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Abstract

Current experimental scientists have been increasingly relying on simulation-

based inference (SBI) to invert complex non-linear models with intractable

likelihoods. However, posterior approximations obtained with SBI are often

miscalibrated, causing credible regions to undercover true parameters. We

develop CP4SBI, a model-agnostic conformal calibration framework that con-

structs credible sets with local Bayesian coverage. Our two proposed variants,

namely local calibration via regression trees and CDF-based calibration, en-

able finite-sample local coverage guarantees for any scoring function, including

HPD, symmetric, and quantile-based regions. Experiments on widely used

SBI benchmarks demonstrate that our approach improves the quality of un-

certainty quantification for neural posterior estimators using both normalizing

flows and score-diffusion modeling.

Keywords: Simulation-based inference, Credible regions, Conformal prediction, Local coverage,

Conditional coverage

1. Introduction

In recent years, the machine learning research community has shown growing interest in tackling

challenging open problems across a range of experimental sciences, including biology [Chicco,

2017, Min et al., 2017], astrophysics [Freeman et al., 2017, Rodŕıguez et al., 2022], neuroscience

[Lueckmann et al., 2017], and fluid dynamics [Usman et al., 2021, Vinuesa and Brunton, 2022].

A fundamental challenge common to all these domains—and the focus of this work—is the task

of inferring the parameter values of statistical models that best explain observed data [Tarantola,

2005, Casella and Berger, 2024]. These statistical models are typically formalized as stochastic

simulators, which generate synthetic data x ∈ X given input parameters θ ∈ Θ. Although it

is easy to generate data from such simulators, these models generally lack a tractable likelihood
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function, making classical Bayesian inference techniques for computing posterior distributions, such

as Markov Chain Monte Carlo (MCMC), infeasible.

Simulation-based inference (SBI) [Cranmer et al., 2020] is a powerful framework for likelihood-

free Bayesian inference, allowing posterior estimation from synthetic data generated by simulators.

Recent advances in deep generative models enable SBI methods to approximate posterior distri-

butions using expressive neural density estimators. Despite notable empirical successes, SBI is

still maturing and faces key challenges that hinder wider adoption. These include sensitivity to

model misspecification [Wehenkel et al., 2025], difficulties with hierarchical or weakly identified

models [Rodrigues et al., 2021], and limited theoretical understanding of posterior consistency

with finite data [Linhart et al., 2023]. A meta-analysis by Hermans et al. 2021 shows that current

SBI methods often produce overconfident and miscalibrated posteriors. That is, credible regions

C(xobs) built for parameters for θ using the approximate posterior p̂(θ | xobs), where xobs is the

observed data, typically fail to achieve nominal coverage. This compromises the reliability of

downstream tasks that rely on these posteriors [Murphy, 2022].

To mitigate the issues of miscalibrated posterior distributions, recent work draws on the suc-

cess of Conformal prediction (CP) for prediction methods [Shafer and Vovk, 2008, Angelopoulos

et al., 2023] to construct credible regions with finite-sample coverage guarantees in an SBI setting.

However, vanilla CP yields only marginally calibrated regions [Patel et al., 2023, Baragatti et al.,

2024], meaning that

P(θ ∈ C(X)) = 1− α, (1)

which is often refered to as marginal coverage.

This is less informative than conditional coverage for a given observation xobs, defined as

P(θ ∈ C(X) | X = xobs) = 1− α, (2)

a property that is central to Bayesian inference. Moreover, current CP methods require access

to a closed-form approximation to the posterior p(θ | x), which is not necessarily possible for all

classes of generative models currently used for SBI, such as diffusion models [Linhart et al., 2024]

and flow matching [Wildberger et al., 2023].

We address this gap by incorporating local CP techniques [Izbicki et al., 2022, Cabezas et al.,

2025a, Dheur et al., 2025] into the SBI framework. Our method, CP4SBI, supports a broad range

of posterior approximators, including both density- and sample-based approaches. As illustrated

in Figure 1, CP4SBI yields more reliable, observation-specific credible regions, improving calibra-

tion across different xobs and refining standard globally calibrated methods. It only requires a

calibration dataset Dcal = {(θi,xi)}Bi=1, where each (θ,X) is either simulated from the prior and

the model, or obtained by withholding a small portion (e.g., 20%) of the training data used for the

posterior approximator.

Paper Outline. Section 1.1 reviews related work. Section 1.2 presents our contributions.

Background is shown in Section 2, followed by methodology in Section 3. Section 4 presents

theoretical results, and Section 5 shows experiments on SBI benchmarks. Section 6 concludes the

paper. Appendices A to C contain algorithms, proofs, and additional results and details.

1.1. Relation to Other Work

Approximations of posterior distributions. Various SBI strategies for posterior estimation

have been developed over recent years. These include initial approaches like Approximate Bayesian

Computation (ABC) [Marin et al., 2012, Sisson et al., 2018], which approximates the posterior for

a specific observation xobs via rejection sampling using a specified distance function and rejec-

tion sampling or other MCMC methods. Following this, amortized methods started being used to
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Figure 1: Comparison of credible regions on the Two Moons benchmark for two distinct
observations xobs. The proposed LoCart CP4SBI method (blue) produces re-
gions that more closely match the oracle regions (black) with correct coverage,
compared to the global conformal (green) and standard self-calibration (red).
This highlights the benefits of local adaptivity in improving the quality of cred-
ible region estimates.

estimate the posterior distribution and related quantities more efficiently [Cranmer et al., 2015,

Gutmann and Corander, 2016, Izbicki et al., 2019]. These methods include neural posterior esti-

mation (NPE) [Papamakarios and Murray, 2016, Lueckmann et al., 2017, Greenberg et al., 2019,

Deistler et al., 2022], which directly approximates the posterior density p(θ | x); neural likelihood
estimation (NLE) [Papamakarios et al., 2019, Frazier et al., 2023], which estimates the intractable

likelihood function p(x | θ); and density ratio estimators [Izbicki et al., 2014, Hermans et al.,

2020, Durkan et al., 2020, Dalmasso et al., 2020, 2024], which estimate likelihood ratios such as

p(x | θ)/p(x). Additionally, a subsequent development in the field has been the adaptation of

more implicit generative models, such as flow-matching and diffusion models, to SBI [Wildberger

et al., 2023, Geffner et al., 2023, Linhart et al., 2024]. These advanced techniques aim to faithfully

generate samples directly from the posterior p(θ | x) without requiring the estimation of a closed-

form posterior density. Our approach uses such methods, but provides means to better calibrate

credible sets derived from them.

Calibration of approximators and recalibration techniques. Despite the breadth of

SBI’s recent research and its impact on various scientific fields, Hermans et al. 2021 has revealed

a prevalent challenge to all of its variants: they can suffer from statistical miscalibration and

produce overconfident estimates in practical settings. Consequently, a significant body of recent

work [Hermans et al., 2021, Dey et al., 2022, Bon et al., 2022, Delaunoy et al., 2022, Chung et al.,

2024] has focused on improving posterior density calibration, with two main approaches: (1) Post-

hoc procedures that recalibrate existing estimates, e.g., using local Probability Integral Transform

(PIT) diagnostics [Zhao et al., 2021, Dey et al., 2022], or adjusting samples and probability es-

timates with Highest Density Region (HDR) corrections [Chung et al., 2024]; and (2) Pre-fitting

procedures that integrate calibration during the estimation process, e.g., ensembling posterior esti-

mations [Hermans et al., 2021] or regularizing estimator formulations [Delaunoy et al., 2022, 2023].
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The main limitation of methods from both categories is that they do not offer explicit finite-sample

guarantees for the validity of credible regions.

Conformal Prediction applied to approximate posteriors. Standard Conformal Predic-

tion (CP) techniques, when applied to SBI, primarily provide post-hoc marginal coverage guaran-

tees. Existing work in this direction includes Baragatti et al. 2024, which adapts CP for Approxi-

mate Bayesian Computation methods, and Patel et al. 2023, which explores its use in variational

inference —a setting, like SBI, where one also works with estimates of the posterior distribution.

Although these methods are effective in improving marginal coverage, they do not provide locally

or approximately conditionally valid credible regions in general settings. Moreover, Patel et al.

2023 requires a closed-form approximation of the posterior, which is typically unavailable in the

generative models used for SBI, where only sample-based estimates are provided.

Frequentist confidence sets for SBI. An emerging line of research aims to construct confi-

dence sets with frequentist coverage in SBI settings, i.e., ensuring that P(θ ∈ C(X) | θ) = 1 − α

for all θ ∈ Θ as opposed to Equation (2). This includes methods based on Monte Carlo sampling

[Cranmer et al., 2015], quantile regression [Dalmasso et al., 2020, 2024, Masserano et al., 2023,

Carzon et al., 2025], and conformal prediction [Cabezas et al., 2024]. Our work does not target

frequentist coverage but instead focuses on improving Bayesian posterior calibration.

1.2. Novelty

We introduce CP4SBI, a framework that integrates conformal prediction techniques into the

simulation-based inference pipeline to produce calibrated credible regions. Our main contribu-

tions are:

• Guaranteed Marginal Coverage: Unlike standard credible sets from approximate pos-

teriors which often suffer from miscalibration [Hermans et al., 2021], CP4SBI provides non-

asymptotic guaranteed marginal coverage (Equation 1) by reinterpreting Bayesian scores as

nonconformity scores.

• Enhanced Local and Conditional Adaptivity: We move beyond simple marginal guar-

antees, achieving stronger coverage criteria:

– CDF CP4SBI: Achieves asymptotic conditional coverage as the estimate p̂(θ | x) gets
closer to the true posterior distribution. This implies that P(θ ∈ C(X) | X = xobs)

typically gets closer to 1 − α as the number of simulated training samples increases.

This is achieved by efficiently estimating the conditional CDF of scores, reusing the

already-trained posterior approximation.

– LoCart CP4SBI: Provides local coverage by partitioning the data space with a regres-

sion tree, adapting credible region sizes based on inference difficulty. That is, LoCart

CP4SBI achieves P(θ ∈ C(X) | X ∈ A) = 1− α, where A is a subset of X of datasets

close to xobs according to a data-driven metric. Moreover, it offers asymptotic condi-

tional coverage in the sense that P(θ ∈ C(X) | X = xobs) gets closer to 1 − α as the

number of calibration samples B increases.

• Generality and Flexibility: CP4SBI is a model-agnostic framework that can be applied

on top of any posterior approximator, including density-based methods (e.g., NPE) and

sample-based generative models (e.g., diffusion models, flow matching). Furthermore, it

is compatible with various scoring functions, allowing for the construction of calibrated

Highest Posterior Density regions, symmetric regions, or other custom credible sets. It also

accommodates nuisance parameters and parameter transformations. This flexibility makes

it a broadly applicable tool for enhancing the reliability of SBI methods.
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2. Background

2.1. Conformal Prediction

Conformal methods have recently emerged as a powerful framework for constructing prediction

regions under minimal assumptions [Vovk et al., 2005, Shafer and Vovk, 2008, Angelopoulos et al.,

2023, Izbicki, 2025]. Given exchangeable data {(Yi,Xi)}m+1
i=1 , these methods construct a prediction

set C(·) using the first m pairs such that P
(
Ym+1 ∈ C(Xm+1)

)
≥ 1 − α, where the probability is

taken with respect to the joint distribution of all m+ 1 samples.

A standard split-conformal method begins by defining a nonconformity score s : Y × X →
R, which quantifies how well a candidate output y ∈ Y conforms to the input x ∈ X given a

fitted regression model. In regression problems, a common choice of score is the absolute residual

s(y;x) =
∣∣y − Ê[Y | x]

∣∣, where Ê[Y | x] is an estimate of the regression function E[Y | x] fitted
on a subset of the labeled data reserved for training. The prediction region then takes the form

C(x) = {y ∈ Y : s(y;x) ≤ t1−α}, where t1−α is the (1 + 1/n)(1 − α)-quantile of the conformity

scores s(Yi;Xi) evaluated on a calibration set of size n disjoint from the training data used to

construct the nonconformity score s.

Conformal methods guarantee marginal coverage [Papadopoulos et al., 2008, Vovk, 2012, Lei and

Wasserman, 2014, Valle et al., 2023], but generally do not ensure conditional coverage. Without

strong assumptions on the data-generating distribution, achieving exact conditional coverage either

requires trivial (often unbounded) prediction sets or results in coverage falling below the target

level for some covariate values [Lei and Wasserman, 2014, Foygel Barber et al., 2021]. To address

this, several recent methods aim to achieve asymptotic conditional coverage as m → ∞. One

approach is to construct conformity scores whose conditional distribution given X is approximately

independent of X. Examples include conformalized quantile regression [Romano et al., 2019],

distributional conformal prediction [Chernozhukov et al., 2021], Dist-split [Izbicki et al., 2020],

HPD-split [Izbicki et al., 2022], EPICSCORE [Cabezas et al., 2025b], and Plassier et al. 2025. In

this work, we are particularly interested in the CDF-conformal score introduced by Dheur et al.

[2025, Eq. 14]. Given a nonconformity score s(y;x) and an estimate F̂ (· | x) of its conditional

cumulative distribution function, this approach defines the transformed score.

s′(y;x) = F̂ (s(y;x) | x).

This transformation improves conditional coverage by ensuring that the modified score s′ is (close

to) uniformly distributed, leading to asymptotically valid conditional prediction sets, while keeping

marginal validity.

An alternative strategy to achieve asymptotic conditional coverage is to define a finite partition

A = {A1, . . . , AK} of the feature space X , and construct prediction regions locally within each

partition element. Concretely, let T : X → A be the function that maps each feature vector x

to its corresponding region in A. Then, divide the calibration set into subsets Ij = {i : T (Xi) =

Aj}, j = 1, . . . ,K. Finally, within each region Aj , compute the conformal quantile tj,1−α as the

(1 + 1/nj)(1 − α) empirical quantile of scores si for i ∈ Ij , where nj = |Ij |. The local prediction

region is then defined as

Clocal(x) = {y ∈ Y : s(y;x) ≤ tj,1−α} , for x ∈ Aj .

This procedure guarantees P (Yn+1 ∈ Clocal(Xn+1) | Xn+1 ∈ Aj) ≥ 1−α. As the partition becomes

finer (i.e., as Aj shrinks), the method approaches conditional validity. Several strategies for defining

such partitions have been proposed [Vovk, 2012, Lei and Wasserman, 2014, Boström and Johans-

son, 2020, Boström et al., 2021, Foygel Barber et al., 2021]. We use LoCart [Cabezas et al., 2025a],

which constructs a regression tree to partition the feature space by predicting the conformity score
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s(y;x) from x. The resulting partition approximates the coarsest one where the conditional distri-

bution of s | x is constant [Meinshausen and Ridgeway, 2006, Cabezas et al., 2025a], enabling local

conformalization to closely match conditional coverage with a minimal number of data-efficient

regions.

2.2. Bayesian Credible Sets

Bayesian credible sets typically take the form

C(x) = {θ : s(θ;x) ≤ t1−α(x)}, (3)

where s(θ;x) is a scoring function computed using the posterior distribution, and the threshold

t1−α(x) is chosen to satisfy the conditional coverage condition:

P (θ ∈ C(x) | x) =
∫

I (s(θ;x) ≤ t1−α(x)) p(θ | x) dθ = 1− α.

In other words, the posterior probability that the credible set contains the parameter value must

be 1− α, where the miscoverage level α is defined beforehand.

Different choices of the scoring function s lead to different types of credible sets. For example

(see Figure 2 for an illustration):

• (HPD Regions) If s(θ;x) = −p(θ | x), the resulting set corresponds to the highest posterior
density (HPD) region;

• (Symmetric Regions) In the case θ ∈ R and if s(θ;x) =
|θ − E[θ | x]|√

Var[θ | x]
, the resulting set

is a central region based on the posterior mean and variance (see Masserano et al. 2023 for

multivariate extensions);

• (Quantile-based Regions) In the case θ ∈ R and if s(θ;x) = max {qα1
(x)− θ, θ − qα2

(x)},
where qα(x) denotes the α-quantile of the distribution θ | x and α2 − α1 = 1 − α, the re-

sulting set is the quantile-based interval (qα1(x), qα2(x)). In this case, the threshold satisfies

t1−α(x) = 0 by construction.

t(x)

θ

p(
θ 

| x
)

HPD Region

t(x) V(θ | X)t(x) V(θ | X)

E(θ | X)

θ

p(
θ 

| x
)

Symmetric Region

0.5α 1 − 0.5α

θ

p(
θ 

| x
)

Quantile−based Region

Figure 2: Credible regions for each distinct scoring function s.

When the true posterior p(θ | x) is available—either in closed form or through sampling—it is

conceptually straightforward, albeit potentially computationally demanding, to compute a thresh-

old t1−α(x) that guarantees valid coverage as defined by the equation above.

Now suppose that an approximation p̂(θ | x) to the true posterior is used, for instance via neural

posterior estimation, variational inference, or another method. The scoring function s can then be
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derived from the approximate version of p. For instance, the score corresponding to HPD can be

−p̂(θ | x). However, in this setting the threshold t1−α(x) also needs to be estimated. A common

approach is to choose its estimate t̂1−α(x) so that

P̂
(
θ ∈ Ĉ(x) | x

)
:=

∫
I
(
s(θ;x) ≤ t̂1−α(x)

)
p̂(θ | x) dθ = 1− α. (4)

That is, t̂1−α(x) is set so that the resulting credible set contains θ with posterior probability 1−α

under the approximate p̂. However, if p̂ poorly approximates the true posterior p, the resulting

coverage can deviate substantially from the nominal level. CP4SBI addresses this issue.

3. Our approach: CP4SBI

The key insight of our approach is to reinterpret s(θ;x) — defined in Equation (3) — as a conformity

score in the conformal inference framework. This allows us to construct credible sets with improved

coverage properties, even when the posterior p(θ | x) is poorly approximated.

A first naive conformal approach defines the prediction set as C(x) = {θ ∈ Θ : s(θ;x) ≤ t1−α},
where t1−α is the (1 + 1/B)(1 − α)-quantile of the scores {s(θb;xb)}Bb=1. This ensures marginal

coverage: P (θ ∈ C(X)) ≥ 1−α, but offers no conditional coverage guarantees, which are central in

Bayesian settings. Even as B → ∞, t converges to the (1−α)-quantile of the marginal distribution

of s(θ;X), not the conditional distribution of s(θ;x) for fixed x. To address this, we introduce

conformal methods designed for asymptotic conditional validity. We present two implementations

of CP4SBI, though other strategies from Section 2.1 also apply:

LoCart CP4SBI: We partition the covariate space X using a regression tree fitted to predict

s(θ;x) from x, following the LoCart method from Cabezas et al. 2025a. Conformal calibration is

then applied within the tree leaf containing x, using only calibration scores from that leaf. If the

tree partitions are sufficiently representative of the structure of the conformity score, we expect

the distribution of s(θ;x) to be approximately homogeneous within each region. As a result, the

conditional probability P(θ ∈ C(x) | x ∈ A) closely approximates P(θ ∈ C(x) | X = x), since

the partition captures local behavior in the score distribution. In our implementation of LoCart,

we adopt an augmented version that enriches the feature space by including an estimate of the

conditional variance of the conformity score, V[s(θ;X) | X], as an additional feature. This augmen-

tation allows for more informative partitions and improves the efficiency of the local procedure.

The method is summarized in Algorithm 1 in Appendix A and illustrated in Figure 3. While

marginal coverage guarantees theoretically require splitting the data into training and calibration

sets, we omit this step in practice, as it has minimal empirical impact on coverage and may reduce

practical performance.

CDF CP4SBI: This variant improves conditional coverage by transforming the score s(θ;x) via

an estimate F̂ (· | x) of its conditional cumulative distribution function, as proposed by Dheur

et al. 2025: s′(θ;x) = F̂ (s(θ;x) | x). In its original prediction setting, CDF-conformal needs the

conditional distribution of s(Y ;X) | x to be approximated from scratch, which requires estimating

a conditional density (via e.g. normalizing flows or a kernel density estimator) on top of the original

conformal score. This results in high computational costs and a separate holdout set dedicated

to learning such a distribution. Note, however, that in our simulator-based inference setting, an

estimate of the posterior p̂(θ | x) is already available and we can use it to obtain F̂ (s | x) with

minimal additional computational cost. In practice, we approximate F̂ (s(θ;x) | x) using a Monte

Carlo estimate based on posterior draws {θj}Mj=1 ∼ p̂(θ | x), i.e., samples generated from the

7



Compute

Fit CART
.

Simulate dataset

Figure 3: LoCart CP4SBI. Starting with a simulated calibration dataset (top-center),
we compute conformity scores and build a new dataset D′ (red). This is split
into training and calibration sets. A regression tree is trained to predict s from
X (CART panel), partitioning the feature space (partition panel). We locate
the region containing xobs and compute a local cutoff as the (1− α) quantile of
scores from calibration points in that region (orange). This cutoff defines the
final credible region (blue).

estimated posterior at x. The approximation is given by the empirical CDF:

F̂M (s(θ;x) | x) = 1

M

M∑
j=1

I
(
s(θj ;x) ≤ s(θ;x)

)
. (5)

This corresponds to using the ECDF method from [Dheur et al., 2025]. CDF CP4SBI is sum-

marized in Algorithm 2 in Appendix A and illustrated in Figure 4.

Nuisance parameters and transformations of the parameter space. In many applications,

one may only need credible sets for a subset of θ or for a transformation ϕ = g(θ). Our method

naturally accommodates these cases. Specifically, we approximate the posterior p(ϕ | x) using

the same techniques as for p(θ | x), then compute scores for ϕ as described in Section 2.2. To

calibrate the cutoff t1−α(x), we use the transformed calibration set (ϕ1,X1), . . . , (ϕB ,XB) with

ϕi = g(θi). Figure 5 shows our method in this setting, reducing a 10-dimensional problem (Gaussian

Linear Uniform [Lueckmann et al., 2021]) to the first two dimensions (details on the illustration

in Appendix C.2). Our approach yields regions close to the oracle with accurate coverage, while

other methods tend to be overconfident.

Credible sets for implicit generative models. Many recent posterior estimation methods do

not yield a closed-form expression for p̂(θ | x), or evaluating it is too costly. Instead, they provide

independent samples θ1, . . . , θL from p̂(θ | x) for each fixed x—e.g., score-diffusion [Linhart et al.,

2024] and flow-matching models [Wildberger et al., 2023]. CP4SBI remains applicable in this

setting. Given a scoring function s(θ;x), both LoCart CP4SBI and CDF CP4SBI can be used

directly, as they only require a posterior sampler (see Algorithms 1 and 2 in Appendix A). However,

the standard scores from Section 2.2 assume access to an explicit density and thus cannot be used

as-is. The approximations below allow their use with posterior samples:

• The HPD score can be approximated as s(θ;x) ∝ −
∑L

l=1 K(θ, θl), where K is a smoothing

kernel, which corresponds to applying a kernel density estimator to the posterior samples.

• The symmetric-region score can be approximated by s(θ;x) = V̂−1/2[θ | x] · |θ − Ê[θ | x]|,
where Ê and V̂ denote the empirical mean and variance of the samples {θ1, . . . , θL}.
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Fit CDF scores

Compute new conformal score

Simulate dataset

Compute

Figure 4: CDF CP4SBI. Starting with a simulated calibration dataset (top-left), we com-
pute nonconformity scores and build the dataset D′ (red). Using a posterior
estimator, we estimate the conditional CDF of the scores and transform each
into its CDF value s′(X; θ) (yellow). A global cutoff is then computed from
the transformed scores (orange). This threshold defines the credible region for
xobs, either via the transformed scores or through a data-dependent cutoff on
the original scores.

• The quantile-based score can be approximated via s(θ;x) = max {q̂α1
(x)− θ, θ − q̂α2

(x)} ,
where q̂α1(x) and q̂α2(x) are the empirical quantiles of the posterior samples.

Other scores from the multivariate conformal prediction literature can also be used in this frame-

work, such as C-PCP [Wang et al., 2023, Dheur et al., 2025] and CP2-PCP [Plassier et al., 2024].

In this work, we employ the Kernel Approximation to derive the HPD regions for these generative

models. Algorithm 3 in Appendix A details the procedure for deriving these scores, and Figure

6 illustrates the regions obtained by using our method in this setting on the Gaussian Mixture

task [Lueckmann et al., 2021] (details on the illustration can be found on Appendix C.2). CP4SBI

better approximates the oracle region and achieves coverage closer to the nominal rate.

4. Theoretical guarantees

We now present theoretical guarantees for the methods in Section 3. From this point on, we assume

a disjoint data split: a training set {(θi,Xi)}Ki=1 to estimate the posterior p̂(θ | x), and a calibration

set {(θi,Xi)}Bi=1 to calibrate the conformal methods. Proofs are given in Appendix B.

4.1. LoCart CP4SBI

The coverage guarantee of LoCart CP4SBI follows from applying standard conformal predic-

tion separately within each region Aj of the partition it defines. Once the partition is fixed, the

calibration scores s(θ;x) remain exchangeable within each region, which allows us to apply confor-

mal calibration independently in each subset. As a result, the quantile t1−α(x), computed using

calibration points in Aj , yields valid marginal coverage conditional on x ∈ Aj .
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eters from the 10-dimensional Gaussian Linear Uniform benchmark task. Our
CDF CP4SBI (blue) creates a region that is closer to the oracle (black) with
smaller deviation from nominal coverage.

Theorem 4.1 (LoCart CP4SBI local coverage). Suppose the calibration pairs {(θi,Xi)}Bi=1 and

the test pair (θ,X) are exchangeable. Let {Aj}Jj=1 be the partition of X produced by the LoCart

CP4SBI. Denote by Aj the cell of the partition containing X, and let t1−α(X) be the (1 − α)

quantile of the conformity scores s(θ;x) computed from the calibration pairs with Xi ∈ Aj. Define

the conformal set

Clocart(x) :=
{
θ ∈ Θ : s(θ;x) ≤ t1−α(x)

}
.

Then Clocart(x) satisfies both local and marginal coverage:

P
(
θ ∈ Clocart(X)

∣∣X ∈ Aj

)
≥ 1− α, P

(
θ ∈ Clocart(X)

)
≥ 1− α.

In addition, under the regularity conditions of Cabezas et al. [2025a, Theorem 5], LoCart

CP4SBI achieves asymptotic conditional coverage.

Theorem 4.2 (LoCart CP4SBI asymptotic conditional coverage). Let B denote the size of the

calibration set. Under the assumptions stated in Cabezas et al. [2025a, Theorem 5], LoCart

CP4SBI satisfies

lim
B→∞

P
(
θ ∈ Clocart(X)

∣∣X = x
)
= 1− α,

that is, it achieves conditional coverage in the limit as the calibration sample size grows.

4.2. CDF CP4SBI

When using the transformed scores s′(θ;x) = F̂M (s(θ;x) | x), the CDF CP4SBI procedure reduces

to applying standard conformal prediction with a modified nonconformity score. Here, F̂M (· | x)
denotes the Monte Carlo estimate of the conditional CDF of the score s(θ;x) given x based on

M samples drawn from the estimated posterior, defined by Equation 5. In the marginal setting,

where calibration and test pairs (θ,X) are exchangeable, this transformation preserves validity,

and the method retains the usual marginal coverage guarantee.

Theorem 4.3 (Marginal coverage). Assume the calibration pairs {(θi,Xi)}Bi=1 and the test pair

(θ,X) are exchangeable, and let s′i = F̂M (s(θi;Xi) | Xi) be the transformed conformity scores.

10
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Figure 6: Approximation of the continuous-flow generative model’s HPD region for the
Gaussian Mixture benchmark using Kernel Approximation integrated with
CP4SBI. Our method achieves closer alignment to the oracle region and bet-
ter coverage than self-normalization.

Then the conformal region

Ccdf(x) := {θ ∈ Θ : F̂M (s(θ;x) | x) ≤ t1−α},

with t1−α the empirical (1− α)-quantile of {s′i}Bi=1, satisfies

P(θ ∈ Ccdf(X)) ≥ 1− α.

The conditional validity of CDF CP4SBI builds on the probability integral transform, following

the approach of Dheur et al. [2025]. If the estimated posterior p̂(θ | x) converges to the true

posterior p(θ | x) as the training size K → ∞, and the number of posterior draws M used to

compute F̂M grows to infinity, then the transformed score s′(θ;x) = F̂M (s(θ;x) | x) converges to
the true conditional CDF F (s(θ;x) | x) of the score. Since θ ∼ p(· | x), this implies that s′(θ;x)

becomes approximately Uniform(0, 1) conditional on x. In this case, the calibration scores and the

test score are approximately conditionally i.i.d., and the empirical quantile converges to the target

level 1− α, yielding asymptotic conditional coverage.

The asymptotic conditional validity of the procedure depends on the accuracy of the posterior

approximation and of the CDF estimate: M must grow to ensure that F̂M converges to F̂ implied by

p̂, B must grow so that the empirical quantile of the transformed scores converges to its population

value, and K must grow to guarantee that p̂ converges to p.

Theorem 4.4 (CDF CP4SBI asymptotic conditional coverage). Let B be the calibration set size,

K the training set size used to estimate the posterior distribution p̂(θ | x), and M the number of

posterior draws used to compute F̂M . Under Assumption B.1, if B → ∞, K → ∞, and M → ∞,

then

lim
B,K,M →∞

P
(
θ ∈ Ccdf(X) | X = x

)
= 1− α.

5. Experiments

We compare our approach to baselines in terms of conditional and marginal statistical validity using

ten SBI benchmarks introduced by Lueckmann et al. 2021 (details in Table 1, in Appendix C.1). All

experiments have a nominal level at 1−α = 0.9 with an overall simulation budget of Ball = 10000.
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From this budget, 80% is allocated for training the posterior estimators, and the remaining 20% is

reserved for the calibration set. We consider other simulation budgets in Appendix C.4. We focus

on constructing HPD regions, defining the conformity score as s(θ;x) = −p̂(θ | x) or, for sample-

based models, as s(θ;x) ∝ −
∑L

l=1 K(θ, θl), using Scott’s rule to determine kernel bandwidth

[Scott, 2015], where θl ∼ p̂(· | x). Posterior estimation is carried out using conditional normalizing

flows (NPE; [Greenberg et al., 2019, Papamakarios et al., 2021]) and a conditional diffusion model

(NPSE; [Geffner et al., 2023]). For both estimators, we use the implementations provided in the

sbi package [Boelts et al., 2025], using their standard architectures.

5.1. Metrics for conditional and marginal validity

To assess conditional validity, we estimate the conditional coverage for each x as

δ(x, C) =
1

K

K∑
k=1

I (θk ∈ C (x)) ,

where θk ∼ p(θ | x). We then compute the Mean Absolute Error (MAE) over Bsim fixed observa-

tions:

MAE =
1

Bsim

Bsim∑
i=1

|δ(xi, C)− (1− α)| . (6)

Lower MAE indicates conditional coverage closer to the nominal level, reflecting better calibration.

We assess marginal coverage by simulating an independent test set Dtest = {(θj ,xj)}Btest
j=1 and

compute the Average Marginal Coverage (AMC) as:

AMC =
1

Btest

Btest∑
i=1

I (θi ∈ C(xi)) .

Values near the nominal level 1 − α indicate good average coverage. We fix K = 1000 and

Btest = 2000. For MAE, we use Bsim = 500 or 10, depending on the simulator’s posterior sample

availability in sbibm [Lueckmann et al., 2021] (see Appendix C.1 for details).

5.2. Baselines

We compare our approach to three established methods for constructing credible regions:

• Self-calibration: This method constructs credible regions directly from the estimated pos-

terior distribution, p̂(θ | x). For each fixed data point x, the method draws a set of Bself

(fixed at 1000) posterior samples, θi ∼ p̂(· | x), and evaluates their corresponding scores,

s(θi;x). From these scores, an empirical threshold t̂(x) is computed via Monte Carlo inte-

gration, following Equation (4), to ensure the desired coverage level of 1− α.

• Global [Patel et al., 2023]: This method is a direct application of the vanilla conformal

approach for constructing credible regions. First, it uses the calibration set Dcal to compute

nonconformity scores for each data point. Then, it determines a single threshold, tα, from

these scores, which is then applied uniformly to all new observations, x.

• HDR [Chung et al., 2024]: This multivariate recalibration method corrects miscalibration

by learning a monotonic mapping R from posterior density values using a calibration set Dcal.

For a new x, it resamples from the posterior to align with R, producing calibrated samples

that account for dependencies across dimensions. Cutoffs for HDRs are then computed using

these recalibrated samples, similarly to self-calibration.

12



5.3. Results and discussion

Next, we evaluate the credible regions produced by different methods on the selected benchmarks.

Focusing on the NPE base estimator, Figure 7 shows that our approach significantly outperforms

existing methods in terms of conditional coverage. Specifically, both LoCart CP4SBI and CDF

CP4SBI methods perform statistically better in 8 out of 10 benchmarks, all while maintaining

marginal coverage close to the nominal level. Overall, our methods perform well in almost all

benchmarks, except for the Lotka-Volterra simulator, where only the global method shows a better

performance. The right panel further shows that our proposed methods consistently maintain

near-nominal marginal coverage, whereas approaches such as self-calibration and HDR lack this

property on some benchmarks. The ability of our methods to produce efficient and well-calibrated

regions across various benchmarks, parameter spaces, and data distributions highlights their robust

performance.
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Figure 7: Conditional MAE (left) and marginal coverage (right) for NPE-based credible
sets are shown across benchmark tasks, with means and 95% confidence intervals
over 50 runs. Green cells indicate statistically significant improvements (lower
MAE or coverage near the nominal level). Our methods, LoCart CP4SBI and
CDF CP4SBI, outperform others in 8 of 10 tasks (left) and maintain close-to-
nominal marginal coverage (right), demonstrating improved posterior calibration
across varied tasks.

Figure 8 shows that our strategy for constructing calibrated HPD regions from an NPSE base

estimator (i.e. a score diffusion model) is also successful. Both of our methods demonstrate bet-

ter conditional coverage performance than other approaches, as well as solid marginal coverage.

In particular, LoCart CP4SBI proved to be the most effective, producing credible regions that

simultaneously improve conditional coverage while respecting marginal coverage. While the HDR

method also shows acceptable conditional coverage in some settings, it does not achieve marginal

coverage in any dataset. This highlights the efficiency of our approach in recalibrating credible

regions across different posterior estimators. Figure 9 in Appendix C.4 shows that our approach

consistently displays improved conditional coverage performance across two budgets (Ball = 2000

and Ball = 20000). A caveat exists, however: for the smaller budget, LoCart CP4SBI performs

comparably to the global one, likely because its partitioning strategy struggles with sparse calibra-

tion data. For this case, CDF CP4SBI shows better results. This illustrates how CP4SBI adapts

its performance based on the available data, highlighting its flexibility across different calibration
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Figure 8: Conditional MAE (left) and marginal coverage (right) for NPSE-based credible
sets across benchmark tasks, averaged over 15 runs with 95% confidence inter-
vals. Green cells highlight statistically significant coverage near the nominal
level. LoCart CP4SBI ranks among the best in 7 of 10 tasks. While HDR
shows good conditional coverage, it fails to maintain marginal coverage. Our
methods perform well on both metrics, ensuring calibrated inference.

budgets and posterior estimators of varying quality. The results obtained in this section reinforce

the capacity of CP4SBI to enhance calibration in credible regions for fixed observations x.

6. Final Remarks

In this paper, we tackled the fundamental problem of miscalibration in Simulation-Based Infer-

ence. We proposed CP4SBI, a post-hoc, model-agnostic framework using conformal prediction to

build credible sets with finite-sample guarantees. It applies to any SBI method offering posterior

samples or density estimates and supports any scoring function, enabling calibrated HPD regions,

symmetric intervals, or custom sets.

We proposed two calibration strategies. The first, CDF CP4SBI, achieves asymptotic condi-

tional coverage by recalibrating scores using an estimate of their conditional CDF. Its guarantees

strengthen as the underlying posterior approximation improves—typically as the training sample

size increases. The second, LoCart CP4SBI, provides finite-sample local coverage by partitioning

the data space with a regression tree, adapting the calibration to regions of varying difficulty. This

method also attains asymptotic conditional coverage as the size of the calibration set grows. Both

methods guarantee correct marginal coverage. Our experiments on established SBI benchmarks

confirmed that CP4SBI effectively improves uncertainty quantification for both neural posterior

estimators and diffusion-based models.

Despite offering stronger coverage guarantees, CP4SBI has some limitations. The tightness of its

credible regions depends on the quality of the initial posterior; poor approximations lead to wider,

albeit calibrated, sets. Additionally, LoCart CP4SBI requires a sufficiently large calibration set

to populate its partitions, which can be challenging in high-dimensional spaces. This can be partly

mitigated by including posterior variance estimates or other summary statistics in the partitioning

features.

This work opens several avenues for future research. Although we focused on two conformal

methods, other techniques may yield better performance in specific settings (see, e.g., Plassier et al.
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2025). We also plan to extend the CP4SBI framework to more challenging inference scenarios, such

as those involving hierarchical models or discrete parameters. Finally, its applicability is not limited

to SBI; it could be a valuable tool for calibrating posteriors from other methods like Variational

Inference or Approximate Bayesian Computation.

In conclusion, CP4SBI offers a flexible and theoretically grounded approach to improving un-

certainty quantification in computational science. By producing credible sets with stronger local

and conditional coverage, it enhances the reliability of inferences from complex simulator models.

This marks a meaningful advance for many scientific fields, providing a general-purpose tool to

support trustworthy discovery.

Code to implement CP4SBI and reproduce the experiments and illustrations is available at

https://github.com/Monoxido45/CP4SBI.
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Appendix

A. Algorithms

This appendix details all algorithms related to our approach. Algorithms 1 and 2 describe the

procedures for LoCart CP4SBI and CDF CP4SBI, respectively. Algorithm 3 further details how

we approximate Highest Posterior Density (HPD) scores for implicit generative methods by using

Kernel Density Estimation.

Algorithm 1: CP4SBI - LoCart: Local Conformal Prediction for SBI

Input: Calibration set D = {(θi,xi)}Bi=1, posterior approximator p̂(θ | x),
conformity score s(θ;X), nominal level α, new observation xobs

1 Step I: Score computation
2 1: For each (θi,xi) ∈ D, compute si = s(θi;xi) using p̂.
3 2: Form the scored dataset D′ = {(si,xi)}Bi=1, then randomly split it into

training D′
train and calibration D′

calib subsets.
4 Step II: Partition learning
5 1: Fit a regression tree on D′

train to predict s from x.
6 2: Use the tree to induce a partition A = {A1, . . . , AK} of the feature space.
7 3: Define a region mapping T : X → A such that T (x) = Aj if x ∈ Aj .
8 Step III: Local quantile estimation
9 1: For each region Aj ∈ A, define the set of calibration indices

Ij = {i | xi ∈ Aj , (si,xi) ∈ D′
calib}.

10 2: Compute the local cutoff tj as the empirical (1 + 1/|Ij |)(1− α)-quantile of
{si}i∈Ij .

11 Step IV: Credible region construction
12 1: Assign xobs to region Ak = T (xobs).
13 2: Return the credible region:

RCP4SBI(xobs) = {θ | s(θ;xobs) ≤ tk}

Output: Credible region RCP4SBI(xobs) with marginal and local 1− α coverage

Algorithm 2: CP4SBI-CDF

Input: Calibration set D = {(θi,xi)}Bi=1, estimated posterior p̂(θ | x), conformity score

s(θ;x), nominal level α, new observation xobs

1 Step I: Score computation

2 1: For each (θi,xi) ∈ D, compute si = s(θi;xi) using p̂.

3 2: Form the scored dataset D′ = {(si,xi)}Bi=1

4 Step II: Compute CDF scores

5 1: Compute s′i = s′(θi;xi) = F̂ (s(θi;X) | X = xi) on D′, using p̂ to estimate each

F̂ (· | X = xi).

6 Step III: Cutoff estimation on transformed scores

7 1: Compute the cutoff t1−α as the empirical (1 + 1/B)(1− α)-quantile of {s′i}Bi=1

8 Step IV: Compute credibility set

9 1: Compute the set CCP4SBI(xn+1) as:

RCP4SBI(xobs) = {θ | s′(θ;xobs) ≤ t1−α}

= {θ | s(θ;xobs) ≤ F̂−1(t1−α | X = xobs)} .

Output: Credible region RCP4SBI(xobs) with marginal and asymptotic conditional 1− α

coverage
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Algorithm 3: KDE approximation of HPD score

Input: Calibration set D = {(θi,xi)}Bi=1, estimated posterior p̂(θ | x), KDE budget L

1 For each (θ,x) ∈ D, do:

2 Simulate L samples θ̃ ∼ p̂(· | x)
3 Fit a KDE on data generated from posterior estimator {θ̃l}Ll=1

4 Define s(θ;x) = 1
L

∑L
l=1 K(θ, θl)

Output: Conformal scores {s(θi,xi)}Bi=1
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B. Proofs

This appendix contains formal proofs for the theoretical results stated in Section 4. We organize

the material according to the corresponding methods: LoCart CP4SBI and CDF CP4SBI.

B.1. LoCart CP4SBI

We begin by justifying the finite-sample local and marginal coverage guarantees of LoCart CP4SBI.

The result follows directly from standard conformal prediction arguments applied independently

within each partition element.

Proof of Theorem 4.1. This is a straightforward application of standard conformal prediction (see,

e.g., Angelopoulos et al. 2023). Since the conformal threshold t1−α(x) is computed within each

regionAj using calibration scores that are exchangeable within that region, the conformal guarantee

holds conditional on x ∈ Aj . Marginal validity follows by averaging over all regions via the law

of total probability. A complete version of this argument is presented in Cabezas et al. [2025a,

Theorem 2]

We now turn to the proof of the asymptotic conditional coverage guarantee for LoCart CP4SBI.

Proof of Theorem 4.2. This result follows from Cabezas et al. [2025a, Theorem 5], which estab-

lishes asymptotic conditional validity for local conformal prediction procedures under general reg-

ularity conditions. These include mild assumptions on the partition structure and the convergence

of estimated quantiles to the true conditional quantiles within each region.

B.2. CDF CP4SBI

We begin by formalizing the transformation used in CDF CP4SBI. Let

F (s(θ∗;x) | x) =
∫

I{s(θ;x) ≤ s(θ∗;x)} p(θ | x) dθ

denote the true conditional cumulative distribution function (CDF) of the score s(θ;x), evaluated

at a fixed test point (θ∗,x). The estimated version is defined as

s′(θ∗;x) = F̂ (s(θ∗;x) | x) =
∫

I{s(θ;x) ≤ s(θ∗;x)} p̂(θ | x) dθ,

where p̂(θ | x) is an estimate of the conditional posterior density p(θ | x).
In the marginal setting, the CDF CP4SBI procedure can be interpreted as standard conformal

prediction applied to a transformed score function s′(θ;x) = F̂ (s(θ;x) | x). The calibration scores

s′i = F̂ (s(θi;Xi) | Xi) are computed from i.i.d. samples (θi,Xi), and the conformal region is

constructed using their adjusted empirical (1− α)-quantile. Since the procedure follows the usual

conformal recipe—changing only the score function—the marginal coverage guarantee holds by the

standard conformal prediction argument.

Proof of Theorem 4.3. The procedure applies conformal prediction to the transformed scores s′i =

F̂ (s(θi;Xi) | Xi), which are computed from exchangeable calibration pairs. Since the conformal

region is defined by comparing the test score s′(θ;x) to the empirical (1 − α)-quantile of the

calibration scores, the standard conformal guarantee ensures that

P(s′(θ;X) ≤ t1−α) ≥ 1− α,

where (θ,X) is drawn jointly from the same distribution as the calibration data. This implies

marginal coverage of the conformal region Ccdf(x).
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We now turn to the conditional coverage properties of CDF CP4SBI. Unlike the marginal

case, conditional validity depends on three sources of approximation: the accuracy of the pos-

terior estimator p̂(θ | x), the Monte Carlo approximation used to compute the transformed score

F̂M (s(θ;x) | x), and the estimation of the conformal quantile from a finite calibration set. To

build intuition, we first consider an idealized setting in which the posterior is exact (p̂ = p) and the

conditional CDF F (s(θ;x) | x) is known exactly, so that the only remaining source of error comes

from estimating the conformal quantile using a finite calibration set. In this setting, conditional

coverage follows from the probability integral transform as B → ∞, as formalized in Theorem B.1.

Theorem B.1 (Asymptotic conditional coverage: idealized case). Suppose p̂ = p and the CDF

transformation F (s(θ;x) | x) is known exactly. Then, as the calibration size B → ∞, CDF CP4SBI

achieves asymptotic conditional coverage:

lim
B→∞

P
(
θ ∈ Ĉ(x) | X = x

)
= 1− α.

Proof. If p̂ = p, then the transformed score becomes

s′(θ;x) = F (s(θ;x) | x),

where F (· | x) denotes the true conditional CDF of the score. Since θ ∼ p(· | x), it follows from

the probability integral transform that

s′(θ;x)
∣∣x ∼ Uniform(0, 1).

Therefore, for any fixed x,

P
(
s′(θ;x) ≤ t1−α | x

)
= t1−α.

Moreover, if the threshold t1−α is computed as the empirical (1 + 1/B)(1 − α)-quantile of i.i.d.

Uniform(0, 1) calibration scores, then

t1−α → 1− α as B → ∞,

which implies that the procedure achieves asymptotic conditional coverage at level 1 − α [Dheur

et al., 2025].

Suppose now that the posterior estimate differs from the true posterior, but that the CDF trans-

formation F̂ (s(θ;x) | x) is still evaluated exactly from its integral definition under the approximate

posterior. To make the dependence on the training sample size explicit, we write p̂K(θ | x) for the
posterior estimate obtained from a training set of size K, and keep p(θ | x) for the true posterior.

Accordingly, we define

F̂K(s(θ;x) | x) =

∫
I{s(θ′;x) ≤ s(θ;x)} p̂K(θ′ | x) dθ′.

In this setting, the transformed score s′(θ;x) = F̂K(s(θ;x) | x) is no longer uniformly distributed

under p, and conditional validity may be compromised. Our goal is to quantify the deviation from

the nominal coverage level as a function of the discrepancy between p̂K and p.

To recover conditional coverage in the limit, we require that the divergence between p̂K and p

vanishes as the posterior approximation improves.

Assumption B.1 (KL convergence of the approximate posterior). Let

δK(x) := KL (p̂K(· | x) ∥ p(· | x)) .
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We assume that p̂K(· | x) is absolutely continuous with respect to p(· | x), and that for almost

every x with respect to the distribution of X, we have δK(x) → 0 as K → ∞.

This assumption is reasonable when p̂K is obtained through methods that aim to approximate

the true posterior by minimizing a divergence such as the KL. In such cases, it is natural to expect

δK(x) to decrease as K grows, provided the optimization is effective and the approximating family

is sufficiently flexible.

Theorem B.2 (Asymptotic conditional coverage: approximate posterior case). Under Assump-

tion B.1, and assuming that the calibration size B → ∞, the CDF CP4SBI procedure achieves

asymptotic conditional coverage:

lim
B→∞

lim
K→∞

P
(
θ ∈ Ccdf(x)

∣∣X = x
)

= 1− α for almost every x.

Proof of Theorem B.2. If p̂K ̸= p, then the distribution of

s′(θ;x) = F̂K(s(θ;x) | x)

under p(θ | x) is not uniform. For any fixed x, the conditional coverage can be written as

P
(
s′(θ;x) ≤ t

∣∣x) = P
(
s(θ;x) ≤ F̂−1

K (t | x)
∣∣∣x)

= F
(
F̂−1
K (t | x)

∣∣∣x) ,

where F (· | x) and F̂K(· | x) denote the CDFs of s(θ;x) under p and p̂K , respectively.

Since p̂K(· | x) is absolutely continuous with respect to p(· | x), Pinsker’s inequality [Boucheron

et al., 2013, Theorem 4.19] gives∣∣∣F (
F̂−1
K (t | x) | x

)
− t

∣∣∣ = ∣∣∣F (
F̂−1
K (t | x) | x

)
− F̂K

(
F̂−1
K (t | x) | x

)∣∣∣
≤

√
1

2
KL (p̂K(· | x) ∥ p(· | x))

=
√

δK(x)/2.

Therefore,

P
(
s′(θ;x) ≤ t | x

)
≥ t−

√
δK(x)/2.

The correction term
√
δK(x)/2 quantifies the effect of posterior misspecification. Under Assump-

tion B.1, we have δK(x) → 0 for almost every x as K → ∞, and hence

lim
K→∞

P
(
s′(θ;x) ≤ t | x

)
= t.

The remainder of the argument is identical to the proof of Theorem B.1, yielding the stated

asymptotic conditional coverage.

We now address the final source of approximation in the CDF CP4SBI procedure: the Monte

Carlo estimation of the transformed score. While the previous results accounted for the error

introduced by approximating the posterior p̂K(θ | x), in practice the CDF F̂K(s(θ;x) | x) must

also be approximated using a finite set of posterior samples. We show that this additional source

of error vanishes as the number of samples grows, completing the proof of asymptotic conditional

coverage in Theorem 4.4.

Proof of Theorem 4.4. Fix x. Let {θj}Mj=1
i.i.d.∼ p̂K(· | x) and denote by F̂K,M (· | x) the empirical

CDF based on these samples, and by F̂K(· | x) its population counterpart under p̂K . For any
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t ∈ (0, 1), consider

∆K,M (t;x) :=
∣∣∣F (F̂−1

K,M (t | x) | x)− t
∣∣∣.

We decompose

∆K,M (t;x) ≤
∣∣∣F (F̂−1

K,M (t) | x)− F (F̂−1
K (t) | x)

∣∣∣+ ∣∣∣F (F̂−1
K (t) | x)− t

∣∣∣.
For fixed K, the Glivenko–Cantelli theorem ensures F̂K,M → F̂K uniformly as M → ∞, hence

F̂−1
K,M (t) → F̂−1

K (t). By continuity of F (· | x), the first difference converges to zero, so that

lim
M→∞

∆K,M (t;x) =
∣∣∣F (F̂−1

K (t) | x)− t
∣∣∣.

Next, under Assumption B.1 the divergence KL(p̂K(· | x) ∥ p(· | x)) vanishes as K → ∞, which

by Pinsker’s inequality implies that the distribution functions converge. In particular,∣∣∣F (F̂−1
K (t) | x)− t

∣∣∣ → 0 for a.e. x.

Thus,

lim
K→∞

lim
M→∞

∆K,M (t;x) = 0.

In other words, the transformed scores converge to a uniform distribution in the limit, so that we

are precisely in the setting of Theorem B.1. Therefore,

P
(
θ ∈ Ccdf(x)

∣∣X = x
)
→ 1− α for a.e. x.
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C. Experiment details

C.1. Benchmark details

Table 1 details the specific characteristics of each benchmark task, including the number of dimen-

sions, the prior used, and the availability of true posterior samples. For tasks such as Bernoulli

GLM (and Raw), SLCP (and Distractors), Lotka-Volterra, and SIR, only 10 pre-set observations

with true posterior samples are available in the sbibm package. Meanwhile, the remaining tasks

allow for a higher budget of up to 500 observations with true posterior samples.

Table 1: Summary of benchmark tasks and their key characteristics.

Task Parameters Prior Bsim Description

Bernoulli GLM 10 Conjugate 10 Generalized Linear Model
with Bernoulli observa-
tions and uses sufficient
statistics (10-D)

Bernoulli GLM Raw 10 Conjugate 10 Raw data version (100-D)
of Bernoulli GLM.

Gaussian Linear 10 Gaussian 500 Mean inference with fixed
covariance and conjugate
prior

Gaussian Linear Unif. 10 Uniform 500 Same as Gaussian Linear,
but using a uniform prior.

Gaussian Mixture 2 Uniform 500 Bimodal mixture of Gaus-
sians and ABC benchmark
case

Lotka-Volterra 4 Lognormal 10 An ecological model de-
scribing the dynamics of
two interacting species,
such as a prey-predator re-
lationship.

SIR 2 Lognormal 10 An influential three-state
epidemiological model
parameterized by contact
rate and mean recovery.

SLCP 5 Uniform 10 A challenging inference
task that starts from a
simple likelihood and a
complex posterior.

SCLP Distractors 5 Uniform 10 Same task as SLCP, but
with additional 100 noisy
features (distractors).

Two Moons 2 Uniform 10 Crescent-shaped posterior
and tests multimodal per-
formance

For the Gaussian Mixture task, we made specific modifications to the default hyperparameters

of the simulator and prior to improve its behavior and enable more fruitful comparisons. We set

the uniform prior’s limits to −3 and 3 and changed the multiplicative factor of each mixture mean
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parameter (which are the parameters of interest) from 1 to 0.8.

C.2. Illustration Details

For both illustrations, we used a credibility level of 1− α = 0.9 and an overall simulation budget

of Ball = 20000. Of this budget, 80% was used for training the posterior approximator, with the

remaining 20% reserved for the calibration step.

Nuisance parameter illustration. We utilized the 10-dimensional Gaussian Linear Uniform

task, as detailed in Table 1. The first two parameters were set as our parameters of interest,

ϕ = (θ1, θ2). The posterior estimator p̂(ϕ | x)was a Neural Posterior Estimator (NPE) based on

conditional normalizing flows from the sbi package, using its standard architecture. We compare

the credible regions derived from the global, self-calibrated, and CDF CP4SBI methods for the

fixed observation:

xobs = (0.3416,−0.4812,−0.0749, 0.3471,−0.7253, 0.1747,−0.1242,−0.3328, 0.0409,−0.5498),

which was generated from the fixed full parameter vector:

θ = (0.25, 0.1, 0, 0, 0, 0, 0, 0, 0, 0),

with the true parameter of interest being the first two entries, ϕ = (0.25, 0.1).

Continuous-flow generative model credible set illustration. This illustration uses the 2-

dimensional Gaussian Mixture task, as detailed in Table 1. To derive the posterior estimator, we

used a Neural Posterior Score Estimator (NPSE) based on a conditional diffusion model [Geffner

et al., 2023], using the standard architecture from the sbi [Boelts et al., 2025] implementation.

Since the NPSE is a sample-based model, we use the KDE approximation of the HPD score detailed

in Algorithm 3 to build the set D′ = {(s(θi;xi),xi)}Bi=1 and to compute conformal scores s(θ;x)

for any other fixed x, with Scott’s rule used to determine the kernel bandwidth [Scott, 2015].

We compare the self-calibrated and LoCart CP4SBI credible regions for the fixed observation

xobs = (0.2651,−0.1454), which was generated under the fixed parameter θ = (0.15,−0.1).

C.3. Computational Details

To derive the partitions for LoCart CP4SBI using regression trees, we fixed the minimum number

of samples per leaf at 300 for large overall budgets (Ball = 10000 or Ball = 20000) and at 75

for a small budget (Ball = 2000) to ensure well-populated partitions. Post-pruning was also

performed via cost-complexity methods (ccp alpha) to balance partition complexity and predictive

performance, with the remaining hyperparameters set to the scikit-learn defaults [Pedregosa et al.,

2011]. For CDF CP4SBI, its sole hyperparameter, the sample size for estimating the empirical

CDF, M , was fixed at 1000.

C.4. Additional results

Conditional coverage performance for NPE-based posterior estimators is shown across benchmark

tasks for a smaller overall budget (Ball = 2000) and a larger one (Ball = 20000), in comparison

to the original budget of 10000. For the smaller budget, the performance of our approaches and

Global CP is similar, with CDF CP4SBI being a top performer and the best method for this case,

excelling in 9 out of 10 benchmarks. For this limited sample size, the Global CP approach may be

a better option than LoCart CP4SBI, as its local partitioning strategy is less effective with sparse

calibration data. On the other hand, when considering a larger budget, both LoCart CP4SBI

and CDF CP4SBI show a clear advantage over competing approaches, with each excelling in 7
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out of 10 benchmarks. The best competing method, Global CP, only performs well in 5 tasks,

particularly in Lotka-Volterra. Ultimately, these results demonstrate the robustness of our method

across different posterior estimator qualities and calibration budgets.
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Figure 9: Conditional MAE for NPE-based posterior estimators across benchmark tasks
for the overall budgets of Ball = 2000 (left) and Ball = 20000 (right). Mean
metric values and 95% confidence intervals, calculated over 30 repetitions, are
reported. Green cells indicate statistically significant superiority. For the smaller
budget of Ball = 2000, CDF CP4SBI shows improved performance, standing
out in 9 out of 10 benchmarks. For the larger budget of Ball = 20000, both
CDF CP4SBI and LoCart CP4SBI perform well, each standing out in 7 out
of 10 benchmarks. This showcases how our method adapts well across different
budgets.
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