
Published as a conference paper at ICLR 2021

RINGING RELUS: HARMONIC DISTORTION ANALYSIS
OF NONLINEAR FEEDFORWARD NETWORKS

Christian H.X. Ali Mehmeti-Göpel
Institute of Computer Science
Johannes-Gutenberg University Mainz
Staudingerweg 9, 55122 Mainz, Germany
chalimeh@uni-mainz.de

David Hartmann
Institute of Computer Science
Johannes Gutenberg-University of Mainz
Staudingerweg 9, 55128 Mainz, Germany
dahartma@uni-mainz.de

Michael Wand
Institute of Computer Science
Johannes Gutenberg-University of Mainz
Staudingerweg 9, 55128 Mainz, Germany
mwand@uni-mainz.de

ABSTRACT

In this paper, we apply harmonic distortion analysis to understand the effect
of nonlinearities in the spectral domain. Each nonlinear layer creates higher-
frequency harmonics, which we call "blueshift", whose magnitude increases with
network depth, thereby increasing the “roughness” of the output landscape. Unlike
differential models (such as vanishing gradients, sharpness), this provides a more
global view of how network architectures behave across larger areas of their
parameter domain. For example, the model predicts that residual connections are
able to counter the effect by dampening corresponding higher frequency modes.
We empirically verify the connection between blueshift and architectural choices,
and provide evidence for a connection with trainability.

1 INTRODUCTION

Figure 1: Continous transition of a loss path between linear feedforward ("linear"), nonlinear
feedforward ("ReLU") and nonlinear residual ("ResNet") regimes. Graph: loss path near initialization
of a ResNet56 v2 with LReLUs with negative slope α ∈ [0, 1] and residual branch weight ν ∈ [0, 1].
Left: α = 0, ν = 0, Middle: α = 1, ν = 0, Right: α = 1, ν = 1.

In the past decade, the emergence of practical deep neural networks arguably has had disruptive
impact on applications of machine learning. Depth as such appears to be key to expressive models
(Raghu et al., 2017). However, depth also comes with challenges concerning training stability.
Theoretical problems include vanishing and exploding gradients (Hochreiter, 1991), chaotic feed-
forward dynamics (Poole et al., 2016), or decorrelation of gradients (Balduzzi et al., 2017). In
practice, a number of “recipes” are widely used, such as specific nonlinearities (Glorot et al., 2011;
He et al., 2015), normalization methods such as batch normalization (Ioffe & Szegedy, 2015), shortcut
architectures (Srivastava et al., 2015; He et al., 2016a;b), or multi-path architecture with (Huang et al.,
2017) and without shortcuts (Szegedy et al., 2016). Broadly speaking, a key research question is
to understand how the shape of the network function, i.e., the map from inputs and parameters to
outputs, is affected by architectural choices.

1

Published as a conference paper at ICLR 2021

Our paper considers specifically the roughness of the weights-to-outputs function (“w-o function”) of
nonlinear feed-forward networks. Motivated by the recent visualizations of (Li et al., 2018), which
show how depth increases roughness and residual connections smoothen the output again, our goal
is to provide an analytical explanation of this effect, and study its implications on network design
and trainability. To this end, we first formalize “roughness” as the decay-rate of the expected power
spectrum of a function class. Our main contribution is to then apply harmonic distortion analysis to
nonlinear feedforward networks, which predicts the creation of high-frequency “harmonics” (thereby
“blueshifting” the power spectrum) by polynomial nonlinearities with large higher-order coefficients.
Based on this model, we discuss how network depth increases blueshift and thus roughness, while
shortcut connections, low-degree nonlinearities and parallel computation paths dampen it. In relation
to trainability, we show an analytic link between blueshift and exploding gradients. Unlike the former
model, the spectral view describes a more global behavior of the w-o function over regions in the
parameter domain.

Experiments confirm the theoretical predictions: We observe the predicted effects of depth, shortcuts
and parallel computation on blueshift, and are able to differentiate different types of nonlinearities by
the decay rate of coefficients of a polynomial approximation. The findings are in-line with known
advantages in trainability of the different architectures. We further strengthen the evidence by training
a large set of networks with a different amount of nonlinearity and depth, which shows a clear
correlation between blueshift and training-problems, as well as a trade-off with expressivity.

In summary, our paper explains how network architecture affects roughness, shows a connection to
trainability, and thereby provides a new tool for analyzing the design of deep networks.

2 RELATED WORK

Vanishing or exploding gradients are a central numerical problem (Hochreiter, 1991; Pascanu et al.,
2013; Yang et al., 2019): If the the magnitudes of the singular values of layer Jacobians deviates from
one, subspaces are attenuated (|σ| < 1) or amplified (|σ| > 1), potentially cascading exponentially
over multiple layers (Pennington et al., 2017a). Formally, the behavior of stacks of matrices and
nonlinear functions can be modeled by random matrix theory or Gaussian mean-field approximations
(Poole et al., 2016; Pennington et al., 2017b; 2018). The gist is that at initialization, orthogonal
weight matrices are needed, which is challenging for convolutional architectures. A solution for
tanh-networks is given by Xiao et al. (2018); for ReLU, there is a negative result (Pennington et al.,
2017b). Using mean-field theory, it can be shown that batch normalization (Ioffe & Szegedy, 2015)
leads to exploding gradients at initialization (Yang et al., 2019) (which equalize after a few steps, but
that might be too late (Frankle et al., 2020)).

A different route is taken by Balduzzi et al. (2017), who observe an increasing decorrelation of
gradients in the input space. Similar to our paper, they show that deeper networks lead to spectral
whitening (starting from brown noise); however, the analysis is performed with respect to the inputs
x, not weights W. The scale-space structure shown by our model might give further hints on the
mechanisms behind training difficulties.

By visualizing random slices of the loss surface, Li et al. (2018) observe that the loss surface of deep
feedforward networks transitions between nearly convex to chaotic with increasing depth; our work
explains these observations by spectral analysis. Duvenaud et al. (2014) visualize pathologies on
the landscape of deep gaussian processes that model deep wide-limit nonlinear networks. Fourier
analysis of network functions (Candès, 1999) wrt. input (Rahaman et al., 2019; Xu et al., 2019; Xu,
2018; Basri et al., 2019; Yang & Salman, 2019) has been used to show an inductive bias towards
low-frequency functions (wrt. input x), as well as a strong anisotropy of this spectrum. Wang et al.
(2020) prove under some assumptions that all "bad" local minima of a deep residual network are very
shallow.

3 HARMONIC DISTORTION

We now analyze the effect of a nonlinearity by relating the Fourier spectrum of a preactivation with
that of its postactivation. Let f denote the preactivation of a single neuron of a neural network
consisting of L-layers. We use x to denote the input to the whole network and thus to f , W to denote

2

Published as a conference paper at ICLR 2021

the weights, and φ to denote the employed nonlinearity. Li et al. (2018) visualize “roughness” using
random 2D-slices in weight space. We follow their basic idea and consider 1D slices

p(t) = f(x,W + α−1 · t ·D) (1)

for random directions D and t ∈ [0, 1]. D is initialized with entries from N0,1 and normalized to
||D||F = 1. α determines the path length. By varying D, this samples a ball of radius α around a
point W in parameter space. For φ = id, the network f is multi-linear in W and thus p is polynomial
in t; empirically, this yields rather smooth functions (Fig. 1). To understand general nonlinearities
φ better, we represent p by a complex Fourier series (Appendix B.1 discusses convergence and
approximation quality):

p(t) =

∞∑
k=−∞

zk exp (2πikt) , zk ∈ C. (2)

Here, the sequence z : Z→ C contains the Fourier coefficients for p : [0, 1]→ R. As p is real, z is
symmetric in the sense of zk = z−k.

3.1 FORMALIZING ROUGHNESS

The roughness of a class of random functions can be characterized by the statistics of their power-
spectrum (Musgrave, 1993): Given a random process that generates functions p, we consider mean µk

and variance σ2
k of the Fourier coefficients zk. For paths with short length as used in our experiments,

the means µk are empirically very close to zero except for z0 ("DC" coefficient), which is excluded
in all experiments. Therefore, we can focus on variance: In general, functions where the variance of
high-frequency components drop off more quickly will appear smoother. A common model, which
often fits natural data well, is fractal Brownian motion (FBM-) noise, where the σk drop off according
to a power law:

σk ∼ O
(
1/kh

)
for some h > 0. (3)

The so-called “fractal coefficient” h describes the roughness of the noise function. A similar approach
has been taken by Hoffer et al. (2017), who modeled the loss surface by analyzing the dynamics of a
random walk on a random potential. In our experiments, we estimate the average power-spectrum
ED(|zk|2) (by sampling D uniformly on a unit sphere) and fit a power-law to these spectra in order
to quantify the roughness in a single number h.

Experiments (Section 4) and analytical arguments (Appendix B.2), show that the FBM/power-law
model is a realistic model of the functions computed by the lower layers of a neural network. For
higher layers the fit becomes worse, a phenomenon we will explore in the next chapter using harmonic
distortion analysis.

3.2 WHY IS THE OUTPUT FUNCTION GETTING ROUGHER?

Intuitively, applying ReLU to a function p is reminiscent of clipping an audio signal in amplitude,
which is known to produce high-frequent ringing artifacts. We describe the effect of a single
nonlinearity φ on the spectrum of a preactivation p; Inductively, this describes the spectral shift of the
whole network. For the analysis, we assume that φ is a K-th order polynomial:

φ(x) =

K∑
j=0

ajx
j . (4)

The effect of polynomial nonlinear maps on the spectrum of a function can be understood by harmonic
distortion analysis (see e.g. Feynman et al. (1965), Ch. 50.8). We can simply (see Appendices B.1 –
B.3 for details) plug the Fourier expansion of p into the polynomial representation of φ:

φ(p(t)) =

K∑
j=0

aj

[∞∑
k=−∞

zk exp (2πikt)

]j
. (5)

3

Published as a conference paper at ICLR 2021

The convolution theorem tells us that j-th power of functions corresponds to convolving the spectrum
z of the function j-times with itself. We designate by z the vector containing all Fourier coefficients
zk and by

⊗
the convolution operator. We can then write the spectrum of the output z′ as:

z′ := F(φ(p)) =

K∑
j=0

aj

j⊗
1=1

z. (6)

Discussion: We can make three important observations: • First, each repeated auto-convolutions
in Eq. 6 broadens the spectrum by adding higher-frequency terms. We call this broadening effect
blueshift. The exact magnitude is hard to quantify and thus left to the experiments (Appendix B.4 gives
informal arguments for a growth of O(j1/2) rather than the trivial upper bound of O(j)). • Second
and correspondingly, larger coefficients aj for larger orders j, increase the blueshift. • Third, j-fold
convolutions correspond to j-th powers of the zk. Hence, larger magnitudes |zk| also increase the
blueshift (the nonlinearity becomes more visible with larger magnitude).

3.3 COMMON NONLINEARITIES

In practice, nonlinearities are usually not polynomial, and
might not even have a globally convergent Taylor series.
It is possible to approximate any continuous function by a
polynomial (Stone-Weierstrass theorem). We conjecture
that a close polynomial approximation will be sufficient
for a qualitative prediction of the blueshift effect (our
theoretical model does not guarantee convergence – we
therefore validate this claim experimentally). We employ
a Chebyshef approximation (which is reasonably stable
and non-oscillatory) on the interval [−5, 5] and compare
the speed at which higher order coefficients drop off:

Figure 2: Absolute values of polynomial
coefficients: |tj | over j; see also Fig. 19.

Fig. 2 shows the coefficient magnitudes for ReLU, tanh and softplus (which we focus on in our
experiments). softplus has the strongest drop-off, followed by tanh and ReLU. Appendix F.1 gives
more details and covers several additional popular nonlinearities (Figures 18, 19). Figure 3, 17 show
that this correlates with blueshift, as expected.

3.4 CONNECTION TO EXPLODING GRADIENTS

The creation of higher-frequency harmonics directly affects gradient-based training methods because
the gradient operator is a high-pass filter in the spectral domain: Taking derivatives multiplies the
Fourier coefficients by 2πik, amplifying coefficients linearly with frequency k (which is trivial
seen by taking the derivatives of Eq. 2). The reciprocal fractal exponent r := h−1 has exponential
influence on the average gradient magnitude: With |zk|2 ∼ Θ(k−h) = Θ(kr), we obtain gradients
k · |zk| ∈ Θ(k1+r/2). Blueshift thus causes exploding gradients: Weights of lower layers are shifted
more often, creating higher-order harmonics, which correspond to larger norm of the gradient function
‖p′(t)‖ = 2π

√∑
k k

2|zk|2, which means that there must be, on average, larger gradients along the
path considered. Independently of this, both exploding and vanishing gradients can be caused by
other effects than blueshift: Saxe et al. (2014) show that even deep linear networks can suffer from
exploding gradients caused by stacking matrices with non-uniform singular spectrum.

The blueshift effect itself is independent of the condition number of the weight matrices: blueshift
would occur even when only stacking nonlinearities. Although it is possible to find a locally linear
region of the loss surface (e.g. CReLU + Looks Linear initialization (Balduzzi et al., 2017)) and
locally achieve dynamic isometry (Xiao et al., 2018), blueshift effects become relevant again when
this region is eventually left during the training process (ref. Appendix Figure 12). In contrast,
residual connections affect the entire loss surface and our model is able to capture this effect.

3.5 RESIDUAL AND MULTIPATH NETWORKS

Residual Networks exhibit two different dampening effects on the loss surface that can be experimen-
tally isolated:

4

Published as a conference paper at ICLR 2021

ln
(p

ow
)

→

ReLU TanH SoftPlus

ln(freq) →

ln
(p

ow
)

→

ln(freq) → ln(freq) →

sh
o
rt

 c
u

ts
n

o-
sh

o
rt

ReLU TanH SoftPlus

(a) All layer walk power spectrum |zk|2 (b) First layer walk derivative pow. spectr. k 2 |zk|2

0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

ln(freq) → ln(freq) → ln(freq) →

layer

1 50...

−6

−4

−2

0

log(freq)

lo
g(

m
ag

)

Relu + NS

log(freq)

TanH + NS

log(freq)

SoftPlus + NS

.

−6

−4

−2

0

Figure 3: Normalized power spectra zk per layer (red is deeper) in a 50-layer CNN at initialization,
averaged over multiple neurons, for various φ. (a) On the left, all weights are varied and spectrum of
p(t) is shown. (b) On the right, only the first layer is varied and the spectrum of p′(t) is shown.

Exponential downweighting (ED): Residual networks repeatedly compute the sum of the result of
a small feedforward network with its input. By construction, this reduces the relative weight of the
nonlinear output of the residual block by mixing it with the unprocessed signal. Doing this repeatedly
creates an ensemble (Huang et al., 2016) in which the weight of contributions shrink exponentially
with the number of nonlinear processing steps. As detailed e.g. in (Veit et al., 2016), each nonlinear
block only contributes partially to the overall result. The weight of the signal component passing
through nonlinearities shrinks exponentially due to vanishing gradient effects (at initialization, non-
aligned non-uniform singular value spectra lead to exponential dampening; after training, a similar
dampening effect is observed empirically by Veit et al.).

Frequency-dependent signal-averaging (FDSA): According to the blueshift model, the outputs of
the residual blocks will contain more high-frequency Fourier coefficients (from harmonics). The
additional harmonics depend on the weights in the residual block, which are statistically independent
of the input (see Appendix B.5 for details). Therefore, we expect to see a reduction in the expected
linear correlation between the main and residual branch for higher frequencies. As an effect, when
adding the main and residual branch, higher frequencies get dampened even more.

The second effect is weaker than the first, governed by the law of large numbers (i.e., n−
1
2 decay for

averaging n independent values), but is also more broadly applicable: It should generally occur when
averaging over multiple computational paths with independent weights, while residual connections
require an identity in one path.

4 EXPERIMENTAL RESULTS: MEASURED SPECTRA

The model presented in the previous section gives us only qualitative hints on the magnitude of the
blueshift, the behavior of non-polynomial nonlinearities, and the magnitude of ED and FDSA effects.
We therefore now validate these qualitative predictions experimentally.

We consider two architectures: a basic Toy-CNN model with a constant number of features in each
layer for fair per-layer statistics and ResNet v1 variants for a more "realistic" model. We used Cifar10
as input data, but all figures in this section look qualitatively similar on other datasets; A more detailed
network description, parameters and experiments on MNIST can be found in the Appendix. In this
section, we always measure the effect of blueshift in the region around initialization (i.e., W is the
initialization point); During training, the loss surface tends to get smoother but the effect persists (ref.
Appendix Figure 11).

4.1 EFFECTS OF BLUESHIFT ON A LOSS PATH

To show the effect of nonlinearity and residual connections on the loss surface, we sample a single
loss path on a ResNet56 with Leaky ReLU activations. We can now continuously tune the amount of

5

Published as a conference paper at ICLR 2021

0 100 200

2.3

2.4

2.5

Step

Av
g.

pa
th

NoShort + Relu

0 100 200
Step

NoShort + SoftPlus

0 100 200
Step

NoShort + None

0 100 200
Step

Short + Relu

0 100 200
Step

Short + SoftPlus

0 50 100
0

2

4

Frequency

M
ag

.

0 50 100
Frequency

0 50 100
Frequency

0 50 100
Frequency

0 50 100
Frequency

Figure 4: "Average loss path" and its respective magnitude spectrum out of 500 random loss paths for
different variants of ResNet56 at initialization.

nonlinearity by adjusting its negative slope α. We can equally continuously tune the relative weight
of the residual branch by multiplying it with a factor ν in all residual blocks. Figure 1 shows a
transition from a linear feedforward to a nonlinear feedforward to a nonlinear residual regime; We can
observe the apparition of harmonics with increasing nonlinearity that get dampened when switching
on residual connections.

4.2 EFFECTS OF BLUESHIFT ON THE AVERAGE POWER SPECTRUM OF THE W-O SURFACE

We now want to view the effects of blueshift on the expected power-spectrum of the w-o surface. We
use a “Toy-CNN” with depth L = 50 and track the w-o surfaces of each layer while we walk in a
single random direction in weight space. We transform the resulting 1D-paths with discrete FFT and
average all power spectra over all neurons in a layer, all input receptive fields and all batch images.
Fig. 3a (left side) shows the resulting average power spectrum, normalized by function norm. The
right hand side (b) shows the same plot, but with D restricted to only changing the weights of the first
layer of the network, and taking the derivative of the resulting function (by weighting by frequency,
k2 · |zk|2) before normalization. As we use only 100 samples without prior bandlimiting, aliasing
phenomena occur as a slight upward slant is visible at the high-frequency end of all plots.

Spectral shift over depth: The results in Fig. 3a confirm our predictions quite well: A spectral
blueshift is clearly visible and, as expected, ReLU shows a strong blueshift, tanh a slightly weaker
blueshift, and softplus only a small effect. Harmonics show up as a bump in the spectrum that
travels towards higher frequencies with increasing layer. This extends to other nonlinearties as well
(see Appendix, Fig. 17). The plot also confirms that the power spectrum of the lower layers is well
described by a 1/k-power law, as predicted.

Scale shift of a single layer parametrization: By only changing the weights in a single layer and
taking the derivative (Fig. 3b), we see that blueshift is responsible for a gradient scale mismatch
between earlier and deeper layers in networks without skip-connections: the more nonlinearities are
between the modified weight and the output, the higher the gradient magnitude.

Residual connections: Our model predicts that residual connections will reduce the blueshift
strongly by ED and FDSA (ref. Section 3.5). This is also consistent with our observations: higher
layers show almost the same 1/k-spectrum as the initial layer. Looking at the first layer weights,
weighted by frequency, the response is almost flat, with a small emphasis on low-frequency weights.

4.3 QUANTIFYING AND MEASURING SPECTRAL SHIFT

Utilizing the power-law model presented in section 3.1, we can measure blueshift by estimating the
fractal exponent h of a loss path via a power-law fit of the magnitude spectrum. Figure 4 represents
what the "average loss path" looks like for a ResNet 56 at initialization with different activation
functions, with and without shortcuts. For each architecture, we sample paths in 500 different random
directions D and assess the fractal exponent of every sampled path, in order to visualize the path

6

Published as a conference paper at ICLR 2021

Figure 5: Smoothness of the loss surface at ini-
tialization for a Toy-CNN of varying depth with
and without shortcuts.

0 2 4 6 8 1
0

0.2

0.4

0.6

Frequency bin

A
ve

ra
ge

ab
s.

co
rr

el
at

io
n

ReLU SoftPlus TanH

Figure 6: Average absolute path correlation per
frequency bin of the main branch and the resid-
ual branch of a ResNet56 v2 with different ac-
tivation functions at initialization. Lower bin
number indicates lower frequencies.

with median h value and its associated spectrum. We clearly see that nonlinear architectures without
skip-connections present most blueshift, the linear architecture has no blueshift and the architectures
with skip-connections do also exhibit, albeit dampened, blueshift.

In Figure 5, we assess the average loss path smoothness h of a Toy-CNN with varying depth at
initialization. For averaging, we initialize each network 50 times and sample 20 paths in different
random directions for each initialization. The results confirm quantitatively the visual results of Li
et al. (2018) that the loss surface becomes rougher with increasing network depth and that shortcut
connections have a strong smoothing effect. Since our roughness measure is a non-pointwise view, we
see that even the delta-initialized network that does not suffer from vanishing gradients at initialization
still gets rougher with increasing depth. The power-law fit still has some limitations: As seen in
Fig. 3, a power-law fit is imperfect as the higher layers are not straight lines anymore. This shows in
curves of Fig. 5 as apparent increase of smoothness in the first layers for the "NoShort" architectures.

4.4 RESIDUAL NETWORKS CONTROL HARMONICS VIA ED AND FDSA

In Section 3.5, we described two different mechanisms that allow ResNets to dampen high-frequency
modes. We now want to verify the existence of FDSA and further individuate the two effects.

FDSA predicts that skip-connections have a dampening effect on high frequencies in the loss surface
because the correlation between the main branch and the residual branch is decreasing with higher
frequencies. We empirically verify this prediction on a ResNet 56 v2 at initialization by walking in
50 random directions and measuring the respective w-o function (we only sample 10% of the outputs
for computational reasons) of the two summands in each residual block just before addition. Using
Gaussian filters in Fourier domain, we can compute the linear correlation of each pair of paths (block
input/output) per frequency bin and average over all batch images, neurons and blocks in the network.
In Figure 6, we see that the absolute linear correlation is decaying for all architectures with increasing
frequency, with ReLU showing the strongest effect, again followed by tanh and softplus in that
order, confirming our prediction. This property seems to allow a residual network to automatically
regulate the higher-frequency harmonics content of the output.

We want to individuate FDSA in a setting where ED is not present. We modify our Toy-CNN and
ResNet "NoShort" architectures such that we replace every n-feature convolution / batch normaliza-
tion / activation sequence in the network with a a · n feature sequence where the a feature groups get
averaged after the activation (in reality we only use summation, since normalizing is taken care of by
batch normalization). Since high frequencies added by the nonlinearity are less correlated between
features (ref. Fig. 6), we expect that averaging feature groups smoothen the w-o function; we see on
the right of Figure 8 that this is indeed the case.

Finally, we want to demonstrate that the positioning of the activation function is crucial. Our model
predicts that since ResNet v2 blocks (He et al., 2016b) use summation after ReLU, we will see a
stronger averaging effect than in ResNet v1. Indeed, looking at their respective average power spectra
in a random direction in Figure 7, we see this confirmed.

7

Published as a conference paper at ICLR 2021

0 5 10 15

0

0,5

1

Frequency

P
ow

.
sp

ec
tr

um

v1 Blocks

v2 Blocks

Figure 7: Normalized power
spectrum of the last layer of
a ResNet194 v1/v2 (post/pre-
activation) at initialization.

0 200 400 600 800
0

0,5

1

Step

A
cc

ur
ac

y

RN56 S (a=1)

RN56 NS (a=1)

RN56 NS (a=3)

Wide RN56 NS (a=1)

0 2 4

−4

−2

lo
g(

m
ag

) a=1

0 2 4

−4

−2

lo
g(

m
ag

) a=3

0 2 4

−4

−2

lo
g(

m
ag

) a=5

log(freq)

Figure 8: Left: Comparing the training performance on Cifar10
of a feature-averaging ResNet56 v1 "NoShort" to its vanilla,
wide and residual equivalent. Right: Spectrum shift of averaging
Toy-CNN 50 layers at initialization, varying averaging factor a.

5 EMPIRICAL RESULTS: TRAINING

In this section, we want to demonstrate a correlation between blueshift and network trainability. Again,
we use variants of the ResNet v1/v2 network, exact network parameters and training hyperparameters
can be found in tabular form in Appendix A. We use Cifar10 as training data, training results for
Cifar100 can be found in Appendix C

Controlling Blueshift via feature averaging: We want to investigate the impact of the smoothing
of the loss surface via FDSA (ref. Section 3.5) on training speeds. We choose a ResNet56 "NoShort"
as our architecture, since at this depth simple feedforward networks with batch-normalization start
to become difficult to train. We experiment on the averaging network (ref. Section 4.4) with a = 3
since we experimentally determined that for a > 3 the performance stops increasing. For fairness,
we included a Wide ResNet56 "NoShort" with approximately the same parameter count than the
averaging network. We see the averaged results over five runs in Figure 8 (shaded areas represent the
standard deviation). We observe that the averaged network outperforms both the original network
and the wide network while still performing worse than the network with skip-connections. This is
consistent with our theory since ED has a bigger smoothing effect than FDSA.

Controlling Blueshift with Leaky ReLU: As demonstrated in Figure 1, the amount of blueshift in
a network can be controlled by tuning Leaky ReLU’s negative slope α. We now want to show that
networks with a very strong blueshift are hard to train but conversely some amount of nonlinearity
is needed for expressivity. For this, we train a ResNet56 v1/v2 with and without shortcuts for 30
epochs once on Cifar10 for different values of α and visualize the training accuracy (average over
the last 25 values) and compare it to the blueshift of the network at initialization. On Figure 9, we
see that for the networks without skip-connections, training becomes more difficult with regard to
network depth, which correlates with increased blueshift. We see that this effect can be alleviated by
making the network more linear (by increasing α) and thus reducing blueshift. For networks with
skip-connections, we see that blueshift is greatly reduced and that no deterioration of trainability
with regard to network depth is noticeable. Conversely, networks that near a linear regime for high
values of α tend to train worse since they lack expressivity. Interestingly, this effect is stronger for
ResNet v2 blocks than for ResNet v1 blocks because the former make the loss surface smoother than
v1 blocks (ref. Figure 7).

6 DISCUSSION

Our experimental findings validate the predictions of our model with respect to the roughness of the
w-o function: Nonlinearities with larger higher-order polynomial coeffiecnts create larger variances
in the high-frequency part of the spectrum. While related results on increasing complexity with
depth have been given earlier (Poole et al., 2016; Schoenholz et al., 2017), the harmonics model
offers a simple and more global view of the roughness of the loss surface and how it is affected by
nonlinearity choice and residual connections. Our observations on training speed are consistent with
the hypothesis that spectral blueshift impedes training: Architectural choices (residual connections,

8

Published as a conference paper at ICLR 2021

Figure 9: Comparing w-o smoothness and trainability for ResNets with varying depth and amount
of nonlinearity. Upper row: training accuracy after 30 epochs of training on Cifar10. Bottom row:
blueshift at initialization indicated by the fractal coefficient of the network’s last layer.

ResNet v2 blocks, LReLU) that control harmonics generation are also those that are easier to train
to the their full performance. Our model is also consistent with the empirical observations of Han
et al. (2017), who found that ResNet performance varies with the location and number of ReLUs.
Further, the results in Figure 9 give strong hints for a correlation between high-frequency content
and problems in trainability for deep but very nonlinear networks (small α). From an analytical
perspective, architectures that are prone to blueshift are prone to vanishing/exploding gradients: We
have shown that high magnitudes of high-frequencies in the w-o functions lead to an increase in
the expected gradient magnitude. Further, in a simple multi-layer network without shortcuts, we
expect more high-frequency content on lower than on higher layers as soon as the nonlinearity of the
activation function is actually is utilized (and therefore must also creates harmonics). A rescaling
of layers can reduce these discrepancies, but the normalization will still necessarily depend on the
position in parameter space. As far as accuracy is concerned, there is an obvious trade-off between
blueshift and expressivity: networks with low-degree polynomials as nonlinearities contain less high-
frequent harmonics but cannot approximate complex functions (Kidger & Lyons, 2020). Future work
could consist in further exploring this trade-off. Further, it would be interesting to examine potential
architectural alternatives to residual connections with comparable performance and trainability.

7 CONCLUSION AND FUTURE WORK

In this paper, we have analyzed the effect of different architectures of nonlinear networks on the
smoothness of the computed function. Specifically, we have linked polynomial nonlinearity to
harmonics creation and validated experimentally that the mean power spectrum shifts towards higher
frequencies (“blueshift”). Further, we have described two distinct effects that explain the smoothing
effect of shortcut connections, which we also confirmed experimentally. Finally, we empirically
linked reduced blueshift to increased trainability and training speeds.

In future work, we hope to derive explicit closed-form equations for how architectural designs like
network depth, residual connections and nonlinearity choice affect the w-o function. It could be also
interesting to further explore the roughness-expressability trade-off that we described earlier.

8 ACKNOWLEDGEMENTS

This work has been partially supported by the RMU Network for Deep Continuous-Discrete Machine
Learning (DeCoDeML project). We wish to thank Jan Disselhoff for valuable discussions and the
annonymous reviewers for their helpful feedback.

9

Published as a conference paper at ICLR 2021

REFERENCES

David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the question? In Doina
Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pp. 342–350. PMLR, 2017.

Ronen Basri, David W. Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neural
networks for learned functions of different frequencies. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pp. 4763–4772,
2019.

Emmanuel J Candès. Harmonic analysis of neural networks. Applied and Computational Harmonic
Analysis, 6(2):197–218, 1999.

David Duvenaud, Oren Rippel, Ryan P. Adams, and Zoubin Ghahramani. Avoiding pathologies in
very deep networks. In Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014, volume 33 of
JMLR Workshop and Conference Proceedings, pp. 202–210. JMLR.org, 2014.

Richard P Feynman, Robert B Leighton, and Matthew Sands. The feynman lectures on physics; vol.
i. American Journal of Physics, 50(8), 1965.

Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The early phase of neural network training.
CoRR, abs/2002.10365, 2020.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323, 2011.

Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace.
CoRR, abs/1812.04754, 2018.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pp. 6307–6315. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.668.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference
on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 1026–1034. IEEE
Computer Society, 2015. doi: 10.1109/ICCV.2015.123.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016a. doi:
10.1109/CVPR.2016.90.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part IV, volume 9908 of Lecture Notes in Computer Science, pp. 630–645. Springer,
2016b. doi: 10.1007/978-3-319-46493-0_38.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma thesis, TU Munich,
1991.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1731–1741, 2017.

10

Published as a conference paper at ICLR 2021

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pp. 646–661. Springer, 2016.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 2261–2269. IEEE Computer Society, 2017.
doi: 10.1109/CVPR.2017.243.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pp. 448–456. JMLR.org, 2015.

Patrick Kidger and Terry J. Lyons. Universal approximation with deep narrow networks. In Jacob D.
Abernethy and Shivani Agarwal (eds.), Conference on Learning Theory, COLT 2020 , 9-12 July
2020, Virtual Event [Graz, Austria], volume 125 of Proceedings of Machine Learning Research,
pp. 2306–2327. PMLR, 2020.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada, pp. 6391–6401, 2018.

F.K. Musgrave. Methods for Realistic Landscape Imaging. PhD thesis, Yale University, 1993.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and Conference Proceedings,
pp. 1310–1318. JMLR.org, 2013.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through : theory and practice. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 30, pp. 4785–4795. Curran Associates, Inc., 2017a.

Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 4785–4795, 2017b.

Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. The emergence of spectral universality
in deep networks. In Amos J. Storkey and Fernando Pérez-Cruz (eds.), International Conference
on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote,
Canary Islands, Spain, volume 84 of Proceedings of Machine Learning Research, pp. 1924–1932.
PMLR, 2018.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. In Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pp. 3360–3368, 2016.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On the
expressive power of deep neural networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2847–2854. JMLR.org, 2017.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht,
Yoshua Bengio, and Aaron C. Courville. On the spectral bias of neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pp. 5301–5310. PMLR, 2019.

11

Published as a conference paper at ICLR 2021

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In Yoshua Bengio and Yann LeCun (eds.),
2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. In Proceedings of the 5th International Conference on Learning Representations,
2017.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. CoRR,
abs/1505.00387, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Andreas Veit, Michael J. Wilber, and Serge J. Belongie. Residual networks behave like ensembles of
relatively shallow networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle
Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 550–558, 2016.

Lifu Wang, Bo Shen, Ning Zhao, and Zhiyuan Zhang. Is the skip connection provable to reform
the neural network loss landscape? In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 2792–2798. ijcai.org,
2020. doi: 10.24963/ijcai.2020/387.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla con-
volutional neural networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 5393–5402, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in
frequency domain. In Tom Gedeon, Kok Wai Wong, and Minho Lee (eds.), Neural Information
Processing - 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12-
15, 2019, Proceedings, Part I, volume 11953 of Lecture Notes in Computer Science, pp. 264–274.
Springer, 2019. doi: 10.1007/978-3-030-36708-4_22.

Zhiqin John Xu. Understanding training and generalization in deep learning by fourier analysis.
CoRR, abs/1808.04295, 2018.

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. CoRR,
abs/1907.10599, 2019.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. A
mean field theory of batch normalization. In 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

A NETWORK DETAILS

A.1 NETWORK ARCHITECTURES

The implementation for our experiments is based on PyTorch 1.5 and are provided as supplementary
material.

Toy-CNN: We create a simple convolutional network consisting of units of 3x3-convolutions with 16
feature channels on all layers (16 · a for the averaging networks), followed by batch normalization
and non-linear activation, stacked-up L-times. Optional short-cut connections are added (only if
explicitely stated) between each unit (i.e., residual blocks of depth 1). No pooling or striding is used.
The input layer uses a stride of 5 to reduce memory demands. The classification layer is composed of
a fully-connected layer, softmax and cross-entropy loss.

12

Published as a conference paper at ICLR 2021

Residual Network: As a “real-world” example, we use a standard Residual Network v1 (BasicBlock)
He et al. (2016a) with varying depth, with ("Short/S") and without ("NoShort/NS") skip-connections.
ResNet v2 blocks are used in Figure 1 (v2 blocks show slower transitions) and 6 (correlations are
decaying faster in ResNet v2, ref. 3.5). We use the standard number of planes for Cifar-10 training :
16/32/64 (28/56/112 for the wide network).

A.2 FOURIER WALK HYPERPARMETERS

We sample paths consisting of 100 samples each and with path length α = 1 (Eq. 1) in all experiments,
except for Figures 1, 4 and 6 where we double both values for higher frequency resolution and Figure
12, where we want to walk in a different radius (α ∈ {0.1, 1, 10}). All experiments are performed
in training mode and with data augmentation at initialization. Datapoints for each architecture are
measured on a different mini-batch to exclude bias by batch selection.

A.3 TRAINING HYPERPARMETERS

The hyper-parameters below usually reach the standard test-accuracy of approximately 92-93% for a
ResNet56 on Cifar10.

Dataset Cifar10 (Cifar100 for Figure 10)
Epochs 200
Scheduler Multistep (γ = 0.1)
Milestones 100, 150
Learning rate 0.1
Batch size 128
Optimizer SGD + Momentum
Momentum 0.9
Weight decay 0.0001
Augmentation Random Flip

B FORMAL DETAILS CONCERNING HARMONIC NETWORK ANALYSIS

B.1 SERIES REPRESENTATION AND CONVERGENCE

In our paper, we consider feed-forward networks consisting of L layers. Each layer l = 1...L can be
one of the following:

• An affine map
x 7→W(l)x + b(l) (7)

that transforms the input using a linear map and an offset vector.
• A nonlinearity

x 7→ φ(l) (x) (8)
that applies a (potentially layer-specific) nonlinear function to each input.

All of the discussed architectures (including convolutional networks, striding/average pooling, resid-
ual connections, parallel computations, and layer-dependent nonlinearitiy) can be expressed as a
composition of these two layer types. We currently do not address max-pooling, and understand
batch-normalization layers statically as a fixed scaling and shifting (not analyzing their training
dynamics). The loss function itself (such as a sequence of softmax and cross-entropy) is also not
included in our analysis – we restrict our consideration to layer outputs before any classification. As
logistic regression (or similar problems) are numerically well-understood already, this is not a major
obstacle. All our experiments show layer outputs before classification (softmax).

The main restriction of our formal model is that we assume that all nonlinearities are polynomials of
finite degree1. Under this condition, all outputs and intermediate results of the whole network can be

1This means that the analytical results are currently not established for practical non-polynomial nonlinearities.
The results in our paper obtained from polynomial approximations should therefore be considered experimental
results at this point. An analysis of infinite series approximations covering a more general class of nonlinearities
is still left for future work.

13

Published as a conference paper at ICLR 2021

represented by a large multi-variate polynomial, and any linear section p(t) = f
(l)
i (W + αtD,x) of

any output i of any layer l is a univariate polynomial of finite degree.

Fourier analysis: Polynomial functions on a finite domain are Lipschitz-continuous and have finite
variation; both conditions are sufficient for the convergence of the Fourier series in an L2-sense.
Further, as the Fourier-basis forms a Schauder-basis of L2[0, 1], the series expansion is unique.

In our derivation (Equation 5), we plug the series representation into the polynomial and conclude
that it can be represented in the spectral domain as a sum of convolutions (Equation 6). To make this
more rigorous, we proceed in smaller steps: Let again p : Rn → R denote the linear section along a
linear direction in parameter space of any layer output. Our nonlinearity expands to

φ(p(t)) =

K∑
j=0

ajp(t)
j . (9)

As p(t) is a polynomial of finite degree, p(t)j for any finite j is also a polynomial of finite degree.
This implies that there is a unique Fourier series that represents p, characterized by the coefficients
sequence z : Z → C. According to the convolution theorem for the complex Fourier series, the
Fourier series of p · p is given by z ⊗ z, where

[z ⊗ u]k :=

∞∑
m=−∞

zm · uk−m. (10)

Because the series must exist (it converges for both p and p2) and it is unique, the product of the
series must be represented by the auto-convolution. Inductively, we obtain pj corresponding to the
j-fold auto-convolution

⊗j
q=1 z.

Note: We use the notation [x]i := xi denote the indexing of vectors and sequences that result from a
computation.

Approximation quality and finite transforms: The Fourier representation is accurate in an L2-
sense; it converges in L2-norm, which is an integral measure. This still permits any finite series
expansion to have large point-wise errors (no convergence in infinity-norm: large error regions rather
shrink to a zero set in the limit). A common example of such problems is Gibb’s phenomenon:
A discontinuous function (such as the gradient function of a ReLU) will show “overshooting” of
constant magnitude near the discontinuities; only the area affected shrink with the frequency order
of the Fourier series. Further, even higher-order discontinuities lead to significant high-frequency
harmonics (i.e., show bad approximation behavior for truncated series).

While the theory is not affected by this, this might appear to be a concern for the discrete Fourier
transformation (DFT) we use in our experiments. The DFT operates at a finite frequency order,
using a matching set of regular samples of the continuous function. Here, it is important to note that
the DFT, as a mapping from Cd to Cd will reproduce the function values faithfully at each sample
point for any frequency order (the DFT is bijective and even unitary, thus even allowing numerically
accurate and stable reconstructions). Evaluating the obtained series in between sampling points,
however, would reveal issues at discontinuities; as in most applications of DFT, our experiments do
not perform such continuous evaluations.

An issues that does remain is aliasing: Nonlinearities in general and in particular discontinuous
ones (even with higher order discontinuities) broaden the spectrum (this effect is particularly strong
for first-order discontinuous functions such as ReLU). Therefore, the sampling frequency has to
be chosen sufficiently high to capture these effects. Otherwise, the high-frequency harmonics will
alias as lower-frequency signal components, which might lead to an underestimation of the blueshift
effect.

B.2 INPUTS TO THE SECOND LAYER NONLINEARITIES ARE FBM-NOISE

For the first layer of a ReLU network, the following calculation also supports the experimental
findings of an O(1/k)-power law from an analytical perspective. Let p(1) be a w-o path of the output
of a given neuron from the first layer. It follows that:

14

Published as a conference paper at ICLR 2021

p
(1)
i (t) = ReLU

∑
j

(
w

(1)
ij + α−1t · d(1)ij

)
· xj

 (11)

= ReLU [m · t+ n] , for some m,n ∈ R. (12)

This is a piecewise linear function that is constant zero on one interval and linear with slope m on
another interval. With a < b ∈ [0, 1] bounding the activation interval, the Fourier series becomes:

z
(1,i)
k =

∫ b

a

exp (−2πik (mt+ n)) dt. (13)

By the chain rule of derivations, this implies

|z(1,i)k | ∈ O
(

1

k

)
. (14)

Correspondingly, the preactivations of the second layer will be random linear combinations of FBM-
noise with h = 1, which again forms FBM-noise with that spectral variance (every Fourier coefficient
is a sum of independent coefficients; therefore, variance is additive).

Similar findings where also previously shown in input space by Balduzzi et al. (2017), which, for the
first layer, is just the dual to varying the weights (and therefore must yield the same result).

B.3 BLUESHIFT AND DEPTH

We now aim at formally understanding the blueshift effect in a multi-layer network. For simplicity,
we consider a simple stack of linear and nonlinear layers with a fixed nonlinearity:

f(x,W) = φ

(
W(L)φ

(
W(L−1) · · ·φ(W(1)x) · · ·

))
. (15)

We now consider a single output i of layer l:

f
(l)
i (x,W) = φ

(
w

(l)
i · φ

(
W(l−1)φ

(
W(l−2) · · ·φ(W(1)x) · · ·

)))
. (16)

Next, we consider a linear section t 7→W + tD with t ∈ [0, α]:

p
(l)
i (t) = φ

(
w

(l)
i · φ

(
(W(l) + tDl)φ

(
(W(l−1) + tD(l−1)) · · ·φ(W(1) + tD(1)x) · · ·

)))
.

By replacing φ with finite polynomials (Equation 4), we obtain multi-variate polynomials as outputs
of all of these function.

Varying parameters in a single layer: If we now select a layer k by setting all D(l) = 0 for all
i 6= k, and only using the k-th matrix as direction vector, the parameter t will pass through l − k + 1
nonlinearities:

p
(l)
i (t) = φ

(
w

(l)
i · φ

(
W(l−1) · · ·φ

(
(W(k) + tD(k))q(k−1) · · ·

)
· · ·
))

. (17)

with a constant vector q(k−1).

Correspondingly, each nonlinearity will act on the spectrum of q(k) as a blueshift operator (forming
the sum of repeated auto-convolutions of the spectrum, weighted by the polynomial coefficients).
Therefore, we see that parameters of earlier layers (small layer index k, closer to the input layer) are
blueshifted more frequently than later layers.

The equation also shows that the singular value spectrum of W (l) affects the results as well, in
addition to the spectral shifts caused by the nonlinearities: the values rescale the input domain

15

Published as a conference paper at ICLR 2021

(shrink/expand space wrt. parameter t), thereby changing the frequency reciprocal to the scale factor.
However, a linear transformation scales the Fourier spectrum as a whole while nonlinearities spread
the spectrum irreversibly by applying blueshifts (weighted sums of auto-convolutions of the spectrum).
The magnitude of this nonlinear effect is, nontheless, dependent on the signal magnitude and thus
affected by choices of W(l).

Varying parameters in layer 0..l: Similar arguments hold if we vary only parameters in the first l
layers of the network. However, we obtain a mix of spectra that have been blueshifted (and scaled by
weight matrices) a different number of times.

B.4 SPECTRAL BROADENING THROUGH AUTO-CONVOLUTIONS

The exact amount of broadening of a spectrum z : Z→ R by an auto-convolution is non-trivial to
quantify; we therefore resort to experiments for determining the effect in practice.

In special cases, we can analyze the effect:

Band limited functions: Assuming that z is bandlimited, specifically zk = z−k = 0 for all k > K,
and |zk| = |z−k| > 0 for k ≤ K it is trivial to see that an auto-convolution extends the support by k
entries to each side (2k overall). This means, after j convolutions, we obtain a non-zero spectrum
within k = −jK...jK. The proof is obtained by considering the left-most and right-most terms in
the definition of the discrete convolution.

Central limits: If we assume that z is real and positive, and has finite second moments, the central
limit theorem guarantees convergence towards a Gaussian function with standard deviation O

(√
j
)
.

The first assumption is obviously unrealistic in practice.

In the general case the j-th power of a Fourier series[
K∑

k=−K

zk exp (2πikt)

]j
(18)

expands to the sum

K∑
k1=−K

· · ·
K∑

kj=−K

zk1 · · · zkj exp (2πi(k1 + k2 + · · ·+ kj)) . (19)

If we only count the number of terms of the same frequency k = k1 + · · · + kj , the number of
occurrences of each frequency k will tend towards a normal distribution with variance j. However, as
the complex coefficients can cancel out, the limit distribution is only an upper bound.

B.5 FREQUENCY DEPENDENCE IN AVERAGING OF MULTIPLE COMPUTATION PATHS

We observe that averaging functions after nonlinearities leads to some smoothing of the result by
decreasing the correlation between higher-frequency Fourier coefficients. In order to understand the
effect, we look at a simple 1D model case: We consider a the composite functions

fpost(x) = φ
(
w1 · g(x)︸ ︷︷ ︸

=:h′
1

+w2 · g(x)︸ ︷︷ ︸
=:h′

2

)
(20)

and
fpre(x) = φ(w1 · g(x))︸ ︷︷ ︸

=:h1

+φ(w2 · g(x))︸ ︷︷ ︸
=:h2

(21)

where w1, w2 are random numbers, drawn from the same normal distribution.

Let zk be the sequence of Fourier coefficients of g, and uk that of the result. In the first case, fpost, a
random linear combintation of the input spectra is performed, which is then blueshifted:

u =

K∑
j=1

j⊗
q=1

(
w1z + w2z

)
(22)

16

Published as a conference paper at ICLR 2021

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

Step

A
cc

ur
ac

y

Training

RN56 S (a=1)
RN56 NS (a=1)
RN56 NS (a=3)

Wide RN56 NS (a=1)

0 50 100 150 200

0

0.2

0.4

0.6

0.8

Step

Validation

Figure 10: Repeating the experiments of Figure 8 for a single run on the Cifar100 dataset.

In the second case,

u =

K∑
j=1

j⊗
q=1

(
w1z

)
+

K∑
j=1

j⊗
q=1

(
w2z

)
, (23)

we first blueshift the randomly-scale spectra and then form the sum. This creates a frequency
dependence because larger powers (larger values of j, corresponding to more repeated convolutions,
and thus j-fold products of input Fourier coefficients) behave more nonlinearly and thus react more
strongly to the weight scaling: While a linearly weighted average will be linearly correlated with the
original, averages of nonlinearly transformed functions will loose linear correlation (and thus appear
more random to a simple averaging operation). The harmonic distortion analysis that expresses the
powers as auto-convolutions of the spectrum shows that higher-frequency components (created by
the blueshift) are also the ones that behave more nonlinearly.

C TRAINING ON CIFAR100

We repeat the experiment on averaging-networks for the Cifar100 dataset, holding out 1% of the
training data for validation. We leave all hyperparameters untouched. In Figure 10, we still see the
advantage of the averaging-network over the regular network, especially in validation accuracy.

D OTHER SPECTRAL SHIFT FIGURES

D.1 SPECTRAL SHIFT DURING TRAINING

To show that the blueshift effect is not limited to the initialization, we show the spectral shift of
a Toy-CNN 50 at 0 and 20 epochs of training in Figure 11. ResNets still do not show any major
blueshift at any time. The ReLU and TanH architectures without skip-connections show less show
blueshift after 20 epochs of training, indicating that blueshift is more of a problem in early phases of
training (Frankle et al., 2020). When increasing the sampling radius to α = 10, blueshift is clearly
visible again for ReLU and TanH activations in the networks without skip-connections.

D.2 SPECTRAL SHIFT WITH DELTA-ORTHOGONAL INITIALIZATION

The experiments of Figure 3 with batch normalization are subject to exploding gradients. Xiao et al.
(2018) describe an initialization scheme that fixes exploding gradients for TanH activations. Fig 12
shows that for a very small region near the orthogonal initialization point, blueshift vanishes. As soon
as we walk further from the initialization point, blueshift becomes visible again.

D.3 SPECTRAL SHIFT IN GRADIENT DIRECTION

The subspace of the loss surface where gradient descent operates has been studied (Gur-Ari et al.,
2018) and attributed a specific behavior. We want to see how blueshift behaves when slicing the

17

Published as a conference paper at ICLR 2021

0 2 4

−6

−4

−2

0

log(freq)

lo
g(

m
ag

)

Relu + NS

0 2 4

−6

−4

−2

0

log(freq)

TanH + NS

0 2 4

−6

−4

−2

0

log(freq)

SoftPlus + NS

0 2 4

−6

−4

−2

0

log(freq)

Relu + S

0 2 4

−6

−4

−2

0

log(freq)

lo
g(

m
ag

)

Relu + NS

0 2 4

−6

−4

−2

0

log(freq)

TanH + NS

0 2 4

−6

−4

−2

0

log(freq)

SoftPlus + NS

0 2 4

−6

−4

−2

0

log(freq)

Relu + S

−2 0 2

−6

−4

−2

0

log(freq)

lo
g(

m
ag

)

Relu + NS

−2 0 2

−6

−4

−2

0

log(freq)

TanH + NS

−2 0 2

−6

−4

−2

0

log(freq)

SoftPlus + NS

−2 0 2

−6

−4

−2

0

log(freq)

Relu + S

All layer walk during training

Ep. 0
(α = 1)

Ep. 20
(α = 1)

Ep. 20
(α = 10)

Figure 11: Repeating the experiments of Figure 3 (all
layers, unscaled) during training.

2 4 6
−6

−4

−2

0

log(freq)

lo
g(

m
ag

)

Tanh + NS (Delta)

0 2 4
−6

−4

−2

0

log(freq)

lo
g(

m
ag

)

Tanh + NS (Delta)

−2 0 2
−6

−4

−2

0

log(freq)

lo
g(

m
ag

)

Tanh + NS (Delta)

α
=

0.
1

α
=

1
α
=

1
0

All layer walk for delta-orthogonal init.

Figure 12: Repeating the experi-
ments of Figure 3 (all layers, un-
scaled) for TanH activations with
delta-orthogonal initialization for dif-
ferent path lengths α.

0 2 4

−4

−2

0

log(freq)

lo
g(

m
ag

)

Relu + NS

0 2 4

−4

−2

0

log(freq)

TanH + NS

0 2 4

−4

−2

0

log(freq)

SoftPlus + NS

0 2 4

−4

−2

0

log(freq)

lo
g(

m
ag

)

Relu + S

0 2 4

−4

−2

0

log(freq)

TanH+ S

0 2 4

−4

−2

0

log(freq)

SoftPlus + S

All layer walk in gradient direction

Figure 13: Repeating the experiments of Figure
3 (all layers, unscaled) at initialization in gradi-
ent direction.

0 2 4

−4

−2

0

log(freq)

lo
g(

m
ag

)

NS (w=10)

0 2 4

log(freq)

NS (w=50)

0 2 4

log(freq)

NS (w=90)

0 2 4

−4

−2

0

log(freq)

lo
g(

m
ag

)

S (w=10)

0 2 4

log(freq)

S (w=50)

0 2 4

log(freq)

S (w=90)

All layer walk with varying width

Figure 14: Repeating the experiments of Fig-
ure 3 (all layers, unscaled) for variable network
width.

network in the direction of gradient descent. For this, we repeat the experiments of Figure 3, but
compute the gradient at initialization, normalize it and use it as direction D of equation 1. In Figure
13, we see that the effect is still visible although dampened for ReLU and tanh activations. The effect
seems a little more visible for softplus activations.

D.4 VARYING WIDTH

To see if layer width has any influence on blueshift, we repeat the experiment of Figure 3 for a
Toy-CNN 50 with number of filters w. We can see on Figure 14 that layer width doesn’t seem to have
a notable impact on blueshift strength.

18

Published as a conference paper at ICLR 2021

0 20 40

4.7

4.8

4.9

step

lo
ss

Loss paths (single layer walk)

0 1 2 3 4

−15

−10

−5

0

log(freq)

lo
g(
p
ow

)

Power spectra

Figure 15: Resulting loss paths and respective
path-normalized power spectra when varying
parameters in only one layer of a Toy-CNN 50
at initialization. The color of a path indicates
in which layer parameters were varied (red is
deeper).

10 2
0

3
0 40 50

1

2

3

Number of layers
F

ra
ct

al
co

effi
ci

en
t
h

Short + TanH
Short + ReLU

Short + SoftPlus
NoShort + TanH
NoShort + ReLU

NoShort + SoftPlus

NoShort + TanH (Delta init.)

Figure 16: Smoothness of the loss surface at
initialization for a Toy-CNN of varying depth
with and without shortcuts on MNIST for a
batch size of 256.

E WALK PER LAYER

To see the contribution of each layer to a loss path, we sample a random direction D and measure the
resulting loss path when only modifying weights in a single layer. We realize this for a Toy-CNN
with 50 layers at initialization in Figure 15. We see that varying weights in higher layers (red) results
in smooth paths whereas varying weights in lower layers (blue) results in rougher paths. In the
normalized power-spectra, we can see the increased blueshift of paths resulting from varying earlier
layers.

F SMOOTHNESS MEASUREMENTS ON MNIST

To show that our smoothness measurements are mostly independent of batch size and dataset,
we revisit Figure 5. This time, we use the MNIST dataset and a batch size of 256. All other
hyperparameters are maintained. We see that although the absolute values slightly differ, the relative
behavior of the nonlinearities is qualitatively the same. The results are shown in Figure 16

F.1 MORE ACTIVATION FUNCTIONS

To demonstrate that blueshift occurs with every nonlinear activation function, we repeat the experiment
of Figure 3 for exponential linear units (ELU), gaussian error linear units (GELU), hard tanh
(HTANH), leaky relu (LReLU), scaled exponential linear unit (SELU) and sigmoid activations.

In order to demonstrate the that spectral spread depends on the magnitude of higher-order polynomial
coefficients, we show the plot of the magnitude of the coefficients of a polynomial approximation
with Chebyshev nodes of degree 25 in Figure 19. The fit is performed for the interval [−5, 5] (slightly
different from Figure 2 in the main paper, which shows a fit for [-1,1]). Figure 19(a) also shows again

19

Published as a conference paper at ICLR 2021

0 2 4

−4

−2

0

log(freq)

ELU + NS

0 2 4

−4

−2

0

log(freq)

GELU + NS

0 2 4

−4

−2

0

log(freq)

HTANH + NS

0 2 4

−4

−2

0

log(freq)

LRELU + NS

0 2 4

−4

−2

0

log(freq)

SELU + NS

0 2 4

−4

−2

0

log(freq)

SIGMOID + NS

0 2 4

−4

−2

0

log(freq)

ELU + S

0 2 4

−4

−2

0

log(freq)

GELU + S

0 2 4

−4

−2

0

log(freq)

HTANH + S

0 2 4

−4

−2

0

log(freq)

LRELU + S

0 2 4

−4

−2

0

log(freq)

SELU + S

0 2 4

−4

−2

0

log(freq)

SIGMOID + S

All layer walk with more activation functions

Figure 17: Repeating the experiments of Figure 3 (all layers, unscaled) for more nonlinearities.

Polynomial Chebyshev approximation of various nonlinearities of degree 25 within [-5,5]

relu tanh softplus elu

gelu htanh sigmoid selu

lrelu lrelu (α = 0.25) lrelu (α = 0.75)

Figure 18: Various Nonlinearities with their Chebyshev-Polynomial Approximation within the
interval [−5, 5].

the comparison between ReLU, tanh, and softplus, uniformely with this Chebyshef approximation;
this shows the differences more clearly (please also note the logarithmic scale of the y-Axis).

The approximations are quite tight within the interval, see Figure 18 for reference.

20

Published as a conference paper at ICLR 2021

Comparison of the magnitude of the polynomial coefficients |aj |
(for the degree 25 approximation of Figure 18)

(a) comparison of relu, tanh, softplus (b) close-up of (a)

(c) comparison of relu,tanh,sigmoid,hardtanh (d) comparison of relu, elu, gelu, selu
(relu for reference)

(d) different variants of leaky-relu (e) closeup of (d)
(default is α = 1E − 2)

Figure 19: Absolute value of the polynomial coeffients of the Chebyshev polynomial approximation.
All fits are done within the interval [−5, 5]. Note: Different interval from Fig. 2 in the main paper!
(to capture the shape of all nonlinearities well).

21

Published as a conference paper at ICLR 2021

1 t t2 t3 t4 t5 t6

relu 6.2512213E-02 5.0000000E-01 8.0859691E-01 1.1924015E-14 -5.7216603E-01 -7.6820090E-15 2.8328407E-01
tanh 5.1805002E-16 9.9793926E-01 -2.7609686E-15 -3.2070438E-01 4.6215225E-15 1.0881659E-01 -3.2234542E-15

softplus 6.9314722E-01 5.0000000E-01 1.2499948E-01 -8.0003321E-15 -5.2070252E-03 6.6261234E-15 3.4591520E-04
elu 7.9148528E-04 9.4044077E-01 2.1895988E-01 -2.0584738E-01 -4.8542686E-02 1.1656771E-01 1.6778199E-02
gelu 1.4022057E-06 5.0000000E-01 3.9892182E-01 9.9860124E-15 -6.6440646E-02 -7.1476355E-15 9.9256757E-03
htanh -6.4522701E-17 9.5248313E-01 3.1201720E-15 3.9176956E-01 -5.5233592E-15 -6.5558052E-01 4.0680108E-15
lrelu 6.1887091E-02 5.0500000E-01 8.0051094E-01 2.6432027E-15 -5.6644437E-01 1.2012168E-17 2.8045123E-01
selu -4.2829527E-02 1.2996891E+00 -1.8704691E-01 -3.6190014E-01 3.1940644E-01 2.0493761E-01 -1.7089694E-01

sigmoid 5.0000000E-01 2.4999950E-01 -6.5774789E-15 -2.0830617E-02 9.6140255E-15 2.0789179E-03 -5.0960174E-15
lrelu -0.25 4.6884160E-02 6.2500000E-01 6.0644768E-01 9.4213822E-15 -4.2912452E-01 -6.5801233E-15 2.1246305E-01
lrelu -0.75 1.5628053E-02 8.7500000E-01 2.0214923E-01 4.0171812E-15 -1.4304151E-01 -5.9161867E-15 7.0821018E-02

t7 t8 t9 t10 t11 t12 t13

relu 1.8094049E-15 -8.5698408E-02 1.4490894E-17 1.6559778E-02 -9.7673166E-17 -2.1229556E-03 2.3344256E-17
tanh -2.9502585E-02 1.1578462E-15 5.9214502E-03 -2.4554185E-16 -8.5681435E-04 3.3129449E-17 8.8697276E-05

softplus -3.2764837E-15 -2.5656019E-05 1.0262503E-15 1.9069649E-06 -2.1426831E-16 -1.2924529E-07 3.0466611E-17
elu -4.5051680E-02 -4.3845220E-03 1.1333777E-02 7.8485900E-04 -1.9013645E-03 -9.6036723E-05 2.1786860E-04
gelu 2.0301054E-15 -1.1630904E-03 -1.4744780E-16 1.0800433E-04 -5.4350867E-17 -7.9444190E-06 1.6680823E-17
htanh 3.3738173E-01 -1.5872645E-15 -9.5223816E-02 3.6951250E-16 1.6867158E-02 -5.4818441E-17 -1.9874811E-03
lrelu -1.3304595E-15 -8.4841423E-02 7.6609561E-16 1.6394181E-02 -2.1268001E-16 -2.1017260E-03 3.5039736E-17
selu -7.9205328E-02 5.2914487E-02 1.9925905E-02 -1.0334500E-02 -3.3427877E-03 1.3329332E-03 3.8303464E-04

sigmoid -2.0739824E-04 1.3731145E-15 1.9820840E-05 -2.1665218E-16 -1.7123664E-06 2.1314190E-17 1.2507122E-07
lrelu -0.25 1.6962453E-15 -6.4273806E-02 -6.5505775E-17 1.2419834E-02 -6.1909935E-17 -1.5922167E-03 1.6274033E-17
lrelu -0.75 2.8720156E-15 -2.1424602E-02 -7.1728555E-16 4.1399446E-03 1.0211438E-16 -5.3073889E-04 -8.1962396E-18

t14 t15 t16 t17 t18 t19 t20

relu 1.8443579E-04 -2.8820282E-18 -1.0903101E-05 2.1693327E-19 4.3182633E-07 -1.0312989E-20 -1.0961345E-08
tanh -2.9550924E-18 -6.5355890E-06 1.7658317E-19 3.3887465E-07 -6.9979237E-21 -1.2057256E-08 1.7656046E-22

softplus 7.3223066E-09 -2.9626728E-18 -3.2257985E-10 1.9577707E-19 1.0362969E-11 -8.6141997E-21 -2.2542826E-13
elu 8.0862081E-06 -1.7269223E-05 -4.6740594E-07 9.4564265E-07 1.8201823E-08 -3.5094476E-08 -4.5598427E-10
gelu 4.5500348E-07 -2.2272244E-18 -1.9681332E-08 1.7448146E-19 6.1548299E-10 -8.5046796E-21 -1.3032819E-11
htanh 5.3651152E-18 1.5990800E-04 -3.5046880E-19 -8.8268590E-06 1.5117444E-20 3.2893167E-07 -4.1329037E-22
lrelu 1.8259143E-04 -3.6811891E-18 -1.0794070E-05 2.5320591E-19 4.2750807E-07 -1.1364747E-20 -1.0851732E-08
selu -1.1625322E-04 -3.0361009E-05 6.8910899E-06 1.6625337E-06 -2.7347262E-07 -6.1699575E-08 6.9523720E-09

sigmoid -1.3305631E-18 -7.2716001E-09 5.1348407E-20 3.1974208E-10 -1.0979379E-21 -1.0107329E-11 7.6307576E-24
lrelu -0.25 1.3832684E-04 -2.0580252E-18 -8.1773260E-06 1.5611204E-19 3.2386975E-07 -7.4361410E-21 -8.2210090E-09
lrelu -0.75 4.6108947E-05 2.9304331E-19 -2.7257753E-06 6.3999589E-21 1.0795658E-07 -1.1416736E-21 -2.7403363E-09

t21 t22 t23 t24 t25

relu 3.0296993E-22 1.6113608E-10 -5.0295283E-24 -1.0429164E-12 3.6122193E-26
tanh 2.7986355E-10 -2.5687606E-24 -3.8131280E-12 1.6410322E-26 2.3116680E-14

softplus 2.4105425E-22 2.9464505E-15 -3.8765757E-24 -1.7393697E-17 2.7255018E-26
elu 8.4227758E-10 6.6327810E-12 -1.1791444E-11 -4.2559630E-14 7.3104430E-14
gelu 2.5429110E-22 1.6629623E-13 -4.2790160E-24 -9.6171035E-16 3.1074839E-26
htanh -7.9089452E-09 6.4866408E-24 1.1077249E-10 -4.4517362E-26 -6.8651287E-13
lrelu 3.2080448E-22 1.5952472E-10 -5.1716715E-24 -1.0324872E-12 3.6319847E-26
selu 1.4808077E-09 -1.0232631E-10 -2.0730531E-11 6.6293325E-13 1.2852485E-13

sigmoid 2.1491988E-13 1.3841516E-25 -2.7389162E-15 -2.2476903E-27 1.5757713E-17
lrelu -0.25 2.1839093E-22 1.2085206E-10 -3.6215891E-24 -7.8218726E-13 2.5980741E-26
lrelu -0.75 5.0212219E-23 4.0284020E-11 -1.0326312E-24 -2.6072909E-13 8.4909511E-27

Table 1: Numerical values for the polynomial coefficients used in Figure 18 and 19.

22

	Introduction
	Related Work
	Harmonic Distortion
	Formalizing Roughness
	Why is the Output Function Getting Rougher?
	Common Nonlinearities
	Connection to exploding gradients
	Residual and Multipath Networks

	Experimental Results: Measured Spectra
	Effects of blueshift on a loss path
	Effects of blueshift on the average power spectrum of the w-o surface
	Quantifying and measuring spectral shift
	Residual networks control harmonics via ED and FDSA

	Empirical Results: Training
	Discussion
	Conclusion and Future Work
	Acknowledgements
	Network details
	Network architectures
	Fourier walk hyperparmeters
	Training hyperparmeters

	Formal Details Concerning Harmonic Network Analysis
	Series Representation and Convergence
	Inputs to the Second Layer Nonlinearities are FBM-Noise
	Blueshift and Depth
	Spectral Broadening through Auto-Convolutions
	Frequency Dependence in Averaging of Multiple Computation Paths

	Training on Cifar100
	Other spectral shift figures
	Spectral shift during training
	Spectral shift with delta-orthogonal initialization
	Spectral shift in gradient direction
	Varying width

	Walk per layer
	Smoothness measurements on MNIST
	More activation functions

