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Abstract
Generative models have garnered significant at-
tention for their ability to address the challenge
of source separation in disaggregation tasks. En-
ergy Disaggregation holds promise for promot-
ing energy conservation by allowing homeowners
to gain comprehensive insights into their energy
consumption solely through the interpretation of
aggregated load curves. Nevertheless, the model’s
ability to generalize and its interpretability remain
two major challenges. To tackle these challenges,
we deploy a generative model called TAB-VAE
(Temporal Attention Bottleneck for Variational
Auto-encoder), based on hierarchical architecture,
addresses signature variability, and provides a
robust, interpretable separation through the de-
sign of its informative representation of latent
space. Our implementation and evaluation guide-
lines are available at https://github.com/
oublalkhalid/TAB-VAE.

1. Introduction
Rising interest in reducing carbon footprints through the
user’s energy activity poses new challenges to traditional
solutions. In fact, most households rely on their monthly
bills from previous months to adjust their energy use for
the following month. Therefore, Energy Disaggregation is
a non-intrusive way of monitoring the energy consumption
of individual appliances from an aggregated load profile
(a mixed signal). In recent years, deep models have been
widely used for Energy Disaggregation due to their ability
to learn complex patterns in data. Nevertheless, these ap-

1Department of Computer Science, Institute Polytechnique de
Paris, Telecom Paris, 19 Pl. Marguerite Perey, 91120 Palaiseau,
France. 2OneTech, TotalEnergies SE Tour Coupole - 2 place Jean
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proaches often suffer from concerns related to interpretabil-
ity, making it difficult to understand the decisions made,
and on the other hand, they are in general less general-
izable and unrobust. To address these concerns, several
approaches have been proposed, such as the use of convo-
lutional neural networks (CNNs) to extract features from
the consumed power shapes, proposed by (Ciancetta et al.,
2021). Although this approach has shown promising results
on the UK-DALE dataset (Kelly & Knottenbelt, 2015), it
has a generalization problem. In previous works, (Chen
et al., 2018a) introduced a sequence-in-sequence (S2S) ap-
proach combining CNNs and LSTM for Energy Disaggrega-
tion, while (Yang et al., 2021) proposed a novel RNN-based
method called S2P, which utilizes GRUs and attention mech-
anisms for improved performance. However, the lack of
interpretability and generalizability in these deep-learning
approaches remains a significant concern. Thus, our paper
focuses on addressing these challenges by investigating the
effectiveness of the Generative Temporal Attention Bottle-
neck for separation generalizability and effectively learn an
interpretable representation of the latent space.

2. Problem Statement and Motivation
Let X(t) := Xt:t+τ ∈ RC×τ be a sequence of the aggregate
measured power noise for the whole household for the range
time t : t+ τ , and with C = 3 (corresponding to the active,
reactive and apparent power)1. We note Xt ∈ R the active
power, which is written as the sum of the contributions of
each device yt,m, m = 1, . . . ,M , and a residual noise ξt:

Xt =

M∑
m=1

yt,m + ξt (1)

The index m refers to the m-th electrical device among the
M available. The problem is to deduce, from a sequence

1The electric power is composed of three types: active, reactive,
and apparent. The active power is the quantity of electrical energy
actually converted into useful work. The reactive power is the
amount of electrical energy temporarily stored and temporarily
exchanged between the power source and the electrical device,
without the electrical device, producing useful work. The apparent
power is the vectorial sum of the active and reactive power.
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X(t) of length τ , the corresponding components Y (t) :=

y
(t)
1:M := yt:t+τ,1:M .

We note D = {X(t), Y (t)}Nt=1 the training set, where
X(t) ∈ RC×τ and Y (t) ∈ RM×τ . X(t) represent a set
of samples from an unknown distribution. Variational Auto-
Encoder (VAE) aims at inferring this distribution with a
parametric model with a latent (unobserved) variable. We
define this latent variable as a Z(t) variable of dimension
(M +1)× dz representing a multivariate sequence X(t). In
others for clarity and consistency with existing literature, In
this paper, we use two notations Z(t) and Z (respectively
Z

(t)
l and Zl) interchangeably to denote the same underlying

quantity Z(t).

Inference in the generative model involves computing the
marginal likelihood p(X(t)) by integrating out the latent
variables: p(X(t)) =

∫
p(X(t), Z(t))dZ(t). However, this

integration is often intractable. To address this, the Evidence
Lower Bound (ELBO) is introduced by (Kingma & Welling,
2013) as an objective function, which can be optimized
efficiently using stochastic gradient descent. The ELBO
provides a lower bound on the marginal likelihood and plays
a key role in variational inference with continuous latent
variables.

log p(X(t)) ≥ Eq(Z(t)|X(t))

[
log p(X(t)|Z(t))

]
(2)

− KL(q(Z(t)|X(t)) ∥ p(Z(t)))

where θ, ϕ parameterize p(X(t), Z(t)); θ) (denote by pθ(.))
and q(Z(t))|X(t);ϕ) (denote by pϕ(.)) respectively.

Recently (Vahdat & Kautz, 2020) introduced NVAE, an ex-
tended VAE with a hierarchical latent variable model for
structured representations. It also involves a sum over the
layers, computing the expected KL divergence between the
posterior distribution qϕ(Z

(t)
<l |X(t)) and the prior distribu-

tion pθ(Z
(t)
l |Z

(t)
<l ) to assess the alignment of inferred latent

variables with the prior. However, it lacks the ability to
capture the temporal context in time series data. To address
this limitation, we propose Temporal Attention Bottleneck
mechanism, introducing attention to capture temporal de-
pendencies and improve inference contextual learning.

Main Contribution: Our work enhances the flexibil-
ity of the prior distribution p(Z) and posterior distribu-
tion qϕ(Z(t)|X(t)) by introducing informative representa-
tions for the conditional distributions pθ(Z

(t)
l |Z

(t)
<l ) and

qϕ(Z
(t)
l |X(t), Z

(t)
<l ). We achieve this through a hierarchical

structure of densely connected stochastic layers, improving
the model’s capacity to capture complex data dependencies.
Figure 2 illustrates our proposed model. Additionally, we
thoroughly evaluate different prior distributions (Gaussian
vs. Spherical) using various datasets and metrics to assess
their impact on model performance.

3. Proposed Methods
Our approach for Energy Disaggregation aims to identify
and accurately separate the contributions of the different
appliances y(t)m for m = 1 :M in a given aggregated power
sequence Xt:t+τ . Let (fϕ, fθ) be an encoder/decoder pair.
This means that, given the latent code Z(t), X(t) follows a
law parameterized by fθ(Z(t)). On its side, the latent code
Z(t), given X(t), follows a law parameterized by fϕ(X(t)).
The latent code can be factorized as: z = z1:M+1 where
zm ∈ Rdz represents the latent code of device m = 1 :M ,
while zM+1 ∈ Rdz represents the latent code of remnant ξ.
The dimension dz corresponds to the dimension required to
encode the signal signature of each device along a sequence
of size τ .

3.1. Loss function, Proxy for Energy Disaggregated

The approximation of the conditional distribution of
Z is given by a Gaussian variational distribution
qϕ(Z

(t)|X(t)) = N (Z(t);µ(X(t), ϕ), σ2(X(t), ϕ)), where
µ(X(t), ϕ) and σ2(X(t), ϕ) are the outputs of the residual
unit, which parameterize the mean and variance of the distri-
bution, respectively. In our approach, the KL term is identi-
cal to (Vahdat & Kautz, 2020): KL(qϕ(z

(t)|X(t))||p(z(t))),
with p denoting the a priori distribution of Z(t) taken as a
centered and normalized Gaussian, which leads to the LKL
term:

LKL =
1

2

J∑
j=1

(log σ2
j (X

(t), ϕ) (3)

− µ2
j (X

(t), ϕ)− σ2
j (X

(t), ϕ) + 1)

+

L∑
l=2

Eq(Zl|X(t))

[
KL(q(Zl|X(t), Z<l)||p(Zl|Z<l))

]
where J = (M +1) dz . In contrast, the reconstruction term
is slightly modified and can be defined as follows:

Lrec =
1

τ

t+τ∑
t

M∑
m=1

||yt,m − ŷt,m||2 (4)

where ŷt,m denotes the power predicted at time t by the
m-th output of the fθ decoder applied to a Z(t) simulated
under the ϕ parameter.

3.2. Temporal Attention Bottleneck

Unlike NVAE (Vahdat & Kautz, 2020) for which the latent
space Z is level-structured locally, in this work, we intro-
duce Temporal Attention Bottleneck (TAB), which enabling
the model to establish strong couplings, as depicted in Fig-
ure 2 and motivated in Section 2. The core problem we
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Figure 2. Left, Figure 2-a, NVAE involves connecting each layer only to adjacent layers and using T l−1
p to carry latent information

from earlier layers. Inference computes qϕ(Z
(t)
l |x, Z(t)

<l ) with T l
q , while Generation path pθ(Z

(t)
l |Z(t)< l) with T l

p (T 0
p is learnable

parameter initialized by zero). The operator ⊕ combines information from two branches in the network, and represenet residual
layers at level l respectively in encoder and decoder. In Figure 2-b, layers connect with all below (above) during bottom-up (top-down)
passes, using attention modules to capture temporal dependencies and improve generative results.

aim to address is to construct a feature T̂ l that effectively
captures the most informative features of time series from
a given sequence T<l = {T i}li=1 of l contexts for a given
task. Both T̂ l and T l are features with the same dimension-
ality: T̂ l ∈ Rτ×C and T i ∈ Rτ×C . In our framework, we
employ Temporal Attention to construct either the prior or
posterior beliefs of a variational layers, which enables us
to handle long context sequences with large dimensions τ
effectively. The construction of T̂ l relies on a query feature
Ql ∈ Rτ×Q of dimensionality Q with Q ≪ C, and the
corresponding context T l is represented by a key feature
Kl ∈ Rτ×Q. Importantly, T̂ l(t) of time step i in sequence
τ depends solely on the time instances in T<l.

T̂ l(t) =
∑
i<l

αi→l(t) · T l(t), (3)

αi→l(t) =
exp(Q⊺

l (t) ·Kl(t))∑
i<l exp(Q

⊺
l (t) ·Kl(t))

.

In words, feature Ql(t) ∈ RQ queries the Temporal signifi-
cance of feature T l(t) ∈ RC , represented by Kl(t) ∈ RQ,
to form T̂ l(t) ∈ RC . αi→l(t) ∈ R is the resulting relevance
metric of the i-th term, with i < l, at time step t. The over-
all procedure is denoted as T̂ = A(T<l,Ql,K<l), and is
illustrated in Figure 2-b.

Generative Model pθ. As shown in Figure 2-a, the condi-
tioning factor of the prior distribution at variational layer
l is represented by context feature T lp ∈ Rτ×C . A convo-
lution is applied on T lp to obtain parameters θ defining the

prior. Tl
p is a non-linear transformation of the immediately

previous latent information Z(t)
l and prior context T lp con-

taining latent information from distant layers Zl<l, such that
T lp = Tl

p(Z
(t)
l ⊕ T lp). Tl

p(·) is a transformation operation,
typically implemented as a cascade of residual cells and
corresponds to the blue residual module in Figure 2-a. Z(t)

l

and T lp are passed in from the previous layer. Because of the

architecture’s locality, the influence ofZ(t)
l could potentially

overshadow the signal coming from T lp. To prevent this, we
adopt direct connections between each pair of stochastic
layers, as shown in Figure 2-b. That is, variational layer l
has direct access to the prior temporal context of all previous
layers T<lp accompanied by keys K<l

p . This means each
variational layer can actively determine the most important
latent contexts when evaluating its prior beliefs. During
training, the temporal context Tp, Qp, and Kp are jointly
learned:

[T lp,Q
l
p,K

l
p]← Tl

p(Z
(t)
l ⊕ T

l
p) for l = L,L− 1, ..., 1.

We initially let variational layer l rely on nearby dependen-
cies captured by T lp. During training, the prior is progres-
sively updated with the holistic context T̂ lp via a residual
connection:

T̂ lp ← A(T<lp ,Ql
p,K

<l
p )

T̂ lp ← T lp + ηlpT̂
l
p for l = L,L− 1, ..., 1.

where ηlp ∈ R is a learnable scalar parameter initialized
by zero, T<lp = {T ip}li=1 with T ip ∈ Rτ×C , Ql

p ∈ Rτ×Q,
K<l
p = {Ki

p}li=1 with Ki
p ∈ R×Q, and Q≪ C.
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Infrence Model qϕ. As shown in Figure 2, the conditioning
context T lq of the posterior distribution results from combin-
ing deterministic factor hl and stochastic factor T lp provided
by the decoder: T lq = hl ⊕ T lp. To improve inference, we
let layer l’s encoder use both its own hl and all subsequent
hidden representations h≥l, as shown in Figure 2. As in the
generative model, the bottom-up path is extended to emit
low-dimensional key features Kl

q, which represent hidden
features hl:

[hl,Kl
q]← Tl

q(hl+1 ⊕Kl+1
q ) for l = L,L− 1, ..., 1.

Prior works (Vahdat & Kautz, 2020) have sought to mitigate
against exploding Kullback-Leibler divergence (DKL) in
Equation 2 by using parametric coordination between the
prior and posterior distributions. Motivated by this insight,
we seek to establish further communication between them.
We accomplish this by allowing the generative model to
choose the most explanatory features in h≥l by generating
the query feature Ql

q. Finally, the holistic conditioning
factor for the posterior is:

T̂ lq ← A(h≥l,Ql
q,K

≥l
q ) for l = L,L− 1, ..., 1. (5)

We adopt the Gaussian residual parametrization between the
prior and the posterior proposed by (Vahdat & Kautz, 2020).
The prior is given by:

p(Z
(t)
l |Z<l) = N (µ(T lp, θ), σ(T

l
p, θ). (6)

The posterior is then given by:

q(Z
(t)
l |X

(t), Z
(t)
<l ) =N (µ(T lp, θ) +∆µ(T̂ lq, ϕ), (7)

σ(T lp, θ) ·∆σ(T̂ lq, ϕ))

where the sum (+) and product (·) are pointwise, and T lq is
defined in Eq.5. µ(·), σ(·), ∆µ(·), and ∆σ(·) are transfor-
mations implemented as convolutions layers. The inference
procedure is also described in detail in Algorithm-1 Ap-
plendix.A.3. For LKL in 3, the last terme is approximated
by: 0.5

(
∆µ2

l

σ2
l

+∆σ2
l − log∆σ2

l − 1
)

.

Impact of Gaussian Distribution Prior. In low dimen-
sions, the Gaussian prior causes clustering around the ori-
gin, making it problematic for multiple clusters. An ideal
prior should increase variance without biasing the mean.
A uniform prior satisfies this but isn’t well-defined on the
hyperplane. In high dimensions, the Gaussian approximates
a uniform distribution on a hypersphere’s surface due to the
”soap bubble effect.” Comparing it with a naturally defined
hypersphere posterior is motivated by this and concerns
regarding the curse of dimensionality from the L2 norm.

von Mises-Fisher TAB (vMF-TAB). The von Mises-Fisher
distribution is a distribution on the (d − 1)-dimensional

sphere in Rd. The vMF distribution is defined by a direction
vector µwith ||µ|| = 1 and a concentration parameter κ ≥ 0.
The PDF of the vMF distribution for the d-dimensional unit
vector X(t) is defined as:

fd(X
(t);µ, κ) = Cd(κ) exp(κµ

TX(t))

where,

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)

and Iv represents the modified Bessel function of the first
kind at order v. In Table 3, we display the results obtained
using TAB-VAE with the vMF distribution. Although there
is only a minor difference in performance, this calls for a
more comprehensive investigation in this direction. All theo-
retical proofs to compute KL for such distribution are given
in (Davidson et al., 2018), an update has been developed in
Appendix.A.4 to support our TAB-VAE.

3.3. Explicability underlying latent space structuring

An interpretable representation of learning is obtained when
the latent space is factorized and the multidimensional com-
ponents are statistically independent, which is a complex
task in the context of information theory for generative mod-
els. A variety of methods have been proposed to solve
this problem, such as β-TCVAE (Chen et al., 2018c). The
most commonly used method is derived from the infor-
mation theory known as Total Correlation, which intro-
duces the TC penalty that is defined by the divergence
KL(pϕ(Z)||

∏
j pϕ(zj)). Nevertheless, estimating this di-

vergence is both expensive and difficult to perform.

Estimation of TC. To avoid costly TC estimation and guar-
antee time-series robustness, we try to apply this penalty
using a discriminator across Z. It has been previously used
as a disentangling metric for image generation (Chen et al.,
2018b). In our case, we use it as a loss function. For its
training, the latent variables of half the batch are randomly
permuted, creating positive zperm (i.e all components are
independent), and the other half is left untouched, corre-
sponding to negative case (i.e components are correlated).
A Dψ discriminator is used to replace the penalty, denoted
TC in the following, by optimizing the performance of a
discriminator between the distribution of the latent variable
and a permuted of it. The Dψ discriminator and the model
are trained simultaneously.

LTC = E[log(Dψ(zpermuted))] + E[log(1−Dψ(Z))] (8)

Organizing and Alignment of Z by Masking. Our aim is
to match the zj component to the j device using a masking
policy during training. Instead of giving as input a normal
sequence X(t), we give as input a sequence y(t)j correspond-
ing to a device j. The only evaluated output is corresponding
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to device j. The latent space is edited by hiding the z(t)m ̸=j

(we draw them randomly). The z(t)j component remains

unchanged. This forces the network to deduce y(t)j , the only

useful value being the z(t)j component. In practice, this
masking operation is applied to 1

8 of batch sequences.

In our specific use case, we adopt this method because
knowing which Z(t) encodes the machine is crucial. How-
ever, in situations where such knowledge is unnecessary,
we can bypass it by identifying the label encoded during
test time, based on annotated data. However, the results
obtained using this method or with TC (Total Correlation)
don’t contribute much to disentangling; the only significant
improvement is in alignment.

The overarching training objective for the sequence-to-
sequence model, incorporating residual KL in each layer
l = L,L − 1, . . . 1 as discussed in our proposed method
above (Section 3.2), can be summarized as follows:

L(γ, β, δ; θ, ϕ, ψ) = Lrec + β LKL + γ LTC (9)

Here, we have a hyperparameter βKL to balance the recon-
struction loss and KL losses and γ to balance the disentan-
gling effect of TC.

4. Numerical Experiments
4.1. Datasets and Baselines

We conducted experiments on two publicly available
datasets, namely UK-DALE (Kelly & Knottenbelt, 2015)
and REDD (Kolter & Johnson, 2011). The dataset UK-
DALE (Kelly & Knottenbelt, 2015) consists of 5 dwellings
with a varying number of sub-metered devices and in-
cludes aggregate and individual aggregate and individual
equipment-level power measurements, sampled equipment,
sampled at 1/6 Hz. We have focused our analysis on three
analysis on three specific pieces of equipment: A Fridge,
Washing Machine, and Oven. Similarly, for REDD we
recover all 6 dwellings. In order to assess the generaliz-
ability of the generalization of the models, we trained
the models on the dataset REDD and we tested them on
the dataset UK-DALE and then reversed this procedure.

4.2. Architecture

Our model uses a bi-directional encoder, which processes
the input data in a hierarchical manner to produce a low-
resolution latent code that is refined latent code that is re-
fined by a series of oversampling layers. This code is then
refined by a series of oversampling layers in Residual De-
coders blocks, which progressively increases the resolution.
The residuals consist of a set of (Batch Instance Normaliza-

𝑃𝐶1 𝑃𝐶1 𝑃𝐶1

𝑃𝐶
2

𝑃𝐶
2

𝑃𝐶
2

𝐅𝐫
𝐢𝐝
𝐠𝐞

𝐎
𝐯𝐞
𝐧

𝐖
𝐚𝐬
𝐡𝐢
𝐧𝐠

𝐌
𝐚𝐜
𝐡𝐢
𝐧𝐞

𝒛𝟐 𝒛𝟑𝒛𝟏

Figure 3. Each row shows the latent representation of at least one
activated appliance (Washing Machine, Oven, and Fridge from
top to bottom). The columns correspond to the Z(t)

m component of
the structured latent variable Z(t) corresponding to the activation
of m devices.

tion BN, conv(1x1), BN+Relu, conv (3x3), BN+Relu, and
finally conv(1x1)). The use of Residual layers allows us to
efficiently capture semantic features in time series, while
the temporal attention ensures the temporal correlation over
latent space. In our architecture, the smallest dimension of
Z is set to R(M+1)×L with dz = 16 and M = 3, it is the
number of devices to be separated in a mixed sequence of
size τ0 = 256 (A detailed explanation and results for the
M = 7 case are provided in the supplementary material)..
To perform sampling, we conduct two tests: one for the
classical case with a Gaussian prior using Monte Carlo with
k = 1, as described in (Chen et al., 2018c), and another for

Figure 4. Comparison of KL divergence in each layer for N -TAB-
VAE, κ-TAB-VAE (refer to the case of using vMF distribution)
and NVAE with L = 16.
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the case with a von Mises-Fisher (vMF) distribution with
κ = 1 using acceptance-rejection sampling. The implemen-
tation for the vMF distribution is inspired from (Davidson
et al., 2018).

4.3. Performance and Informativity of TAB

Disentanglement Control through γ The findings are pre-
sented in Table (2). The Mean Squared Error (MSE) crite-
rion represents the data attachment metric, averaged over
the test dataset. To detect the presence of specific appli-
ances, we employ thresholding identical to the method used
in (Valenti et al., 2018). The detection performance is eval-
uated using the F1 score on the test set. Remarkably, our
approach surpasses the performance of S2S (Chen et al.,
2018a), DAE (Valenti et al., 2018), S2P (Yang et al., 2021),
and NVAE (Vahdat & Kautz, 2020) in terms of both MSE
and F1. The relationship between latent variables zj and
their corresponding appliance states yj is visually depicted
in Figure (3). The latent vectors zj were projected onto the
two most significant dimensions of their Principal Compo-
nent Analysis (PCA) representation.

Color-coding was applied to the points based on the ma-
chine’s activation status. Each row corresponds to the acti-
vation or non-activation of a specific machine i (identified
by color), while each column represents the visualization of
zj . Notably, points of different colors (active/inactive) on
the diagonal are accurately distinguished by a line.

Impact of β under Distribution Choice When comparing
the case where β = 1, meaning only Z is involved in the
TAB equation, resulting in the context attention being ig-
nored, we observe a slight improvement in the separation
of the latent space. However, significantly better results are
achieved for β > 1, as shown in Figure 3. We assert that
our models perform exceptionally well when using the von
Mises-Fisher (vMF) distribution compared to the normal dis-

tribution, as discussed in Section 3 (see Table 3). We studyin
as well LKL loss at each level. In Figure 4 TAB-VAE shows
greater stability, indicating that all layers discover relevant
information, which confirms our hypothesis in Section 3.2.

We claim that, at each level, the bottleneck is more flexible,
and although we attempted a dynamic κ, it did not consider-
ably improve the results. Therefore, setting κ as a constant
value is one of the efficient solutions.

5. Conclusion and Perspectives
In this paper, we present a novel and interpretable approach
for disaggregating load curves using an encoder-decoder
architecture inspired by Variational Autoencoders (VAEs).
Our novel approach is centered around enhancing the struc-
ture of the latent space through the utilization of a TAB
cell, resulting in remarkable performance gains compared to
current state-of-the-art methods. Additionally, our method
facilitates the visualization of device activation states by
effectively organizing the latent space during the learning
process. As we move forward, our future work will focus on
exploring the latent space in conjunction with more sophis-
ticated features and examining the predictability of failure
cases based on the latent representation.
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Table 1. Results on UK-DALE and REDD data: F1 score calculated on the test data, Mean Square Error (MSE) in Watt2 calculated on
the test data..

Machine Dataset Test GRU+ LSTM+ CNN DAE S2P S2S Bert4NILM NVAE N -TAB VAE(Ours) κ-TAB VAE (Ours)

F1 (↑)

Fridge UK-DALE 81.52 81.62 81.59 81.80 83.73 83.73 83.73 90.10 91.81 90.25
REDD 82.34 82.39 82.37 81.90 86.96 87.09 86.96 93.23 94.25 94.81

Washing UK-DALE 82.03 82.10 82.08 83.99 86.12 86.12 86.12 87.32 93.26 92.72
Machine REDD 82.07 82.11 82.09 82.99 85.57 86.16 85.57 91.54 93.07 92.94

Oven UK-DALE 82.34 82.43 82.40 86.08 83.63 83.63 83.63 81.13 93.77 92.23
REDD 81.95 81.99 81.97 81.94 84.14 83.78 84.14 91.30 94.04 94.57

MSE (↓)

Fridge UK-DALE 25.70 25.68 25.69 25.74 27.36 26.70 27.36 28.36 19.55 21.42
REDD 25.49 25.47 25.48 26.56 30.68 26.56 30.68 21.18 19.48 20.92

Washing UK-DALE 25.78 25.76 25.77 25.63 28.92 24.72 28.92 21.12 18.33 19.84
Machine REDD 25.59 25.57 25.58 25.34 28.40 24.78 28.40 23.22 18.31 19.65

Oven UK-DALE 25.61 25.59 25.60 25.46 25.28 23.98 25.28 22.18 19.30 20.65
REDD 25.45 25.43 25.44 25.42 25.04 23.94 25.04 20.78 19.82 19.55
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A. Extended Discussion and Supporting Proofs
A.1. Proof of the Reconstruction Loss Proxy for Energy

Disaggregation

Proof. The loss function of log pθ(X(t)|Z(t)) can be writ-
ten with Gaussian distribution as:

log pθ(Y
(t)|Z(t)) = log σθ(Z

(t)) +
1

2
log 2π (10)

+
1

2

|Y (t) − µθ(Z(t))|2

σθ(Z(t))2
(11)

∝ ||Y (t) − µθ(Z(t))||2 (12)

where µθ(Z(t)) and σθ(Z(t)) are neural networks that re-
construct Y (t) from latent representations. By the above
equation, maximizing the reconstruction loss is regarded
as minimizing the Euclidean distance between inputs and
reconstructions. Thus, we opt to optimize the reconstruction
loss by finding a way that imposes closer distances between
raw input X and reconstructed X̂(t) =

∑M
m=1 ŷ

(t)
m + ξ̂(t)

from outputs Y = {ŷm}Mm=1. We assume that the noise ξ̂(t)

is an interference term.

A.2. Proof of Disentangled Representation using TC

To prove the equivalence between minimizing the KL di-
vergence KL(pϕ(Z)||

∏
j pϕ(zj)) and maximizing the To-

tal Correlation (TC) loss LTC = E[log(Dψ(zpermuted))] +
E[log(1−Dψ(Z))], we can follow the steps outlined below.

Start with the KL divergence expression:

KL(pϕ(Z)||
∏
j

pϕ(zj)) = Epϕ(Z)

[
log

(
pϕ(Z)∏
j pϕ(zj)

)]

Introduce the discriminator function Dψ(Z) to estimate the
probability of a given Z being real (from the true posterior∏
j pϕ(zj)). Rewrite the inequality using Jensen’s inequal-

ity. Now, introduce the concept of a permuted latent variable
zpermuted, which is a shuffled version of the original Z.

Rewrite the inequality in terms of the discriminator function
Dψ(zpermuted):

KL(pϕ(Z)||
∏
j

pϕ(zj)) ≥ Epϕ(Z)

[
log

Dψ(zpermuted)

E∏
j pϕ(zj)

[1−Dψ(Z)]

]

Observe that log(Dψ(zpermuted)) can be interpreted as the
log-likelihood of zpermuted being real (from the true poste-

7

https://xgentimeseries.github.io
https://xgentimeseries.github.io


Interpretability through Disentangled Representations for Energy Time Series Disaggregation

rior), and log(1 − Dψ(Z)) can be interpreted as the log-
likelihood of Z being fake (from pϕ(Z)).

By maximizing the above expression, we aim to train the
discriminator to accurately distinguish between real (per-
muted) and fake (original) samples. This corresponds to
the Total Correlation (TC) loss, which encourages statistical
independence between the components of Z.

Therefore, we have shown that minimizing the KL diver-
gence is equivalent to maximizing the Total Correlation
(TC) loss expressed in terms of the discriminator function
Dψ(zpermuted) and Dψ(Z).

A.3. Inference procedure

Algorithm 1 Bottom-Up Pass Path

Require: Set hL+1 ≡ X(t) and Kq ≡ 0 for l = L,L −
1, . . . , 1.
for l = L,L− 1, . . . , 1
do
[h(l),Kq]← Tql(h(l+1) ⊕Kq).

end for
Return:
h ≜ {h(l)}l=1

L : Extracted hidden features from data.
Kq ≜ {Kl

q)}l=1
L : Extracted Keys.

A.4. From Gaussian residual to vMF residual
parametrization

vMF with TAB. In our proposed method, we implement
also a von Mises-Fisher (vMF) distribution as both the
prior and variational posterior within our TAB cells to com-
pare it with Gaussian distribution results. The prior, de-
noted as vMF(·, κ = 0), is represented by a uniform dis-
tribution. Since the true posterior pθ(z|x) is intractable,
we approximate it with a variational posterior Qϕ(z|x) =
vMF(z;µ, κ), where the mean direction µ is obtained from
encoding neural networks, and κ is considered a fixed con-
stant, as depicted in Figure 2-b. Before implementing a
VAE, we derive the KL divergence expression to optimize
ELBO and provide a sampling algorithm using the reparam-
eterization trick (Kingma & Ba, 2014).

Lemma A.1. KL divergence, case where κ = 0.

With vMF(·, 0) as our prior, the KL divergence is:

KL(vMF(µ, κ)||vMF(·, 0)) = κ
Id/2(κ)

Id/2−1(κ)

+

(
d

2
− 1

)
log κ− d

2
log(2π)

− log Id/2−1(κ) +
d

2
log π

+ log 2− log Γ

(
d

2

)

We utilize Lemma.A.1 to compute both KL terms in Eq.??.
As observed, this KL term depends solely on κ and not on µ.
Since we treat κ as a fixed hyperparameter, this term remains
constant in our model, thereby preventing KL collapse. For
the N -TAB, the KL divergence in the objective function
tends to pull the posterior towards the origin-centered prior,
leading to challenging optimization. However, for the vMF
VAE, given fixed κ, such vacuous states do not exist, and µ
can freely vary.

Sampling from the von Mises-Fisher (vMF) Distribution
For sampling from the vMF distribution, we adopt the so-
phisticated rejection sampling scheme based on (Davidson
et al., 2018). This intricate process involves sampling a
”change magnitude” denoted by w, which, together with
a randomly selected unit vector v tangent to the hyper-
sphere at µ, yields the final sample Z using the expression
z = wµ+ v

√
1− w2.

A fascinating aspect of this sampling approach is its inde-
pendence from the vMF mean parameter µ for both the
randomly sampled unit vector v and the ”change magnitude”
w. This unique property allows for efficient computation of
gradients of Z with respect to µ when needed.

A.5. Ordering and Alignment by Masking

Our inspiration is derived from information theory, specif-
ically proposition.A.2, which provides valuable insight.
When the information of X(t) is concealed, it exists within
the latent space Z(t) as well as in Y(t). Leveraging this
understanding, we have devised a method to instruct our
model to utilize this property for the purpose of masking
and aligning the latent space with a specific device.

Proposition A.2. Assuming X(t), Z, and Y(t) form
a Markov chain, X(t) → Z(t) → Y(t), where
p(Y(t)|X(t), Z(t)) = p(Y(t)|Z(t)), the data processing in-
equality ensures that I(X(t); z) ≥ I(X(t);Y(t)). If Z(t)

is a deterministic or stochastic function of X(t), it cannot
contain more information about Y(t) than X(t) itself.

Proof. One can apply the chain rule for mutual in-
formation to obtain two different decompositions of

8
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Algorithm 2 Organizing and Alignment of Z by Masking
Require: Sequence X(t), Masking probability p
Ensure: Latent space representation Z(t)

for t in B do
Select device j randomly
Sequence y(t)j corresponding to device j from X(t)

Set Z(t)
m to random for all components except Z(t)

j

if Random() < p then
Apply masking to Z(t) by hiding the values Z(t)

m

end if
Compute the output ŷ(t)j corresponding to device j

end for

I(X(t);Y(t), Z(t)): I(X(t);Z(t))+I(X(t);Y(t) | Z(t)) =
I(X;Y(t), Z(t)) = I(X(t);Y(t)) + I(X(t);Z(t) | Y(t))
By the relationship X → Y → Z, we know that X and Z
are conditionally independent, given Y(t), which means the
conditional mutual information, I(X(t);Z(t) | Y(t)) = 0.
The data processing inequality then follows from the non-
negativity of I(X;Y | Z) ≥ 0.

A.6. Computation

Table 2 presents a comparison of the computational require-
ments for training different VAE models, including NVAE
(Normal VAE), N -TAB-VAE (Normal TAB-VAE), and κ-
TAB-VAE (Kappa TAB-VAE) on the Uk-dale dataset. The
training is conducted using the XGen framework.

The table shows the batch size per GPU, the number of
GPUs utilized for training, and the corresponding training
time in hours for each model. The batch size for all models
is set to 128, and four GPUs are used in parallel for training
in each case.

As observed from the table, the N -TAB-VAE and κ-TAB-
VAE models exhibit longer training times compared to
NVAE. This indicates that the additional computational cost
associated with computing attention scores in the N -TAB-
VAE and κ-TAB-VAE models is offset by the benefits of
having a smaller number of stochastic layers in the hier-
archical architecture without compromising the generative
capacity of the models.

This information provides valuable insights into the compu-
tational efficiency and trade-offs among these state-of-the-
art VAE models when applied to the Uk-dale dataset.

A.7. Impact of window parameter τ

To perform Non-Intrusive Load Monitoring (NILM) effec-
tively, it is crucial to select an appropriate window time
series. This involves determining a time interval for analyz-
ing energy consumption data that allows for the detection

Table 2. We compare the computational requirements for training
TAB-VAE and NVAE models on the Uk-dale dataset. The training
is performed using Nvidia A100 GPUs, each equipped with 80GB
of memory. We utilize the XGen (Koublal & Roueff, 2023) frame-
work for conducting the training process.

Model Batch/GPU # GPUs Time (hour)
NVAE 128 4 68
N -TAB-VAE 128 4 84
κ-TAB-VAE 128 4 152

and classification of individual appliance activities. The
chosen window should strike a balance between being long
enough to capture complete appliance activity cycles and
short enough to avoid overlaps with other activities or pe-
riods of inactivity. The optimal window size depends on
factors such as the energy meter’s sampling rate, the number
and types of appliances being monitored, and the specific
NILM algorithm employed. Experimentation and optimiza-
tion may be necessary to identify the ideal window size for
a specific NILM application. In our study, we tried to detect
the consumption of the washing machine, which averages 3
to 4 hours of use per cycle. Therefore, we chose a window
of 4h30, equivalent to 256-time steps of 60 seconds. In
addition, we’ve noticed that a window of 128 and 300 steps
doesn’t detect the washing machine.

A.8. Optimization

In all of our experiments, we used the Adam optimizer with
an initial learning rate of 10−3 and a cosine decay of the
learning rate. We also reduced the learning rate to 7× 10−4

to increase the stability of the training and applied an early
stop after 5 iterations. We set α = 0.5 and β = 2.5 after
a grid search on the best convergence of the model on the
validation data.

A.9. TAB-VAE training results for the M = 7, τ = 256
and n = 7 case on REDD, Uk-Dale and REFIT

9



Interpretability through Disentangled Representations for Energy Time Series Disaggregation

Table 3. Performance on UK-DALE, REDD and REFIT datasets, ”–” denotes the unknown result due to the high complexity of the
corresponding method. F1 score (higher is better), MAE, and MSE (lower is better) are computed on the test set. For each model, the best
configuration is the one achieving the lowest MSE on the validation set.

Dataset Method Metric Fridge Clothes dryer Stove Washing Machine Dishwasher Oven

UK-DALE DAE F1 (↑) 80.57 81.37 81.47 83.01 81.41 81.80
S2S 83.99 86.08 83.79 84.85 83.28 83.61
S2P 83.73 86.12 83.23 84.56 83.28 83.63

NVAE 91.71 92.14 92.30 91.63 92.32 93.11
TAB-VAE 91.81 93.26 92.99 92.67 92.21 93.77

DAE MAE (↓) 25.74 25.63 24.32 25.22 24.81 25.46
S2S 26.70 24.72 30.05 25.56 24.49 23.98
S2P 27.36 28.92 27.37 27.86 25.00 25.28

NVAE 22.58 21.02 21.73 20.46 20.35 19.74
TAB-VAE 19.55 18.33 18.63 19.19 17.49 19.30

DAE MSE (↓) 243.52 244.08 245.74 244.07 243.70 243.18
S2S - - - - - -
S2P - - - - - -

NVAE 163.01 162.80 162.58 163.28 163.04 171.34
TAB-VAE 164.22 161.58 161.87 156.77 152.28 152.02

REDD DAE F1 (↑) 82.99 81.94 82.01 82.51 81.61 81.90
S2S 87.09 86.16 83.43 84.83 83.30 83.78
S2P 86.96 85.57 83.52 85.08 83.97 84.14

NVAE 93.23 92.29 91.53 91.54 92.69 92.30
TAB-VAE 94.25 93.07 93.33 92.90 92.82 94.04

DAE MAE (↓) 26.56 25.34 24.70 24.99 25.30 25.42
S2S 26.56 24.78 29.78 25.78 24.04 23.94
S2P 30.68 28.40 27.65 27.43 24.24 25.04

NVAE 22.74 21.35 21.74 19.85 20.56 19.99
TAB-VAE 19.48 18.33 19.16 18.75 17.25 19.55

DAE MSE (↓) 243.53 244.73 245.34 244.62 243.74 243.91
S2S - - - - - -
S2P - - - - - -

NVAE 163.61 162.88 162.81 163.24 162.32 170.97
TAB-VAE 163.63 161.78 162.06 157.19 152.21 151.65

REFIT DAE F1 (↑) 80.80 81.18 81.30 82.27 82.08 82.27
S2S 83.76 85.45 83.77 84.49 83.75 84.35
S2P 83.64 85.37 83.67 84.70 83.54 84.07

NVAE 91.46 92.06 92.07 92.00 93.13 93.11
TAB-VAE 92.17 93.15 92.89 92.82 92.64 94.04

DAE MAE (↓) 25.40 25.11 23.85 24.84 25.20 25.59
S2S 27.34 24.84 29.50 26.05 24.26 24.20
S2P 26.98 28.36 27.23 27.80 24.87 25.19

NVAE 21.88 20.96 22.17 19.72 19.76 19.75
TAB-VAE 18.81 18.83 19.47 19.05 17.13 19.15

DAE MSE (↓) 243.67 244.17 245.34 244.51 243.41 243.71
S2S - - - - - -
S2P - - - - - -

NVAE 163.57 163.08 162.12 163.19 162.48 170.85
TAB-VAE 163.85 161.74 162.57 156.66 151.71 151.76
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Figure 5. The results of the disaggregation models tested on UK-DALE dataset are presented from left to right. The models included in
the comparison are S2P based on DeepAR, DAE, S2S, NVAE, and TAB-VAE (our model). Each row corresponds to a different appliance,
from top to bottom: washing machine, fridge, dishwasher, clothes dryer, stove, and oven .
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