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Figure 1: Absolute coordinates make motion generation easy. Here we show that our model pro-
duces motion of higher fidelity, has better controllability, and reports promising results of generating
SMPL-H meshes directly.

Abstract

State-of-the-art text-to-motion generation models rely on the kinematic-aware,
local-relative motion representation popularized by HumanML3D, which encodes
motion relative to the pelvis and to the previous frame with built-in redundancy.
While this design simplifies training for earlier generation models, it introduces
critical limitations for diffusion models and hinders applicability to downstream
tasks. In this work, we revisit the motion representation and propose a radically
simplified and long-abandoned alternative for text-to-motion generation: absolute
joint coordinates in global space. Through systematic analysis of design choices, we
show that this formulation achieves significantly higher motion fidelity, improved
text alignment, and strong scalability, even with a simple Transformer backbone
and no auxiliary kinematic-aware losses. Moreover, our formulation naturally
supports downstream tasks such as text-driven motion control and temporal/spatial
editing without additional task-specific reengineering and costly classifier guidance
generation from control signals. Finally, we demonstrate promising generalization
to directly generate SMPL-H mesh vertices in motion from text, laying a strong
foundation for future research and motion-related applications.

1 Introduction

Generating realistic human motion from textual descriptions has rapidly emerged as a significant
research area. It has great potential for diverse applications, including virtual and augmented reality
experiences, immersive metaverse environments, video game development, and robotics.

Recently, the introduction of the large-scale HumanML3D [235]] dataset has catalyzed significant
progress in text-to-motion generation by establishing a standardized, kinematic-aware motion repre-
sentation. Earlier methods based on AutoEncoders [44] 4], GANSs [22], or RNNs [82] attempted to
model joints and kinematic rotations or joint and trajectory [} 78 5, [109} 55, [19], but struggled to
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produce high-fidelity motion. HumanML3D instead proposes to encode motion relative to the pelvis
and to the previous frame, enabling explicit modeling of intra-frame kinematics and inter-frame
transitions. This local-relative, kinematic-aware representation, combined with built-in redundancy
(non-animatable features such as incorrectly processed [[LO1] relative rotations, local velocities, and
foot contacts) as a form of data-level regularization [[66]], substantially simplifies training [12} 162, [66]]
and boosts the performance of these simple backbones. Recent diffusion-based methods 914119/ 143]
also adopt this representation for text-to-motion generation tasks as default, yielding state-of-the-art
performances. While later works have explored architectural improvements [[10, (90, [125/133| [122]],
generation speedups [[12} [15,[14]], and retrieval-based enhancements [120], the underlying representa-
tion has been largely inherited from HumanML3D [25] without much careful study.

However, this de facto representation introduces several fundamental limitations. First, although this
representation benefits earlier methods, the redundancy makes it difficult for diffusion models to
learn [66], often leading to underperformance in generated motion quality. Second, its inherently
relative nature is misaligned with the requirements of downstream tasks such as motion control
and temporal/spatial editing [[102, |42} [77]. These tasks demand motion generation that is not only
semantically meaningful but also aware of absolute joint locations, which are usually provided by
users, to enable precise control and intuitive motion editing. Attempts to inject absolute location
information into the existing local-relative representation have often resulted in overly complex
designs [52] and degraded generation fidelity [42, 102, |15 [14].

In this paper, we revisit the foundational question of motion representation for text-driven motion
generative models. We begin by demonstrating that the redundant, local-relative, kinematic-aware
formulation—commonly assumed to be essential—is not crucial for the performance of diffusion-
based models. Instead, we adopt a much simpler and long-abandoned non-kinematic representation
in text-to-motion methods: absolute joint coordinates in global space. Through careful analysis of key
design choices, we show that even with a simple Transformer [93] model (e.g. without UNet [33} [10]]
or altered attentions [10} [120]) and without additional kinematic losses, this simple formulation can
achieve significantly higher motion fidelity, improved text alignment, and strong scalability potential.

Furthermore, we show this simple representation naturally supports a range of downstream tasks,
including motion control and temporal/spatial editing, without requiring task-specific reengineering.
With inherent absolute location awareness, our formulation enables direct controllability by elim-
inating the need for relative-to-absolute post-processing, which often introduces errors, as well as
removing reliance on time-consuming classifier guidance from control signals during generation.

By discarding the constraints of redundant, local-relative, kinematic-aware representation designs,
our approach also opens the door to directly modeling motion from textual inputs beyond standard
human joint skeletons. Our formulation shows potential to generalize to other subclasses of absolute
coordinates, such as SMPL-H mesh vertices [59] in motion from text, which are largely neglected by
existing approaches but crucial toward having vivid, animatable human avatars. This lays a foundation
for future research in broader text-to-motion generation domains, enabling new applications across
diverse motion-related domains.

In summary, our contributions are as follows:

* We propose a new formulation for text-to-motion diffusion models using absolute joint coordi-
nates. Through systematic analysis of design choices, our method can achieve state-of-the-art
performance with simple Transformer [93]] backbones and no auxiliary losses.

* We demonstrate that this formulation naturally supports downstream motion tasks, including
motion control and temporal/spatial editing, achieving better performance and enabling seamless
integration without additional reengineering or time-costly guidance generation.

* We further show promising generalizes beyond joints to directly modeling other subclasses of
absolute coordinates, such as mesh vertices. This flexibility marks an important step toward
text-driven motion generation across broader domains and serves as a foundation for future
research and broader real-world applications.

2 Related Works

Human Motion Generation. Early approaches in text-driven motion generation [1}, 25| [70, [71],
89, [110] attempt to align the latent spaces of text and motion. However, these methods faced
significant challenges in generating high-fidelity motion due to the difficulty of seamlessly aligning
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two fundamentally distinct modalities. Inspired by the success of denoising diffusion models in
image generation [29,86], several pioneering works [91,143,[119,[12,[115] introduced diffusion-based
approaches for human motion generation. Subsequent works have primarily focused on architectural
innovations [3, 1116, (129,10, 133} 14} (90} 1125} 1122, [101]] or on improved training methodologies [S1,
1164120131195, 129161} [15L[120]. Other human motion generation works introduce Vector Quantization
(VQ), enabling discrete motion token modeling [26} 117,114} [77, 123\ 18|76l 127,150,137, 1211163} 123]
or explore autoregressive generation [[124, |11} 185} [125 190, 166} [101]]. Recent works also diversified
their focus, exploring human-scene/object interactions [69} 321450105, 74, 48| 9, 97, 21} [112}, [107,
64, 113} 1100, 138, 146, 158 [17, 126 96, [108, 160} [35, [106], human-human interaction [36} [104, 99|
20, 53| [7, [113]], stylized human motion generation [128| 24} 49], more datasets [103| 56], long-
motion generation [[131}[72]], shape-aware motion generation [92,|54]], fine-grained text controlled
generation [132} 34} [111] 84} 391 81} 188]], leveraging 2D data [40l 73 147]], as well as investigating
advanced architectures [122} [98]]. In contrast, our work revisits the underlying text-to-motion
representation itself. We show that adopting a simpler yet long-abandoned alternative: absolute joint
coordinates, even with a simple Transformer backbone and no additional constraints, can significantly
improve generation quality.

Controllable Text-to-Motion Generation. In addition to synthesizing motion purely from text
prompts, recent work has explored controlling motion generation with auxiliary signals such as
trajectories or editing constraints [42} (102} [15 14} [75/ 180, 94| 41]]. Early approaches such as Prior-
MDM [83] extended MDM [91] to support end-effector constraints. GMD [42] introduced spatial
control by guiding the diffusion process on the root joint trajectory, but required a re-engineered
motion representation specifically designed for the task. OmniControl and MotionLCM [102} |15]
generalized control to arbitrary joints by leveraging ControlNet [118]], but both still rely on relative
motion representations. Moreover, OmniControl heavily depends on classifier guidance from control
signals during generation; without it, motion quality degrades significantly. Input optimization-based
approaches [41, 75| [14] proposed directly optimizing the inputs to meet control objectives, but suffer
from high computational and time costs due to multi-round optimization and gradient accumulations,
making real-time applications impractical. In this work, we show that our proposed absolute joint
coordinate formulation enables superior performance without the need for task-specific reengineering
and time-consuming classifier guidance or inference-time optimization.

Mesh-Level Text-Driven Human Motion Generation. Previous works rarely perform direct
mesh vertex generation. Instead, prior methods [91} [12] [102] |42]] typically predict HumanML3D
representations and convert them to joint positions, followed by SMPL fitting [6]]. Other efforts in
related fields such as Human-Object Interaction (HOI), Human-Scene Interaction (HSI) and Dual-
Person motion generation have attempted to directly model SMPL parameters [32, 45| [21] 164} 46|
10041381 158, 1126, 196}, 1104] or joint rotations and translations [[74, 48, |112]], which are then applied to
meshes through standard skinning and rigging techniques. However, SMPL fitting is time-consuming
and prone to reconstruction errors, while directly modeling SMPL parameters or joint transformations
remains challenging and often results in unsatisfactory mesh quality[69} 46]. Moreover, even small
joint-level errors can be magnified when propagated to mesh vertices, degrading the visual fidelity of
the synthesized motion. Direct mesh vertex generation from textual inputs remains largely unexplored,
yet it is critical for achieving high-fidelity, visually realistic motion synthesis. In this work, we show
that with our absolute coordinate formulation, we can naturally extend to directly generating mesh
vertices from text and achieve strong performance.

Text-to-Human Motion Representation Early text-to-motion generation methods, often based
on AutoEncoders [44] 4] or GANs [22]], attempted to directly predict absolute joint positions [1]],
but struggled to produce realistic motions. Later approaches incorporated human kinematics by
predicting joint rotations [[78l 15 [109], combining joint positions with trajectory modeling [55] [19]].
However, these designs remained limited in producing high-fidelity and semantically aligned motions.
The HumanML3D [25]] representation addressed these challenges by encoding motion relative to the
pelvis and the previous frame, explicitly modeling intra-frame kinematics and inter-frame transitions.
Its local-relative, kinematic-aware design, with built-in redundancy [66, [101]] from features such
as relative rotations, local velocity, and foot contacts, substantially simplified training [[12} 62] and
quickly became the dominant choice for subsequent text-to-motion generation methodologies. In
this work, we demystify the significance of HumanML3D representation formulation and adopt a
simpler, long-abandoned non-kinematic formulation: absolute joint coordinates in global space. We
show that, with this design, our method achieves better performance using simple Transformer [93]]
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Figure 2: Overview of our proposed ACMDM. (a) Left: The raw/latent absolute coordinates
representation is patchified and processed through a sequence of ACMDM blocks. Right: Details of
ACMDM blocks, where we experiment with two conditioning variants: concatenation and AdalLN.
(b) ControlNet-augmented ACMDM for controllable motion generation: Structured control signals
are separately encoded and fused into the ACMDM generation process via additive residuals at each
ACMDM block, enabling the model to follow both semantical and spatial controlling constraints.

backbones without auxiliary losses, and naturally extends to direct modeling other subclasses of
absolute coordinates such as mesh vertices.

3 ACMDM: Absolute Coordinates Motion Diffusion Model

The majority of recent methods utilize the redundant, local-relative, and kinematic-aware motion
representation popularized by HumanML3D [25]]. However, this explicit inter-frame kinematic
modeling around the pelvis makes the generation prone to accumulating global drift errors through
frames, while the intra-frame relative formulation makes it difficult to incorporate absolute location
controlling signals for downstream tasks. In contrast, we propose adopting a much simpler but
long-abandoned alternative, absolute joint coordinates in global 3D space and show it makes human
motion generation easy.

We first introduce our proposed ACMDM in Section [3.1] that we will systematically investigate and
ablate in the experiments section. Next, in Section@], we describe how to extend ACMDM to con-
trollable motion generation through ControlNet integration without much task-specific engineering.
Finally, we show how ACMDM generalizes to direct mesh vertex motion generation in Section [3.3]

3.1 Absolute Joint Coordinates for Text-to-Motion Diffusion

Absolute Coordinates Representation. We define absolute joint coordinates at each frame as
Xi e RNi*3 where N. ; is the number of joints (e.g., 22 for the HumanML3D dataset), and each
joint is represented by its 3D global position (XYZ). This intuitive formulation naturally avoids
pelvis drift accumulation and facilitates direct controllability over spatial control signals. Previous
works generally avoided this representation due to concerns about generating unnatural, non-human-
like motions [102]. It was widely believed [102, [12} 62] that kinematic features were essential for
physically plausible motion synthesis. In the experiment section, we demonstrate that using redundant
kinematic features actually degrades motion generation quality, and that absolute joint positions alone
are sufficient to achieve high-fidelity and controllable motion generation.

Tokenizing Motion Representation. Absolute joint coordinates inherently preserve both spatial and
temporal structure of the motion data. Given a motion sequence input of shape (L, N;, din), where L
is the motion sequence length and d;, is the input feature dimension (3 for raw absolute coordinates),
we apply a 2D convolutional layer to transform this structured input into a sequence of 7" tokens
similar to ViT [[18]], each with hidden dimension d. The number of tokens 7" is determined by the
predefined patch size (Pr, Ps), where the convolution kernel size and stride are both set equal to

(Pr, Ps), resulting in T' = P—LT X % Importantly, we perform tokenization only along the spatial
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(joint) dimension while preserving the full temporal resolution (i.e., we define Pr = 1), as temporal
details are especially critical for motion modeling. In our design, we explore various patch sizes,
including 1 x 22,1 x 11, and 1 x 2, corresponding to different joint-wise granularities.

Motion Diffusion with Transformer. After tokenizing the absolute coordinate inputs, the resulting
token sequence is fed directly into Transformer for diffusion-based motion generation. Note that the
central goal of this work is not to advance model architecture for motion generation. Rather, we focus
on investigating the absolute coordinates motion representation. Therefore, we simply adopt a simple
Transformer similar to DiT [68]] and found it works sufficiently well.

To incorporate conditioning signals, we follow prior works [91} [117, 23| [77] 66\ 76} 12} [120] and
use a pretrained CLIP-B/32 [[79] text encoder to extract the textual embedding ¢, along with a
timestep embedder to process diffusion timestep ¢t. We explore two conditioning mechanisms
within our ACMDM design: (1) Concatenation, a commonly used method in prior text-to-motion
works [914 117} 23] (7776, 12], where condition vectors are appended along the sequence dimension;
and (2) AdaLLN, where the text and timestep embeddings modulate each block via adaptive layer
normalization, similar to image diffusion DiT [68]]. An illustration of these variants are shown
in Figure[2)(a). In line with recent best practices in Transformer models, we also adopt several modern
architectural components: Rotary Positional Embedding (RoPE) [87] and QK Normalization [28]] are
applied in the attention layers, and SwiGLU activations[67] are used in the feed-forward networks
(FFNs). We also investigate different denoising targets for training ACMDM, including predicting
Xq [29] (the original motion), € [29] (the added noise), and velocity [57]] v (under flow-matching
formulations). In our experimental analysis, we show that v prediction consistently yields the best
generation performance. All ACMDM variants are trained with a standard Lo reconstruction loss on
the diffusion objective. More details are provided in the supplemental material.

After processing through the motion diffusion Transformer, the output token sequence is linearly
projected to match the original shape. Specifically, a linear layer is applied to transform each token
from dimension d back to d;,, X Pr x Ps. The output is then reshaped to recover the original 2D
structure (i.e., (L, N;, din)) of the absolute joint coordinates.

Latent Motion Encoding with a Motion AutoEncoder. Optionally, we convert raw absolute
coordinates into latents using a motion autoencoder (AE) and perform motion diffusion then, which
leads to better generation fidelity as shown in the experiment section. Specifically, given a motion
sequence X"V ¢ REXNix3 3 2D ResNet-based encoder compresses it into a latent representation
x0 € RI>Nixdi where [ denotes the downsampled motion sequence length and d; is the dimension
of the motion latent. We keep the number of joints N; unchanged here. Tokenization is then
performed over the latent representations (so d;, = d;), whose output will be fed into the motion

diffusion Transformer. A decoder later can reconstruct the motion sequence XO0:N ¢ RLXN; X3 yig
nearest-neighbor upsampling based on the diffusion output. We explore a causal AE (i.e., convolution
kernels can only access previous frames), a non-causal AE, a VAE-based variant, and direct modeling
on raw absolute joint coordinates in the experimental section. All these motion AE variants are
trained with a simple smooth L; reconstruction loss. More details of all the AE variants are provided
in the supplemental material.

Scaling ACMDM. We scale the model capacity by increasing the motion diffusion Transformer
layer’s depth and width. Specifically, we follow a simple scaling strategy where the number of
Transformer layers is set equal to the number of attention heads. We define four model sizes:
ACMDM-S, ACMDM-B, ACMDM-L, and ACMDM-XL, corresponding to configurations with 8, 12,
16, and 20 layers and attention heads, respectively. This consistent scaling scheme enables systematic
exploration of ACMDM’s capacity and its effect on generation quality. In addition, we also vary the
patch sizes for tokenization. We name different model variants according to their model and patch
size (for tokenization); e.g., ACMDM-XL-PS2 refers to the XL variant with a patch size of 1 x 2.

3.2 Adding Controls to Absolute Joint Coordinates Generation

Most prior methods face significant challenges in controllable motion generation due to their reliance
on local-relative representations, which naturally misalign with user-provided absolute coordinates
control signals. In contrast, our absolute coordinates representation removes this misalignment,
enabling seamless integration of control without classifier guidance [L6] and input optimization [41].
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To enable controllable text-driven motion generation, such as trajectory conditioning and tempo-
ral/spatial editing with absolute joint coordinates, we follow prior works [[102} [15] [14] and integrate
a ControlNet [118]-style module into the ACMDM architecture. As shown in Figure [2] (b), the
noised absolute coordinate latent is first tokenized via a 2D convolutional layer and then fed into
both the main ACMDM and a parallel ControlNet module. At the same time, textual and timestep
conditions are encoded and provided to both ACMDM and the ControlNet as conditioning embed-
dings. Separately, structured control signals (e.g., joint trajectories or partial-body constraints) are
processed through a dedicated ControlNet condition encoder. The ControlNet receives both the
tokenized noised inputs as well as control-specific features in additive combination with the textual
and timestep embeddings. These fused features generate residuals, which are injected into the main
ACMDM backbone at each layers via additive fusion. This modulation enables the model to follow
both semantic instructions and structural constraints. In addition to the standard Lo reconstruction
loss on the diffusion target, we also apply an Lo loss between the model’s prediction and the control
signal. We also freeze the parameters of the main ACMDM and only train the ControlNet branch,
which is initialized as copies of the main ACMDM blocks, similar to prior works [[118},[102, [15}14].

3.3 Generating Meshes with Absolute Coordinates Representation

Towards achieving vivid, animatable human avatars, joint representations are insufficient; when
translated to meshes through fitting models, they often result in shaky body parts, unnatural hand
motions, and missing flesh dynamics [911 [12} 15, [14]]. Direct motion generation at the mesh level,
however, largely falls behind joint counterparts, mainly due to the complexity of modeling mesh
representations. Here, we show that our absolute, non-kinematic representation naturally extends to
mesh vertices, which is seamlessly supported by ACMDM without major architectural changes.

In specific, we explore direct motion generation of SMPL-H [59]] mesh vertices, where each frame
is represented as a set of absolute 3D vertex coordinates with shape (L, N,,, 3), where N, = 6890
denotes the number of vertices. Unlike absolute joint coordinates, where the number of joints IV; is
typically small, directly training diffusion models on full-resolution mesh data with N,, = 6890 is
computationally prohibitive and unstable. To address this, we incorporate a 2D mesh autoencoder
based on the Fully Convolutional Mesh Autoencoder [130]. The encoder spatially compresses
the input mesh sequence (L, N,,3) into a latent representation of shape (L, n,,d,), where we
set n,, = 28 for diffusion modeling efficiency and reconstruction quality. Once mesh vertices are
encoded, we reuse the ACMDM framework to perform motion diffusion in this latent mesh space. The
resulting sequence is tokenized using patch sizes of 1 x 28 and processed with the same formulation
as our joint-based ACMDM. In the experiment section, we show the flexibility and scalability of our
approach for high-fidelity motion generation over mesh vertices as well in addition to human joints.

4 Experiment

4.1 Datasets, Training Setups, and Evaluation Protocols

Datasets. To fairly evaluate different ACMDM designs and compare against prior models, we
adopt the widely used HumanML3D [25]] benchmark for standard text-to-motion generation, down-
stream tasks such as text-driven trajectory-controlled generation and upper-body editing, and direct
text-to-SMPL-H mesh motion generation. We also include text-to-motion evaluations on KIT-
ML [78]], reported in the Appendix. HumanML3D contains 14,616 motion sequences sourced from
AMASS [65]] and HumanAct12 [27], each paired with three textual descriptions (44,970 annotations
in total). All motions are standardized to 20 FPS and capped at 10 seconds. It is augmented via
mirroring and split into training, validation, and test sets using a standard 80%/15%/5% split.

Training Setups. All ACMDM variants are trained using the AdamW optimizer with 5; = 0.9 and
B2 = 0.99. We use a batch size of 64 with a maximum sequence length of 196 frames. The learning
rate is initialized at 2 x 10~% and linearly warmed up over the first 2,000 steps. We apply a learning
rate decay by a factor of 0.1 at 50,000 iterations during the training of 500 epochs. We also use an
exponential moving average (EMA) of model weights to improve training stability and performance.
During inference, we apply classifier-free guidance (CFG) [30]] = 3 for text-to-motion generation and
upper-body editing, 2.5 for trajectory control, and 4.5 for text-to-SMPL-H mesh motion generation.
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Table 1: Ablation study of the design choices of ACMDM on the HumanML3D dataset. The
results indicate that kinematic-aware redundancy is not necessary. Instead, absolute coordinates
motion representation can achieve high-quality motion generation with AdaLN conditioning, the
velocity diffusion objective (v), and latent space modeling.

Motion | Conditioning |~ Motion ! Diffusion | FID| ! R-Precision | Matching|
Representation | Mechanism | AE | Objective | | Toplft | Top2f | Top3t |
+.020 +.002 +.003 +.002 - +.009
Absolute+Redundancy Concat X Xeo gjggétozso gjggét.oos gjgggtms %“ggt.om i:?ggi.ozs
v 0.276+006 | (0.445+002 | 0.634+002 | 0,738+ 002 | 3 613+ 008
X0 0.969%:029 | 0.356+-003 | 0.539+-004 | ( 648+-003 | 4 36:+.013
Absolute Concat X € 0.419%-013 0.436%-002 0.630%-003 0.736+-003 3.717+-013
v 0.208+012 | 0.451+093 | 0.643+003 | 0,751+ 002 | 3 544+010
+.004 =+.002 +.002 +.002 Q +.012
Absolute AdaLN X Xeo gjggtom gjiggt.ooz gjgggt.o% gj%gt.ooz g:gigi.oog
v 0.121+006 | (,502+002 | 0.692+003 | 0.789+003 | 3 304+ 008
27+.007 2+.002 n~£.002 +.003 « +.011
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Absol AdarN | Non-Causal VAE v 0.178%:006 | 0.497£:002 1 0 687+-008 | (. 785+.004 | 3 393:+.010
solute a Non-Causal AE v 0.150+:095 | 0.502%:003 | 0,693+-003 | 0787003 | 3 996+-010
Causal VAE v 0.1151905 | (.504+902 | (.697+-002 | (.795%:003 | 3.278+011
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MDM
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Figure 3: Visual comparisons of generated motion between ACMDM and state-of-the-art
methods. ACMDM generates more realistic motion that accurately follows the textual condition.

Evaluation Metrics. We adopt the robust evaluation framework proposed by [66], focusing on
essential, animatable motion features. Following [25,166], we report: (1) R-Precision (Top-1/2/3) and
Matching (semantic alignment with captions); (2) FID (distribution similarity); (3) MultiModality
(motion diversity per prompt); and (4) CLIP-Score (cosine similarity between motion and caption
embeddings). For trajectory-control evaluations [42], we additionally report Diversity (variability
within generated motions), Foot Skating Ratio, Trajectory Error, Location Error, and Average Joint
Error (accuracy of controlled joints at keyframes). Metrics are averaged over five levels of control
intensity (1%, 2%, 5%, 25%, 100%). During training, control intensity levels are randomly sampled.
For direct SMPL-H mesh generation, we also report Laplacian Surface Distance (LSD) to assess
mesh structural preservation relative to the ground-truth T-pose. More metric details are in Appendix.

4.2 Ablating ACMDM Designs

Necessity of Kinematic-aware and Redundant Motion Representation. Prior attempts [[102]
of text-to-absolute-coordinate motion generation adopt InterGen [52]’s representation with heavy
kinematic-aware redundancy and the x( objective, but result in unrealistic motion. To systematically
analyze this, in the top two sections of Table[I} we train an ACMDM-S-PS22 variant. We match
the model size and flattened spatial embedding style used in prior works in two settings: one
using absolute coordinates with kinematic-aware and redundant representation (i.e., InterGen’s
representation), and another using plain absolute coordinates (our proposed). The results show that
while the previously widely adopted xy-prediction diffusion benefits slightly from the redundancy,
velocity prediction (v) with plain absolute coordinates (our proposed) achieves better performance.
Notably, by modeling plain absolute coordinates with v prediction, ACMDM achieves a FID that
is 0.563 lower and an R-Precision Top-3 score that is 0.013 higher compared to redundant xg
prediction. These results demonstrate that with a more suitable diffusion objective (v prediction),
and the previously assumed necessary kinematic-aware redundancy is not required for achieving
high-quality motion generation. Therefore, for the rest of the paper, all ACMDM models will adopt
the pure absolute coordinates representation without any kinematic-aware or redundant features.
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Table 2: Quantitative text-to-motion evaluation. We repeat the evaluation 20 times and report the
average with 95% confidence interval. We use bold face / underline to indicate the best/2™ results.

Methods ‘ FID, } Top T R-P;zc;iséon? Top3 } Matching) | MModality? | CLIP-score?
Real 0.000%:000 | 0503+:002  (,696+:001 (7951002 | 3 ,944+.005 0.639+-001

MDM-50Step [91] 0.518F 03204405007 0,636 00 0.742F 00T | 364050 | 3604031 | 05785003
MotionDiffuse [I19] | 0.778%905 | (0.450%:006  (,641%005 (0, 753%005 | 3490+:023 | 3179+.046 | ( GpG+-004
ReMoDiffuse [120] 0.883+021 | (0.468+003  (,653F003 (. 754E005 | 3414+.020 | 9 703+154 | (,621+-003

MLD++ [14J 2.027i.(]21 0.5001.[)(]3 0_691j:,(1[)2 0.789i'[)01 3_22011)()8 1_924j;(?65 0_639j:.0[)2
MotionLCM V2 [14] | 2.267+023 | 0.501%002 (693002 (. 790+002 | 3192+:009 | 1 780+062 | ( g40+-003
MARDM [66]—6 0.1 16i.004 0‘4921.005 O.690i'005 0‘7901.005 3_349i.()10 2_470i.()53 0_637i.()(J5
MARDM [66]-v 0.114F007 | .500%:004 (695003 (7955003 | 3 970+009 | 9 931+071 0.642+:002

ACMDM-S-PS22 0.109%0% | 0.508F09Z  0.701F908  (.798F U9 | 3.253FU0 | 2156001 | (.642% 00T
ACMDM-XL-PS2 | 0.058+:004 | 0 522+002 ( 713+.002 (g7+.002 | 3205008 | 9 (77+083 | ( g52+ 001

Concatenation vs. AdaLN. In the third section of Table|l} we switch from the widely adopted
concatenation-based conditioning to AdaLN conditioning with an ACMDM-S-PS22 variant with
pure absolute coordinates. Our results show that across all diffusion objectives, better conditioning
mechanism (AdalLN) lead to significant improvements. Notably, with v prediction, ACMDM achieves
an FID of 0.121 and an R-Precision Top-3 score of 0.789, substantially outperforming concatenation-
based conditioning. These findings demonstrate that an effective conditioning mechanism is a key
factor in achieving high-quality motion generation. Therefore, for all subsequent experiments, we
adopt AdalLN-based conditioning mechanism across all ACMDM models.

Raw Absolute Coordinates vs. Latent Space. In the fourth section of Table [I} we switch
from directly modeling raw absolute coordinates to a latent space. Our results show that la-
tent space modeling further improves generation quality while also offering faster inference
for v prediction, achieving the best FID of 0.109 and R-Precision Top-3 score of 0.798

We additionally compare different AutoEncoder o1

variants: Causal-AE, Non-Causal-AE, and VAE ' S-ps22 Lps22
in the last section of Table E} Among them, 0.11 N . el ® e
Causal-AE achieves the best overall perfor- 010 ' . o oo
mance. Therefore, for all subsequent experi- ©® 8ps2 @ xups2
ments, we adopt Causal-AE as our default setup. 0 0.09

Since velocity (v) prediction consistently yields n 0.08

the best performance across all settings, we also ®q

adopt it as the default diffusion objective. 0.07 ®
Scaling Model and Decreasing Patch Sizes. 0.06 i @
In Figure ] we train 12 ACMDM models over 0.05

all model configs (S, B, L, XL) and patch sizes 0:305 0508 °'51§_F§’,;§§?si§',?#50p°;ili 0:520 0523

(1x22,1x11,1 x 2). In all cases, we find that
increasing model size and decreasing patch size
lead to improved text-to-motion generation per-
formance both with and without CFG across all
metrics. Notably, ACMDM-XL-PS2 achieves
an FID of 0.058 and an R-Precision Top-1 score
of 0.522, outperforming the most recent state-
of-the-art MARDM by 0.056 in FID and 0.022
in R-Precision Top-1. These findings demonstrate the effectiveness of scaling model capacity and
decreasing patch sizes with absolute joint coordinates. We include detailed results in Appendix.

Figure 4: Scaling of ACMDM with model ca-
pacity and decreasing patch size. We use red
for S, orange for B, green for L, and blue for XL,
with color gradients indicating decreasing patch
sizes. ACMDM exhibits strong scalability, with
performance consistently improving as model size
increases and patch size decreases.

4.3 Comparison to State-of-the-Art Text-to-Motion Generation Methods

We present the quantitative comparison between our method and state-of-the-art text-to-motion gener-
ation baselines in Table[2] as well as qualitative comparison in Figure [3|and Appendix. As observed,
our method achieves superior performance across multiple key metrics, including FID, R-Precision,
Matching Score, and CLIP-Score. Compared to existing approaches, ACMDM demonstrates a
significantly stronger ability to generate high-fidelity, semantically aligned motions that closely
follow textual instructions. Notably, even for our smallest ACMDM variant, ACMDM-S-PS22, it
outperforms all prior state-of-the-art methods. Larger ACMDM models, such as ACMDM-XL-PS2,
further amplify the performance gains across all evaluation metrics.
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Table 3: Quantitative text-conditioned motion generation with spatial control signals and upper-
body editing on HumanML3D. In the first section, methods are trained and evaluated solely on
pelvis controls. In the middle section, methods are trained on all joints and evaluated separately on
each controlled joint. Only average results are reported for brevity. We include details in Appendix.
Last section presents upper-body editing results. bold face / underline indicates the best/2™ results.

ing Classifi R-Precisi . . Foot Skati .
Cor}l;ionl:lnc ‘ Methods ‘ AITS| ‘ Gl;‘i?ijnce; FID| ’[fsrc)l;mn Diversity— ‘ O%aﬁ;lmg ‘ Traj. err.) ‘ Loc. err.] ‘ Avg. err.)
| GT | — | - ]0000]| 079 | 10455 | - | 0000 | 0000 | 0.000
MDM [91 16.34 X 1.792 0.673 9.131 0.1019 0.4022 0.3076 0.5959
Trai PriorMDM [83 20.19 X 0.393 0.707 9.847 0.0897 0.3457 0.2132 0.4417
E‘)am GMD [42] 137.63 v 0.238 0.763 10.011 0.1009 0.0931 0.0321 0.1439
n OmniContol [102 81.00 v 0.081 0.789 10.323 0.0547 0.0387 0.0096 0.0338
Pelvis MotionLCM V2+CtrINet [14. 0.066 X 3.978 0.738 9.249 0.0901 0.1080 0.0581 0.1386
ACMDM-S-PS22+CtrINet 2.51 X 0.067 0.805 10.481 0.0591 0.0075 0.0010 0.0100
Train On OmniContol [102 81.00 v 0.126 0.792 10.276 0.0608 0.0617 0.0107 0.0404
All Joints MotionLCM V2+CtrINet [14. 0.066 X 4.504 0.715 9.230 0.1119 0.2740 0.1315 0.2464
(Average) ACMDM-S-PS22+CtrINet 2.51 X 0.070 0.803 10.526 0.0596 0.0117 0.0019 0.0197
. Classifier R-Precision | R-Precision | R-Precision S A
Methods ‘ AITS] Guidance ‘ FID| ‘ Top | Top 2 Top 3 ‘ Matching| ‘ Diversity— ‘
U Bod MDM (91 16.34 X 1.918 0.359 0.556 0.654 4.793 9.210
PPErbody | OmniControl {119 81.00 v 0.909 0.428 0.614 0.722 3.694 10.207
Edit MotionLCM V2+CtrINet [119 0.066 X 3.922 0.404 0.592 0.692 5.610 9.309
ACMDM-S-PS22+CtrINet 2.51 X 0.076 0.532 0.719 0.820 3.098 10.586

Table 4: Quantitative results for direct text-to-SMPL-H mesh motion generation on HumanML3D.

Size |  Transformer | FID| | R-Precision Top 11 | R-Precision Top 21 | R-Precision Top 3 1 | Matching] | CLIP-score? | LSD)

S | 8head512dim | 0211005 | 0478%004 | 0682F003 | 0784%008 | 3.405F011 | 0.620%9°2 | 0.0026F0002
B | 12head 768 dim | 0.181+:903 | 0.490%:003 | 0.691%:003 | 0.783+:002 | 33455010 | (.631%001 | 0.0024+0002
L | 16head 1024 dim | 0.160%%°* |~ 04970% | 0696002 | 0790%02 | 3341F009 | 0,633F0 | 0.0025% 000!
XL | 20 head 1280 dim | 0.139%:003 | 0.498+003 | 0704003 | = 0.794%003 | 3.309%-007 | 063600 | 0.0025%0001

4.4 Comparison to State-of-the-Art Controllable Motion Generation Methods

We present quantitative comparisons between our method and state-of-the-art methods on text-
driven trajectory control and upper-body editing in Table |3| For the trajectory control task, prior
works [42} (102} [14] have shown that inference-time classifier guidance is crucial for achieving strong
control performance. However, we show that even with our smallest ACMDM variant that matches to
baseline model sizes and embedding formats, our absolute coordinate formulation achieves superior
motion fidelity and control accuracy without the need for time-consuming classifier guidance from
control signals. This results in significantly faster generation compared to guidance-dependent
approaches (2.51 v.s. 81.0 seconds). For the upper-body editing task, we follow the evaluation
protocol proposed by [[77, [75], where we fix the pelvis, left foot, and right foot joints and edit the
upper body motion according to textual prompts. Our method achieves substantially better generation
quality across all evaluation metrics, validating the effectiveness of our proposed approach.

4.5 Evaluations on Absolute Mesh Vertex Coordinates Motion Generation

We evaluate ACMDM on SMPL-H absolute mesh vertex coordinates motion generation in Table 4]
We train and compare four ACMDM model sizes—S, B, L, and XL, with the patch size of 1 x 28.
Despite the significantly increased complexity of modeling full mesh sequences compared to joint
sequences, our ACMDM models still achieve strong performance. Notably, all variants achieve
results competitive with the best text-to-joint generation models, while operating directly on high-
dimensional vertex spaces. This highlights the effectiveness and flexibility of our absolute coordinates
motion representation in handling broader motion generation tasks beyond human joints.

5 Conclusion

In conclusion, we presented ACMDM, a novel text-driven motion diffusion framework built on an
absolute coordinates motion representation. We run extensive analysis to identify an optimal setting,
including the velocity prediction diffusion objective, optimized conditioning mechanisms (AdaLN),
and latent motion representation. Our model naturally supports downstream control tasks, which
removes the misalignment between local motion representation and absolute controlling, and also
generalizes to direct SMPL-H mesh vertices motion generation. Extensive experiments demonstrate
that ACMDM achieves superior performance and scalability across text-to-motion benchmarks.
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Justification: The datasets we used are open-source, and we will include open-sourced
access to code in the camera-ready version of the paper.
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* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 4 and the Appendix, we disclose all details for training and testing
necessary to understand the results

Guidelines:

* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report average results of multiple runs in our experimental section. Our
paper does not report error bars.
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* The answer NA means that the paper does not include experiments.
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide experiments compute resources in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Research is conducted in the paper conforms with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our paper is not highly related to societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: CC-BY 4.0. And we referenced the works that we used to implement our code.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Documentation of new assets is not applicable in our paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Core method development in this research does not involve LLMs as any
important, original, or non-standard components in our paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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