(23)

where (a), (c), (d) follow Assumption 2. (b) follows Var(x) = E[x2]− ⟨E[x]2⟩.
Taking the expectation of both sides of the inequality for the model w over E iterations, we obtain

E
[
LtE+1

]
≤ LtE+0 +

(
L1η

2

2
− η

) E∑
i=1

∥∇LtE+e∥22 +
L1Eη

2σ2

2
. (24)

A.3.2 PROOF FOR LEMMA 2

L(t+1)E+0 = L(t+1)E + L(t+1)E+0 − L(t+1)E

(a)
≈ L(t+1)E + η∥ϕ(t+1)E+0 − ϕ(t+1)E∥22
(b)

≤ L(t+1)E + ηδ2,

(25)

where (a): we can use the gradient of parameter variations to approximate the loss variations, i.e.,
∆L ≈ η · ∥∆ϕ∥22. (b) follows Assumption 3. Taking the expectation of both sides of the inequality to
the random variable ξ, we obtain

E
[
L(t+1)E+0

]
≤ E [LtE+1] + ηδ2. (26)

A.3.3 PROOF FOR THEOREM 1

Substituting Lemma 1 into the right side of Lemma 2’s inequality, we obtain

E[L(t+1)E+0] ≤ LtE+0 + (
L1η

2

2
− η)

E∑
e=0

∥∇LtE+e∥22 +
L1Eη

2σ2

2
+ ηδ2. (27)

A.3.4 PROOF FOR THEOREM 2

Interchanging the left and right sides of Eq. 27, we obtain
E∑
e=0

∥∇LtE+e∥22 ≤
LtE+0 − E[L(t+1)E+0] +

L1Eη
2σ2

2 + ηδ2

η − L1η2

2

. (28)

Taking expectation over rounds t = [0, T − 1]:

1

T

T−1∑
t=0

E−1∑
e=0

∥∇LtE+e∥22 ≤
1
T

∑T−1
t=0 [LtE+0 − E[L(t+1)E+0]] +

L1Eη
2σ2

2 + ηδ2

η − L1η2

2

. (29)

Let ∆ = Lt=0 − L∗ > 0, then
∑T−1
t=0 [LtE+0 − E[L(t+1)E+0]] ≤ ∆, we get

1

T

T−1∑
t=0

E−1∑
e=0

∥∇LtE+e∥22 ≤
∆
T + L1Eη

2σ2 + ηδ2

η − L1η2

2

. (30)
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If this converges to a constant ϵ, i.e.,

∆

η − L1η2

2

+
L1Eη

2σ2

2(η − L1η2

2 )
+

ηδ2

η − L1η2

2

< ϵ, (31)

then
T >

∆

ϵ
(
η − L1η2

2

)
− L1Eη2σ2

2 − ηδ2
. (32)

Since T > 0, ∆ > 0, we can get solving the above inequality yields:

ϵ

(
η − L1η

2

2

)
− L1Eη

2σ2

2
− ηδ2 > 0. (33)

After solving the above inequality, we can obtain:

η <
2(ϵ− δ2)

L1(ϵ+ Eσ2)
. (34)

Since ϵ, L1, σ2, δ2 are all constants greater than 0, η has solutions. Therefore, when the learning
rate η satisfies the above condition, any client’s local complete model can converge. Notice that the
learning rate of the local complete model involves {ηψ, ηϕ, ηθ, ηω}, so it’s crucial to set reasonable
them to ensure model convergence. Since all terms on the right side of Eq. 30 except for ∆/T are
constants, ∆ is also a constant, DRDFL’s non-convex convergence rate is ϵ ∼ O

(
1
T

)
.

A.4 DISCUSSION AND LIMITATIONS

Algorithm 1 outlines the optimization process of the m-th client’s local model under the DRDFL
framework with ring-topology decentralized training. The computational cost of DRDFL is primarily
focused on local representation learning within each client, where both the PersonaNet and the
Learngene are jointly optimized using client-specific data. Notably, each client performs a lightweight
parameter exchange, limited to the Learngene module and class distribution statistics, with a single
neighbor per communication round, avoiding the overhead of full model synchronization. This
design ensures high scalability and efficiency, making the framework suited for large-scale federated
systems with limited communication bandwidth. In real-world distributed systems, ring-based
communication typically incorporates basic fault tolerance mechanisms during deployment. We can
adopt a standard and simple solution based on a timeout fault detector. If a node does not respond
within a threshold time, its upstream node will bypass that node and directly connect to its subsequent
nodes, effectively ensuring uninterrupted system training. This improves system robustness without
sacrificing communication efficiency.
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Algorithm 1: DRDFL: Divide-and-conquer Collaboration for Ring-topology Decentralized
Federated Learning
Input: Total number of devices M , total number of communication rounds T , local learning rate

η, total number of classes K, client model wm = [ψm, ϕm, θm, ωm], parameter α.
Output: Updated Learngene ϕm and statistics {(µ(m)

k ,Σ
(m)
k )}Kk=1 for each client.

1 for t = 0 to T − 1 do
2 for each client m do
3 Let nm = (m− 1 +M) mod M denote the previous neighbor in the ring.
4 Receive: ϕ̃ and {(µ̃k, Σ̃k)}Kk=1 from neighbor nm.
5 Update local statistics via EMA:
6 µ

(m)
k ← αµ

(m)
k + (1− α)µ̃k

7 Σ
(m)
k ← αΣ

(m)
k + (1− α)Σ̃k

8 Set ϕm ← ϕ̃ and sample a batch of local data ξm.
9 PersonaNet Execution:

10 ψm ← ψm − η∇ψmLPR(µ
(m)
k ,Σ

(m)
k ; ξm)

11 µ
(m)
k ,Σ

(m)
k ← −∇

µ
(m)
k ,Σ

(m)
k

LPR
12 zp ← ψm(ξm)
13 Learngene Execution:
14 ϕm ← ϕm − η∇ϕmLGL(ξm)
15 zl ← ϕm(ξm)
16 Decoder and Classifier Execution:
17 ξ′m ← θm(zp, zl)
18 θm ← θm − η∇θmLrec(ξm, ξ′m)
19 ωm ← ωm − η∇ωmLce(ξm, ξ′m)

20 Send: updated ϕ̃← ϕm and {(µ(m)
k ,Σ

(m)
k )} to next neighbor (m+ 1) mod M .

21 end
22 end

B EXPERIMENTAL SUPPLEMENT

B.1 EXPERIMENT SETUP

B.1.1 IMPLEMENTATION

We implemented the proposed method and the considered baselines in PyTorch. The models are
trained using ResNet-18 in a simulated decentralized ring-topology federated learning environment
with multiple participating clients. By default, the number of clients is set to 20, the learning rate is
set to 1e-3, the number of global communication rounds is set to 300, the number of local update
epochs is set to 5, and the batch size is set to 64. Both the centralized and decentralized federated
learning methods required all 20 clients to participate in the training process for collaborative learning.
Following (Chung, 1996; Grebenkov & Serror, 2014; Guo et al., 2024a), we set the parameter α in
EMA to 0.99 to learn global class-related information. We set σ2 = 0.15 based on validation analysis
of noise hyperparameter experiments, as listed in Table 4. The main experimental setup involves
20 clients collaborating in training, while the ablation study extends the analysis to 50 clients. The
centralized federated learning baseline methods are evaluated within a server-supported framework,
whereas the decentralized federated learning baselines are implemented under a ring topology for
subsequent experimental comparisons.

Table 4: Ablation study on the noise variance σ2 in DRDFL.

Noise Variance σ2 1.0 1.5 2.0 3.0

Local-T (%) 92.21±0.2 92.89±0.2 91.03±0.2 90.03±0.1
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B.1.2 DATASET AND DATA PARTITION

The SVHN dataset, designed for digit classification, contains 600,000 32× 32 RGB images of printed
digits extracted from Street View house numbers. For our experiments, we utilize a subset comprising
33,402 images for training and 13,068 images for testing. CIFAR-10 is a comprehensive image
dataset comprising 10 classes, with each class containing 6,000 samples of size 32 × 32. Similarly,
CIFAR-100 is an extended version with 100 classes, where each class includes 600 samples of the
same size, offering finer granularity for image classification tasks.
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(a) CIFAR-10 with β = 0.1
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(b) CIFAR-10 with β = 0.4
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(c) CIFAR-10 with s = 4
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Figure 6: The non-IID data distribution simulated on different clients based on the CIFAR-10 dataset
within the RDfl architecture.
Figure 6 illustrates the data distributions under different non-IID settings based on the CIFAR-10
dataset. Figures 6a and 6b show the client data distributions in the Dirichlet-based non-IID scenario,
where both the class distribution and the number of samples vary across classes. In contrast, Figures 6c
and 6d represent the Shard-based non-IID scenario, where each client has a distinct class distribution,
but the number of samples per class remains identical. Both scenarios effectively simulate the
problem of label distribution shift in data heterogeneity. Moreover, the test data shares the same class
distribution as the training data but is composed of different samples, thereby modeling the feature
distribution shift inherent in data heterogeneity.

B.1.3 BASELINES

• Local is the direct solution to the personalized federated learning problem. Each client only
performs SGD on their own data. For the sake of consistency, we take 5 epochs of local
training as one communication round.

• FedRep (Collins et al., 2021) is a classic personalized federated learning method. It
achieves personalized model training by sharing part of the model with the server during
communication and training a personalized head locally. In our setup, the number of locally
shared model training epochs is set to 4, and the number of personalization epochs is set to
1.
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• FedNova (Wang et al., 2020) employs a normalized averaging approach to eliminate ob-
jective inconsistency while maintaining fast error convergence. This method ensures that
models trained on non-IID data reduce objective inconsistencies, thereby improving the
generalization performance of the global model.

• FedBN (Li et al., 2021) is a federated learning method based on the personalization of Batch
Normalization (BN). Each client retains its personal BN layer statistics, including mean and
variance, while other model parameters, such as weights and biases of convolutional and
fully connected layers, are aggregated and shared among clients.

• FedFed (Yang et al., 2024) introduces a data-driven approach that divides the underlying
data into performance-sensitive features (which contribute significantly to model perfor-
mance) and performance-robust features (which have limited impact on model performance).
Performance-sensitive features are globally shared to mitigate data heterogeneity, while
performance-robust features are retained locally, facilitating personalized private models.

• DFedPGP (Liu et al., 2024) is a state-of-the-art personalized decentralized federated learning
(DFL) method. It personalizes the linear classifier of modern deep models to tailor local
solutions and learns consensus representations in a fully decentralized manner. Clients share
gradients only with a subset of neighbors based on a directed and asymmetric topology,
ensuring resource efficiency and enabling flexible choices for better convergence.

• Fedcvae is a comparative method we propose based on Conditional Variational Autoen-
coders (CVAE) (Sohn et al., 2015) and a decentralized federated learning architecture. Each
client uses its private dataset trains a pretrained model gφ(·) to obtain the prior distribution
and the CVAE model fw(·) and a classifier Cω(·) until convergence. The CVAE consists of
an encoder Eϕ(·), a decoder Dθ(·) with parameters denoted as w = [ϕ, θ]. Collaborative
learning among clients is achieved by using the pretrained model as the shared interaction
information. Previous research on CVAE has explored its application in defense against
malicious clients (Wen et al., 2020; Gu & Yang, 2021). In one-shot federated learning (Hein-
baugh et al., 2023), an ensemble dataset is constructed at the server to train a server-side
classifier. In federated learning frameworks (Kasturi et al., 2022) based on VAE, client-
generated data is aggregated at the server to train a global model. However, this approach is
different from our learning goals and the decentralized learning scenario we are focusing on.

• DisPFL (Dai et al., 2022) is a classical personalized federated learning method in distributed
scenarios. It uses personalized sparse masks to customize edge-local sparse models. Dur-
ing point-to-point communication, each local model maintains a fixed number of active
parameters throughout the local training process, reducing communication costs.

B.2 ADDITIONAL EXPERIMENTAL RESULTS

B.2.1 CONVERGENCE ANALYSIS

In Figure 7, we present a comparative analysis of personalized performance across various methods
on the CIFAR-100 dataset under different non-IID settings. Similar to the trends observed in Figure 3
for the CIFAR-10 dataset, our method demonstrates a smooth convergence curve and outperforms
other approaches in most cases. In the CIFAR-100 setting with s = 20, although the DFedPGP
method achieves higher performance in some rounds, it exhibits more fluctuations. Particularly, in
the CIFAR-100 setting with α = 0.1 and s = 30, our method achieves higher accuracy with fewer
communication rounds, highlighting its superior convergence speed. The results demonstrate that our
proposed method, consistently outperforms other baseline approaches, such as FedRep, FedNova,
FedBN, and DisPFL, in terms of Local-T, which indicates the model’s ability to personalize effectively
across clients. When considering convergence behavior, the proposed method also demonstrates
faster convergence compared to the other methods. The model reaches higher Local-T with fewer
communication rounds, highlighting its efficiency in both convergence speed and resource utilization.

B.2.2 ABLATION STUDY

In Table 5, we present the impact of different components on the overall method, evaluated using
the Local-T and Global-T metrics for the CIFAR-10 dataset with different data partitions. When
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(b) CIFAR-100: β = 0.4
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(c) CIFAR-100: s = 20
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Figure 7: Comparison of Local-T curves for different methods under various non-IID partition
settings on CIFAR-100 dataset.

Table 5: Ablation studies for DRDFL on CIFAR-10 dataset.

s = 4 β = 0.1Settings LPR LGL Local-T Global-T Local-T Global-T

DRDFL w/o LPR % ! 90.26±0.2 36.42±0.1 90.01±0.3 27.84±0.2
DRDFL w/o LGL ! % 91.39±0.1 34.32±0.3 92.63±0.2 26.84±0.2
DRDFL ! ! 92.25±0.2 36.67±0.3 92.86±0.2 28.14±0.2

the DRDFL method does not include the personalized LPR component, its performance on Local-T
is significantly worse, while Global-T remains roughly unchanged. In contrast, omitting the LGL
component, which controls for generalization invariant representations, slightly decreases Global-T
performance.

B.2.3 COMPUTATION OVERHEAD OF THE CLIENT

We provide two views to demonstrate the limited costs of extra computation, i.e., Training Time and
FLOPs (Floating Point Operations). We empirically measure the training time of both the backbone
classifier and the additional modules introduced by DRDFL. The classifier architecture is identical to
that adopted in the baseline methods. As reported in Table 6, the additional modules incur less than
5% of the training time per batch (batch size = 32) compared to the classifier, indicating that the extra
training cost is negligible. As shown in Table 7, the generator and its associated modules incur only
899.02 MFLOPs, whereas the classifier requires 17,872.58 MFLOPs. Thus, the additional FLOPs
introduced by DRDFL constitute less than 5% of the overall computational cost.

Table 6: Training time per batch.

Module Time (s)
Classifier 2.12
Additional modules 0.08

Table 7: FLOPs comparison.

Module MFLOPs
Classifier 17,872.58
Additional modules 899.02

B.2.4 APPLICABILITY TO LARGE-SCALE CLIENT POPULATIONS

To further validate the applicability of DRDFL across different client scales, we perform collaborative
learning with 50 clients and compare it to the FedRep method in CFL and the DFedPGP method in
DFL, as shown in Figure 8. DRDFL achieves significant improvements in both convergence speed
and performance on the Local-T and Global-T metrics. The numbers in the figure represent the
average values of the last 10 rounds, with DRDFL outperforming FedRep by 7.37% on Local-T and
slightly outperforming it by 2.53% on Global-T.

B.2.5 GRAD-CAM VISUALIZATION OF Learngene AND PersonaNet REPRESENTATIONS.

To further examine the distinct roles of PersonaNet and the Learngene module, we visualize their
Grad-CAM activation maps on “cat” samples collected from randomly selected heterogeneous
clients. As shown in Figure 9, the activation maps generated by PersonaNet primarily highlight

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Communication Rounds

50

55

60

65

70

75

80

85

Lo
ca

l-T
 [%

]
FedRep
DFedPGP 
DDRFL

0 50 100 150 200 250 300
Communication Rounds

20

25

30

35

Gl
ob

al
-T

 [%
]

FedRep
DFedPGP 
DDRFL

76.80

81.37

84.17

31.22

33.39

33.75

Figure 8: Comparison of Local-T and Global-T curves for different personalized methods on CIFAR-
10 with s = 4 across 50 clients.

Client i Client j

Figure 9: Visualization of cat class samples from CIFAR-10 across clients, with red boxes marking
shared attention regions.

client-specific discriminative boundaries, reflecting the personalized decision-making focus of each
client determined by its private data distribution. In contrast, the Learngene module consistently
focuses on meaningful, representative, and distinguishable regions related to the category, such as
the ears of a cat. This observation confirms that Learngene can capture consensus knowledge of
class consistency, enabling it to maintain a stable focus on category-related structures while being
unaffected by changes in client-specific distributions.

B.2.6 SCALABILITY TO NEWLY JOINED CLIENTS

The ring topology offers excellent scalability, enabling new clients to dynamically join the federated
learning system. However, this flexibility also introduces a new challenge: how to effectively initialize
models for newly added clients. The Learngene module we designed, which encapsulates generalized
knowledge-capturing transferable and generalizable representations can seamlessly adapt to unknown
clients. The specific initialization process of the new client is shown in Algorithm 2.

Algorithm 2: New Client Initialization in DRDFL

Input: New client m, neighbor index nm, received ϕ̃, received global priors {(µ̃k, Σ̃k)}Kk=1
Output: Initialized model wm = [ψm, ϕm, θm, ωm]

1 Initialize ϕm ← ϕ̃
2 Initialize ψm, θm, ωm with random weights
3 Set µ(m)

k ← µ̃k, Σ
(m)
k ← Σ̃k

4 Train on local data ξm using Algorithm 1 with fixed global priors for the first Tinit = 5 rounds
5 return wm
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Figure 10: Visualization the average performance of new clients joining the ring-topology federated
learning system on CIFAR-10. DRDFL provides strong initialization using the optimized Learngene
and global priors, leading to rapid convergence.

We empirically validate this hypothesis through a two-stage experimental setup. In the first stage,
a ring-topology federated learning system with 15 clients undergoes 200 rounds of collaborative
training to ensure convergence. In the second stage, five new clients with previously unseen data
distributions are introduced into the system. The average performance of two methods on participated
clients is illustrated in Figure 10. It is clear that our proposed DRDFL method leverages the optimized
Learngene and global Gaussian information to provide strong model initialization for the new clients,
significantly accelerating their convergence. In contrast, DisPFL maintains a fixed number of active
parameters and exhibits unstable performance when adapting to new clients during collaborative
training.

B.2.7 ADAPTABILITY ACROSS VARIOUS COMMUNICATION TOPOLOGIES

To evaluate the adaptability of our method under different communication topologies, we extend
its core design to both the fully-connected topology (Figure 11 (a)) and a dynamically-varying
connected topology (Figure 11 (b)). In the dynamically-varying connected topology, where each
client is allowed to communicate only with a limited set of randomly selected neighbors that may
differ across communication rounds. Specifically, each client averages the received updates from
its connected peers via the Learngene module before performing local optimization on its private
dataset. The corresponding experimental results are listed in Table 8.

Client
    1
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    2

Client
    3

Client
    4

Client
    1

Client
    2

Client
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Client
    4

Client
    1

Client
    2

Client
    3
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    4

Server

（a） （b） （c）

Figure 11: Illustrations of communication topologies. (a-b) correspond to decentralized settings,
where (a) denotes the fully-connected topology and (b) the dynamically-varying topology. (c) depicts
the centralized parameter-server architecture.

As shown in Table 8, the fully connected topology attains the highest Local-T and Global-T scores
due to dense communication. By contrast, the ring topology achieves comparable performance
within the same order of magnitude while requiring only linear communication overhead. From a
practical standpoint, these results highlight a favorable efficiency–accuracy trade-off for ring-based
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decentralized networks: they reduce redundant transmission complexity from quadratic O(N2)
to linear O(N) while maintaining nearly the same personalized and global performance as fully
connected networks. This property makes ring topologies particularly attractive for large-scale
deployments, such as vehicle-to-vehicle and IoT systems, where communication bandwidth and
scalability are critical constraints.

Table 8: Results on CIFAR-100 under decentralized federated learning with various communication
topologies.

Method β = 0.1 s = 20

Local-T Global-T Local-T Global-T

Ours-Ring Connected 72.84±0.2 13.22±0.2 71.19±0.3 13.40±0.2
Ours-dynamically Connected 72.18±0.2 13.78±0.2 71.32±0.3 13.61±0.2
Ours-Fully Connected 74.02±0.2 14.26±0.3 71.89±0.2 14.52±0.2

Furthermore, to assess the scalability of our framework in the centralized topology (Figure 11 (c)),
we extend DRDFL to a centralized federated learning setting (denoted as DRDFL-CFL) and report
its performance in Table 9. DRDFL-CFL consistently achieves superior generalization performance
(Global-T) compared to its ring-topology counterpart, demonstrating the benefit of more efficient
global information exchange enabled by server coordination. Notably, DRDFL-CFL outperforms all
other centralized baselines, including FedBN, FedNova, and FedFed, across both Dirichlet settings
(β = 0.1 and β = 0.4).

Table 9: Comparison of Local-T and Global-T between CFL and DFL variants of DRDFL on
CIFAR-10 under different Dirichlet non-IID settings.

Setting Method β = 0.1 β = 0.4

Local-T Global-T Local-T Global-T

CFL DRDFL-CFL 92.75±0.2 28.20±0.2 85.21±0.3 47.61±0.3

DFL DRDFL 92.86±0.2 28.14±0.2 85.93±0.3 47.01±0.3

In contrast, the ring-based DRDFL achieves the highest personalization performance (Local-T),
reflecting the advantage of preserving local adaptation in decentralized environments. This aligns
with intuition: centralized aggregation can introduce global bias that compromises client-specific
learning, while fully decentralized training better retains local characteristics. The proposed method
supports scalable deployment across different communication topologies, including but not limited
to RDFL. The key distinction between centralized FL (CFL) and decentralized FL (DFL) in our
framework lies in the update strategy of the Learngene module and class Gaussian statistics (mean
and variance): DFL employs exponential moving averages (EMA), whereas CFL adopts aggregation-
based averaging, as shown in Algorithm 3. This flexibility enables DRDFL to generalize beyond ring
topologies, establishing it as a robust and communication-efficient framework for addressing data
heterogeneity across diverse federated learning settings.

In addition, we extend our decentralized federated learning framework to the classical large-scale
CIFAR-100 dataset, considering both the fully connected topology, in which all nodes communicate
with each other, and the partially connected topology, where each client can only communicate with
a restricted set of randomly selected neighbors that may vary across communication rounds.

B.2.8 CONVERGENCE ANALYSIS FOR RESPONSES TO Q2, 3, 5, AND 8

As shown in Figure 12, the proposed DRDFL consistently exhibits faster convergence and higher
asymptotic accuracy than the baseline methods across all evaluated scenarios. Under partial participa-
tion (Q2) and extreme non-IID settings with no label overlap (Q3), DRDFL converges rapidly within
the early communication rounds and maintains stable performance with limited fluctuations. On
the more challenging TinyImageNet dataset with a ViT-B/16 backbone (Q5), DRDFL still achieves
smoother convergence and a higher final accuracy than FedPGP. Compared with FedWSL (Fig.
12(d)), DRDFL reaches a stable performance significantly earlier and at a higher accuracy level.
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Algorithm 3: Divide-and-conquer Collaboration for Centralized Federated Learning (CFL)
Input: Total number of devices M , total communication rounds T , local learning rate η, total

number of classes K, local model wm = [ψm, ϕm, θm, ωm], global Learngene ϕ̃, global
statistics {(µ̃k, Σ̃k)}Kk=1.

Output: Updated global Learngene ϕ̃ and global statistics {(µ̃k, Σ̃k)}Kk=1.
1 for t = 0 to T − 1 do
2 for each client m in parallel do
3 Receive: global Learngene ϕ̃ and global statistics {(µ̃k, Σ̃k)}.
4 Set ϕm ← ϕ̃, µ(m)

k ← µ̃k, Σ(m)
k ← Σ̃k.

5 Sample a batch of local data ξm.
6 PersonaNet Execution:
7 ψm ← ψm − η∇ψmLPR(µ

(m)
k ,Σ

(m)
k ; ξm)

8 µ
(m)
k ,Σ

(m)
k ← −∇

µ
(m)
k ,Σ

(m)
k

LPR
9 zp ← ψm(ξm)

10 Learngene Execution:
11 ϕm ← ϕm − η∇ϕmLGL(ξm)
12 zl ← ϕm(ξm)
13 Decoder and Classifier Execution:
14 ξ′m ← θm(zp, zl)
15 θm ← θm − η∇θmLrec(ξm, ξ′m)
16 ωm ← ωm − η∇ωmLce(ξm, ξ′m)
17 end
18 Server Aggregation:
19 ϕ̃← 1∑M

m=1|Dm|
∑M
m=1|Dm| · ϕm

20 µ̃k ← 1∑M
m=1|Dm|

∑M
m=1|Dm| · µ

(m)
k , Σ̃k ← 1∑M

m=1|Dm|
∑M
m=1|Dm| ·Σ

(m)
k
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Figure 12: Convergence analysis for responses to Q2, 3, 5, and 8.
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