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ABSTRACT

We introduce SVG extraction, the task of translating specific visual inputs into
scalable vector graphics. Existing multimodal models such as StarVector achieve
strong results when generating SVGs from clean renderings or textual descrip-
tions, but they fall short in real-world scenarios where natural images introduce
noise, clutter, and domain shifts. To address this gap, we extend StarVector’s ca-
pabilities toward robust vision-to-SVG translation in the wild. A central challenge
in this direction is the lack of suitable benchmarks. To fill this need, we develop
two complementary datasets: Natural WildSVG, consisting of real-world images
paired with SVG annotations, and Synthetic WildSVG, which integrates com-
plex and elaborate SVG designs into real-life scenarios to simulate challenging
conditions. Together, these resources provide the first foundation for systematic
benchmarking SVG extraction. Building on them, we benchmark StarVector and
related models. Our study establishes SVG extraction as a new problem domain,
introduces datasets and evaluation protocols for its study, taking initial steps to-
ward extending multimodal LLMs to handle reliable SVG generation in complex,
natural scenes.
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Figure 1: Overview of WildSVG benchmark. We can observe both WildSVG datasets and SVG
extraction approaches. This benchmark is novel, introducing datasets specifically designed for the
SVG extraction problem—a task not previously addressed in existing research. As well as addressing
limitations of unique metrics evaluation protocols, by combining both semantic and fidelity-based
metrics for comprehensive assessment.

1 INTRODUCTION

Scalable Vector Graphics (SVGs) are an XML-based open standard and the leading format for vec-
tor graphic representation |Quint (2003), widely adopted in modern image rendering. However,
efficiently generating SVGs remains a significant challenge, as the format supports a wide range
of primitives, from basic curves such as path to more complex shapes like ellipse or polygon. The
task of image vectorization—producing SVG code from rendered images—remains unsolved by
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the industry. Traditional approaches rely on complex path operations, while deep learning methods
struggle to generalize and often underutilize higher-level SVG primitives.

Recent advances, such as StarVector [Rodriguez et al.| (2025a), have demonstrated the potential of
multimodal large language models (MLLMs) for SVG generation. StarVector, trained on SVG-
Stack—a dataset of over two million samples—achieved state-of-the-art results through a reinforce-
ment learning pipeline with visual feedback|Rodriguez et al.|(2025b). Despite this progress, existing
methods are limited to controlled inputs such as clean renderings or text prompts. They fail when
confronted with the challenges of natural images, where SVG elements are embedded in cluttered,
noisy, and context-rich environments.

To address this gap, we introduce the SVG extraction task, which focuses on identifying graphical
elements such as logos, icons, or pictograms within real-world images—given user guidance—and
generating their corresponding SVG code. Unlike full-image vectorization, SVG extraction requires
selective abstraction: isolating target elements while ignoring irrelevant visual content such as tex-
tures, shadows, occlusions, and perspective distortions.

We take three key steps to establish SVG extraction as a research problem. First, we introduce
WildSVG, the first benchmark for this task, composed of two complementary datasets: (i) Natural
WildSVG, which grounds vector annotations in real-world images, and (ii) Synthetic WildSVG, which
embeds complex SVGs into natural scenes to simulate challenging visual conditions. Second, we
define evaluation protocols to support consistent and fair benchmarking across models. Finally, we
adopt StarVector and other multimodal models as baselines, establishing initial performance levels
and highlighting open challenges. Together, these steps lay the foundation for systematic study of
SVG extraction.

2 RELATED WORK

Research on SVG generation is still in its early stages, with most work focused on reconstructing
full graphics from clean renderings [Rodriguez et al.| (2025a). To the best of our knowledge, no
prior work has addressed the SVG extraction task—isolating graphical elements from natural images
and generating structured vector representations. Nevertheless, two research directions are closely
related and inform our setting: (1) logo detection, and (2) image-to-SVG generation.

2.1 LOGO DETECTION

Logo detection, a specialized form of object detection, has been widely studied due to applications
in multimedia analysis, brand monitoring, and copyright protection. Early approaches relied on
hand-crafted features combined with classifiers, while the rise of deep learning established detectors
such as YOLO Khanam & Hussain| (2024), DETR |Carion et al.| (2020), and the R-CNN family
He et al.|(2018)) as the standard. Despite their success, these methods face challenges with dataset
imbalance and the closed-set assumption, which limit their ability to generalize to unseen logos|/Hou
et al.| (2023)).

Recent work explores zero-shot and open-vocabulary detection to address these issues by leveraging
language—vision alignment. For example, some methods replace fixed labels with textual descrip-
tions Zareian et al.| (2021)), while others combine CLIP-based classifiers with object-agnostic de-
tectors |Shulgin & Makarov|(2023)) or employ transformer-based region embeddings |Minderer et al.
(2022);|Gu et al.[(2022). Multimodal LLMs Chen et al.|(2023)); Bai et al.| (2025)); Deitke et al.|(2024)
further integrate such tasks into pretraining, extending them toward more context-aware object de-
tection [Zang et al.| (2025); [Yin et al.| (2025). However, these approaches output bounding boxes
or class labels only, whereas SVG extraction requires both localization and structured vector code
generation.

2.2  SVG GENERATION

Traditional vectorization methods rely on geometric fitting with the path primitive Wu et al.|(2023a);
Weber| (2025)); Pun & Tang| (2025), often producing verbose SVG code with limited structural ab-
straction. Latent-variable models Jain et al.| (2022)); |Carlier et al.| (2020); Ma et al.| (2022); |lat
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(2024) increase flexibility but are typically constrained to narrow SVG subsets and yield non-human-
readable outputs.

Recent advances expand into specialized domains such as emoji generation [Wang & Lian| (2021));
Lopes et al.[(2019); Wu et al.|(2023b), or employ LLMs for SVG creation and editing Bubeck et al.
(2023));/Cat et al.|(2024), framing vector graphics as structured program synthesis|Chen et al.|(2021);
Feng et al.| (2020). The most significant development is StarVector Rodriguez et al.| (2025a), which
casts SVG generation as multimodal inverse rendering and code generation, trained on the large-
scale SVG-Stack dataset. A posterior reinforcement learning extension, with rendering feedback
(RLRF), further improved its visual fidelity Rodriguez et al.| (2025b). Yet, these models remain
restricted to clean renderings and degrade substantially in natural images with clutter, occlusion, or
noise.

2.3 DATASET SURVEY

The task of identifying and processing SVGs within real-world images requires new datasets, as
none currently address this problem. The original StarVector paper Rodriguez et al| (2025a) in-
troduced SVG-Stack, along with several subsets, as resources for the Image-to-SVG task. While
valuable, SVG-Stack focuses on clean renderings and does not capture the challenges of detect-
ing and generating SVGs from natural contexts. Conversely, logo detection datasets provide only
localization information (e.g., bounding boxes) without vector annotations.

Table 1: Overview of logo detection datasets

Name Classes | Images | Objects | Use case Dataset origin License
Belgalogos [Joly 37 10,000 2,695 | Manually selected | General logos in a | Copyrighted, aca-
& Buisson| (2009) and annotated | wide range of events | demic use only
images from photo- | present in the press
journalist archives
FlickrLogos-27 27 1,080 4,671 General logo dataset | Manually created | Copyrighted, fol-
Kalantidis et al. focused on real-life | from Flickr image | low Flickr terms
(2011) scenarios search, logo selec-
tion and annotation
FlickrLogos-32 32 2,240 5,644 | General logo dataset | Manually created | Copyrighted, fol-
Romberg et al. from Flickr image | low Flickr terms
(2011) search, logo selec-
tion and annotation
SportLogo 31 2,836 - Sports logos, primar- | Manually collected | Creative  Com-
Kuznetsov & ily NHL and NBA via search engine mons Attribution
Savchenko 4.0
(2020)
| Logos-in-the- 871 11,054 | 32,850 | Logos in real-world | Manually selected | Copyrighted, fair
Wild [Tiizko et al. scenarios and annotated | use
(2017) Google image search
results
QMUL- 352 27,083 - Merged from 7 logo | Diverse logo con- | Research use
OpenLogo detection datasets ditions, curated for | only
Su et al.|(2018) variation in scale and
context
FoodLogoDet- 1,500 99,768 | 145,400 | Logos in the food in- | Curated list, auto- | Not disclosed
1500 Hou et al. dustry searched then manu-
(2021) ally annotated
LogoDet-3K 3,000 158,652 | 194,261 | General-purpose lo- | Manually con- | Not disclosed
Wang et al. gos structed from web-
(2022) crawled images




Under review as a conference paper at ICLR 2026

We reviewed existing publicly available logo detection datasets (Table [I). Most provide bounding
boxes in natural or semi-natural settings but lack vectorized logo representations. Among them,
Logos-in-the-Wild stands out for its scale and diversity, covering difficult real-world conditions such
as perspective distortion, scale variation, occlusion, and noisy textures. For SVG generation datasets,
we focus on SVG-Stack and its subsets (Table[2), which remain the most comprehensive and high-
quality resources for vector graphics research. However, they do not include SVGs embedded in
real-world image contexts.

Taken together, no existing dataset satisfies the requirements of SVG extraction: grounding vector
graphics within natural scenes while maintaining structured SVG annotations. This gap directly
motivates the creation of our WildSVG dataset, introduced in the following section.

Table 2: Overview of SVG generation datasets

Name Train | Validation | Test | Primitives | Annotations Images
SVG Stack 2,IM 108k 5,7k All Caption SVG render
SVG Dia- - - 472 All Caption SVG render
grams

SVG Fonts 1,8M 91,5k 4,8k | Vector Path Font Type SVG render
SVG Emoji 8,7k 667 668 All Class SVG render
SVG Icons 80,4k 6,2k 2,4k | Vector Path | Class, Caption | SVG render

2.4 MOTIVATION FOR SVG EXTRACTION

Prior work in logo detection and SVG generation leaves a clear gap. Detection models can localize
target regions but cannot produce structured vector outputs, while SVG generation models excel
on synthetic renderings but fail in real-world conditions. The SVG extraction task bridges these
domains, requiring both localization and vector generation. To enable systematic study of this task,
we introduce the WildSVG benchmark, which provides the first datasets designed specifically for
SVG extraction in natural scenes.

3 WILDSVG DATASETS

To enable systematic study of the SVG extraction task, we introduce the WildSVG datasets, con-
sisting of two complementary datasets: Natural WildSVG and Synthetic WildSVG. Together, they
combine the realism of naturally occurring logos with the diversity and controllability of synthetic
SVG integration. The dataset generation pipelines are illustrated in Appendix Figures[6]and

3.1 NATURAL WILDSVG

Built from Logos-in-the-Wild [Ttizko et al.[(2017), Natural WildSVG augments logo detections with
vectorized annotations. Each bounding box is paired with (i) an SVG retrieved from worldvectorl-
ogo.com, (ii) a textual description, and (iii) a focus prompt specifying the target element. To ensure
consistency, candidate SVGs were validated using a VLLM-based judging model and ranked by DI-
NOV2 features similarity/Oquab et al.| (2023), between rasterized SVGs and cropped detections. This
process produced high-quality matches between natural logo appearances and their corresponding
vector representations.

3.2 SYNTHETIC WILDSVG

To complement natural logos, Synthetic WildSVG integrates complex SVGs into realistic scenes.
Starting from SVG-Stack|Rodriguez et al.|(2025a)), each SVG and its textual description were used to
generate synthetic compositions with gemini-2.0-flash-preview—-image—generation
(now known as Nano Banana). Prompts were manually optimized to preserve SVG fidelity while
embedding the logos naturally in the background (Appendix Fig. [§). We additionally generated
focus prompts for the complete dataset and manually annotated bounding boxes for the test split to
support reliable evaluation. This dataset introduces diverse and complex SVG types under controlled
but visually challenging conditions.
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3.3 QUALITY FILTERING AND RESULTING DATASET

Both datasets underwent automated filtering inspired by StarVector-RL scoring system |[Rodriguez
et al.| (2025b). Each sample was scored on constancy (SVG-image similarity), alignment (focus
prompt accuracy), and, for synthetic data, aesthetics (realism of integration). We combined these
into aggregate scores, prioritizing constancy and aesthetics over alignment (details in Appendix
Figures 0] and[12] and Equation [I). The resulting dataset statistics are shown in Table [3]

The final datasets are smaller than SVG-Stack or Logos-in-the-Wild, reflecting their intended use as
fine-tuning and evaluation benchmarks rather than pretraining corpora. Despite API constraints dur-
ing synthetic generation, the resulting resources balance natural complexity and synthetic diversity,
establishing WildSVG as the first benchmark for SVG extraction.

Table 3: WildSVG datasets

Dataset Train | Validation | Test | Primitives Annotations

Natural 12759 1418 227 Path Logo brand, focus prompt, description, bounding box
WildSVG

Synthetic 2104 190 99 All Focus prompt, description

WildSVG

3.4 LICENSING

The SVG-Stack data is released under a Creative Commons Attribution 4.0 International (CC BY
4.0) license. Accordingly, our Synthetic WildSVG extension is distributed under the same license,
permitting both research and commercial use. In contrast, due to the copyrighted nature of images
employed by Logos-in-the-Wild, the Natural WildSVG extension can only be licensed for research
purposes.

4 WILDSVG BENCHMARK

The WildSVG benchmark aims to evaluate model performance on the SVG extraction task in both
natural scenarios, which involve complex detections and real-world noise, and synthetic scenarios,
which feature simpler visual noise but more complex SVG structures. For this purpose, we employ
the test split of both datasets.

To establish a fair baseline for SVG extraction, we report four complementary metrics:

» L2 distance and SSIM - pixel-level fidelity
» LPIPS and DINO score — perceptual and semantic similarity

The use of multiple metrics is motivated by their complementary strengths. Pixel-level fidelity
metrics (L2, SSIM) ensure precise reproduction of visual details, but they may penalize outputs
that are perceptually faithful yet not perfectly aligned at the pixel level. Conversely, perceptual
and semantic metrics (LPIPS, DINOv2) |Oquab et al.| (2023)); Zhang et al| (2018)) capture higher-
level similarity, complementing fidelity-based measures. Together, these metrics provide a more
comprehensive evaluation, balancing strict accuracy with semantic consistency.

4.1 EVALUATED MODELS

As a contribution to the SVG extraction task, we establish baseline results across a range of recent
VLLM families, including StarVector. The following models were evaluated:

1. Qwen: Qwen2.5VL-72B-Instruct
2. Gemini: Gemini 2.0 Flash, Gemini Flash 2.5
3. Claude: Claude Opus 4, Claude Opus 4.1
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4. GLM: GLM-4.1V-9B-Thinking, z-ai GLM-4.5V
5. GPT: GPT-4.1, GPT-5
6. StarVector: rlvg-7b-long-context

Our goal is to analyze both the performance and trade-offs of each approach. Some models, such as
GPT variants, employ dense Transformer architectures, while others incorporate mixture-of-experts
(MoE) designs. We additionally investigate the impact of different visual encoders on extraction
performance, as well as differences between open-source and closed-source models.

4.2 EVALUATION SETTINGS
For a comprehensive evaluation, we conduct SVG extraction under two setups:

1. Full-image extraction with focus prompt: The model receives the complete image along
with a focus prompt that specifies the target element for extraction.

2. Two-step extraction with perfect object detection: Images are first cropped using
ground-truth bounding boxes before SVG generation. This setting reduces distractors, help-
ing models—particularly StarVector—focus on specific features. It also serves as an upper
bound for two-step methods that rely on external detection modules.

5 BENCHMARK RESULTS

From our current benchmark, we present reduced tables, Table E] and E], containing the most recent
model of each family; the complete results are provided in Appendix Tables [f]and[7} Since models
within a family generally exhibit similar behavior, we focus on the most recent and best-performing
representatives.

Two clear trends emerge from the results. First, across families, models produce SVGs that follow
broadly similar patterns, with only a few notable outliers. For example, StarVector frequently at-
tempts to render the entire image rather than isolating the SVG. Other specific cases include Claude
Opus 4 misrepresenting the FedEx logo (Figure ) and the GLM family struggling with the human-
shaped SVG (Figure[3). Second, models consistently achieve higher scores on the synthetic dataset,
reflecting the greater difficulty of the natural dataset, where scaling, perspective distortion, occlu-
sions, shadows, and noise complicate vectorization. As shown in Figure @ even advanced models
struggle with ambiguous cases such as the Special K box, where only GPT-5 partially captures the
“K” logo.

Table 4: VLLM benchmark for one-step SVG extraction task

Natural Synthetic
Model L2 | /SSIM 1/DINO 1 /LPIPS | L2 | /SSIM 1/DINO 1/LPIPS |
Qwen2.5VL-72B-Instruct 0.22/0.58/0.77/0.41 0.21/0.58/0.77/0.42
Gemini Flash 2.5 0.20/0.58/0.79/0.42 0.21/0.57/0.78 /0.43
Starvector rlvg-7b-long-context  0.15/0.63/0.69/0.39 0.16/0.61/0.76/0.43
Claude Opus 4.1 0.19/0.61/0.80/0.40 0.20/0.58/0.80/0.42
z-ai GLM 4.5V 0.18/0.61/0.79/0.39 0.19/0.59/0.77/0.40
GPT 5 0.19/0.58/0.80/0.40 0.22/0.57/0.79/0.42

Detection itself does not consistently improve results across families. The notable exception is
StarVector, which in the one-step setting ignores the prompt and attempts to vectorize the full image

2POD standing for Perfect Object Detection
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Table 5: VLLM benchmark for two-step perfect logo detection SVG extraction task

Model

Natural

L2 | /SSIM 1/DINO 1 /LPIPS |

Synthetic

L2 | /SSIM 1 /DINO 1 /LPIPS |

Qwen2.5VL-72B-Instruct

0.21/0.62/0.81/0.36

0.20/0.61/0.85/0.34

Gemini Flash 2.5

0.19/0.64/0.85/0.32

0.19/0.64/0.88/0.33

Starvector rlvg-7b-long-context

0.18/0.60/0.74/0.46

0.16/0.63/0.82/0.37

Claude Opus 4.1 0.16/0.66/0.86/0.32 0.16/0.65/0.90/0.30
z-ai GLM 4.5V 0.20/0.63/0.83/0.34 0.18/0.64/0.86/0.32
GPT 5 0.18/0.63/0.87/0.34 0.18/0.63/0.89/0.31

(Figure 2)). Despite the fact than other VLLM families, including Qwen, do have the capacity to
focus on the given prompt. This behavior suggests a weakness in StarVector’s training pipeline, as
text-to-SVG and image-to-SVG tasks are learned separately in this regime which may reduce the
alignment between prompt and image features during SVG generation.

Starvector Qwen 2.5 Gémini 2.5 Claude Opus z-ai GLM 4.5V GPT5
rivg-7b VL-72B Flash 41
-long-context -Instruct
Specia : : /
. Special|Special <
LOUIS VUITTON = = "
N BATICLES BEVOYAGE S LQ‘I{JIS VUITT?N LOUIS VUITTON Loﬂ.’.,s..';f:‘;’:'ﬂ,m'
\ MAISON FONDEE EN 1854 " o 3

Figure 2: Comparison of VLLMs for one-step SVG extraction natural dataset
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Figure 3: Comparison of VLLMs for one-step SVG extraction synthetic dataset
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Across families, VLLMs generally optimize for semantic similarity rather than aesthetic fidelity.
This tendency is reflected in the frequent use of the text primitive to approximate letters with sim-
ilar fonts, rather than rendering them as shapes. As a result, SVGs achieve strong performance on
semantic metrics (LPIPS, DINO) but weaker performance on pixel-level metrics (L2, SSIM). For
instance, GPT-5’s rendering of the Heineken logo (Figure f) appears convincing in overall struc-
ture but reveals clear inaccuracies upon closer examination. Synthetic examples further highlight
this trade-off: some models reproduce SVGs with structures reminiscent of the original, but insuf-
ficiently faithful for precise extraction (Figures 3] [5). Among all families, Claude 4.1 and GPT-5
deliver the most semantically consistent and highest-fidelity SVGs, though both remain below the
fidelity required for a complete solution of SVG extraction.

StarVector diverges from this general trend, sacrificing semantic fidelity in favor of visual aesthetics.
This is reflected in the metrics, where L2 and SSIM are prioritized over LPIPS and DINO, and in
qualitative examples such as the FedEx and Heineken logos (Figure [4). In these cases, StarVec-
tor often relies on shape primitives to render letters, a strategy preferable to text primitives since
reproducing exact font styles, kerning, and spacing is effectively impossible. While this approach
reduces semantic scores, it has the potential to produce SVGs visually closer to the original de-
signs. Nonetheless, the outputs remain inconsistent: for example, the synthetic POD logo (Figure
[) demonstrates significant misalignment in element positioning and structure. For the specific task
of SVG extraction, StarVector’s results remain below the semantic and aesthetic quality achieved
by Claude and GPT models. However, StarVector shows strong capabilities in generating complex
SVGs directly from rasterized SVGs. We hypothesize that noise in real-world scenarios—such as
textures and shadows—may overwhelm the model, leading it to overfit to subtle visual variations
rather than isolating the core logo structure.

Overall, our baseline demonstrates that current VLLMs can generate SVGs that are semantically
meaningful but still fall short in aesthetic fidelity. Across families, most models achieve relatively
similar scores regardless of the visual encoder or LLM architecture, suggesting that model size
plays a greater role than design choices. As Open-source models, typically ranging from 10-70B
parameters, tend to perform slightly worse than larger proprietary systems. However, even the
strongest models, such as Claude 4.1 and GPT-5, plateau at approximately DINO 90, LPIPS 30,
SSIM 60, and L2 15. By comparison, achieving high-fidelity SVG generation would require scores
closer to DINO 95, LPIPS 10, SSIM 80, and L2 9. These results point to a performance ceiling in
current approaches.

Key findings:

» Synthetic dataset is consistently easier than Natural.
* Models optimize for semantic similarity (LPIPS, DINO) over pixel fidelity (L2, SSIM).
* StarVector diverges from other families, favoring aesthetics over semantics.

* Even strongest models plateau below high-fidelity thresholds, leaving clear headroom for
future work.

Starvector Qwen 2.5 Gémini Claude Opus z-ai GLM 4.5V GPT5
rivg-7b VL 25 4.1
long-context 72B Flash

Instruct

W_"‘" I’ HxEx |[FedEx|FedE>FedE x|Fed Ex|FedEx

-'.»'
| HeTwhef| Heinchen | teneten [ teineken | ieineken U Hoincke

Figure 4: Comparison of VLLMs for two-step SVG extraction natural dataset
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Figure 5: Comparison of VLLMs for two-step SVG extraction synthetic dataset

6 CONCLUSION

We introduced the task of SVG extraction, extending multimodal models to generate vector graph-
ics directly from natural images, and proposed WildSVG, the first benchmark for this problem.
WildSVG combines real-world logos with synthetic compositions, enabling evaluation under both
natural and controlled conditions.

Our benchmarking of leading VLLM families reveals three consistent takeaways: (1) models per-
form better on synthetic than natural data, showing the impact of real-world distortions; (2) current
systems prioritize semantic similarity over pixel fidelity; (3) even the strongest models plateau below
high-fidelity thresholds, leaving clear headroom for improvement. While Claude and GPT balance
fidelity and semantics most effectively, StarVector highlights a contrasting trade-off by favoring
aesthetics over semantics.

Looking ahead, we identify several open research directions: (i) improving alignment between
prompts and structured vector outputs, particularly for StarVector; (ii) integrating SVG generation
and extraction tasks into VLLM training pipelines to improve fidelity in vector code; (iii) extending
two-step approaches to leverage SVG generation without requiring task-specific fine-tuning. and
(iiii) expanding WildSVG datasets to allow broader training approaches not only finetuning.

By framing SVG extraction as a benchmarked task, we aim to catalyze future research at the inter-
section of vision, language, and structured graphics generation.
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A APPENDIX

A.1 LLM USAGE
Parts of this manuscript were refined and polished using ChatGPT (GPT-5), a large language model
developed by OpenAl. The model was employed solely for language editing and clarity improve-

ments; all technical content, data analyses, and conceptual contributions remain the original work
of the authors.

A.2 COMPLETE BENCHMARK

In Tables[6|and [7] we report the benchmark results for all VLLMs evaluated in our study.
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Table 6: VLLM benchmark for one-step SVG extraction task

Natural Synthetic
Model L2 | /SSIM 1/DINO 1/LPIPS | L2 | /SSIM 1/DINO 1 /LPIPS |
Qwen2.5VL-72B-Instruct 0.22/0.58/0.77/0.41 0.21/0.58/0.77/0.42
Gemini Flash 2 0.17/0.61/0.78/0.38 0.19/0.63/0.83/0.32
Gemini Flash 2.5 0.20/0.58/0.79/0.42 0.21/0.57/0.78/0.43

Starvector rlvg-7b-long-context

0.15/0.63/0.69/0.39

0.16/0.61/0.76 /0.43

Claude Opus 4

0.18/0.60/0.78 / 0.40

0.19/0.62/0.84/0.34

Claude Opus 4.1

0.19/0.61/0.80/0.40

0.20/0.58/0.80/ 0.42

GLM-4.1V-9B-Thinking

0.17/0.63/0.75/0.37

0.21/0.62/0.78/0.37

z-ai GLM 4.5V

0.18/0.61/0.79/0.39

0.19/0.59/0.77/0.40

GPT 4.1

0.18/0.59/0.81/0.39

0.18/0.64/0.86/0.32

GPT 5

0.19/0.58/0.80/0.40

0.22/0.57/0.79/0.42

Table 7: VLLM benchmark for two-step, perfect logo detection, SVG extraction task

Model

Natural

L2 | /SSIM 1/DINO 1 /LPIPS |

Synthetic

L2 | /SSIM 1 /DINO 1 /LPIPS |

Qwen2.5VL-72B-Instruct

0.21/0.62/0.81/0.36

0.20/0.61/0.85/0.34

Gemini Flash 2

0.18/0.61/0.76 / 0.40

0.18/0.64/0.86/0.32

Gemini Flash 2.5

0.19/0.64/0.85/0.32

0.19/0.64/0.88/0.33

Starvector rlvg-7b-long-context

0.18/0.60/0.74 / 0.46

0.16/0.63/0.82/0.37

Claude Opus 4 0.19/0.58/0.78/0.43 0.15/0.66/0.88/0.30
Claude Opus 4.1 0.16/0.66/0.86/0.32 0.16/0.65/0.90/0.30
GLM-4.1V-9B-Thinking 0.20/0.59/0.76/0.41 0.18/0.63/0.83/0.33
z-ai GLM 4.5V 0.20/0.63/0.83/0.34 0.18/0.64/0.86/0.32
GPT 4.1 0.20/0.57/0.80/0.41 0.17/0.63/0.88/0.31
GPT 5 0.18/0.63/0.87/034 0.18/0.63/0.89/0.31
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A.3 DATASET GENERATION

A.3.1 DATASET GENERATION PIPELINES
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Figure 6: Pipeline for synthetic WildSVG generation
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A.3.2 DATASET GENERATION PROMPTS

Prompt for Synthetic Image Generation

Integrate the image into a real life photography to help increase difficulty on a dataset. It
must be seamless and the integrated image in the real life picture should respect the
following description: {description}. First, decide on a scenario where to apply this SVG, it
must be semantically consistent. An example could be a publicity panel or a traffic sign or
alogo in a laptop, itis highly encouraged to think about others scenarios.

Figure 8: Prompt for image generation of Synthetic WildSVG Dataset

Prompt for VLLM scoring (Natural dataset)

You are a strict impartial evaluator of integrating SVG images into real life scenarios.

RUBRIC
Constancy Score (0-5) — How similar is the integrated image, does it maintain the original
characteristics or does it remove them or add new things, without taking into account
perspective or scale changes.”
0 — Completely unrecognizable: Completely changed image.
1 — Very weak recognition: Some minor features are present but lack in key characteristics
which makes it barely recognizable.
2 — Weak recognition: Some primary characteristics are presents but other key features are
missing or completely changed. Very difficult to recognize as the integrated pictures.
3 — Partial recognition: Most important features are present, but some minor details or more
secondary characteristics are missing or have being noticeable altered or newly added.
4 — Strong recognition: Recognizable, only some slight changes or addition in minor details
have been done.
5 — Perfect recognition: Image is fully integrated with every minor detail conserved.

Alignment Score (0-5) — "How well adjusted is the information of a task prompt about the
location of the integrated picture and what to extract.”

0 — Unusable: Completely wrong location or completely wrong information about what to
extract.

1 — Very poor: Difficult to understand or very ambiguous on what should be extracted.

2 — Poor: Somehow correct but confusing or ambiguous.

3 — Fair: Basic information without any class of details or additional information to deal with
ambiguity.

4 — Good: Clear location and what to extract although some details are missing, leaving the
possibility of some ambiguity.

5 — Excellent: Excellent information, clear and distinct leaving no room for ambiguity on
what to extract.

TASK
Given the two images, one integrated into the other, and a task prompt with location
information evaluate using the rubric; return the following JSON:
{"constancy_score": <integer 0-5>,
"alignment_score": <integer 0-5>,
"justification”: 100-word explanation for each score}

Figure 9: Prompt for scoring Natural WildSVG instances
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Prompt for VLLM scoring (Synthetic dataset)

You are a strict impartial evaluator of integrating SVG images into real life scenarios.
RUBRIC

Constancy Score (0-5) — How similar is the integrated image, does it maintain the original

characteristics or does it remove them or add new things, without taking into account

perspective or scale changes.”

0 — Completely unrecognizable: Completely changed image.

1 — Very weak recognition: Some minor features are present but lack in key characteristics

which makes it barely recognizable.

2 — Weak recognition: Some primary characteristics are presents but other key features are

missing or completely changed. Very difficult to recognize as the integrated pictures,

3 — Partial recognition: Most important features are present, but some minar details or more

secondary characteristics are missing or have being noticeable altered or newly added.

4 — Strong recognition: Recognizable, only some slight changes or addition in minor details

have been done.

5 — Perfect recognition: Image is fully integrated with every minor detail conserved.

Aesthetics Score (0-5) — "Overall visual quality of the integration, if the integrated image has
been synthetically inserted into the real life scenario.”

0 — Unusable: The image has been copy and pasted directly onto a real life photo without
any attention to perspective, illumination or basic coherence.

1 — Very poor: Despite some minor detail to give a more natural insertion, the image is still
clearly inserted.

2 — Poor: Despite the details some key problems give away the synthetic insertion of the
images.

3 — Fair: Insertion clear at first glance; acceptable composition; good enough to make doubt
but has signs of synthetic insertion after an detailed observation.

4 — Good: Polished with only subtle imperfections, some minor illumination or perspective
errors which make it difficult to discern if it was modified.

5 — Excellent: impossible to discern if the image is original or was modified.

Alignment Score (0-5) — “How well adjusted is the information of a task prompt about the
location of the integrated picture and what to extract.”

0 — Unusable: Completely wrong location or completely wrong information about what to
extract.

1 — Very poor: Difficult to understand or very ambiguous on what should be extracted.

2 — Poor: Somehow correct but confusing or ambiguous.

3 — Fair: Basic information without any class of details or additional information to deal with
ambiguity.

4 — Good: Clear location and what to extract although some details are missing, leaving the
possibility of some ambiguity.

5 — Excellent: Excellent information, clear and distinct leaving no room for ambiguity on
what to extract.

TASK
Given the two images, one integrated into the other, and a task prompt with location
information evaluate using the rubric; return the following JSON:
{'constancy_score™ <integer 0-5>,
"aesthetics_score”: <integer 0-5>,
"alignment_score"; <integer 0-5>,
"justification": 100-word explanation for each score}

Figure 10: Prompt for scoring Synthetic WildSVG instances

A.3.3 FILTERING SCORE FORMULAS

The filtering procedure was performed using the following equationgT}

Synthetic Dataset Score = 40% - Cyeore + 40% + AEcore + 20% - A Lgcore,

1
Natural Dataset Score = 60% - Cscore + 40% - A Lgcore- )

A.3.4 WILDSVG DATASET
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Figure 11: Examples of real-life images and associated SVG for natural WildSVG
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Figure 12: Examples of real-life images and associated SVG for synthetic WildSVG
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