
Efficient multi-prompt evaluation of LLMs

Felipe Maia Polo 1 Ronald Xu 2 3 Lucas Weber 4 Mı́rian Silva 2 5 Onkar Bhardwaj 2 Leshem Choshen 2 3

Allysson Flavio Melo de Oliveira 2 Yuekai Sun 1 Mikhail Yurochkin 2 6

Abstract
Most popular benchmarks for comparing LLMs
rely on a limited set of prompt templates, which
may not fully capture the LLMs’ abilities and
can affect the reproducibility of results on leader-
boards. Many recent works empirically verify
prompt sensitivity and advocate for changes in
LLM evaluation. In this paper, we consider the
problem of estimating the performance distribu-
tion across many prompt variants instead of find-
ing a single prompt to evaluate with. We intro-
duce PromptEval, a method for estimating perfor-
mance across a large set of prompts borrowing
strength across prompts and examples to produce
accurate estimates under practical evaluation bud-
gets. The resulting distribution can be used to
obtain performance quantiles to construct vari-
ous robust performance metrics (e.g., top 95%
quantile or median). We prove that PromptEval
consistently estimates the performance distribu-
tion and demonstrate its efficacy empirically on
three prominent LLM benchmarks: MMLU, BIG-
bench Hard, and LMentry. For example, PromptE-
val can accurately estimate performance quantiles
across 100 prompt templates on MMLU with a
budget equivalent to two single-prompt evalua-
tions. Please check Maia Polo et al. [26] for the
full paper.

1. Introduction
In recent years, the rapid progress of large language mod-
els (LLMs) has significantly influenced various fields by
enhancing automated text generation and comprehension.
As these models advance in complexity and functionality,

*Equal contribution 1Department of Statistics, University of
Michigan, USA 2IBM Research 3MIT 4Department of Transla-
tion and Language Sciences, University of Pompeu Fabra, Spain
5Department of Computer Science, Federal University of Minas
Gerais, Brazil 6MIT-IBM Watson AI Lab. Correspondence to:
Felipe Maia Polo <felipemaiapolo@gmail.com>.

Efficient Systems for Foundation Models Workshop, International
Conference on Machine Learning (ICML), Vienna, Austria. 2024.

5 25 50 75 95
Quantile

0.00

0.02

0.04

0.06

0.08

Es
tim

at
io

n
er

ro
r

MMLU

Budget
×1
×2
×3
×4

Figure 1: Average estimation error for performance quan-
tiles across 100 templates given a limited budget (in multi-
ples of one-template MMLU evaluations).

a key challenge that arises is their robust evaluation [30].
Common evaluation methods, which often rely on a single
or limited number of prompt templates, may not adequately
reflect the typical model’s capabilities [47]. Furthermore,
this approach can lead to unreliable and inconsistent rank-
ings on LLM leaderboards, as different models may perform
better or worse depending on the specific prompt template
used. An ideal evaluation framework should minimize de-
pendence on any single prompt template and instead provide
a holistic summary of performance across a broad set of
templates. Mizrahi et al. [28], for example, suggests using
summary statistics, such as the average performance across
many templates, as a way to compare the abilities of differ-
ent LLMs. However, the main drawback of this method is
the high computational cost when dealing with numerous
templates and examples.

We introduce PromptEval, a method for efficient multi-
prompt evaluation of LLMs. With a small number of evalu-
ations, PromptEval estimates performance across different
prompt templates. Our approach is grounded in robust the-
oretical foundations and utilizes well-established models
from the fields of educational assessment and psychomet-
rics, such as Item Response Theory (IRT) [6; 41; 5; 25].
Our method is based on a parametric IRT model that allows
borrowing strength across examples and prompt templates
to produce accurate estimates of all considered prompts
with an evaluation budget comparable to evaluating a sin-

1

Efficient multi-prompt evaluation of LLMs

gle prompt. In Figure 1, we demonstrate the ability of our
method to jointly estimate various performance quantiles
across 100 prompt templates with evaluation budget rang-
ing from one to four times of a conventional single-prompt
evaluation on MMLU [16].

Performance distribution across prompts can be used to ac-
commodate various contexts when comparing LLMs [8].
For example, it can be used to compute mean as suggested
by Mizrahi et al. [28]. One can also use performance dis-
tributions directly to compare LLMs via various notions
of stochastic dominance for risk-sensitive scenarios [29].
Here we primarily focus on the full distribution and its
quantiles as they provide a flexible statistic that can inform
decisions in varying contexts. For instance, a typical model
performance corresponds to a median (50% quantile), 95%
quantile can be interpreted as performance achievable by
an expert prompt engineer, while 5% quantile is of interest
in consumer-facing applications to quantify low-end per-
formance for a user not familiar with prompt engineering.
We also demonstrate (Appendix H) how our method can be
used to improve best prompt identification [37]. Our main
contributions are:

• We propose (§3) a novel method called PromptEval
which permits efficient multi-prompt evaluation of LLMs
across different prompt templates with a limited number
of evaluations.

• We theoretically show (§I) that PromptEval has desirable
statistical properties such as consistency in estimating
performance distribution and its quantiles.

• We practically demonstrate (§4) efficacy of PromptEval
in estimating performance across 100+ prompts and find-
ing the best-performing prompt for various LLMs using
data derived from three popular benchmarks: MMLU
[16], BIG-bench Hard (BBH) [40], and LMentry [11].

• We conduct the first large-scale study of prompt sensi-
tivity of 15 popular open-source LLMs on MMLU. We
present our findings based on evaluating 100 prompt tem-
plates in Appendix K and will release the evaluation data.

In Appendix A, we talk in detail about related work.

2. Problem statement
In this section, we describe the setup we work on and what
our objectives are. Consider that we want to evaluate a large
language model (LLM) in a certain dataset composed of
J examples (also known as questions or items in the lit-
erature) and each one of the examples is responded to by
the LLM through prompting; we assume that there exists
I different prompt templates that can be used to evaluate

the LLM. After the prompt template i ∈ I ≜ [I] and ex-
ample j ∈ J ≜ [J] are channeled through the LLM, some
grading system generates a correctness score Yij ∈ {0, 1},
which assumes 1 when the prompt template i and example
j jointly yield a correct response and 0 otherwise1. For each
one of the prompt templates i ∈ I, we can define its perfor-
mance score as Si ≜ 1

J

∑
j∈J Yij . The performance scores

Si’s can have a big variability, making the LLM evaluation
reliant on the prompt choice. To have a comprehensive
evaluation of the LLM, we propose computing the full dis-
tribution of performances and its corresponding quantile
function, i.e.,

F (x) ≜ 1
I

∑
i∈I 1[Si,∞)(x) (2.1)

and Q(p) ≜ inf{x ∈ R : F (x) ≥ p}.

The main challenge in obtaining this distribution is that it
can be very expensive since the exact values for the perfor-
mance scores Si’s require I ·J evaluations. In this paper, we
assume that only a small fraction of evaluations is available,
e.g., < 5% of the total number of possible I · J evaluations,
but we still aim to accurately estimate the performance dis-
tribution and its quantiles. More concretely, we assume
the correctness scores Yij’s are only evaluated for a small
set of indices E ⊆ I × J ; in compact notation, we define
YE ≜ {Yij}(i,j)∈E . Here, the letter E stands for evaluations.
Using the observed data YE , our main objective is to esti-
mate the performance scores distribution F (resp. quantile
function Q), i.e., computing a function F̂ (resp. Q̂) that is
close to F (resp. Q).

3. Performance distribution and quantiles
estimation

3.1. The correctness model

We assume the observations Yij’s are independently
sampled from a Bernoulli model parameterized by
prompt/example-specific parameters. That is, we assume

Yij ∼ Bernoulli(µij), (3.1)

where µij denotes the mean of the Bernoulli distribution
specific to prompt format i and example j. We can write
µij = µ(θi, βj), where θi’s are prompt-specific parameters,
βj’s are example-specific parameters and µ is a function
that maps those parameters to the Bernoulli mean. This
probabilistic model is very general and comprehends factor
models such as the large class of Item Response Theory
(IRT) models [6; 41; 5; 25]; as we will see, our model
can be seen as a general version of an IRT model. For
generality purposes, we assume that the parameters θi’s and
βj’s can be written as functions of prompt-specific (xi’s)

1In some cases, the correctness score may be a bounded number
instead of binary – see Appendix D.

2

Efficient multi-prompt evaluation of LLMs

and example-specific (zj’s) vectors of covariates. That is,
we assume θi = fψ(xi) or βj = gγ(zj), where ψ and γ are
global parameters that can be estimated. These covariates
can be, for example, embeddings of prompt templates in
the case of xi’s and some categorization or content of each
of the examples in the case of zj’s. In this work, we adopt
µ(θi, βj) = σ(θi − βj) = σ(fψ(xi) − gγ(zj)), where σ
denotes the standard logistic function and the functions fψ
and gγ have their image in R. That is, our model assumes
that

P(Yij = 1;ψ, γ) =
1

1 + exp[−(fψ(xi)− gγ(zj))]
. (3.2)

The functions fψ and gγ can be represented with neural
networks. On the simpler side, one could just assume fψ
and gγ are linear, that is, θi = ψ⊤xi or βj = γ⊤zj . We
consider that, in some cases, a constant can be embedded
in xi in order to include an intercept in the model. When
xi and zj are one-hot encoded vectors, i.e., vector of zeros
but with 1’s on the entries i and j, the model in (3.2) reverts
to a popular IRT model known as the Rasch model [15; 7],
which is widely used in fields such as recommendation sys-
tems [39] and educational testing [9]. One major limitation
of the basic Rasch model is that the number of parameters is
large, compromising the quality of the estimates for ψ and γ
when either the number of prompt formats I or the number
of examples J is large and |E| is small, i.e., only a few evalu-
ations are carried out. This degradation in the quality of the
estimates can directly affect the quality of the performance
distribution estimates. Finally, we fit the parameters ψ and
γ, obtaining the estimates ψ̂ and γ̂, by maximizing the log-
likelihood of the observed data (negative cross-entropy loss),
i.e.,

(ψ̂, γ̂) ∈ argmax
ψ,γ

∑
(i,j)∈E Yij logP(Yij = 1;ψ, γ)

+ (1− Yij) log (1− P(Yij = 1;ψ, γ)) .
(3.3)

Realize that fitting the model with linear/affine fψ and gγ ,
including the Rasch model case2, reduces to fitting a logistic
regression model with xi and zj as the covariates. In the
experiments Section 4, we explore some different options
of covariates for both templates and examples.

3.2. Performance distribution and quantiles estimation
using the correctness model

The model in (3.1) can be naturally used for performance
estimation. That is, after observing YE , the best approxima-
tion (in the mean-squared-error sense) for the performance
of prompt format i ∈ I , Si, is given by the following condi-

2For a detailed fitting procedure in the Rasch model case, please
check Chen et al. [7].

tional expectation

E[Si | YE] =
λi
|Ji|

∑
j∈Ji

Yij +
1− λi
|J \ Ji|

∑
j ̸∈Ji

µij

where Ji ≜ {j ∈ J : (i, j) ∈ E} and λi = |Ji|/J .
In practice, computing E[Si | YE] is impossible because
the parameters θi’s and βj’s are unknown. We can, how-
ever, use a plug-in estimator for the conditional expectation
using their maximum likelihood estimators, changing µij
for σ

(
fψ̂(xi) − gγ̂(zj)

)
. The basic version of this estima-

tor, when no elaborate covariates (e.g., embeddings) are
included, is known as the Performance-IRT (pIRT) estima-
tor [31]. We can apply our extended version of pIRT, which
we call X-pIRT, to estimate the performance distribution
across prompt templates. After observing YE and fitting
(ψ̂, γ̂), we can compute Ŝi ≜ Ê[Si | YE] for all i ∈ I . Then,
we define our estimators for the distribution of performances
and its corresponding quantile function 2.1 as F̂ and Q̂ by
substituting Si by Ŝi in (2.1). We name the procedure of
obtaining F̂ and Q̂ as PromptEval and summarize it in Algo-
rithm 1. We include details on how to sample E in Appendix
B.

Algorithm 1: PromptEval
1 Input: (i) YE , (ii) covariates xi’s and zj’s.
2 Output: Estimates for the performances distribution and its

quantile function (2.1).
3 Fit ψ and γ using observed scores YE and covariates xi’s and

zj’s using maximum likelihood (3.3).

4 For each i ∈ I, compute Ŝi = Ê[Si | YE] using X-pIRT.

5 Compute estimates F̂ (·) ≜ 1
I

∑
i∈I 1[Ŝi,∞)(·) and

Q̂(·) ≜ inf{x ∈ R : F̂ (x) ≥ ·}.

6 return F̂ and Q̂.

4. Assessing multi-prompt evaluation
strategies

General assessment We assess the performance distribu-
tion and quantile function estimation methodology intro-
duced in §3 in estimating the performance of LLMs and
different prompt formats on data from three popular bench-
marks. For a given LLM and a dataset, we consider two
evaluation steps. First, we estimate some quantiles of inter-
est (e.g., 5/25/50/75/95-th) for the performance distribu-
tion across prompt formats and compare them with the true
quantiles, that is, for some p ∈ [0, 1], we use |Q(p)− Q̂(p)|
to measure the quality of our estimations. Second, we com-
pare the full performance distribution with the estimated
distribution, i.e., in this case, all quantiles are considered. To
compare the full performance distribution F and its estimate
F̂ , both defined in §3, we use the Wasserstein 1-distance

3

Efficient multi-prompt evaluation of LLMs

which is equivalent to the average quantile estimation error
in this case, i.e., 1

I

∑I
i=1 |S(i)−Ŝ(i)|, where S(i) (resp. Ŝ(i))

is the i-th smallest value in {Si}i∈I (resp. {Ê[Si | YE]}i∈I).
The second analysis is presented in Appendix F

Data We use data derived from three popular benchmarks:
MMLU [16], BIG-bench Hard (BBH) [40], and LMentry
[11]. In the following, we give more details about each one
of the used datasets.

• MMLU is a multiple choice QA benchmark consisting
of 57 subjects (tasks) comprising approximately 14k ex-
amples. We ran 15 different open-source LLMs (includ-
ing different versions of Llama-3 [27], Mistral [17], and
Gemma [14]) combined with 100 different prompt vari-
ations for each one of the MMLU tasks. We found that,
within each one of the MMLU tasks, prompt templates
can have great variability in their performances, mak-
ing within-task analysis most suitable for assessing our
method. More details and analysis of the collected data
can be found in Appendices J and K.

• BIG-bench Hard (BBH) is a curated subset of BIG-bench
[38], containing challenging tasks on which LLMs under-
perform the average human score. For BBH, we use the
evaluation scores released by [28]. The evaluation data
includes 11 open-source LLMs combined with a different
number of prompt variations, ranging from 136 to 188
formats, for 15 tasks containing 100 examples each.

• LMentry consists of simple linguistic tasks designed to
capture explainable and controllable linguistic phenom-
ena. Like BBH, we use data generated by [28]. The
authors made available the full evaluation data from 16
open-source LLMs combined with a different number of
prompt variations, ranging from 226 to 259 formats, for
10 tasks containing from 26 to 100 examples each.

Methods and baselines We consider different variations
of the model presented in (3.2) coupled with Algorithm 1;
for all variations, we use linear fψ and gγ . The most basic
version of the model in (3.2) assumes xi and zj are one-hot
encoded vectors, i.e., vector of zeros with 1’s on the entries i
and j, reverting the model to a Rasch model [15; 7]. Despite
its simplicity, we show that it can perform well in some
cases. A more advanced instance of (3.2) assumes xi are
either obtained using a sentence transformer [33] to embed
prompt templates or by extracting discrete covariates from
the text, e.g., as the presence of line breaks, colons etc.(see
Appendix Table 2). An example of a prompt template for
LMentry used by Mizrahi et al. [28] is “Can {category}
be used to classify all the {words} provided? Respond
with either ”yes” or ”no”.” Our method also allows using
example covariates zj , however, upon preliminary tests with

sentence transformer we didn’t observe improvements and
chose to use one-hot-encoded vectors as in the basic Rasch
model to represent examples. Next, we detail the methods
for obtaining the prompt covariates:

• Prompt embeddings. We embed prompt templates using a
pre-trained sentence transformer variant [18] and reduce
their dimensionality to d = 25 using PCA. This is the
most general solution that also works well in practice.
We call it EmbPT.

• Fine-tuned prompt embeddings. Sentence transformers in
general might not be most suitable for embedding prompt
templates, thus we also consider fine-tuning BERT [10]
as an embedder. To do so, we use evaluation data for all
examples and prompt formats from a subset of LLMs
(these LLMs are excluded when assessing the quality of
our estimators) and fine-tune bert-base-uncased
to predict Yij as in (3.3). We call this variation Em-
bFT and provide additional details in Appendix L. We
acknowledge that obtaining such evaluation data for fine-
tuning might be expensive, however, it might be justified
in some applications if these embeddings provide suffi-
cient savings for future LLM evaluations.

• Discrete prompt covariates. For BBH and LMentry, we
coded a heuristic function that captures frequently occur-
ring differences in common prompting templates. Ex-
amples of such covariates are the number of line breaks
or the count of certain special characters (e.g., dashes
or colons). Each one of these covariates is encoded in
xi for each one of the prompt templates i ∈ I. A full
list of the used heuristics is detailed in Appendix M. For
MMLU, we adopted approach of [36] to generate prompt
variations via templates (see Algorithm 3), which also
provides a natural way to construct the covariates, e.g.,
the presence of dashes or colons.

To the best of our knowledge, the methods introduced in
§3 are the first ones handling the problem of efficient eval-
uation of performance distribution of LLMs across multi-
ple prompts. Thus, we compare different variations of our
method with one natural baseline (“avg”) which estimates
Si by simply averaging Yij , that is, using the estimates
Ŝavg
i = 1

|Ji|
∑
j∈Ji

Yij . The estimates for the distribution

and quantile function are then obtained by computing Q̂ and
F̂ using Ŝavg

i instead of Ŝi. To make comparisons fair, we
sample the data using Algorithm 2 for all methods and the
baseline.

Key results We investigate the effectiveness of the differ-
ent variations of PromptEval (PE) against the “avg” base-
line strategy in quantile estimation and overall performance
distribution estimation across prompt templates. In total,

4

Efficient multi-prompt evaluation of LLMs

300 600 900 1200 1500
0.00

0.04

0.08

0.12

0.16

0.20

M
M

LU
Es

tim
at

io
n

er
ro

r

5-th Quantile

300 600 900 1200 1500
0.00

0.04

0.08

0.12

0.16

0.20
25-th Quantile

300 600 900 1200 1500
0.00

0.04

0.08

0.12

0.16

0.20
50-th Quantile

300 600 900 1200 1500
0.00

0.04

0.08

0.12

0.16

0.20
75-th Quantile

300 600 900 1200 1500
0.00

0.04

0.08

0.12

0.16

0.20
95-th Quantile

300 600 900 1200 1500
0.00

0.04

0.08

0.12

0.16

0.20

LM
en

try
Es

tim
at

io
n

er
ro

r

300 600 900 1200 1500
0.00

0.04

0.08

0.12

0.16

0.20

300 600 900 1200 1500
0.00

0.04

0.08

0.12

0.16

0.20

300 600 900 1200 1500
0.00

0.04

0.08

0.12

0.16

0.20

300 600 900 1200 1500
0.00

0.04

0.08

0.12

0.16

0.20

300 600 900 1200 1500
Budget

0.00

0.04

0.08

0.12

0.16

0.20

BB
H

Es
tim

at
io

n
er

ro
r

300 600 900 1200 1500
Budget

0.00

0.04

0.08

0.12

0.16

0.20

300 600 900 1200 1500
Budget

0.00

0.04

0.08

0.12

0.16

0.20

300 600 900 1200 1500
Budget

0.00

0.04

0.08

0.12

0.16

0.20

300 600 900 1200 1500
Budget

0.00

0.04

0.08

0.12

0.16

0.20

avg PE-Rasch PE-discrete PE-EmbPT PE-EmbFT

Figure 2: Performance quantile estimation errors for varying quantiles (columns) and benchmarks (rows).

we consider five variations of PromptEval: (i) PE-Rasch
(model in (3.2) is a Rach model), (ii) PE-discrete (discrete
covariates are used for prompt templates), (iii) PE-EmbPT
(pre-trained LLM embeddings are used for prompt tem-
plates), and (iv) PE-EmbFT (fine-tuned LLM embeddings
are used for prompt templates). Within each one of the
benchmarks, we conduct a different experiment for each
one of the tasks, LLMs, and 5 random seeds used when
sampling YE . We report the average estimation error across
tasks, LLMs, and seeds, while the error bars are for the
average estimation errors across LLMs. We collect re-
sults for four different numbers of total evaluations, where
|E| ∈ {200, 400, 800, 1600}. To make our results more tan-
gible, 200 evaluations are equivalent, on average, to 1.15%
to the total number of evaluations on BBH, 0.88% to the
total number of evaluations on LMentry, and 0.81% to the
total number of evaluations on MMLU.

Our results for quantile estimation are presented in Figure
2. As before, even the simplest version of our method (PE-
Rasch) does much better than the considered baseline. For
all the other variations of PromptEval, estimating extreme
quantiles is usually hard and needs more evaluations, while
more central ones (e.g., median) can be accurately estimated
with 200 evaluations, providing more than 100x compute
saving in most cases. Regarding the different variations
of PromptEval, we found that the pre-trained embeddings
are robust across benchmarks, while the discrete covari-
ates could not do well on LMentry data. Using covariates
obtained via fine-tuning the BERT model provides some
further improvements, for example, for extreme quantiles
and small evaluation budget settings on MMLU. However,
fine-tuning requires collecting large amounts of evaluation
data and in most cases, we anticipate that it would be more

practical to use PromptEval with pre-trained embedder and
moderate evaluation budget instead.

5. Conclusion
PromptEval enables a more comprehensive evaluation of
LLMs. We hope that comparing distributions or quantiles
across many prompt variants will enable more robust leader-
boards and address the common concern of comparing
LLMs with a single pre-defined prompt. Prior to our work, a
major limitation of such evaluation was its cost. We demon-
strated empirically across several popular benchmarks that
our method can produce accurate performance distribution
and quantile estimates at the cost of 2-4 single-prompt evalu-
ations, out of hundreds possible. However, several questions
remain: how to decide on the set of prompts for evaluation
and how to best utilize our distribution estimates for com-
parison in various contexts. For the former, we utilized
suggestions from prior work [28; 36] and for the latter, we
primarily focused on quantiles as well-established robust
performance measures.

Besides evaluation, another common problem in practice is
finding the best prompt for a given task. Our method can be
applied in this setting when there is a pre-defined set of can-
didate prompts (Figure 7). However, several recent works
[32; 48; 23; 49] demonstrate the benefits of dynamically
generating new prompt candidates. For example, Prasad
et al. [32] propose an evolutionary algorithm that creates
new prompts based on the ones that performed well at an
earlier iteration. Extending PromptEval to accommodate an
evolving set of prompt candidates is an interesting future
work direction.

5

Efficient multi-prompt evaluation of LLMs

References
[1] Shir Ashury-Tahan, Benjamin Sznajder, Leshem

Choshen, Liat Ein-Dor, Eyal Shnarch, and Ariel Gera.
Label-efficient model selection for text generation.
arXiv preprint arXiv:2402.07891, 2024.

[2] Mohammad Javad Azizi, Branislav Kveton, and
Mohammad Ghavamzadeh. Fixed-budget best-arm
identification in structured bandits. arXiv preprint
arXiv:2106.04763, 2021.

[3] Elron Bandel, Yotam Perlitz, Elad Venezian, Roni
Friedman-Melamed, Ofir Arviv, Matan Orbach,
Shachar Don-Yehyia, Dafna Sheinwald, Ariel Gera,
Leshem Choshen, Michal Shmueli-Scheuer, and Yoav
Katz. Unitxt: Flexible, shareable and reusable data
preparation and evaluation for generative ai, 2024.

[4] Edward Beeching, Clémentine Fourrier, Nathan
Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall,
and Thomas Wolf. Open llm leaderboard.
https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard,
2023.

[5] Justyna Brzezińska. Item response theory models
in the measurement theory. Communications in
Statistics-Simulation and Computation, 49(12):3299–
3313, 2020.

[6] Li Cai, Kilchan Choi, Mark Hansen, and Lauren Har-
rell. Item response theory. Annual Review of Statistics
and Its Application, 3:297–321, 2016.

[7] Yunxiao Chen, Chengcheng Li, Jing Ouyang, and
Gongjun Xu. Statistical inference for noisy incom-
plete binary matrix. Journal of Machine Learning
Research, 24(95):1–66, 2023.

[8] Leshem Choshen, Ariel Gera, Yotam Perlitz, Michal
Shmueli-Scheuer, and Gabriel Stanovsky. Navi-
gating the modern evaluation landscape: Consid-
erations in benchmarks and frameworks for large
language models (llms). In International Confer-
ence on Language Resources and Evaluation, 2024.
URL https://api.semanticscholar.org/
CorpusID:269804253.

[9] Douglas H Clements, Julie H Sarama, and Xiufeng H
Liu. Development of a measure of early mathematics
achievement using the rasch model: The research-
based early maths assessment. Educational Psychol-
ogy, 28(4):457–482, 2008.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186, 2019.

[11] Avia Efrat, Or Honovich, and Omer Levy. Lmentry:
A language model benchmark of elementary language
tasks. arXiv preprint arXiv:2211.02069, 2022.

[12] Ludwig Fahrmeir and Heinz Kaufmann. Consistency
and asymptotic normality of the maximum likelihood
estimator in generalized linear models. The Annals of
Statistics, 13(1):342–368, 1985.

[13] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bi-
derman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy
Zou. A framework for few-shot language model eval-
uation, 12 2023. URL https://zenodo.org/
records/10256836.

[14] Team Gemma, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. Gemma: Open models based
on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024.

[15] Rasch Georg. Probabilistic models for some intelli-
gence and attainment tests. Copenhagen: Institute of
Education Research, 1960.

[16] Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300, 2020.

[17] Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. Mistral 7b. arXiv
preprint arXiv:2310.06825, 2023.

[18] Vladimir Karpukhin, Barlas Oguz, Sewon Min,
Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval
for open-domain question answering. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6769–6781, Online, November 2020. Association for

6

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://api.semanticscholar.org/CorpusID:269804253
https://api.semanticscholar.org/CorpusID:269804253
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

Efficient multi-prompt evaluation of LLMs

Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.550. URL https://www.aclweb.
org/anthology/2020.emnlp-main.550.

[19] Maurice G Kendall and B Babington Smith. The prob-
lem of m rankings. The annals of mathematical statis-
tics, 10(3):275–287, 1939.

[20] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] John P Lalor, Hao Wu, and Hong Yu. Building an
evaluation scale using item response theory. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing. Conference on Empiri-
cal Methods in Natural Language Processing, volume
2016, page 648. NIH Public Access, 2016.

[22] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan
Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacae-
val: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/
alpaca_eval, 2023.

[23] Yujian Betterest Li and Kai Wu. Spell: Semantic
prompt evolution based on a llm. arXiv preprint
arXiv:2310.01260, 2023.

[24] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. Holistic evaluation of language models.
arXiv preprint arXiv:2211.09110, 2022.

[25] FM Lord, MR Novick, and Allan Birnbaum. Statistical
theories of mental test scores. 1968.

[26] Felipe Maia Polo, Ronald Xu, Lucas Weber, Mı́rian
Silva, Onkar Bhardwaj, Leshem Choshen, Allysson
Flavio Melo de Oliveira, Yuekai Sun, and Mikhail
Yurochkin. Efficient multi-prompt evaluation of llms.
arXiv preprint arXiv:2405.17202, 2024.

[27] Meta. Introducing meta llama 3: The most capable
openly available llm to date. https://ai.meta.
com/blog/meta-llama-3, 2024.

[28] Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem
Dror, Dafna Shahaf, and Gabriel Stanovsky. State
of what art? a call for multi-prompt llm evaluation.
arXiv preprint arXiv:2401.00595, 2023.

[29] Apoorva Nitsure, Youssef Mroueh, Mattia Rig-
otti, Kristjan Greenewald, Brian Belgodere, Mikhail
Yurochkin, Jiri Navratil, Igor Melnyk, and Jerret
Ross. Risk assessment and statistical significance

in the age of foundation models. arXiv preprint
arXiv:2310.07132, 2023.

[30] Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv,
Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. Efficient
benchmarking (of language models). arXiv preprint
arXiv:2308.11696, 2023.

[31] Felipe Maia Polo, Lucas Weber, Leshem Choshen,
Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin. tiny-
benchmarks: evaluating llms with fewer examples.
arXiv preprint arXiv:2402.14992, 2024.

[32] Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. Grips: Gradient-free, edit-based instruction
search for prompting large language models. In Pro-
ceedings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 3827–3846, 2023.

[33] Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, 11 2019. URL
https://arxiv.org/abs/1908.10084.

[34] Sidney Resnick. A probability path. Springer, 2019.

[35] Pedro Rodriguez, Joe Barrow, Alexander Miserlis
Hoyle, John P. Lalor, Robin Jia, and Jordan Boyd-
Graber. Evaluation examples are not equally infor-
mative: How should that change NLP leaderboards?
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli, editors, Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 4486–4503, Online, August 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
acl-long.346. URL https://aclanthology.
org/2021.acl-long.346.

[36] Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. Quantifying language models’ sensitivity to
spurious features in prompt design or: How i learned to
start worrying about prompt formatting. arXiv preprint
arXiv:2310.11324, 2023.

[37] Chengshuai Shi, Kun Yang, Jing Yang, and Cong Shen.
Best arm identification for prompt learning under a lim-
ited budget. arXiv preprint arXiv:2402.09723, 2024.

[38] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià

7

https://www.aclweb.org/anthology/2020.emnlp-main.550
https://www.aclweb.org/anthology/2020.emnlp-main.550
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://ai.meta.com/blog/meta-llama-3
https://ai.meta.com/blog/meta-llama-3
https://arxiv.org/abs/1908.10084
https://aclanthology.org/2021.acl-long.346
https://aclanthology.org/2021.acl-long.346

Efficient multi-prompt evaluation of LLMs

Garriga-Alonso, et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of lan-
guage models. arXiv preprint arXiv:2206.04615,
2022.

[39] Alain Starke, Martijn Willemsen, and Chris Snijders.
Effective user interface designs to increase energy-
efficient behavior in a rasch-based energy recom-
mender system. In Proceedings of the eleventh ACM
conference on recommender systems, pages 65–73,
2017.

[40] Mirac Suzgun, Nathan Scales, Nathanael Schärli,
Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. Challenging big-bench tasks and whether
chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

[41] Wim J Van der Linden. Handbook of item response
theory: Three volume set. CRC Press, 2018.

[42] Clara Vania, Phu Mon Htut, William Huang, Dhara
Mungra, Richard Yuanzhe Pang, Jason Phang, Haokun
Liu, Kyunghyun Cho, and Samuel R Bowman. Com-
paring test sets with item response theory. arXiv
preprint arXiv:2106.00840, 2021.

[43] Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and
Douwe Kiela. Anchor points: Benchmarking mod-
els with much fewer examples. arXiv preprint
arXiv:2309.08638, 2023.

[44] Anton Voronov, Lena Wolf, and Max Ryabinin.
Mind your format: Towards consistent evaluation of
in-context learning improvements. arXiv preprint
arXiv:2401.06766, 2024.

[45] Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. arXiv preprint
arXiv:2204.07705, 2022.

[46] Lucas Weber, Elia Bruni, and Dieuwke Hupkes. The
icl consistency test. arXiv preprint arXiv:2312.04945,
2023.

[47] Lucas Weber, Elia Bruni, and Dieuwke Hupkes. Mind
the instructions: a holistic evaluation of consistency
and interactions in prompt-based learning. In Proceed-
ings of the 27th Conference on Computational Natural
Language Learning (CoNLL), pages 294–313, 2023.

[48] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. arXiv preprint
arXiv:2309.03409, 2023.

[49] Qinyuan Ye, Maxamed Axmed, Reid Pryzant, and
Fereshte Khani. Prompt engineering a prompt engineer.
arXiv preprint arXiv:2311.05661, 2023.

[50] Qinyuan Ye, Harvey Yiyun Fu, Xiang Ren, and Robin
Jia. How predictable are large language model capa-
bilities? a case study on big-bench. arXiv preprint
arXiv:2305.14947, 2023.

8

Efficient multi-prompt evaluation of LLMs

A. Related work
LLMs’ sensitivity to prompt templates The sensitivity of Large Language Models (LLMs) to the prompts is well-
documented. For example, Sclar et al. [36] revealed that subtle variations in prompt templates in few-shot settings can lead
to significant performance discrepancies among several open-source LLMs, with differences as large as 76 accuracy points
in tasks from the SuperNaturalInstructions dataset [45]. Additionally, they report that the performance of different prompt
templates tends to correlate weakly between models. This finding challenges the reliability of evaluation methods that
depend on a single prompt template. To measure LLMs sensitivity, the researchers suggested calculating a “performance
spread,” which represents the difference between the best and worst performances observed. Mizrahi et al. [28] conducted a
complementary analysis using state-of-the-art models and subsets of BigBench and LMentry [38; 11]. The authors arrive at
similar conclusions with respect to LLMs’ sensitivity to the used prompt templates and empirically showed that the LLM
ranking considering different formats are usually weakly or intermediately correlated with each other. As a solution to
the lack of robustness in LLM evaluation, the authors propose the use of summary statistics, as the average performance,
for LLM evaluation. Some other works, e.g., Voronov et al. [44]; Weber et al. [47; 46], show that even when in-context
examples are given to the models, the prompt templates can have a big impact on the final numbers, sometimes reducing the
performance of the strongest model in their analyses to a random guess level [44]. In a different direction, Shi et al. [37]
acknowledges that different prompt templates have different performances and proposes using best-arm-identification to
efficiently select the best template for an application at hand. One major bottleneck is still on how to efficiently compute the
performance distribution for LLMs over many prompt templates; we tackle this problem.

Efficient evaluation of LLMs The escalating size of models and datasets has led to increased evaluation costs. To streamline
evaluations, Ye et al. [50] considered minimizing the number of tasks within Big-bench [38]. Additionally, Perlitz et al.
[30] observed that evaluations on HELM [24] rely on diversity across datasets, though the quantity of examples currently
utilized is unnecessarily large. Perlitz et al. [30] also highlighted the problems in evaluating with insufficient prompts and
called to evaluate on more, suggesting evaluating the typical behavior by sampling prompts and examples together by
employing stratified sampling, where subscenarios give the strata; in our work, we also apply stratification but consider
prompt templates and examples to give the strata. To accelerate evaluations for classification tasks, Vivek et al. [43]
suggested clustering evaluation examples based on model confidence in the correct class. More recently, Polo et al. [31]
empirically showed that it is possible to shrink the size of modern LLM benchmarks and still retain good estimates for
LLMs’ performances. Similarly (and in parallel to this work) Ashury-Tahan et al. [1] recognized unlabeled examples that
better distinguish between models or prompts, by analyzing model outputs on them, hence saving costly annotation for them.
Despite these advancements in streamlining LLM evaluations, there are no other works that propose a general and efficient
method to estimate the benchmark performance of LLMs across prompt templates to the best of our knowledge.

Item response theory (IRT) IRT [6; 41; 5; 25] is a collection of statistical models initially developed in psychometrics
to assess individuals’ latent abilities through standardized tests but with increasing importance in the fields of artificial
intelligence and natural language processing (NLP). For example, Lalor et al. [21] used IRT’s latent variables to measure
language model abilities, Vania et al. [42] applied IRT to benchmark language models and examine the saturation of
benchmarks, and Rodriguez et al. [35] explored various uses of IRT with language models, including predicting responses
to unseen items, categorizing items by difficulty, and ranking models. Recently, Polo et al. [31] suggested using IRT for
efficient LLM performance evaluation, introducing the Performance-IRT (pIRT) estimator to evaluate LLMs. Our quantile
estimation methodology is built upon pIRT.

B. Sampling YE

We have assumed YE is given so far. In practice, however, we need to choose E , with |E| ≤ B where B ∈ N is the budget,
and then sample the entries Yij for all (i, j) ∈ E . One possible option is sampling (i, j) without replacement from I × J
giving the same sampling probability to all entries. This option is, however, suboptimal because of its high instability: with
a high chance, there will be some prompt formats (or examples) with a very low number of evaluations while others will
have many. A more stable solution is given by Algorithm 2, which balances the number of times each prompt format and
examples are evaluated. Algorithm 2 can be seen as two-way stratified random sampling in which the number of examples
observed for each prompt format is (roughly) the same and the number of prompt formats that observe each one of the
examples is (roughly) the same.

9

Efficient multi-prompt evaluation of LLMs

Algorithm 2: Two-way balanced sampling
1 Input: (i) sets I and J , (ii) budget B.
2 Output: Observed indices E .
3 Initialize E = {}.
4 for b = 0 to B − 1 do
5 Among i ∈ I with the least number of evaluations, randomly pick one of them and call it î.
6 Among j ∈ J such that (̂i, j) ̸∈ E , randomly pick ĵ from the ones with the least number of evaluations.
7 Update E ← E ∪ {(̂i, ĵ)}

8 return E .

C. Limitations
While our method provides a more reliable measure and a more flexible one, it assumes multiple prompts. Thus, if the
question of which single prompt should be used was a challenge for old benchmarks, which set of prompt templates to use is
the challenge now. While methods have been suggested for generating multiple prompts and diversifying those [28], and
while when many prompts are suggested the choice of each one is likely less critical, it is a limitation future work should
consider.

Another limitation we note is that we do not focus on prompt engineering and do not solve this problem. While this would
have been a crucial contribution for the field, we assume a set of prompts and assume we only care about evaluation and not
training, which make for a useful and common setting, but it does not encompass this goal.

D. Adapting the correctness model for bounded Yij

There might be situations in LLM evaluation in which Yij /∈ {0, 1} but Yij ∈ [0, 1]. For example, in AlpacaEval 2.0 [22],
the response variable is bounded and can be translated to the interval [0, 1]. Also, some scenarios of HELM [24] and the
Open LLM Leaderboard [4] have scores in [0, 1]. One possible fix is changing the model for Yij . For example, if Yij are
continuous, the Beta model would be appropriate. Another possibility that offers a more immediate fix is binarizing Yij as
proposed by Polo et al. [31]. That is, using a training set containing correctness data from L LLMs, we could find a constant
c such that

∑
i,j,l Yijl ≈

∑
i,j,l 1[Yijl ≥ c], where the index l represents each LLM in the training set. Then, we define

Ỹij ≜ 1[Yij ≥ c] and work with this newly created variable.

E. Computing resources
All experiments were conducted using a virtual machine with 32 cores. The results for each benchmark separately can be
obtained within 3-6 hours.

For fine-tuning BERT embeddings, we employ multiple NVIDIA A30 GPUs with 24 GB vRAM, requiring 70 hours of
training and an additional approximately 350 hours for hyperparameter search. Fine-tuning can be conducted on GPUs with
smaller capacities.

F. Distribution estimation results
Our results for distribution estimation can be seen in Figure 3. We see that, in general, all variations of PromptEval, including
its simplest version (PE-Rasch), can do much better in distribution estimation when compared to the baseline. Among our
methods, the ones that use covariates are the best ones.

G. Estimation errors by task
In Figures 4, 5, and 6, we analyze the Wasserstein 1-distance per task for each benchmark when using the method PE-
EmbPT, a robust and versatile variation of PromptEval. The results show that for BBH and LMentry, the estimation errors
(Wasserstein 1-distance) are more uniform across tasks compared to MMLU, where some tasks exhibit higher estimation

10

Efficient multi-prompt evaluation of LLMs

300 600 900 1200 1500
Budget

0.00

0.04

0.08

0.12

0.16

0.20

W
as

se
rs

te
in

 1
-d

ist
an

ce

MMLU

300 600 900 1200 1500
Budget

0.00

0.04

0.08

0.12

0.16

0.20
LMentry

300 600 900 1200 1500
Budget

0.00

0.04

0.08

0.12

0.16

0.20
BBH

avg PE-Rasch PE-discrete PE-EmbPT PE-EmbFT

Figure 3: Performance distribution estimation errors measured with Wasserstein-1 distance on three benchmarks.

errors. This discrepancy occurs because all tasks in BBH and LMentry have the same number of examples, whereas tasks in
MMLU, particularly those with higher estimation errors, have a significantly larger number of examples when compared to
the others. In those cases, a larger number of evaluations is recommended.

LLMs

0

5

10BB
H

ta
sk

s

B=20
0

B=40
0

B=80
0

B=16
00

0.05

0.10

0.15

W
as

se
rs

te
in

 1
-d

ist
.

Figure 4: Estimation error for the BBH tasks.

LLMs

0

5

LM
en

try
 ta

sk
s B=20

0
B=40

0
B=80

0

B=16
00

0.05
0.10

W
as

se
rs

te
in

 1
-d

ist
.

Figure 5: Estimation error for the LMentry tasks.

H. Best-prompt identification
The best-prompt identification task [37] is to find the best prompt from a set of fixed templates, i.e., the one that gives the best
performance for a task at hand. Shi et al. [37] propose framing this problem as a bandit problem and using a linear model or
an MLP to predict the performance of each prompt template. To apply PromptEval in this setting we use our model (3.2)
and X-pIRT to estimate how good each template is coupled with sequential elimination algorithm [2] (as in Shi et al. [37])
to select prompt-example pairs for evaluation in each round. In Figure 7 we compare our PE to the baseline TRIPLE-GSE
[37] with a logistic regression performance predictor and the same three types of covariates (PE-OneHot corresponds to
PE-Rasch in previous experiments). For all covariate choices, we show that using PromptEval for best-prompt identification
results in lower regret, i.e., the performance of the best template minus the performance of the chosen template. We include
the full results for other benchmarks and also apply TRIPLE-GSE with an MLP in Appendix H.1.

H.1. Extra results for best-prompt identification

In Figures 8, 9, and 10, we can see the full results for MMLU, BBH, and LMentry. For all benchmarks, we can see that
within each triple “PE”, “GTRIPLE-SE”, “TRIPLE-MLP-GSE”, the “PE” version always has some advantage with a lower
regret.

The tuning and fitting process of the Multi-Layer Perceptron (MLP) classifier involves setting up a pipeline that includes

11

Efficient multi-prompt evaluation of LLMs

LLMs

0

10

20

30

40

50
M

M
LU

 ta
sk

s

B=20
0

B=40
0

B=80
0

B=16
00

0.05

0.10

0.15

0.20

0.25

0.30

W
as

se
rs

te
in

 1
-d

ist
.

Figure 6: Estimation error for the MMLU tasks.

500 1000 1500
Budget

0.01

0.02

0.03

0.04

Re
gr

et

PE-OneHot
PE-discrete
PE-EmbPT
TRIPLE-GSE-OneHot
TRIPLE-GSE-discrete
TRIPLE-GSE-EmbPT

Figure 7: Best-prompt identification for MMLU

feature scaling and the MLP classifier itself, which has 30 neurons in its hidden layer. This process begins by defining a
range of values for critical hyperparameters: the l2 regularization strength is tested over the range from 0.001 to 10, and the
initial learning rate is tested over the range from 0.001 to 0.1. These values are systematically tested through cross-validation
to determine the optimal combination. During this phase, cross-validation ensures that the model is evaluated on different
subsets of the data to prevent overfitting and to ensure robust performance. Once the best hyperparameters are identified, the
final model is trained on the entire dataset using these optimal settings, resulting in a well-tuned MLP classifier ready for
deployment.

12

Efficient multi-prompt evaluation of LLMs

500 1000 1500
Budget

0.01

0.02

0.03

0.04

0.05

Re
gr

et

PE-OneHot
PE-discrete
PE-EmbPT
TRIPLE-GSE-OneHot
TRIPLE-GSE-discrete
TRIPLE-GSE-EmbPT
TRIPLE-MLP-GSE-OneHot
TRIPLE-MLP-GSE-discrete
TRIPLE-MLP-GSE-EmbPT

Figure 8: Best-prompt identification for MMLU

500 1000 1500
Budget

0.02

0.04

0.06

0.08

0.10

0.12

Re
gr

et

PE-OneHot
PE-discrete
PE-EmbPT
TRIPLE-GSE-OneHot
TRIPLE-GSE-discrete
TRIPLE-GSE-EmbPT
TRIPLE-MLP-GSE-OneHot
TRIPLE-MLP-GSE-discrete
TRIPLE-MLP-GSE-EmbPT

Figure 9: Best-prompt identification for BBH

I. Theoretical guarantees
In this section, we claim the consistency of the distribution and quantile estimators detailed in Algorithm 1 as I, J → ∞.
We prove a result for the case in which fψ and gγ are linear/affine functions. Before we introduce our results we need to
introduce some basic conditions. As an extra result, in Appendix I.1.1 we also show that our extended version of pIRT,
X-pIRT, is uniformly consistent over all i ∈ I, which can be useful beyond this work.

We start by assuming that the covariates are uniformly bounded.
Condition I.1. There is a universal constant c > 0 such that supi∈I ∥xi∥2 , supj∈J ∥zj∥2 < c.

The next condition requires the number of unseen examples to increase sufficiently fast as I, J → ∞, which is a realistic
condition under the low-budget setup. Weaker versions of this condition are possible; we adopt this one because it makes
our proof simpler.
Condition I.2. Assume (i) m = |J \ Ji| is the same for all i’s and grows to infinity and (ii) exp(δm)/I → ∞ as I, J → ∞
for any δ > 0.

The third condition requires the model we work with to be correctly specified and the maximum likelihood estimator of
(ψ, γ) to be consistent as I, J → ∞, i.e., approach the true value. Evidently, |E| needs to grow to infinity as I, J → ∞;
nevertheless, it could be the case that |E|/(I · J) → 0. When fψ and gγ are linear/affine, the maximum likelihood procedure
is equivalent to fitting a logistic regression model and, in that case, the convergence of (ψ̂, γ̂) is well-studied and holds under
mild conditions when the dimensions of the covariates are fixed; see, for example, Fahrmeir and Kaufmann [12].
Condition I.3. The data point Yij is sampled from a Bernoulli distribution with mean σ(ψ⊤

0 xi − γ⊤0 zj) for some true global
parameter values ψ0 and γ0. Moreover, we assume that (ψ̂, γ̂) → (ψ0, γ0) in probability as I, J → ∞.

We now introduce the main result in Theorem I.4, which shows the consistency of the distribution and quantile functions
estimators introduced in Algorithm 1. See Appendix I.1 for the proof.

13

Efficient multi-prompt evaluation of LLMs

500 1000 1500
Budget

0.0

0.1

0.2

0.3

Re
gr

et

PE-OneHot
PE-discrete
PE-EmbPT
TRIPLE-GSE-OneHot
TRIPLE-GSE-discrete
TRIPLE-GSE-EmbPT
TRIPLE-MLP-GSE-OneHot
TRIPLE-MLP-GSE-discrete
TRIPLE-MLP-GSE-EmbPT

Figure 10: Best-prompt identification for LMentry

Theorem I.4. Under conditions I.1, I.2, and I.3, it is true that∣∣∣Q̂I(p)−QI(p)
∣∣∣→ 0 in probability as I, J → ∞ for any p ∈ [0, 1],

and that
W1(F, F̂) → 0 in probability as I, J → ∞,

where W1(F, F̂) is the Wasserstein 1-distance between the distributions F and F̂ .

I.1. Extra results and proofs

I.1.1. CONSISTENCY OF X-PIRT

In Theorem I.5, we claim that the X-pIRT estimator is uniformly consistent over all i ∈ I.

Theorem I.5. Under conditions I.1, I.2, and I.3, it is true that

supi∈I

∣∣∣Ê[Si | YS]− Si

∣∣∣→ 0 in probability as I, J → ∞.

A direct consequence of Theorem I.5 is that∣∣∣ 1I ∑i∈I Ê[Si | YS]− 1
I

∑
i∈I Si

∣∣∣ ≤ 1
I

∑
i∈I

∣∣∣Ê[Si | YS]− Si

∣∣∣ ≤ supi∈I

∣∣∣Ê[Si | YS]− Si

∣∣∣→ 0

in probability as I, J → ∞. This means that the mean of predicted performances is also consistent if a practitioner wants to
use it as a summary statistic.

The proof of Theorem I.5 is embedded in the proof of Theorem I.4.

I.1.2. PROOF OF THEOREM I.4

For the following results, we denote ψ⊤xi as θi and γ⊤zj as βj , and ψ̂⊤xi as θ̂i and γ̂⊤zj as β̂j . Moreover, if a sequence
random variables (Xn) converge to 0 in distribution, we denote Xn = oP (1).

Lemma I.6. Under Conditions I.1 and I.3, we have that supi∈I |θ̂i − θi| = oP (1) and supj∈J |β̂j − βj | = oP (1) as
I, J → ∞.

Proof. We prove that supi∈I |θ̂i − θi| = oP (1). The second statement is obtained in the same way.

See that
sup
i∈I

|θ̂i − θi| = sup
xi

|(ψ̂ − ψ)⊤xi| ≤ sup
xi

∥∥∥ψ̂ − ψ
∥∥∥
2
∥xi∥2 ≤ c

∥∥∥ψ̂ − ψ
∥∥∥
2
= oP (1)

as I, J → ∞. Where the first inequality is obtained using the Cauchy–Schwarz inequality, the second is obtained using
Condition I.1, and the last equality is a consequence of Condition I.3 and the continuous mapping theorem [34].

14

Efficient multi-prompt evaluation of LLMs

Lemma I.7. Under Conditions I.1 and I.3, it is true that

sup
i∈I

∣∣∣Ê[Si | YE]− E[Si | YE]
∣∣∣ = oP (1) as I, J → ∞.

Proof. See that

sup
i∈I

∣∣∣Ê[Si | YE]− E[Si | YE]
∣∣∣ = sup

i∈I

1− λi
J − |Ji|

∣∣∣∣∣∣
∑
j ̸∈Ji

σ(θ̂i − β̂j)− σ(θi − βj)

∣∣∣∣∣∣
≤ sup

i∈I

1− λi
J − |Ji|

∑
j ̸∈Ji

∣∣∣σ(θ̂i − β̂j)− σ(θi − βj)
∣∣∣

≤ sup
i∈I

1− λi
4(J − |Ji|)

∑
j ̸∈Ji

∣∣∣θ̂i − β̂j − θi + βj

∣∣∣
≤ 1− infi λi

4

(
sup
j

|θ̂i − θi|+ sup
j

|β̂j − βj |
)

≤ 1

4

(
sup
i

|θ̂i − θi|+ sup
j

|β̂j − βj |
)

= oP (1)

where the third step is justified by the fact that σ is 1/4-Lipschitz and the last step is justified by Lemma I.6.

Lemma I.8. Under Condition I.2, it is true that

sup
i∈I

|E[Si | YE]− Si| = oP (1) as I, J → ∞.

Proof. For an arbitrary ϵ > 0, see that

P
(
sup
i∈I

|E[Si | YE]− Si| ≥ ϵ

)
= P

(⋃
i∈I

{|E[Si | YE]− Si| ≥ ϵ}

)
≤
∑
i∈I

P (|E[Si | YE]− Si| ≥ ϵ)

=
∑
i∈I

P

∣∣∣∣∣∣ λi|Ji|
∑
j∈Ji

Yij +
1− λi
|J \ Ji|

∑
j ̸∈Ji

σ(θi − βj)−
1

J

∑
j∈J

Yij

∣∣∣∣∣∣ ≥ ϵ

=
∑
i∈I

P

∣∣∣∣∣∣(1− λi)
1

|J \ Ji|
∑
j ̸∈Ji

Zij

∣∣∣∣∣∣ ≥ ϵ

≤
∑
i∈I

P

∣∣∣∣∣∣ 1m
∑
j ̸∈Ji

Zij

∣∣∣∣∣∣ ≥ ϵ

where Zij ≜ Yij − σ(θi − βj). Consequently, |Zij | ≤ 1 and E[Zij] = 0. Applying Hoeffding’s inequality, we obtain

P
(
sup
i∈I

|E[Si | YE]− Si| ≥ ϵ

)
≤ 2Iexp

(
−2mϵ2

)
= 2exp

(
log I − 2ϵ2m

)
= 2exp

(
− log(exp(2ϵ2m)/I)

)
→ 0

15

Efficient multi-prompt evaluation of LLMs

Lemma I.9. Let a1, · · · , an and b1, · · · , bn be two lists of real numbers and let ai and bj be the p-lower quantiles of those
lists. Admit that there are m1 a’s lower than ai, m2 a’s equal to ai (besides ai itself), and m3 a’s greater than ai. Then,
there are at least m1 + 1 b’s lower or equal to bj and at least m3 + 1 b’s greater or equal to bj .

Proof. If ai is the p-lower quantile of A = {a1, · · · , an}, then by definition ai is the lowest value in A such that

|{a ∈ A : ai = a}|︸ ︷︷ ︸
m2+1

+ |{a ∈ A : ai > a}|︸ ︷︷ ︸
m1

≥ p · n

Because ai is the lowest value in A to achieve that, then m1 < p · n. This implies that there are at least m1 + 1 values in
B = {b1, · · · , bn} lower or equal to bj as it is the p-lower quantile of B.

Finally, because m1 +m2 + 1 ≥ p · n, we know that B cannot have more than m1 +m2 values strictly lower than bj ,
otherwise the p-lower quantile of B could not be bj but some of those values. Therefore, B have at least m3 + 1 values
greater or equal to bj .

Lemma I.10. Let î and i∗ be indices in I such that Q̂(p) = Ê[Sî | YS] and Q(p) = Si∗ for an arbitrary fixed p ∈ [0, 1].
Under supi∈I |Ê[Si | YE] − Si| ≤ ϵ for an arbitrary ϵ > 0, if |Ê[Si′ | YE] − Si∗ | > 2ϵ, for some i′ ∈ I, then î ̸= i′.
Consequently, if î = i′ then |Ê[Si′ | YE]− Si∗]| ≤ 2ϵ under supi∈I |Ê[Si | YE]− Si| ≤ ϵ.

Proof. Define A ≜ {S1, · · · , Si} and assume that there are M1 values in A lower than Si∗ , M2 values equal to Si∗ (besides
Si∗ itself), and M3 values greater than Si∗ . If |Si′ − Si∗ | > 2ϵ, for a certain index i′, there are two possibilities: (i)
Si′ + 2ϵ < Si∗ or (ii) Si∗ + 2ϵ < Si′ . Under the event supi∈I |Ê[Si | YE]− Si| ≤ ϵ, we have:

• If (i) holds, then there is at least M2 +M3 + 1 values of Ê[Si | YE]’s such that Ê[Si′ | YE] < Ê[Si | YE] (including
Ê[Si∗ | YE]). This implies that at most M1 values of Ê[Si | YE]’s will be less or equal Ê[Si′ | YE]. By Lemma I.9, we
know that j′ ̸= ĵ.

• If (ii) holds, then there is at least M1 +M2 + 1 values of Ê[Si | YE]’s such that Ê[Si′ | YE] > Ê[Si | YE] (including
Ê[Si∗ | YE]). This implies that at most M3 values of Ê[Si | YE]’s will be greater or equal Ê[Si′ | YE]. By Lemma I.9,
we know that j′ ̸= ĵ.

This means that under supi∈I |Ê[Si | YE] − Si| ≤ ϵ for an arbitrary ϵ > 0, if |Ê[Si′ | YE] − Si∗ | > 2ϵ, for some i′ ∈ I,
then î ̸= i′.

Proof of Theorem I.4 (Part 1). Let î and i∗ be indices in I such that Q̂(p) = Ê[Sî | YS] and Q(p) = Si∗ . Notice that
Lemma I.10 guarantees that supi∈I |Ê[Si | YS] − Si| ≤ ϵ implies |Ê[Sî | YS] − Si∗ | ≤ 2ϵ, for an arbitrary ϵ > 0.
Consequently,

P
(
|Ê[Sî | YS]− Si∗ | ≤ 2ϵ

)
≥ P

(
sup
i∈I

|Ê[Si | YS]− Si| ≤ ϵ

)
= 1 + o(1)

because

sup
i∈I

∣∣∣Ê[Si | YE]− Si

∣∣∣ ≤ sup
i∈I

∣∣∣Ê[Si | YE]− E[Si | YE]
∣∣∣+ sup

i∈I
|E[Si | YE]− Si| = oP (1) as I, J → ∞

holds by lemmas I.7 and I.8. Because ϵ > 0 is arbitrary, we have that |Q̂(p)−Q(p)| = oP (1).

Proof of Theorem I.4 (Part 2). We start this proof by showing that

|Q̂(U)−Q(U)| = oP (1)

with U ∼ Unif[0, 1] independent of Q̂ and Q.

16

Efficient multi-prompt evaluation of LLMs

For an arbitrary ϵ > 0, see that

lim
I,J→∞

P(|Q̂(U)−Q(U)| > ϵ) = lim
I,J→∞

E
[
P(|Q̂(U)−Q(U)| > ϵ | U)

]
= E

[
lim

I,J→∞
P(|Q̂(U)−Q(U)| > ϵ | U)

]
= 0

where the second equality is justified by the Dominated Convergence Theorem [34] and the last one is justified by
|Q̂(p)−Q(p)| = oP (1). Now, we see that

lim
I,J→∞

E[W1(F, F̂)] = lim
I,J→∞

E
[∫ 1

0

|Q(t)− Q̂(t)|dt
]

= lim
I,J→∞

E
[
|Q̂(U)−Q(U)|

]
= 0

where the last step is justified by Fubini’s Theorem [34], |Q̂(U)−Q(U)| = oP (1), and the Lebesgue Dominated Convergence
Theorem [34]. For an arbitrary ϵ > 0 and applying Markov’s inequality, we get

lim
I,J→∞

P(W1(F, F̂) > ϵ) ≤ 1

ϵ
lim

I,J→∞
E[W1(F, F̂)] = 0

J. Details MMLU data
Algorithm 3 for automatically generating templates can be seen as a graph traversal of a template graph, whose nodes are
defined by which features they have: a separator SEP , a space SPA, and an operator OP . By traversing this graph, we can
collect unique templates that can used in the evaluation of LLMs on tasks.

Algorithm 3: TemplateGeneration

1 Input: Base prompt template features: Separator SEP , Space SPA, Operator OP .
2 Output: Prompt templates.
3 From template agenda, pop a template. Swap SEP with another SEP , add to templates. Swap SPA with another
SPA, add to templates. Swap OP with another OP , add to templates. Add the generated templates to the agenda.

4 return generated templates.

Next, we utilize the unitxt [3] preprocessing library to build custom datasets with the generated templates. Standardized and
accurate evaluation is then carried out via the LM-Eval-Harness [13] evaluation library.

K. Analysis of prompt sensitivity on MMLU

0.0 0.1 0.2 0.3 0.4 0.5
Max - Min Accuracy

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

De
ns

ity

flan-ul2
flan-t5-xxl
flan-t5-xl
llama-3-70b-instruct
mixtral-8x7b-instruct-v01
llama-3-8b-instruct
falcon-180b
codellama-34b-instruct
falcon-40b
gemma-7b
merlinite-7b
mistral-7b-instruct-v0-2
mistral-7b-v0-1
llama-3-8b
gemma-7b-it

Figure 11: Accuracy spread across 57 subjects.

Prior work reports strong sensitivity of LLMs to spurious
prompt template changes (see Section A). For example,
Sclar et al. [36] observe performance changes of up to
80% for Natural Instructions tasks [45] due to template
changes. Despite its popularity, no such analysis exists for
the MMLU dataset to date. We here provide an in-depth
analysis of MMLU prompt sensitivity.

Performance spread When averaged across subjects,
we observe relatively small performance spreads per LLM

17

Efficient multi-prompt evaluation of LLMs

compared to other datasets in the literature (see Figure 12
in the Appendix K.1). For example, we can consis-
tently identify Llama-3-70B-Instruct as the best
performing model, independent of the prompt template.
On the other hand, scores within individual subjects are highly inconsistent. Figure 11 shows the distribution of prompt
spreads (max-min acc.) across subjects per LLM. Most LLMs demonstrate a significant average spread of around 10% at
the subject level.

Template consistency In practice, having consistently performing templates is highly relevant within a single LLM or
across LLMs for the same subject. To evaluate the template consistency, we rank template performances either across
subjects or across LLMs to then calculate the agreement across those rankings using Kendall’s W [19, inspired by Mizrahi
et al. 28].

Within LLMs, we observe that Gemma-7B-it has a notably higher Kendall’s W of 0.45 than any other model, meaning a
fixed set of prompts performs best across many subjects (for full results, see Table 1 in the Appendix). Across LLMs, we do
not observe high correlations within any of the subjects (see Figure 13 in Appendix K.1). Hence, similar to previous findings
[e.g. 36], we do not identify any coherent template preferences across LLMs (for detailed results, see Appendix K.1).

K.1. Details MMLU spread analysis

Figure 12 depicts the performance of LLMs on the whole MMLU.

0.4 0.5 0.6 0.7 0.8
MMLU Accuracies

0

50

100

150

200

De
ns

ity

flan-ul2
flan-t5-xxl
flan-t5-xl
llama-3-70b-instruct
mixtral-8x7b-instruct-v01
llama-3-8b-instruct
falcon-180b
codellama-34b-instruct
falcon-40b
gemma-7b
merlinite-7b
mistral-7b-instruct-v0-2
mistral-7b-v0-1
llama-3-8b
gemma-7b-it

Figure 12: MMLU accuracy (all 57 subjects).

To correlate the ranks from different judges, we can use Kendall’s W . Kendall’s W [19] ranges from 0 (no agreement)
to 1 (perfect agreement) and is calculated as W = 12S

m2(n3−n) , where S is the sum of squared deviations of the total ranks
from the mean rank, m is the number of rankers, and n is the number of objects ranked. In our case, we first have MMLU
subjects ranking prompt templates, and then we have LLMs ranking prompt templates.

In Figure 13, we see the distribution of Kendall’s W for subjects ranking templates. The correlation is not significant, with
the highest W around 0.25. This suggests that there is no ”best” prompt for a subject.

In Table 1, we see the values of Kendall’s W for each model. For most models, the W value is not high, but for gemma-7b
and mistral-7b-v0-1, the value of W is 0.45 and 0.35, respectively. Curiously, both of the top-ranked prompt templates have
lots of commas. The best-ranked prompt is ”The, following, are, multiple, choice, questions, (with, answers), about,
topic], question], Answers], choices], Answer]”. Interestingly, the comma separation of each word or phrase in this prompt
template may aid the model in parsing and effectively understanding the different components of the prompt structure.

Figure 14 illustrates sensitivity for llama-3-8b, gemma-7b, and merlinite-7b, respectively. On the template graph, a distance
1 means templates differ by only 1 feature, a distance 2 means templates differ by 2 features, etc. We see that there is no
significant correlation between template distance and the accuracy spread. In the cases of gemma-7b and merlinite-7b, the
accuracy spread for templates with smaller distance seems to be smaller, possibly implying that the template graph for these
models is smooth.

18

Efficient multi-prompt evaluation of LLMs

0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Kendall's W

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y

Figure 13: Kendall’s W per MMLU subject: Here we see a distribution of Kendall’s W over the 57 subjects of MMLU.

0.00 0.02 0.04 0.06 0.08
Accuracy Spread

0
10
20
30
40
50

De
ns

ity

Distance 1
Distance 2
Distance 3

0.00 0.01 0.02 0.03 0.04
Accuracy Spread

0
20
40
60
80

100

De
ns

ity

Distance 1
Distance 2
Distance 3

0.00 0.01 0.02 0.03 0.04
Accuracy Spread

0

20

40

60

80

De
ns

ity

Distance 1
Distance 2
Distance 3

Figure 14: Model sensitivity for llama-3-8b, gemma-7b, and merlinite-7b.

L. BERT fine-tuning details
L.1. Model

We augment the BERT model by extending its input embeddings by |J | [Example ID] tokens which we use to feed
information about the example identity to the model. Additionally, we add a linear downward projection (d = 25) on top of
the final BERT layer to reduce the dimensionality of the resulting covariates.

L.2. Training data

To obtain training examples, we concatenate all prompting templates with all [Example ID] tokens giving us |I| × |J | model
inputs (giving us the following dataset sizes for the respective benchmarks: BBH 209,280; LMentry 175,776; and MMLU
1,121,568). Labels consist of vectors of correctness scores yij from the LLMs in the training set, making the training task a
multi-label binary classification problem. We train on an iid split of half of the LLMs at a time and test on the other half.
Additionally, the training data are split along the example axis into an 80% training and 20% validation set.

L.3. Hyperparameters

We run a small grid search over different plausible hyperparameter settings and settle on the following setup: We employ the
Adam optimizer [20] with an initial learning rate of 2e-5 and a weight decay of 1e-5. The learning rate undergoes a linear
warm-up over 200 steps, followed by exponential decay using the formula lrcurrnt = γs · lrinit, where s is the number of
steps after the warmup phase and the decay factor γ is set to 0.99995. We train with a batch size of 96.

19

Efficient multi-prompt evaluation of LLMs

Table 1: Kendall’s W per LLM

Model Kendall’s W

meta-llama/llama-3-8b-instruct 0.126027
meta-llama/llama-3-8b 0.252835
meta-llama/llama-3-70b-instruct 0.101895
mistralai/mistral-7b-instruct-v0-2 0.219841
mistralai/mistral-7b-v0-1 0.345592
mistralai/mixtral-8x7b-instruct-v01 0.131487
codellama/codellama-34b-instruct 0.287066
ibm-mistralai/merlinite-7b 0.146411
google/gemma-7b-it 0.445478
google/gemma-7b 0.179373
google/flan-t5-xl 0.066501
google/flan-t5-xxl 0.056257
google/flan-ul2 0.109076
tiiuae/falcon-180b 0.165600
tiiuae/falcon-40b 0.100173

M. Heuristics for discrete features
For the BBH and LMentry benchmarks, we use the following heuristics to construct feature representations of prompt
templates.

20

Efficient multi-prompt evaluation of LLMs

Table 2: Overview of Discrete Features

Category Feature Name Description

Casing Features
All Caps Words Count of all uppercase words
Lowercase Words Count of all lowercase words
Capitalized Words Count of words with the first letter capitalized

Formatting Features Line Breaks Count of line breaks
Framing Words Count of capitalized or numeric words before a colon

Special Characters Features

Colon (:) Count of ’:’
Dash (-) Count of ’-’
Double Bar (——) Count of ’——’
Separator token Count of ’¡sep¿’
Double Colon (::) Count of ’::’
Parenthesis Left (() Count of ’(’
Parenthesis Right ()) Count of ’)’
Quotation (”) Count of ’”’
Question Mark (?) Count of ’?’

Length Feature Space Count Count of spaces

21

