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Figure 1: Absolute coordinates make motion generation easy. Here we show that our model pro-
duces motion of higher fidelity, has better controllability, and reports promising results of generating
SMPL-H meshes directly.

Abstract

State-of-the-art text-to-motion generation models rely on the kinematic-aware,1

local-relative motion representation popularized by HumanML3D, which encodes2

motion relative to the pelvis and to the previous frame with built-in redundancy.3

While this design simplifies training for earlier generation models, it introduces4

critical limitations for diffusion models and hinders applicability to downstream5

tasks. In this work, we revisit the motion representation and propose a radically6

simplified and long-abandoned alternative for text-to-motion generation: absolute7

joint coordinates in global space. Through systematic analysis of design choices, we8

show that this formulation achieves significantly higher motion fidelity, improved9

text alignment, and strong scalability, even with a simple Transformer backbone10

and no auxiliary kinematic-aware losses. Moreover, our formulation naturally11

supports downstream tasks such as text-driven motion control and temporal/spatial12

editing without additional task-specific reengineering and costly classifier guidance13

generation from control signals. Finally, we demonstrate promising generalization14

to directly generate SMPL-H mesh vertices in motion from text, laying a strong15

foundation for future research and motion-related applications.16

1 Introduction17

Generating realistic human motion from textual descriptions has rapidly emerged as a significant18

research area. It has great potential for diverse applications, including virtual and augmented reality19

experiences, immersive metaverse environments, video game development, and robotics.20

Recently, the introduction of the large-scale HumanML3D [25] dataset has catalyzed significant21

progress in text-to-motion generation by establishing a standardized, kinematic-aware motion repre-22

sentation. Earlier methods based on AutoEncoders [44, 4], GANs [22], or RNNs [82] attempted to23

model joints and kinematic rotations or joint and trajectory [1, 78, 5, 109, 55, 19], but struggled to24
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produce high-fidelity motion. HumanML3D instead proposes to encode motion relative to the pelvis25

and to the previous frame, enabling explicit modeling of intra-frame kinematics and inter-frame26

transitions. This local-relative, kinematic-aware representation, combined with built-in redundancy27

(non-animatable features such as incorrectly processed [101] relative rotations, local velocities, and28

foot contacts) as a form of data-level regularization [66], substantially simplifies training [12, 62, 66]29

and boosts the performance of these simple backbones. Recent diffusion-based methods [91, 119, 43]30

also adopt this representation for text-to-motion generation tasks as default, yielding state-of-the-art31

performances. While later works have explored architectural improvements [10, 90, 125, 33, 122],32

generation speedups [12, 15, 14], and retrieval-based enhancements [120], the underlying representa-33

tion has been largely inherited from HumanML3D [25] without much careful study.34

However, this de facto representation introduces several fundamental limitations. First, although this35

representation benefits earlier methods, the redundancy makes it difficult for diffusion models to36

learn [66], often leading to underperformance in generated motion quality. Second, its inherently37

relative nature is misaligned with the requirements of downstream tasks such as motion control38

and temporal/spatial editing [102, 42, 77]. These tasks demand motion generation that is not only39

semantically meaningful but also aware of absolute joint locations, which are usually provided by40

users, to enable precise control and intuitive motion editing. Attempts to inject absolute location41

information into the existing local-relative representation have often resulted in overly complex42

designs [52] and degraded generation fidelity [42, 102, 15, 14].43

In this paper, we revisit the foundational question of motion representation for text-driven motion44

generative models. We begin by demonstrating that the redundant, local-relative, kinematic-aware45

formulation—commonly assumed to be essential—is not crucial for the performance of diffusion-46

based models. Instead, we adopt a much simpler and long-abandoned non-kinematic representation47

in text-to-motion methods: absolute joint coordinates in global space. Through careful analysis of key48

design choices, we show that even with a simple Transformer [93] model (e.g. without UNet [33, 10]49

or altered attentions [10, 120]) and without additional kinematic losses, this simple formulation can50

achieve significantly higher motion fidelity, improved text alignment, and strong scalability potential.51

Furthermore, we show this simple representation naturally supports a range of downstream tasks,52

including motion control and temporal/spatial editing, without requiring task-specific reengineering.53

With inherent absolute location awareness, our formulation enables direct controllability by elim-54

inating the need for relative-to-absolute post-processing, which often introduces errors, as well as55

removing reliance on time-consuming classifier guidance from control signals during generation.56

By discarding the constraints of redundant, local-relative, kinematic-aware representation designs,57

our approach also opens the door to directly modeling motion from textual inputs beyond standard58

human joint skeletons. Our formulation shows potential to generalize to other subclasses of absolute59

coordinates, such as SMPL-H mesh vertices [59] in motion from text, which are largely neglected by60

existing approaches but crucial toward having vivid, animatable human avatars. This lays a foundation61

for future research in broader text-to-motion generation domains, enabling new applications across62

diverse motion-related domains.63

In summary, our contributions are as follows:64

• We propose a new formulation for text-to-motion diffusion models using absolute joint coordi-65

nates. Through systematic analysis of design choices, our method can achieve state-of-the-art66

performance with simple Transformer [93] backbones and no auxiliary losses.67

• We demonstrate that this formulation naturally supports downstream motion tasks, including68

motion control and temporal/spatial editing, achieving better performance and enabling seamless69

integration without additional reengineering or time-costly guidance generation.70

• We further show promising generalizes beyond joints to directly modeling other subclasses of71

absolute coordinates, such as mesh vertices. This flexibility marks an important step toward72

text-driven motion generation across broader domains and serves as a foundation for future73

research and broader real-world applications.74

2 Related Works75

Human Motion Generation. Early approaches in text-driven motion generation [1, 25, 70, 71,76

89, 110] attempt to align the latent spaces of text and motion. However, these methods faced77

significant challenges in generating high-fidelity motion due to the difficulty of seamlessly aligning78
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two fundamentally distinct modalities. Inspired by the success of denoising diffusion models in79

image generation [29, 86], several pioneering works [91, 43, 119, 12, 115] introduced diffusion-based80

approaches for human motion generation. Subsequent works have primarily focused on architectural81

innovations [3, 116, 129, 10, 33, 14, 90, 125, 122, 101] or on improved training methodologies [51,82

116, 2, 31, 95, 129, 61, 15, 120]. Other human motion generation works introduce Vector Quantization83

(VQ), enabling discrete motion token modeling [26, 117, 114, 77, 23, 8, 76, 127, 50, 37, 121, 63, 123]84

or explore autoregressive generation [124, 11, 85, 125, 90, 66, 101]. Recent works also diversified85

their focus, exploring human-scene/object interactions [69, 32, 45, 105, 74, 48, 9, 97, 21, 112, 107,86

64, 13, 100, 38, 46, 58, 17, 126, 96, 108, 60, 35, 106], human-human interaction [36, 104, 99,87

20, 53, 7, 113], stylized human motion generation [128, 24, 49], more datasets [103, 56], long-88

motion generation [131, 72], shape-aware motion generation [92, 54], fine-grained text controlled89

generation [132, 34, 111, 84, 39, 81, 88], leveraging 2D data [40, 73, 47], as well as investigating90

advanced architectures [122, 98]. In contrast, our work revisits the underlying text-to-motion91

representation itself. We show that adopting a simpler yet long-abandoned alternative: absolute joint92

coordinates, even with a simple Transformer backbone and no additional constraints, can significantly93

improve generation quality.94

Controllable Text-to-Motion Generation. In addition to synthesizing motion purely from text95

prompts, recent work has explored controlling motion generation with auxiliary signals such as96

trajectories or editing constraints [42, 102, 15, 14, 75, 80, 94, 41]. Early approaches such as Prior-97

MDM [83] extended MDM [91] to support end-effector constraints. GMD [42] introduced spatial98

control by guiding the diffusion process on the root joint trajectory, but required a re-engineered99

motion representation specifically designed for the task. OmniControl and MotionLCM [102, 15]100

generalized control to arbitrary joints by leveraging ControlNet [118], but both still rely on relative101

motion representations. Moreover, OmniControl heavily depends on classifier guidance from control102

signals during generation; without it, motion quality degrades significantly. Input optimization-based103

approaches [41, 75, 14] proposed directly optimizing the inputs to meet control objectives, but suffer104

from high computational and time costs due to multi-round optimization and gradient accumulations,105

making real-time applications impractical. In this work, we show that our proposed absolute joint106

coordinate formulation enables superior performance without the need for task-specific reengineering107

and time-consuming classifier guidance or inference-time optimization.108

Mesh-Level Text-Driven Human Motion Generation. Previous works rarely perform direct109

mesh vertex generation. Instead, prior methods [91, 12, 102, 42] typically predict HumanML3D110

representations and convert them to joint positions, followed by SMPL fitting [6]. Other efforts in111

related fields such as Human-Object Interaction (HOI), Human-Scene Interaction (HSI) and Dual-112

Person motion generation have attempted to directly model SMPL parameters [32, 45, 21, 64, 46,113

100, 38, 58, 126, 96, 104] or joint rotations and translations [74, 48, 112], which are then applied to114

meshes through standard skinning and rigging techniques. However, SMPL fitting is time-consuming115

and prone to reconstruction errors, while directly modeling SMPL parameters or joint transformations116

remains challenging and often results in unsatisfactory mesh quality[69, 46]. Moreover, even small117

joint-level errors can be magnified when propagated to mesh vertices, degrading the visual fidelity of118

the synthesized motion. Direct mesh vertex generation from textual inputs remains largely unexplored,119

yet it is critical for achieving high-fidelity, visually realistic motion synthesis. In this work, we show120

that with our absolute coordinate formulation, we can naturally extend to directly generating mesh121

vertices from text and achieve strong performance.122

Text-to-Human Motion Representation Early text-to-motion generation methods, often based123

on AutoEncoders [44, 4] or GANs [22], attempted to directly predict absolute joint positions [1],124

but struggled to produce realistic motions. Later approaches incorporated human kinematics by125

predicting joint rotations [78, 5, 109], combining joint positions with trajectory modeling [55, 19].126

However, these designs remained limited in producing high-fidelity and semantically aligned motions.127

The HumanML3D [25] representation addressed these challenges by encoding motion relative to the128

pelvis and the previous frame, explicitly modeling intra-frame kinematics and inter-frame transitions.129

Its local-relative, kinematic-aware design, with built-in redundancy [66, 101] from features such130

as relative rotations, local velocity, and foot contacts, substantially simplified training [12, 62] and131

quickly became the dominant choice for subsequent text-to-motion generation methodologies. In132

this work, we demystify the significance of HumanML3D representation formulation and adopt a133

simpler, long-abandoned non-kinematic formulation: absolute joint coordinates in global space. We134

show that, with this design, our method achieves better performance using simple Transformer [93]135

3



ACMDM

Velocity V

ACMDM
ControlNet

ControlNet
Condition Encoder

Noised
AC

Inputs

Text,
Timestep
Condition

ControlNet
Condition

Conv2D
Patchify

Condition
Embedder

(a) ACMDM Model

       

Input Condition

AdaLN-MLPRMSNorm

Attention
+RoPE

AdaLN
Scale+Shift

AdaLN
Scale

RMSNorm

Attention
+RoPE

AdaLN
Scale+Shift

AdaLN
Scale

       ACMDM Blocks

Conv2D
Patchify

Noised
AC

Inputs

CLIP Timestep
Embedder

Textual
Prompt

Timestep
t

Final Layer + Reshape

Velocity V

Input Condition

RMSNorm

Sequence
Dimension

Concatenate

Attention
+RoPE

RMSNorm

Attention
+RoPE

ACMDM Block with
AdaLN Conditioning

ACMDM Block with
Concatenate Conditioning

(b) ACMDM Model with
ControlNet

Figure 2: Overview of our proposed ACMDM. (a) Left: The raw/latent absolute coordinates
representation is patchified and processed through a sequence of ACMDM blocks. Right: Details of
ACMDM blocks, where we experiment with two conditioning variants: concatenation and AdaLN.
(b) ControlNet-augmented ACMDM for controllable motion generation: Structured control signals
are separately encoded and fused into the ACMDM generation process via additive residuals at each
ACMDM block, enabling the model to follow both semantical and spatial controlling constraints.

backbones without auxiliary losses, and naturally extends to direct modeling other subclasses of136

absolute coordinates such as mesh vertices.137

3 ACMDM: Absolute Coordinates Motion Diffusion Model138

The majority of recent methods utilize the redundant, local-relative, and kinematic-aware motion139

representation popularized by HumanML3D [25]. However, this explicit inter-frame kinematic140

modeling around the pelvis makes the generation prone to accumulating global drift errors through141

frames, while the intra-frame relative formulation makes it difficult to incorporate absolute location142

controlling signals for downstream tasks. In contrast, we propose adopting a much simpler but143

long-abandoned alternative, absolute joint coordinates in global 3D space and show it makes human144

motion generation easy.145

We first introduce our proposed ACMDM in Section 3.1 that we will systematically investigate and146

ablate in the experiments section. Next, in Section 3.2, we describe how to extend ACMDM to con-147

trollable motion generation through ControlNet integration without much task-specific engineering.148

Finally, we show how ACMDM generalizes to direct mesh vertex motion generation in Section 3.3.149

3.1 Absolute Joint Coordinates for Text-to-Motion Diffusion150

Absolute Coordinates Representation. We define absolute joint coordinates at each frame as151

Xi ∈ RNj×3, where Nj is the number of joints (e.g., 22 for the HumanML3D dataset), and each152

joint is represented by its 3D global position (XYZ). This intuitive formulation naturally avoids153

pelvis drift accumulation and facilitates direct controllability over spatial control signals. Previous154

works generally avoided this representation due to concerns about generating unnatural, non-human-155

like motions [102]. It was widely believed [102, 12, 62] that kinematic features were essential for156

physically plausible motion synthesis. In the experiment section, we demonstrate that using redundant157

kinematic features actually degrades motion generation quality, and that absolute joint positions alone158

are sufficient to achieve high-fidelity and controllable motion generation.159

Tokenizing Motion Representation. Absolute joint coordinates inherently preserve both spatial and160

temporal structure of the motion data. Given a motion sequence input of shape (L,Nj , din), where L161

is the motion sequence length and din is the input feature dimension (3 for raw absolute coordinates),162

we apply a 2D convolutional layer to transform this structured input into a sequence of T tokens163

similar to ViT [18], each with hidden dimension d. The number of tokens T is determined by the164

predefined patch size (PT , PS), where the convolution kernel size and stride are both set equal to165

(PT , PS), resulting in T = L
PT

× Nj

PS
. Importantly, we perform tokenization only along the spatial166
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(joint) dimension while preserving the full temporal resolution (i.e., we define PT = 1), as temporal167

details are especially critical for motion modeling. In our design, we explore various patch sizes,168

including 1× 22, 1× 11, and 1× 2, corresponding to different joint-wise granularities.169

Motion Diffusion with Transformer. After tokenizing the absolute coordinate inputs, the resulting170

token sequence is fed directly into Transformer for diffusion-based motion generation. Note that the171

central goal of this work is not to advance model architecture for motion generation. Rather, we focus172

on investigating the absolute coordinates motion representation. Therefore, we simply adopt a simple173

Transformer similar to DiT [68] and found it works sufficiently well.174

To incorporate conditioning signals, we follow prior works [91, 117, 23, 77, 66, 76, 12, 120] and175

use a pretrained CLIP-B/32 [79] text encoder to extract the textual embedding c, along with a176

timestep embedder to process diffusion timestep t. We explore two conditioning mechanisms177

within our ACMDM design: (1) Concatenation, a commonly used method in prior text-to-motion178

works [91, 117, 23, 77, 76, 12], where condition vectors are appended along the sequence dimension;179

and (2) AdaLN, where the text and timestep embeddings modulate each block via adaptive layer180

normalization, similar to image diffusion DiT [68]. An illustration of these variants are shown181

in Figure 2 (a). In line with recent best practices in Transformer models, we also adopt several modern182

architectural components: Rotary Positional Embedding (RoPE) [87] and QK Normalization [28] are183

applied in the attention layers, and SwiGLU activations[67] are used in the feed-forward networks184

(FFNs). We also investigate different denoising targets for training ACMDM, including predicting185

x0 [29] (the original motion), ϵ [29] (the added noise), and velocity [57] v (under flow-matching186

formulations). In our experimental analysis, we show that v prediction consistently yields the best187

generation performance. All ACMDM variants are trained with a standard L2 reconstruction loss on188

the diffusion objective. More details are provided in the supplemental material.189

After processing through the motion diffusion Transformer, the output token sequence is linearly190

projected to match the original shape. Specifically, a linear layer is applied to transform each token191

from dimension d back to din × PT × PS . The output is then reshaped to recover the original 2D192

structure (i.e., (L,Nj , din)) of the absolute joint coordinates.193

Latent Motion Encoding with a Motion AutoEncoder. Optionally, we convert raw absolute194

coordinates into latents using a motion autoencoder (AE) and perform motion diffusion then, which195

leads to better generation fidelity as shown in the experiment section. Specifically, given a motion196

sequence X0:N ∈ RL×Nj×3, a 2D ResNet-based encoder compresses it into a latent representation197

x0:n ∈ Rl×Nj×dj , where l denotes the downsampled motion sequence length and dj is the dimension198

of the motion latent. We keep the number of joints Nj unchanged here. Tokenization is then199

performed over the latent representations (so din = dj), whose output will be fed into the motion200

diffusion Transformer. A decoder later can reconstruct the motion sequence X̂0:N ∈ RL×Nj×3 via201

nearest-neighbor upsampling based on the diffusion output. We explore a causal AE (i.e., convolution202

kernels can only access previous frames), a non-causal AE, a VAE-based variant, and direct modeling203

on raw absolute joint coordinates in the experimental section. All these motion AE variants are204

trained with a simple smooth L1 reconstruction loss. More details of all the AE variants are provided205

in the supplemental material.206

Scaling ACMDM. We scale the model capacity by increasing the motion diffusion Transformer207

layer’s depth and width. Specifically, we follow a simple scaling strategy where the number of208

Transformer layers is set equal to the number of attention heads. We define four model sizes:209

ACMDM-S, ACMDM-B, ACMDM-L, and ACMDM-XL, corresponding to configurations with 8, 12,210

16, and 20 layers and attention heads, respectively. This consistent scaling scheme enables systematic211

exploration of ACMDM’s capacity and its effect on generation quality. In addition, we also vary the212

patch sizes for tokenization. We name different model variants according to their model and patch213

size (for tokenization); e.g., ACMDM-XL-PS2 refers to the XL variant with a patch size of 1× 2.214

3.2 Adding Controls to Absolute Joint Coordinates Generation215

Most prior methods face significant challenges in controllable motion generation due to their reliance216

on local-relative representations, which naturally misalign with user-provided absolute coordinates217

control signals. In contrast, our absolute coordinates representation removes this misalignment,218

enabling seamless integration of control without classifier guidance [16] and input optimization [41].219
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To enable controllable text-driven motion generation, such as trajectory conditioning and tempo-220

ral/spatial editing with absolute joint coordinates, we follow prior works [102, 15, 14] and integrate221

a ControlNet [118]-style module into the ACMDM architecture. As shown in Figure 2 (b), the222

noised absolute coordinate latent is first tokenized via a 2D convolutional layer and then fed into223

both the main ACMDM and a parallel ControlNet module. At the same time, textual and timestep224

conditions are encoded and provided to both ACMDM and the ControlNet as conditioning embed-225

dings. Separately, structured control signals (e.g., joint trajectories or partial-body constraints) are226

processed through a dedicated ControlNet condition encoder. The ControlNet receives both the227

tokenized noised inputs as well as control-specific features in additive combination with the textual228

and timestep embeddings. These fused features generate residuals, which are injected into the main229

ACMDM backbone at each layers via additive fusion. This modulation enables the model to follow230

both semantic instructions and structural constraints. In addition to the standard L2 reconstruction231

loss on the diffusion target, we also apply an L2 loss between the model’s prediction and the control232

signal. We also freeze the parameters of the main ACMDM and only train the ControlNet branch,233

which is initialized as copies of the main ACMDM blocks, similar to prior works [118, 102, 15, 14].234

3.3 Generating Meshes with Absolute Coordinates Representation235

Towards achieving vivid, animatable human avatars, joint representations are insufficient; when236

translated to meshes through fitting models, they often result in shaky body parts, unnatural hand237

motions, and missing flesh dynamics [91, 12, 15, 14]. Direct motion generation at the mesh level,238

however, largely falls behind joint counterparts, mainly due to the complexity of modeling mesh239

representations. Here, we show that our absolute, non-kinematic representation naturally extends to240

mesh vertices, which is seamlessly supported by ACMDM without major architectural changes.241

In specific, we explore direct motion generation of SMPL-H [59] mesh vertices, where each frame242

is represented as a set of absolute 3D vertex coordinates with shape (L,Nv, 3), where Nv = 6890243

denotes the number of vertices. Unlike absolute joint coordinates, where the number of joints Nj is244

typically small, directly training diffusion models on full-resolution mesh data with Nv = 6890 is245

computationally prohibitive and unstable. To address this, we incorporate a 2D mesh autoencoder246

based on the Fully Convolutional Mesh Autoencoder [130]. The encoder spatially compresses247

the input mesh sequence (L,Nv, 3) into a latent representation of shape (L, nv, dv), where we248

set nv = 28 for diffusion modeling efficiency and reconstruction quality. Once mesh vertices are249

encoded, we reuse the ACMDM framework to perform motion diffusion in this latent mesh space. The250

resulting sequence is tokenized using patch sizes of 1× 28 and processed with the same formulation251

as our joint-based ACMDM. In the experiment section, we show the flexibility and scalability of our252

approach for high-fidelity motion generation over mesh vertices as well in addition to human joints.253

4 Experiment254

4.1 Datasets, Training Setups, and Evaluation Protocols255

Datasets. To fairly evaluate different ACMDM designs and compare against prior models, we256

adopt the widely used HumanML3D [25] benchmark for standard text-to-motion generation, down-257

stream tasks such as text-driven trajectory-controlled generation and upper-body editing, and direct258

text-to-SMPL-H mesh motion generation. We also include text-to-motion evaluations on KIT-259

ML [78], reported in the Appendix. HumanML3D contains 14,616 motion sequences sourced from260

AMASS [65] and HumanAct12 [27], each paired with three textual descriptions (44,970 annotations261

in total). All motions are standardized to 20 FPS and capped at 10 seconds. It is augmented via262

mirroring and split into training, validation, and test sets using a standard 80%/15%/5% split.263

Training Setups. All ACMDM variants are trained using the AdamW optimizer with β1 = 0.9 and264

β2 = 0.99. We use a batch size of 64 with a maximum sequence length of 196 frames. The learning265

rate is initialized at 2× 10−4 and linearly warmed up over the first 2,000 steps. We apply a learning266

rate decay by a factor of 0.1 at 50,000 iterations during the training of 500 epochs. We also use an267

exponential moving average (EMA) of model weights to improve training stability and performance.268

During inference, we apply classifier-free guidance (CFG) [30] = 3 for text-to-motion generation and269

upper-body editing, 2.5 for trajectory control, and 4.5 for text-to-SMPL-H mesh motion generation.270
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Table 1: Ablation study of the design choices of ACMDM on the HumanML3D dataset. The
results indicate that kinematic-aware redundancy is not necessary. Instead, absolute coordinates
motion representation can achieve high-quality motion generation with AdaLN conditioning, the
velocity diffusion objective (v), and latent space modeling.

Motion
Representation

Conditioning
Mechanism

Motion
AE

Diffusion
Objective

FID ↓ R-Precision Matching↓
Top 1↑ Top 2↑ Top 3↑

Absolute+Redundancy Concat ✗
x0 0.771±.020 0.441±.002 0.633±.003 0.738±.002 3.632±.009

ϵ 0.868±.030 0.358±.003 0.538±.005 0.650±.004 4.168±.025

v 0.276±.006 0.445±.002 0.634±.002 0.738±.002 3.613±.008

Absolute Concat ✗
x0 0.969±.029 0.356±.003 0.539±.004 0.648±.003 4.362±.013

ϵ 0.419±.013 0.436±.002 0.630±.003 0.736±.003 3.717±.013

v 0.208±.012 0.451±.003 0.643±.003 0.751±.002 3.544±.010

Absolute AdaLN ✗
x0 0.133±.004 0.485±.002 0.680±.002 0.779±.002 3.386±.012

ϵ 0.125±.007 0.493±.002 0.685±.003 0.783±.002 3.343±.009

v 0.121±.006 0.502±.002 0.692±.003 0.789±.003 3.304±.008

Absolute AdaLN Causal AE x0 0.137±.007 0.473±.002 0.670±.002 0.772±.003 3.451±.011

ϵ 0.188±.006 0.475±.003 0.670±.002 0.775±.002 3.393±.012

v 0.109±.005 0.508±.002 0.701±.003 0.798±.003 3.253±.010

Absolute AdaLN Non-Causal VAE v 0.178±.006 0.497±.002 0.687±.003 0.785±.004 3.323±.010

Non-Causal AE v 0.150±.005 0.502±.003 0.693±.003 0.787±.003 3.296±.010

Causal VAE v 0.115±.005 0.504±.002 0.697±.002 0.795±.003 3.278±.011

OursMARDMMotionLCM V2
MDM

50Step

the person puts something on its side and then brings it back to normal.

Puts Something
on its side

Brings it back
to normal

Figure 3: Visual comparisons of generated motion between ACMDM and state-of-the-art
methods. ACMDM generates more realistic motion that accurately follows the textual condition.

Evaluation Metrics. We adopt the robust evaluation framework proposed by [66], focusing on271

essential, animatable motion features. Following [25, 66], we report: (1) R-Precision (Top-1/2/3) and272

Matching (semantic alignment with captions); (2) FID (distribution similarity); (3) MultiModality273

(motion diversity per prompt); and (4) CLIP-Score (cosine similarity between motion and caption274

embeddings). For trajectory-control evaluations [42], we additionally report Diversity (variability275

within generated motions), Foot Skating Ratio, Trajectory Error, Location Error, and Average Joint276

Error (accuracy of controlled joints at keyframes). Metrics are averaged over five levels of control277

intensity (1%, 2%, 5%, 25%, 100%). During training, control intensity levels are randomly sampled.278

For direct SMPL-H mesh generation, we also report Laplacian Surface Distance (LSD) to assess279

mesh structural preservation relative to the ground-truth T-pose. More metric details are in Appendix.280

4.2 Ablating ACMDM Designs281

Necessity of Kinematic-aware and Redundant Motion Representation. Prior attempts [102]282

of text-to-absolute-coordinate motion generation adopt InterGen [52]’s representation with heavy283

kinematic-aware redundancy and the x0 objective, but result in unrealistic motion. To systematically284

analyze this, in the top two sections of Table 1, we train an ACMDM-S-PS22 variant. We match285

the model size and flattened spatial embedding style used in prior works in two settings: one286

using absolute coordinates with kinematic-aware and redundant representation (i.e., InterGen’s287

representation), and another using plain absolute coordinates (our proposed). The results show that288

while the previously widely adopted x0-prediction diffusion benefits slightly from the redundancy,289

velocity prediction (v) with plain absolute coordinates (our proposed) achieves better performance.290

Notably, by modeling plain absolute coordinates with v prediction, ACMDM achieves a FID that291

is 0.563 lower and an R-Precision Top-3 score that is 0.013 higher compared to redundant x0292

prediction. These results demonstrate that with a more suitable diffusion objective (v prediction),293

and the previously assumed necessary kinematic-aware redundancy is not required for achieving294

high-quality motion generation. Therefore, for the rest of the paper, all ACMDM models will adopt295

the pure absolute coordinates representation without any kinematic-aware or redundant features.296
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Table 2: Quantitative text-to-motion evaluation. We repeat the evaluation 20 times and report the
average with 95% confidence interval. We use bold face / underline to indicate the best/2nd results.

Methods FID↓ R-Precision↑ Matching↓ MModality↑ CLIP-score↑Top 1 Top 2 Top 3

Real 0.000±.000 0503±.002 0.696±.001 0.795±.002 3.244±.005 - 0.639±.001

MDM-50Step [91] 0.518±.032 0.440±.007 0.636±.006 0.742±.004 3.640±.028 3.604±.031 0.578±.003

MotionDiffuse [119] 0.778±.005 0.450±.006 0.641±.005 0.753±.005 3.490±.023 3.179±.046 0.606±.004

ReMoDiffuse [120] 0.883±.021 0.468±.003 0.653±.003 0.754±.005 3.414±.020 2.703±.154 0.621±.003

MLD++ [14] 2.027±.021 0.500±.003 0.691±.002 0.789±.001 3.220±.008 1.924±.065 0.639±.002

MotionLCM V2 [14] 2.267±.023 0.501±.002 0.693±.002 0.790±.002 3.192±.009 1.780±.062 0.640±.003

MARDM [66]-ϵ 0.116±.004 0.492±.006 0.690±.005 0.790±.005 3.349±.010 2.470±.053 0.637±.005

MARDM [66]-v 0.114±.007 0.500±.004 0.695±.003 0.795±.003 3.270±.009 2.231±.071 0.642±.002

ACMDM-S-PS22 0.109±.005 0.508±.002 0.701±.003 0.798±.003 3.253±.010 2.156±.061 0.642±.001

ACMDM-XL-PS2 0.058±.004 0.522±.002 0.713±.002 0.807±.002 3.205±.008 2.077±.083 0.652±.001

Concatenation vs. AdaLN. In the third section of Table 1, we switch from the widely adopted297

concatenation-based conditioning to AdaLN conditioning with an ACMDM-S-PS22 variant with298

pure absolute coordinates. Our results show that across all diffusion objectives, better conditioning299

mechanism (AdaLN) lead to significant improvements. Notably, with v prediction, ACMDM achieves300

an FID of 0.121 and an R-Precision Top-3 score of 0.789, substantially outperforming concatenation-301

based conditioning. These findings demonstrate that an effective conditioning mechanism is a key302

factor in achieving high-quality motion generation. Therefore, for all subsequent experiments, we303

adopt AdaLN-based conditioning mechanism across all ACMDM models.304

Raw Absolute Coordinates vs. Latent Space. In the fourth section of Table 1, we switch305

from directly modeling raw absolute coordinates to a latent space. Our results show that la-306

tent space modeling further improves generation quality while also offering faster inference307

for v prediction, achieving the best FID of 0.109 and R-Precision Top-3 score of 0.798308

Figure 4: Scaling of ACMDM with model ca-
pacity and decreasing patch size. We use red
for S, orange for B, green for L, and blue for XL,
with color gradients indicating decreasing patch
sizes. ACMDM exhibits strong scalability, with
performance consistently improving as model size
increases and patch size decreases.

We additionally compare different AutoEncoder309

variants: Causal-AE, Non-Causal-AE, and VAE310

in the last section of Table 1. Among them,311

Causal-AE achieves the best overall perfor-312

mance. Therefore, for all subsequent experi-313

ments, we adopt Causal-AE as our default setup.314

Since velocity (v) prediction consistently yields315

the best performance across all settings, we also316

adopt it as the default diffusion objective.317

Scaling Model and Decreasing Patch Sizes.318

In Figure 4, we train 12 ACMDM models over319

all model configs (S, B, L, XL) and patch sizes320

(1× 22, 1× 11, 1× 2). In all cases, we find that321

increasing model size and decreasing patch size322

lead to improved text-to-motion generation per-323

formance both with and without CFG across all324

metrics. Notably, ACMDM-XL-PS2 achieves325

an FID of 0.058 and an R-Precision Top-1 score326

of 0.522, outperforming the most recent state-327

of-the-art MARDM by 0.056 in FID and 0.022328

in R-Precision Top-1. These findings demonstrate the effectiveness of scaling model capacity and329

decreasing patch sizes with absolute joint coordinates. We include detailed results in Appendix.330

4.3 Comparison to State-of-the-Art Text-to-Motion Generation Methods331

We present the quantitative comparison between our method and state-of-the-art text-to-motion gener-332

ation baselines in Table 2, as well as qualitative comparison in Figure 3 and Appendix. As observed,333

our method achieves superior performance across multiple key metrics, including FID, R-Precision,334

Matching Score, and CLIP-Score. Compared to existing approaches, ACMDM demonstrates a335

significantly stronger ability to generate high-fidelity, semantically aligned motions that closely336

follow textual instructions. Notably, even for our smallest ACMDM variant, ACMDM-S-PS22, it337

outperforms all prior state-of-the-art methods. Larger ACMDM models, such as ACMDM-XL-PS2,338

further amplify the performance gains across all evaluation metrics.339
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Table 3: Quantitative text-conditioned motion generation with spatial control signals and upper-
body editing on HumanML3D. In the first section, methods are trained and evaluated solely on
pelvis controls. In the middle section, methods are trained on all joints and evaluated separately on
each controlled joint. Only average results are reported for brevity. We include details in Appendix.
Last section presents upper-body editing results. bold face / underline indicates the best/2nd results.

Controlling
Joint

Methods AITS↓ Classifier FID↓ R-Precision Diversity→ Foot Skating Traj. err.↓ Loc. err.↓ Avg. err.↓Guidance Top 3 Ratio.↓
GT − - 0.000 0.795 10.455 - 0.000 0.000 0.000

Train
On

Pelvis

MDM [91] 16.34 ✗ 1.792 0.673 9.131 0.1019 0.4022 0.3076 0.5959
PriorMDM [83] 20.19 ✗ 0.393 0.707 9.847 0.0897 0.3457 0.2132 0.4417
GMD [42] 137.63 ✓ 0.238 0.763 10.011 0.1009 0.0931 0.0321 0.1439
OmniContol [102] 81.00 ✓ 0.081 0.789 10.323 0.0547 0.0387 0.0096 0.0338
MotionLCM V2+CtrlNet [14] 0.066 ✗ 3.978 0.738 9.249 0.0901 0.1080 0.0581 0.1386
ACMDM-S-PS22+CtrlNet 2.51 ✗ 0.067 0.805 10.481 0.0591 0.0075 0.0010 0.0100

Train On
All Joints
(Average)

OmniContol [102] 81.00 ✓ 0.126 0.792 10.276 0.0608 0.0617 0.0107 0.0404
MotionLCM V2+CtrlNet [14] 0.066 ✗ 4.504 0.715 9.230 0.1119 0.2740 0.1315 0.2464
ACMDM-S-PS22+CtrlNet 2.51 ✗ 0.070 0.803 10.526 0.0596 0.0117 0.0019 0.0197

Methods AITS↓ Classifier FID↓ R-Precision R-Precision R-Precision Matching↓ Diversity→ -Guidance Top 1 Top 2 Top 3

UpperBody
Edit

MDM [91] 16.34 ✗ 1.918 0.359 0.556 0.654 4.793 9.210 -
OmniControl [119] 81.00 ✓ 0.909 0.428 0.614 0.722 3.694 10.207 -
MotionLCM V2+CtrlNet [119] 0.066 ✗ 3.922 0.404 0.592 0.692 5.610 9.309 -
ACMDM-S-PS22+CtrlNet 2.51 ✗ 0.076 0.532 0.719 0.820 3.098 10.586 -

Table 4: Quantitative results for direct text-to-SMPL-H mesh motion generation on HumanML3D.

Size Transformer FID ↓ R-Precision Top 1 ↑ R-Precision Top 2 ↑ R-Precision Top 3 ↑ Matching↓ CLIP-score↑ LSD↓
S 8 head 512 dim 0.211±.005 0.478±.004 0.682±.003 0.784±.003 3.405±.011 0.620±.002 0.0026±.0002

B 12 head 768 dim 0.181±.003 0.490±.003 0.691±.003 0.783±.002 3.345±.010 0.631±.001 0.0024±.0002

L 16 head 1024 dim 0.160±.004 0.497±.003 0.696±.002 0.790±.002 3.341±.009 0.633±.0 0.0025±.0001

XL 20 head 1280 dim 0.139±.003 0.498±.003 0.704±.003 0.794±.003 3.309±.007 0.636±.001 0.0025±.0001

4.4 Comparison to State-of-the-Art Controllable Motion Generation Methods340

We present quantitative comparisons between our method and state-of-the-art methods on text-341

driven trajectory control and upper-body editing in Table 3. For the trajectory control task, prior342

works [42, 102, 14] have shown that inference-time classifier guidance is crucial for achieving strong343

control performance. However, we show that even with our smallest ACMDM variant that matches to344

baseline model sizes and embedding formats, our absolute coordinate formulation achieves superior345

motion fidelity and control accuracy without the need for time-consuming classifier guidance from346

control signals. This results in significantly faster generation compared to guidance-dependent347

approaches (2.51 v.s. 81.0 seconds). For the upper-body editing task, we follow the evaluation348

protocol proposed by [77, 75], where we fix the pelvis, left foot, and right foot joints and edit the349

upper body motion according to textual prompts. Our method achieves substantially better generation350

quality across all evaluation metrics, validating the effectiveness of our proposed approach.351

4.5 Evaluations on Absolute Mesh Vertex Coordinates Motion Generation352

We evaluate ACMDM on SMPL-H absolute mesh vertex coordinates motion generation in Table 4.353

We train and compare four ACMDM model sizes—S, B, L, and XL, with the patch size of 1× 28.354

Despite the significantly increased complexity of modeling full mesh sequences compared to joint355

sequences, our ACMDM models still achieve strong performance. Notably, all variants achieve356

results competitive with the best text-to-joint generation models, while operating directly on high-357

dimensional vertex spaces. This highlights the effectiveness and flexibility of our absolute coordinates358

motion representation in handling broader motion generation tasks beyond human joints.359

5 Conclusion360

In conclusion, we presented ACMDM, a novel text-driven motion diffusion framework built on an361

absolute coordinates motion representation. We run extensive analysis to identify an optimal setting,362

including the velocity prediction diffusion objective, optimized conditioning mechanisms (AdaLN),363

and latent motion representation. Our model naturally supports downstream control tasks, which364

removes the misalignment between local motion representation and absolute controlling, and also365

generalizes to direct SMPL-H mesh vertices motion generation. Extensive experiments demonstrate366

that ACMDM achieves superior performance and scalability across text-to-motion benchmarks.367
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versions (if applicable).874
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results?880

Answer: [Yes]881
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necessary to understand the results883
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• The answer NA means that the paper does not include experiments.885
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that is necessary to appreciate the results and make sense of them.887
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material.889

7. Experiment statistical significance890
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information about the statistical significance of the experiments?892

Answer: [Yes]893
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paper does not report error bars.895
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• The assumptions made should be given (e.g., Normally distributed errors).906
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puter resources (type of compute workers, memory, time of execution) needed to reproduce919
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Justification: We provide experiments compute resources in Appendix.922
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than the experiments reported in the paper (e.g., preliminary or failed experiments that930

didn’t make it into the paper).931

9. Code of ethics932

Question: Does the research conducted in the paper conform, in every respect, with the933

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?934

Answer: [Yes]935

Justification: Research is conducted in the paper conforms with NeurIPS Code of Ethics.936

Guidelines:937

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.938

• If the authors answer No, they should explain the special circumstances that require a939

deviation from the Code of Ethics.940

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-941

eration due to laws or regulations in their jurisdiction).942

10. Broader impacts943

Question: Does the paper discuss both potential positive societal impacts and negative944

societal impacts of the work performed?945

Answer: [NA]946

Justification: Our paper is not highly related to societal impacts.947

Guidelines:948

• The answer NA means that there is no societal impact of the work performed.949

• If the authors answer NA or No, they should explain why their work has no societal950

impact or why the paper does not address societal impact.951

• Examples of negative societal impacts include potential malicious or unintended uses952

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations953

(e.g., deployment of technologies that could make decisions that unfairly impact specific954

groups), privacy considerations, and security considerations.955
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• The conference expects that many papers will be foundational research and not tied956

to particular applications, let alone deployments. However, if there is a direct path to957

any negative applications, the authors should point it out. For example, it is legitimate958

to point out that an improvement in the quality of generative models could be used to959

generate deepfakes for disinformation. On the other hand, it is not needed to point out960

that a generic algorithm for optimizing neural networks could enable people to train961

models that generate Deepfakes faster.962

• The authors should consider possible harms that could arise when the technology is963

being used as intended and functioning correctly, harms that could arise when the964

technology is being used as intended but gives incorrect results, and harms following965

from (intentional or unintentional) misuse of the technology.966

• If there are negative societal impacts, the authors could also discuss possible mitigation967

strategies (e.g., gated release of models, providing defenses in addition to attacks,968

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from969

feedback over time, improving the efficiency and accessibility of ML).970

11. Safeguards971

Question: Does the paper describe safeguards that have been put in place for responsible972

release of data or models that have a high risk for misuse (e.g., pretrained language models,973

image generators, or scraped datasets)?974

Answer: [NA]975

Justification: Our paper poses no such risks.976

Guidelines:977

• The answer NA means that the paper poses no such risks.978

• Released models that have a high risk for misuse or dual-use should be released with979

necessary safeguards to allow for controlled use of the model, for example by requiring980

that users adhere to usage guidelines or restrictions to access the model or implementing981

safety filters.982

• Datasets that have been scraped from the Internet could pose safety risks. The authors983

should describe how they avoided releasing unsafe images.984

• We recognize that providing effective safeguards is challenging, and many papers do985

not require this, but we encourage authors to take this into account and make a best986

faith effort.987

12. Licenses for existing assets988

Question: Are the creators or original owners of assets (e.g., code, data, models), used in989

the paper, properly credited and are the license and terms of use explicitly mentioned and990

properly respected?991

Answer: [Yes]992

Justification: CC-BY 4.0. And we referenced the works that we used to implement our code.993

Guidelines:994

• The answer NA means that the paper does not use existing assets.995

• The authors should cite the original paper that produced the code package or dataset.996

• The authors should state which version of the asset is used and, if possible, include a997

URL.998

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.999

• For scraped data from a particular source (e.g., website), the copyright and terms of1000

service of that source should be provided.1001

• If assets are released, the license, copyright information, and terms of use in the1002

package should be provided. For popular datasets, paperswithcode.com/datasets1003

has curated licenses for some datasets. Their licensing guide can help determine the1004

license of a dataset.1005

• For existing datasets that are re-packaged, both the original license and the license of1006

the derived asset (if it has changed) should be provided.1007
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• If this information is not available online, the authors are encouraged to reach out to1008

the asset’s creators.1009

13. New assets1010

Question: Are new assets introduced in the paper well documented and is the documentation1011

provided alongside the assets?1012

Answer: [NA]1013

Justification: Documentation of new assets is not applicable in our paper.1014

Guidelines:1015

• The answer NA means that the paper does not release new assets.1016

• Researchers should communicate the details of the dataset/code/model as part of their1017

submissions via structured templates. This includes details about training, license,1018

limitations, etc.1019

• The paper should discuss whether and how consent was obtained from people whose1020

asset is used.1021

• At submission time, remember to anonymize your assets (if applicable). You can either1022

create an anonymized URL or include an anonymized zip file.1023

14. Crowdsourcing and research with human subjects1024

Question: For crowdsourcing experiments and research with human subjects, does the paper1025

include the full text of instructions given to participants and screenshots, if applicable, as1026

well as details about compensation (if any)?1027

Answer: [NA]1028

Justification: This paper does not involve crowdsourcing nor research with human subjects.1029

Guidelines:1030

• The answer NA means that the paper does not involve crowdsourcing nor research with1031

human subjects.1032

• Including this information in the supplemental material is fine, but if the main contribu-1033

tion of the paper involves human subjects, then as much detail as possible should be1034

included in the main paper.1035

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1036

or other labor should be paid at least the minimum wage in the country of the data1037

collector.1038

15. Institutional review board (IRB) approvals or equivalent for research with human1039

subjects1040

Question: Does the paper describe potential risks incurred by study participants, whether1041

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1042

approvals (or an equivalent approval/review based on the requirements of your country or1043

institution) were obtained?1044

Answer: [NA]1045

Justification: This paper does not involve crowdsourcing nor research with human subjects.1046

Guidelines:1047

• The answer NA means that the paper does not involve crowdsourcing nor research with1048

human subjects.1049

• Depending on the country in which research is conducted, IRB approval (or equivalent)1050

may be required for any human subjects research. If you obtained IRB approval, you1051

should clearly state this in the paper.1052

• We recognize that the procedures for this may vary significantly between institutions1053

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1054

guidelines for their institution.1055

• For initial submissions, do not include any information that would break anonymity (if1056

applicable), such as the institution conducting the review.1057

16. Declaration of LLM usage1058
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Question: Does the paper describe the usage of LLMs if it is an important, original, or1059

non-standard component of the core methods in this research? Note that if the LLM is used1060

only for writing, editing, or formatting purposes and does not impact the core methodology,1061

scientific rigorousness, or originality of the research, declaration is not required.1062

Answer: [NA]1063

Justification: Core method development in this research does not involve LLMs as any1064

important, original, or non-standard components in our paper.1065

Guidelines:1066

• The answer NA means that the core method development in this research does not1067

involve LLMs as any important, original, or non-standard components.1068

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1069

for what should or should not be described.1070
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