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Abstract
Entity tracking is a fundamental challenge in nat-
ural language understanding, requiring models to
maintain coherent representations of entities. Pre-
vious work has benchmarked entity tracking per-
formance in purely text-based tasks. We in-
troduce MET-Bench, a multimodal entity track-
ing benchmark designed to evaluate the ability of
vision-language models to track entity states across
modalities. Using two structured domains, Chess
and the Shell Game, we assess how effectively cur-
rent models integrate textual and image-based state
updates. Our findings reveal a significant perfor-
mance gap between text-based and image-based
tracking and that this performance gap stems from
deficits in visual reasoning rather than perception.
We further show that explicit text-based reason-
ing strategies improve performance, yet substantial
limitations remain, especially in long-horizon mul-
timodal scenarios. Our results highlight the need
for improved multimodal representations and rea-
soning techniques to bridge the gap between textual
and visual entity tracking.

1 Introduction
Natural language understanding requires the ability to track
and update information about entities as they evolve through
text. From coreference resolution [Hobbs, 1978; Lappin and
Leass, 1994] and discourse processing to narrative compre-
hension, computational linguistics has long grappled with
the challenge of maintaining coherent entity representations
across textual contexts [Bunescu and Paşca, 2006; Schank
and Abelson, 1977].

While significant progress has been made in tasks like
coreference resolution and entity linking Liu et al. [2023];
Papalampidi et al. [2022], the broader challenge of track-
ing entity states—understanding how entities change through
sequences of actions or events—remains an open challenge
[Fagnou et al., 2024; Kim and Schuster, 2023; Toshniwal
et al., 2022]. This limitation becomes particularly apparent
in tasks requiring integration of information across multiple
modalities, an increasingly important frontier in computa-
tional linguistics as language processing systems are asked

to reason about content that combines text with other forms
of communication like images and video.

Our work examines this challenge through the lens of mul-
timodal entity state tracking, where changes to entity states
must be understood from both textual descriptions and vi-
sual observations. This setting provides a natural extension
to classical NLP problems like discourse processing and situ-
ated language understanding, while also connecting to emerg-
ing research in multimodal dialogue and human-AI interac-
tion. We focus specifically on scenarios where language mod-
els must reason about world-state changes described through
a combination of text and images. Consider the task of un-
derstanding assembly instructions that combine written steps
with supporting diagrams: while text might specify ”Attach
panel A to the base using the provided screws,” accompany-
ing images show the precise alignment and orientation. Accu-
rate language understanding in such contexts requires main-
taining a coherent mental model that integrates both linguistic
and visual information about how entities’ states evolve.

To systematically evaluate models’ capabilities in this mul-
timodal language understanding setting, we introduce two
complementary benchmarks: multimodal Chess and the Shell
Game. Through these domains, we assess how effectively
current language models can track entity states when up-
dates are conveyed through both text and images. Our anal-
ysis reveals substantial disparities in how models process
text-based and image-based entity-state updates, highlighting
fundamental limitations in their multimodal language under-
standing.

While Chess and the Shell Game provide structured
testbeds for evaluating entity tracking, real-world applica-
tions often involve more ambiguous and dynamic environ-
ments. However, by isolating state-tracking performance in
controlled settings, we establish a clear baseline for assess-
ing multimodal reasoning, one that provides a straightforward
means of evaluation and can scale in difficulty with minimal
changes.

We find that current language models struggle with multi-
modal entity tracking not due to low-level perceptual failures
but because they lack representations (learned or otherwise
engineered) for updating entity state across sequential visual
observations. This suggests a fundamental limitation in how
these models integrate and update state representations from
different modalities.
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Figure 1: Illustration of the two domains used in this work. (a) An example Chess board state. (b) The chess move (action) rendered as an
image. (c) An initial shell game state with the blue ball under a shell. (d) Image action representing shells at positions one and three being
swapped.

We make the following contributions:
• We introduce the multimodal entity tracking benchmark

(MET-Bench) that extends traditional NLP entity track-
ing evaluation to the multimodal setting for two do-
mains: multimodal Chess and Shell Game.

• We demonstrate that current models, despite strong per-
formance on pure text tasks, struggle to maintain accu-
rate entity representations when processing mixed text
and image inputs.

• Through probing experiments, we show that these lim-
itations stem from higher-level reasoning challenges
rather than low-level perception issues.

• We evaluate various approaches to improving multi-
modal entity tracking, finding that techniques emphasiz-
ing explicit reasoning outperform traditional NLP meth-
ods like fine-tuning when generalizing to novel domains.

2 Background
We formulate the problem of multimodal entity tracking as
a sequential state estimation task, where an agent must infer
the final state of a system given an initial state and a series
of observed actions. Formally, at each time step t, the envi-
ronment is in state St, and transitions occur according to an
action sequence A = (a1,a2, . . . ,aT ). The agent receives
observations At corresponding to each action, which may be
textual (Atext

t ) or visual (Aimage
t ). The objective is to infer the

final state,
ST = f(S0,A1,A2, . . . ,AT ),

where f is the function modeling entity state updates.
MET-Bench represents the initial and final states of each

domain as text but evaluate the models’ ability to track en-
tity state changes through images. This approach isolates the
multimodal entity tracking challenge by ensuring that mod-
els begin and end with well-defined textual representations
while processing state transitions visually. By doing so, we
assess their capacity to maintain coherent entity representa-
tions across modalities while minimizing confounding errors
from perceptual failures, which remain a known limitation of
current vision-language models Sharma et al. [2024].

2.1 Chess Domain
Chess is a well-studied domain for testing entity tracking
of deep learning models Toshniwal et al. [2022]. The
state St represents an 8×8 board configuration expressed
in Forsyth–Edwards Notation (FEN) notation, actions cor-
respond to legal chess moves from real games, and action
observations consist of either symbolic (UCI notation) or vi-
sual (board images) descriptions of moves. We likewise adopt
chess as an entity tracking testbed where the task is to main-
tain a correct representation of the board state across a se-
quence of moves. This distinction foregrounds how well a
model can integrate and track piece locations as they change
over time in potentially complicated board configurations.

Utilizing real Chess games from the Millionbase dataset1
used in Toshniwal et al. [2022], we generate sequences of
states and actions (moves) using standard chess notation:
Universal Chess Interface (UCI) for actions and FEN for
board states.

• Text-Encoded Moves: Each action is provided as a short
UCI textual description (e.g., ‘‘e2e4’’ for moving a
piece from e2 to e4).

• Image-Encoded Moves: Each action is accompanied by
a rendered image that serves as a visual representation of
the move (see Fig. 1).

In both cases, the final output is the FEN-encoded location
of each piece on the board after a sequence of moves. The
dataset includes multiple game trajectories of varying length,
capturing a variety of piece types and board states.

2.2 Shell Game Domain
The second domain in MET-Bench is the Shell Game, a clas-
sic demonstration of hidden-state tracking. A ball is placed
under one of three cups (or shells), which are then swapped
pairwise in succession. The goal is tracking which cup cur-
rently hides the ball as shells are swapped. The state St

tracks the hidden position of a ball under three shells, actions
correspond to swaps between pairs of shells. Other works
have explored shell-game-like domains with varying levels

1https://rebel13.nl/rebel13/rebel%2013.html

https://rebel13.nl/rebel13/rebel%2013.html


of added complexity [Li et al., 2021; Long et al., 2016; Kim
and Schuster, 2023].

This domain has a simpler entity-state and action space
than Chess. However, while many frontier models have been
trained on UCI/FEN encoded chess games, the Shell Game
is, to the best of our knowledge, not present in the training
data of these models. There may however be analogous tasks
in the pre-training data.

We simulate repeated Shell Game swaps to create a set of
Shell Game trajectories. Swap actions are either:

• Text-Encoded Swap: Denoted as ‘‘x swap y’’,
where {x, y} are in {1, 2, 3}.

• Image-Encoded Swap: An image depicting the shells
being swapped, with the ball visually hidden (see Fig.
1).

The ground truth entity state after the game finishes is a
single number indicating the final shell position of the ball.

2.3 Models
We use MET-Bench to evaluate the limitations of frontier
models, including vision-language models (VLMs) which ac-
cept images and text as input, and newer reasoning models
like OpenAI’s o1 that are trained using reinforcement learn-
ing and utilize test-time search algorithms to improve their
reasoning abilities on domains like mathematics and coding.
A full list of models and their capabilities is shown in Ap-
pendix A, Table 4.

3 Methods

Role Messages

User You are a helpful assistant that
tracks chess moves in a game
and produces the final FEN. The
initial state is:
rnbqkbnr/pppppppp/8/8/8/8/

PPPPPPPP/RNBQKBNR w KQkq - 0 1

Here are the moves played:
e2e4

e7e5

Now what is the final FEN? Only
output the FEN.

Assistant rnbqkbnr/pppp1ppp/8/4p3/4P3/

8/PPPP1PPP/RNBQKBNR w KQkq - 2 2

Figure 2: An example zero-shot user–assistant exchange in the
Chess domain, showing the initial board state as FEN, two UCI
moves (e2e4, e7e5) and the final state. For image actions, the UCI
moves are replaced with their visual representations and a descrip-
tion of how to interpret these images. The FEN is line-broken for
readability.

We utilize the standard chat-based schema exposed by cur-
rent frontier models that consists of interleaved user-provided
and assistant (model) provided messages. Figure 2 shows the
prompting strategy used for the Chess domain. Similarly, Ap-
pendix A, 5 shows the prompting strategy used for the Shell

Game domain. Text actions are represented using simple no-
tation on which the models have been trained, UCI for Chess
and a simple domain-specific-language for Shell Game.

In the case of image-action input, the text actions are re-
placed with their image-rendered versions as Base64 encoded
PNG images and a text description of how to interpret the
image-actions is provided. Fig. 1 shows the image represen-
tations used for the Chess and Shell Game actions. These
image representations were created through visual-prompt
engineering to maximize the classification accuracy of ac-
tions depicted. Various common image representations were
explored including arrows, bounding boxes, and symbolic
markers. The image depiction of the game actions is ex-
plained to the language model every time images are provided
using the prompts in Appendix A, Figures 6 & 7.

4 Experiments
We perform experiments across a wide range of models and
settings to evaluate different aspects of frontier-model entity-
tracking performance. For all experiments, the models are
sampled with a temperature of zero.

4.1 Tracking in Text Outperforms Images
We evaluate difference in accuracy when tracking images
from text and image actions in the zero-shot, few-shot, and
chain-of-thought settings.

Zero-shot
Chess In the Chess domain, we evaluate on a set of 100
games selected at random from the test set, each with a se-
quence length of ten actions. The model must predict the
FEN string for the final state. If the FEN string contains syn-
tax errors such that it cannot be parsed, the accuracy for that
instance is zero. We report the per-square accuracy of the pre-
dicted board, that is the ratio of correctly predicted pieces (or
absence of a piece) to the total number of board tiles. The
‘Game Start’ baseline is the accuracy of predicting the initial
board configuration. After only ten actions, most of the board
configuration remains unchanged, so this is a strong baseline.

Shell Game We evaluate Shell Game using a set of 500
games generated at random, each with a sequence length of
five actions. The final state is a single number n ∈ {1, 2, 3}
that gives the position of the ball, and we measure the ac-
curacy of predicting it. The naive baseline picks a position
uniformly at random.

Few-Shot and Chain-of-Thought
In these settings, the evaluation and procedure remain largely
unchanged from the zero-shot Chess. For the few-shot ex-
periments, N = 5 examples are selected at random from the
training set and prepended to the test example. The few-shot
examples have the same number of actions as the test-set ex-
amples. To evaluate the effect of chain-of-thought reasoning,
we prompt the model to ‘think step by step before producing
a final answer.’

Chess Table 1a reports the accuracy for text and image ac-
tions in the chess domain. Performance in the text modality



CHESS TEXT IMAGE

BASELINE
GAME START 74.4 74.4

ZERO-SHOT
CLAUDE 3.5 SONNET 96.8 66.2
MINIMAX-VL-01 86.3 65.8
GEMINI-2.0-FLASH 93.3 74.7
GPT-4O MINI 68.3 60.6
GPT-4O 89.6 73.3

FEW-SHOT (N=5)
CLAUDE 3.5 SONNET 99.6 77.9
MINIMAX-VL-01 88.0 75.9
GEMINI-2.0-FLASH 96.6 78.7
GPT-4O MINI 75.1 74.9
GPT-4O 94.9 77.7

CHAIN-OF-THOUGHT
CLAUDE 3.5 SONNET 97.9 68.4
MINIMAX-VL-01 62.7 58.0
GEMINI-2.0-FLASH 93.3 74.5
GPT-4O MINI 72.0 69.6
GPT-4O 91.8 74.9

REASONING
O1-MINI 65.1 -
O3-MINI 99.6 -
O1 98.2 83.5

(a) Chess with ten moves in each sequence.

SHELL GAME TEXT IMAGE

BASELINE
RANDOM 33.3 33.3

ZERO-SHOT
CLAUDE 3.5 SONNET 34.4 36.2
MINIMAX-VL-01 34.4 35.2
GEMINI-2.0-FLASH 30.0 33.4
GPT-4O MINI 30.6 32.8
GPT-4O 36.0 32.4

FEW-SHOT (N=5)
CLAUDE 3.5 SONNET 34.0 30.6
MINIMAX-VL-01 36.4 32.0
GEMINI-2.0-FLASH 37.0 31.4
GPT-4O MINI 34.4 31.2
GPT-4O 37.2 31.0

CHAIN-OF-THOUGHT
CLAUDE 3.5 SONNET 97.4 94.2
MINIMAX-VL-01 92.6 32.8
GEMINI-2.0-FLASH 76.8 33.8
GPT-4O MINI 84.4 35.0
GPT-4O 99.8 84.2

REASONING
O1-MINI 99.8 -
O3-MINI 100.0 -
O1 100.0 92.8

(b) Shell Game with ten swap moves in each sequence.

Table 1: Entity tracking accuracy in Chess and Shell Game for text and image actions. In the Few-Shot setting N = 5 in-context examples
are used. Methods and models which employ explicit reasoning perform best (chain-of-thought and reasoning models).

is significantly better than in the image modality. In the zero-
shot setting, the best-performing text model, Claude 3.5 Son-
net, achieves an impressive 96.8% accuracy, while its image-
based counterpart drops sharply to 66.2%. A similar trend
holds across models, indicating that current models can per-
form entity tracking in text but fail to integrate visual updates
as effectively.

Both in-context learning with few-shot prompting and
chain-of-thought reasoning lead to performance improve-
ments. In the image modality, the accuracy is not significantly
greater than the naive baseline. Only the o1 reasoning model
achieves an accuracy greater than 80% in the image modality.

Shell Game Table 1b reports the accuracy for text and im-
age actions for Shell Game. The results follow a pattern sim-
ilar to that of Chess, with text-based tracking outperforming
image-based tracking. However, unlike in Chess, the perfor-
mance in the zero-shot setting is close to random. But the
best model, o1, attains accuracies of 100.0% and 92.8% for
the text and image modalities, respectively.

Few-shot prompting provides only marginal improve-
ments, but chain-of-thought gives large performance in-
creases. GPT-4o’s accuracy jumps from 36.0% to 99.8% in
text, and from 32.4% to 84.2% in image tracking. These re-
sults suggest that when guided to decompose the task step-
by-step, models can reason more effectively using image in-
puts, a finding that complements the results of performing
cascaded inference in Section 4.4.

4.2 Reasoning Aids Long Sequence Accuracy
The sequence length of the actions is varied to quantify the
effect of compounding errors on the models. These sequences
range from zero to 100 actions in both the image and text
action modality. This serves to quantify the relative drop-off
in performance among models in the zero-shot setting.

Chess Figure 3a plots model accuracy against increasing
sequence lengths of text actions. The models are evalu-
ated in the zero-shot setting for sequence lengths of zero to
100 text actions. Reasoning models like o1 and o3-mini are
able to handle longer sequence lengths with a smaller de-
crease in accuracy. However, o1-mini performs worse than
the other models as it produces more invalid FEN board rep-
resentations at longer sequence lengths. In contrast, the non-
reasoning models experience sharp decreases in accuracy af-
ter only a few actions. Figure 3b plots model accuracy against
increasing sequence lengths of image actions. The models are
evaluated in the zero-shot setting for sequence lengths of zero
to 20 image actions. While the reasoning models attain higher
accuracies, the performance differences are smaller than in
the text-action setting.

Shell Game In the text modality in Figure 4a, the reason-
ing models o1, o1-mini, and o3-mini attain the highest ac-
curacies. o1 performs perfectly at a sequence length of 50
actions, where the non-reasoning models’ performance is sig-
nificantly degraded. In the image modality results in Figure



4b, o1 performs better than the other models, but sees a rapid
decrease in accuracy with sequence lengths longer than five
actions. By 20 actions, the performance of all models has
degraded to random.

The superior performance of reasoning models like o1 sug-
gests that structured inference mechanisms, such as test-time
search or chain-of-thought, are crucial for maintaining co-
herent entity states over long sequences. This aligns with
prior findings that models trained on structured reasoning
tasks (e.g., mathematics, coding) develop stronger implicit
state-tracking capabilities [Kim et al., 2024], whereas stan-
dard vision-language models struggle with entity persistence
beyond short contexts.

4.3 Models Understand Image Actions
We perform an experiment to demonstrate that VLMs have
the ability to accurately interpret the actions depicted in the
image-action representations. Figures 6 & 7 in Appendix A
show the prompting strategy used to get a VLM to predict
(zero-shot) a text action from an image action. We perform
this evaluation on a test set of 1000 image depictions of ac-
tions for each game.

Table 2 shows the performance of GPT-4o and GPT-4o-
mini on classifying the text action represented by each image
action. For Chess, the action ‘start’ is the square of the piece
being moved, and ‘end’ is the destination square. For Shell
Game, the ‘start’ is the first shell to be swapped and ‘end’ is
the second. ‘Overall’ is the accuracy of classifying the entire
action (start and end) correctly. While GPT-4o-mini struggles
to recognize actions in chess, GPT-4o achieves an accuracy
of 94.5%. Both models attain perfect accuracy on the sim-
pler Shell Game domain. This indicates that perception of
the image-actions is not the fundamental limiting factor for
effective entity tracking with image inputs.

A potential concern is whether the observed failures stem
from poor image representation rather than reasoning defi-
ciencies. However, our cascaded inference experiments (Sec-
tion 4.4) demonstrate that when models first translate image
actions into text, they achieve near-text-level accuracy. This
suggests that models can correctly parse image-based actions
but struggle with integrating them into coherent state updates,
a limitation in reasoning rather than perception.

4.4 Cascading Matches Text-Only Tracking
Using the text actions predicted from the images in the image-
action classification task, we devise an ablation to test the ef-
fect of cascading (performing multimodal inference in two
steps) in the zero-shot setting. Given a sequence of image-
based observations Aimage

t , a vision-language model (VLM)
first predicts the corresponding text-based action sequence
Âtext = g(Aimage), where g maps images to text using the
procedure in Section 4.3. The text actions are then used
for zero-shot inference to estimate the final state as ST =
f(S0, Â

text). This removes the need for the model to per-
form entity tracking directly in the image modality, isolating
the effect of perceptual failures. These results are presented
in Section 4.4.

Table 3 shows the accuracy of cascaded inference in the
zero-shot setting for GPT-4o and GPT-4o-mini. In this set-

ting, the image actions are first translated into text actions,
and then run through the text-based entity tracking pipeline.
The performance in the cascaded setting is similar to the text-
action performance, showing that the model has the task-
knowledge needed to perform entity tracking in both do-
mains, but cannot reason effectively in the image modality.

5 Discussion
Our evaluation of frontier model performance on MET-Bench
provides several insights into the current state and remaining
challenges of multimodal entity tracking. We demonstrate a
significant performance gap between text-based and image-
based entity tracking across all evaluated models, with even
state-of-the-art vision-language-reasoning models struggling
to maintain accurate entity states when processing visual in-
puts. This disparity persists across both the Chess and Shell
Game domains, suggesting a fundamental limitation in cur-
rent architectures’ ability to reason about entity states through
visual observations.

This finding is particularly noteworthy given that our
image-action classification results (Table 2) demonstrate that
models can accurately perceive and classify individual visual
actions. The gap between perception and reasoning suggests
that the challenge lies not in processing visual inputs, but in
maintaining and updating coherent entity information across
sequential visual observations.

Our cascaded inference experiments provide further evi-
dence for this interpretation. When models first translate
visual inputs to text before performing entity tracking, they
achieve performance comparable to pure text-based track-
ing. This indicates that the models possess the relevant task
knowledge and reasoning capabilities, but struggle to apply
them directly in the visual domain.

Further, the effectiveness of chain-of-thought prompting,
particularly in the Shell Game domain where it improved
GPT-4o’s accuracy from 36.0% to 99.8% for text and 32.4%
to 84.2% for images, highlights the importance of explicit
reasoning for entity tracking. This improvement indicates
that current models can perform complex entity tracking
when guided to decompose the task into smaller steps, even
in novel domains not present in their training data. How-
ever, the fact that such prompting was necessary suggests
that models do not implement robust tracking, particularly in
multimodal settings. Lastly, the performance of specialized
reasoning models like o1 and o3-mini on longer sequences
demonstrates the potential of architectures explicitly trained
for sequential reasoning to maintain coherent entity states de-
spite the challenges of accumulating errors over extended se-
quences.

6 Related Work
Entity tracking has been extensively studied in textual do-
mains, with a focus on probing and improving language mod-
els’ abilities to maintain representations of entity states. For
instance, Toshniwal et al. [2022] evaluates chess as an entity
tracking domain, employing fine-tuned models [Radford et
al., 2019] to assess performance. Similarly, Kim and Schus-
ter [2023] examine the impact of model size and fine-tuning
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Figure 3: In the text action setting, the reasoning models, o1 and o3-mini, maintain the highest accuracy at longer sequence lengths. o1-
mini and the other models begin to output invalid and inaccurate board representations. All models struggle to maintain accurate board
representations in the image action setting, with o1 performing the best.

MODEL START (%) END (%) OVERALL (%)

CHESS
GPT-4O-MINI 67.24 ± 0.92 57.41 ± 0.97 46.42 ± 0.98
GPT-4O 96.40 ± 0.37 98.57 ± 0.23 95.21 ± 0.42

SHELL GAME
GPT-4O-MINI 47.20 ± 0.98 47.20 ± 0.98 47.20 ± 0.98
GPT-4O 100.00 ± 0.02 100.00 ± 0.02 100.00 ± 0.02

Table 2: Percent image-action classification accuracy (95 % CI) for various models. We report the accuracy of predicting the action start,
end, and overall/UCI action for both Chess and Shell Game on 10,000 image actions.

CASCADED

METHOD CHESS SHELL

BASELINE
GAME START 74.4 33.3

ZERO-SHOT
GPT-4O MINI 63.0 28.0
GPT-4O 89.8 34.0

Table 3: Cascaded entity tracking accuracy for Chess and Shell (Im-
age → Text). In cascaded inference, the model is first used to map
each image action to the text representation of the action. Then
model is prompted to perform the entity tracking task as in the text-
action setting.

on entity tracking in textual settings similar to our Shell Game
domain. Tandon et al. [2020] construct a benchmark for un-
derstanding entity state changes in procedural texts. Shirai
et al. [2022] construct the Visual Recipe Flow corpus and
evaluate the ability of multimodal embedding models to prop-
erly sequence images depicting recipe states. In contrast, our
work requires predicting entity state changes from actions
specified in images and involves larger state spaces.

Several studies explore the implicit representations of en-
tity states in language models. Li et al. [2021] and Long et
al. [2016] use semantic probing to reveal that Transformer-
based models [Vaswani et al., 2017] capture entity state rep-
resentations implicitly during textual reasoning. Building on
this, Prakash et al. [2024] demonstrate that fine-tuning lan-
guage models for entity tracking tasks enhances pre-existing
internal mechanisms rather than learning entirely new rep-
resentations. Li et al. [2023] find that Transformers trained
on Othello games form internal representations of the game
state.

Efforts to improve textual entity tracking beyond domain-
specific fine-tuning include Fagnou et al. [2024], which es-
tablishes theoretical limitations of the Transformer archi-
tecture in tracking entities. They propose a novel atten-
tion mechanism to enhance entity tracking in Transform-
ers. Gupta and Durrett [2019] fine-tunes small Transformer-
based models for tracking entity state in instructional texts.
Kim et al. [2024] investigates how code pretraining improves
language models’ abilities to track entities in text, while
Yoneda et al. [2024] introduce Stalter, a prompting method
designed to maintain accurate state representations in text-
based robotics planning.
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(a) Shell Game zero-shot accuracy with text actions.
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Figure 4: In the text action setting, the reasoning models o1, o1-mini, and o3-mini achieve the highest performance over long action sequences,
but performance degrades for all models as sequence length increases. In the image action setting, o1 performs the best, but achieves an
accuracy no better than guessing the starting state by 20 actions.

These works focus on entity tracking as a unimodal, text-
based reasoning task. While unimodal approaches have
achieved substantial progress, there remains a gap in evalu-
ating models’ ability to integrate multimodal inputs for entity
tracking. Our work extends these evaluations to the multi-
modal setting and quantifies the performance improvement
of reasoning models for entity tracking.

7 Conclusion
Our findings suggest that the primary bottleneck in multi-
modal entity tracking is not visual recognition but sequen-
tial reasoning over visual updates. Unlike text-based repre-
sentations, which align with the models’ training paradigms,
visual updates require implicit state reconstruction—a task
that current architectures do not perform reliably. Future
work should explore the effect of additional visual-reasoning
post-training, explicit memory structures, or hybrid sym-
bolic representations to mitigate this gap. Additional re-
search directions include investigating the role of entity track-
ing in world-modeling, narrative understanding, and expand-
ing MET-Bench to include more complex domains beyond
games. We believe addressing these challenges will be cru-
cial for developing AI systems capable of robust reasoning
for real-world tasks.



A Appendix

Model Name Image Reasoning
Claude 3.5 Sonnet ✓
Anthropic [2024]
Gemini-2.0-Flash ✓
Hassabis and Kavukcuoglu [2024]
GPT-4o mini ✓
OpenAI [2024a]
GPT-4o ✓
OpenAI [2024b]
Minimax-VL-01 ✓
MiniMax et al. [2025]
o1-mini ✓
OpenAI [2024c]
o1 ✓ ✓
OpenAI [2024d]
o3-mini ✓
OpenAI [2025]

Table 4: Comparison of capabilities of language models evaluated
using the MET benchmark. All evaluated models support text input
and output. The total API cost of experiments run is $2340.00.

Role Messages

User The shell game is a classic game
where a ball is hidden under
one of three shells. You are a
helpful assistant that tracks the
position of the ball. The ball
starts under shell 2. Here are
the moves played:
1 swap 3

2 swap 3

Now what is the final position of
the ball? Only output the number
1, 2, or 3.

Assistant 3

Figure 5: An example zero-shot user–assistant exchange in the Shell
Game domain, illustrating how the system tracks swaps to deter-
mine the ball’s final shell.

A.1 Models
The models evaluated using MET-Bench are listed in Table 4.
Minimax-VL-01 This model is released under the li-
cense: https://github.com/MiniMax-AI/MiniMax-01/blob/
main/LICENSE. The model is 465 billion parameters and is
trained on a “diverse [dataset] incorporating diverse sources
including academic literature, books, web content, and pro-
gramming code” and post-training dataset encompassing
many multimodal and NLP tasks of 512 billion tokens [Min-
iMax et al., 2025].

Proprietary Models
These models have limited information about their training
and development. Like Minimax-VL-01, these models are

Role Messages

User You are a helpful assistant that
interprets image-based actions in
chess.
Here is an image representing a
move:
[Image Input]
In UCI notation, what move does
the arrow on the chessboard
represent? The move is from the
green square to the red square.
(e.g., ‘e2e4’). Only output the
move and nothing else.

Assistant e2e4

Figure 6: An example user–assistant exchange in the Chess domain,
where the assistant identifies the move represented in the image.

Role Messages

User You are a helpful assistant that
interprets image-based actions in
the shell game.
Here is an image representing a
swap:
[Image Input]
In shell game notation, which
shells are being swapped in
the image? Shells are labeled
‘1’, ‘2’, ‘3’ and the shells
being swapped have their numbers
highlighted in green. Only
output a dash-separated pair like
‘1 swap 3’ and nothing else.

Assistant 1 swap 3

Figure 7: An example user–assistant exchange in the Shell Game
domain, where the assistant identifies the shell swap represented in
the image.

likely trained on diverse, web-scale corpora spanning many
domains and tasks. We provide links to the current terms of
their use.

Claude 3.5 Sonnet https://www.anthropic.com/legal/
consumer-terms.

Gemini-2.0-Flash https://ai.google.dev/gemini-api/terms

GPT-4o mini, GPT-4o, o1, o1-mini, o3-mini https://
openai.com/policies/

A.2 Datasets
The Chess dataset is adapted from Toshniwal et al. [2022]
which is adapted from the MillionBase dataset, available for
download at https://rebel13.nl/rebel13/rebel%2013.html. To
the best of our knowledge, no license or terms of use are
currently listed for either the original MillionBase dataset or
dataset of Toshniwal et al. [2022]. Our usage of this dataset
is consistent with the description of its use by Toshniwal et
al. [2022].

MET-Bench is intended for evaluating and improving the

https://github.com/MiniMax-AI/MiniMax-01/blob/main/LICENSE
https://github.com/MiniMax-AI/MiniMax-01/blob/main/LICENSE
https://www.anthropic.com/legal/consumer-terms
https://www.anthropic.com/legal/consumer-terms
https://ai.google.dev/gemini-api/terms
https://openai.com/policies/
https://openai.com/policies/
https://rebel13.nl/rebel13/rebel%2013.html


ability of VLMs to perform entity tracking. It is released un-
der the MIT License.
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