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Abstract

Large Language Models (LLMs) often struggle to process and generate
coherent context when the number of input tokens exceeds the pre-trained
length. Recent advancements in long-context extension have significantly
expanded the context window of LLMs but require expensive overhead
to train the large-scale models with longer context. In this work, we pro-
pose Dimension-Wise Positional Embeddings Manipulation (DPE), a
training-free framework to extrapolate the context window of LLMs by div-
ing into RoPE’s different hidden dimensions. Instead of manipulating all
dimensions equally, DPE detects the effective length for every dimension
and finds the key dimensions for context extension. We reuse the original
position indices with their embeddings from the pre-trained model and
manipulate the key dimensions’ position indices to their most effective
lengths. In this way, DPE adjusts the pre-trained models with minimal
modifications while ensuring that each dimension reaches its optimal state
for extrapolation. DPE significantly surpasses well-known baselines such
as YaRN and Self-Extend. DPE enables Llama3-8k 8B to support context
windows of 128k tokens without continual training and integrates seam-
lessly with Flash Attention 2. In addition to its impressive extrapolation
capability, DPE also dramatically improves the models’ performance within
training length, such as Llama3.1 70B, by over 18 points on popular long-
context benchmarks RULER. When compared with commercial models,
Llama 3.1 70B with DPE even achieves better performance than GPT-4-128K.
We release our code at https://github.com/LuLuLuyi/DPE.

1 Introduction

Long-context comprehension is fundamental to enable practical implementations of modern
large language models (LLMs). This capability powers applications such as PDF document
processing (Al, 2025), multimodal understanding and generation (Zhan et al., 2024), and
inference-time reasoning (OpenAl, 2024; DeepSeek-Al et al., 2025).

Achieving long-context ability typically requires continued fine-tuning on extended se-
quences (Xiong et al., 2023; Qwen et al., 2025; Liu et al., 2025). For example, LLaMA-3
incrementally expanded its context window from 8K to 128K over six stages using 800B
tokens (Al@Meta, 2024). This “train long, test long” extension faces significant challenges,
including the computational burden imposed by the quadratic complexity of attention
mechanisms (Xiong et al., 2023) and the quality constraints of long-context data (Fu et al.,
2024; Yen et al., 2025). To unlock efficient long-context extension, researchers explored the
“train short, test long” (e.g., trained on 8K and then test/generalize on 128K) methods and
even pushed further into training-free methods for length extrapolation.

This paper focuses on a training-free approach that extrapolates rotary positional encodings
(RoPE) by applying tailored modification to specific RoPE frequencies. RoPE applies
positional priors via a rotation matrix R(8, 1), where 6 denotes the angular frequency and m
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represents the relative distance. During length extrapolation, RoPE exhibits significant out-
of-distribution (OOD) issues. Existing research addresses these issues by scaling the angular
frequency 6 (Xiao et al., 2023; bloc97, 2023a; emozilla, 2023) or reassigning the relative
position m (e.g., through truncation (Su, 2023) or grouping (Jin et al., 2024) strategies).
Taking the truncation-based ReRoPE as an example, when the context exceeds the pre-
trained length L, ReRoPE sets a maximum length w (w < L) within the pre-trained length,
changing the relative distance sequence (0,1,...,L—1,L,L+1,...)to (0,1,..., w,w,w,...).
Some attention frequency analyses (Barbero et al., 2025; Hong et al., 2024) and the empirical
results from angular frequency scaling (bloc97, 2023b; Peng et al., 2023) indicate that each
attention head exhibits varying sensitivity across different frequency subspaces, thereby
necessitating differentiated modifications. However, these approaches uniformly modify
the relative positions across all heads and frequency subspaces, which raises the question:
Should we reassign the relative positions in a differentiated manner?

We address this question from two perspectives: 1) How should relative positions be reas-
signed for specific frequencies, particularly regarding the maximum position constraints? 2)
Which frequency subspaces require reassigned?

Using the example of extrapolating an 8K-trained LLM to 128K, we initially restrict all
frequency subspaces to within the pretraining length (e.g., w set to 4K). Then, we organize
similar frequency subspaces into fine-grained groups (e.g., four subspaces per group)
and progressively relax the constraints for each group—extending from 4K eventually to
128K. By analyzing downstream task performance variations, we discovered that different
frequency subspaces exhibit distinct preferences for maximum position. Specifically, both
extremely high-frequency and extremely low-frequency subspaces remain effective even
when their w exceeds the pretraining range. In contrast, mid-range frequencies demonstrate
almost no extrapolation capability. The performance collapses immediately when their
maximum position extends beyond the pretraining length.

Then, inspired by recent works analyzing RoPE frequency subspaces (Barbero et al., 2025;
Ji et al.,, 2025), we use the 2-norm attention contribution metric to investigate whether
all the RoPE hidden dimensions are utilized and how they contribute to the attention
mechanism. We find that reassigning the relative positions only for the top 50% or 75%
of key dimensions is sufficient to restore the model’s performance for longer contexts.
Surprisingly, this selective approach even outperforms reassigning 100% of the dimensions.

Based on these findings, we introduce Dimension-Wise Positional Embeddings Manipu-
lation (DPE), a new training-free framework to extrapolate the context window of LLMs.
Instead of modifying the relative distance for all dimensions equally (Jin et al., 2024; An et al.,
2024a) , we identify key dimensions for context extension by 2-norm metric. For each key
dimension pair within the same frequency subspace, we set the maximum relative position
by detecting the effective relative distance. These treatments adjust the pre-trained model’s
dimensions with minimal modifications while ensuring that each dimension reaches its
optimal state for extrapolation. Our contributions can be summarized as follows:

* We propose DPE, a training-free length extrapolation method that dimensionally ma-
nipulates position embeddings.

* We discover that RoPE’s different frequency subspaces exhibit distinct preferences for
maximum position, and there exist some key dimensions for length extrapolation.

¢ Experiments on three long-context benchmarks demonstrate that DPE is an SOTA
training-free extrapolation method. DPE extends Llama3-8B-8K to 128K and outper-
forms the best baseline by 7.56% scores on RULER. Besides, DPE significantly enhances
LLMs’ performance within the training length. When integrated with powerful LLMs
such as Llama3.1-70B-128k, DPE outperforms leading commercial model GPT-4-128K.

2 Background
2.1 Rotary Position Embedding (RoPE)

The attention mechanism (Vaswani et al., 2017; Dai et al., 2019) requires explicit position
information to represent the order of input tokens(Su et al., 2021). Recently, the RoPE (Su
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et al., 2024) has become the mainstream position embedding of LLMs, such as Llama(Dubey
et al., 2024) and Qwen(Qwen et al., 2025). RoPE encodes positional information by applying
a phase rotation to query and key vectors. Considering query at position m and key at
position 1, we have q,, = R(6,m)q,k, = R(6, n)k, where q,,;, k,, € R4, and 6 € R%/2 is the
frequency basis. In standard RoPE, the 6 = {6, = b=%/%,j € [0,1,...,d/2—1]}, where the

base b is usually set to 10000. The rotary matrix R € R?* at position m is defined as:

cosmby —sinmby --- 0 0
sinmfy cosmby - -- 0 0
R(6,m) =1 : : : ©)
0 0 <o cosmbypq —sinmby,_q
0 0 --- sin med/2,1 Ccos med/2,1

Due to the specific arrangement of frequencies, the matrix ensures that
R(8,n—m) = R(6,m) "R(6,n). )
Based on this property, the dot product of q;; and k; can be expressed as follows:
dykn = (R(6,m)q) " (R(6,n)k) = q"R(6,n — m)k. ®)
This formulation implicitly encodes the relative positional difference n — m within the
query-key interaction, thereby influencing the resulting attention score.

2.2 Manipulate Relative Position Matrix for Length Extrapolation

Recent studies (Chen et al., 2023; Han et al., 2023; Peng et al., 2023; Lu et al., 2024a) have
shown that LLMs utilizing the original RoPE exhibit limited robustness in length extrapola-
tion. One perspective to explain the cause of this limitation is the presence of previously
unseen relative positions in the pretraining phase (Chen et al., 2023; Jin et al., 2024; An et al,,
2024a). Given sequence length L, the relative position matrix P is created by the R(0,m) and
R(6,n):

0 0
1 0 1 0
P= L—1 Prerope: w . . e 4)
L-1 w
L’ . L-1 -~ 1 0 w .ow -+ 1 0

where the P(m, n) = n — m encoding the relative distance between the q,, and k, and red
color indicates OOD position indices. Based on Eq. 4, once the max relative position L — 1
in P exceeds the pre-trained effective length, the performance tends to degrade. To address
this issue, recent studies (An et al., 2024a; Su, 2023; Jin et al., 2024) reuse the original position
embeddings and manipulate the relative position matrix to avoid the presence of unseen
relative positions. For instance, ReRoPE adjusts relative position indices by scaling:

Prerope (m/ n) =w, ifn—m>uw. (5)

where w is the truncated length with pre-trained length. After the modification, all position
indices are scaled within the effective length, thereby enhancing extrapolation capabilities.

3 Method

In this section, we first investigate whether the magnitude of the OOD effect differs across
different dimensions in Section 3.1. Next, we try to identify the key dimensions for context
extension in Section 3.2. Finally, we introduce our proposed approach, Dimension-Wise
Positional Embeddings Manipulation (DPE) in Section 3.3.
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3.1 Detecting Effective Relative Distance on Different Dimensions

In RoPE, every two dimensions correspond to trigonometric functions with the same
frequency Gjl. Each dimension of the vectors q;, and k,, contributes to the attention score
via the dot product. The query-key product between two positions m and 7 is:
d/2—1
Qukn = Y (q[Zj,2j+1]R(9j/n - m)k[z]',2j+1]> (6)
j=0

According to Eq. 6, the rotation angle depends only on the relative distance n — m and 6;
in the input. Previous works (An et al., 2024a; Jin et al., 2024; Su, 2023) have attempted to
mitigate the OOD problem of rotation angle by scaling the relative distance n — m. However,
changes in dimensions can also alter the frequency of the trigonometric functions, ultimately
affecting the rotation angle. Therefore,the magnitude of the OOD effect should differ
across different dimensions. We detect the maximum effective relative distance of different
dimensions to demonstrate this.
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Figure 1: Detecting the effective relative distance across different dimension groups. We
show the NIAH accuracy on Llama3-8b in Figure 1a and rank the results in Figure 1b. When
the NIAH accuracy is the same, we prioritize ranking based on larger relative distances.

Experiment Setup We only manipulate the relative distance matrix of certain dimensions
and observe the impact of this change on the model’s performance. Given an model with
d dimensions, we divide the dimensions into groups G = [g1,82,-..,8c| and C is the
number of groups. For the same group of dimensions, we assume that they correspond
to the same effective relative distance. To detect the maximum effective relative distance
of dimension group g;, we only vary the maximum relative distance of g; from 1k to 128k,
while keeping other groups fixed at half of the pre-trained length. This varied distance is
termed the detecting length t. For each detecting step, we scale the position indices in the
corresponding relative position matrix P; to ensure the maximum value does not exceed
the detecting length t. Since neighboring tokens are crucial for generating fluent content
(Jin et al., 2024; An et al., 2024b), we introduce a small local window value w to ensure
the stability of the detecting results. Formally, given a sequence of length L, we scale the
position indices in the relative position matrix (except for the local window) and ensure that
the maximum relative distance in the matrix equals the detecting length f:
[MJ +w, ifn—m>uw,

P;(m,n) = { i @)
n—m, otherwise.

where |- | is the floor division. We evaluate Needle-in-a-Haystack(NIAH) (gkamradt, 2023)
on Llama3 8B to investigate the impact of different detecting lengths. The detecting experi-
ment results are shown in Figure 1. More details can be found in Appendix A.

For simplicity, Dimension in this paper refers to a pair of dimensions that share the same frequency.
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Findings

By ranking the relative distances based on the NIAH results(Figure 1b), we

observe that the ranking is different across dimension groups, which indicates that different
dimension groups correspond to different effective relative distances. In Figure 1a,
we observe that the magnitude of NIAH accuracy variation differs significantly across
dimension groups. Specifically, the accuracy variation is relatively small in both low and
high-dimension groups, while it is substantially larger in the middle dimensions. This
indicates that different dimensions contribute differently to length extrapolation.

3.2

Since different dimensions contribute differ-
ently to length extrapolation, we hypothesize
that some dimensions play a crucial role in
context extension. Since OOD issue is closely
related to the attention mechanism(Han et al.,
2023; Xiao et al., 2023), we believe that these
key dimensions for context extension also
play an important role in the attention mech-
anism. To identify these key dimensions, we
use 2-norm Attention Contribution(Barbero
et al.,, 2025; Ji et al., 2025), which quantifies the
2-norm contribution to investigate whether
these frequencies are utilized and how they
contribute to the model’s performance. Based
on the Cauchy-Schwarz inequality, the impact
of the j-th dimension on the attention log-
its is upper bounded by the 2-norm of the
query at position m and key at position #, i.e.

(@ X < a1 We compute the
mean 2-norm score of queries and keys for
each dimension. For each attention head &, we
rank the dimensions by the 2-norm score and

select the top-k dimensions as key dimensions:

Dy, = {jltopk(|lqV I[N} ®)

*

Identifying Key Dimensions for Context Extension
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where j is dimension index, q, € RY*? and k., € RE*? indicates all the queries and keys
of the sequence with length L. Figure 2 visualizes one of the 2-norm results of Llama3’s
attention head. We observe that only a few dimensions contribute to attention, and the key
dimensions vary across different heads and layers.

Experiment Setup After identifying the
key dimensions, we scale the position in-
dices only for key dimensions D;, while
keeping the position indices of other dimen-
sions unchanged. We set the scaled length ¢
from 2k to 8k. We also use 100 test samples
of NIAH with 128k length and evaluate the
accuracy under different values of k to vali-
date the importance of these dimensions for
context extension.

Max Relative Distance

Findings In Figure 3, when k increases
to 32, the accuracy improves significantly,
and the model performance is restored. Ad-
ditionally, we find that scaling only 48 di-
mensions yields slightly better performance
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than scaling all dimensions. These results
strongly indicate there exist some key di-
mensions for length extrapolation.

Figure 3: NIAH Accuracy on Llama3-8b. Only
top-k dimensions’ position indices are scaled.



Published as a conference paper at COLM 2025

3.3 Dimension-Wise Positional Embeddings Manipulation
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Figure 4: An illustrative example of DPE with three main procedures. (a) We detect the
effective length ¢; = 4,¢; = 5 for dimension group g;, g;. (b) Dimensions 29 and 47 are
identified as key dimensions, and the corresponding effective length is obtained from the
detection result. (c) We set W = 2, and all the position indices are scaled within the effective
length, thereby avoiding the impact of OOD position indices for every dimension.

In this section, we propose a new training-free method for context extension: Dimension-
Wise Positional Embeddings Manipulation (DPE). The three main procedures of DPE are
shown in Figure 4:

(1)Detecting the effective relative distance for different dimensions: Given a model with head
dimension dy, we first divide its dimension into groups G = [g1, 82, - . -, 8c|. Since different
dimension groups correspond to different effective relative distances. We detect the corre-
sponding effective relative distance E = [e1, ey, ..., ec] for each group. In Figure 4(a), for
dimension groups g; and gj, their effective length e; = 4,¢; = 5.

(2)Identifying the key dimensions: We use the head-wise 2-norm attention contribution in
Section 3.2 to find the key dimensions Dy, for context extension. After the first two steps,
we have the key dimension Dj, and its corresponding effective length E. In Figure 4(b), we
have key dimensions 29 in group g; and 47 in group g;. We then query the corresponding
effective length from the detection results.

(3) Scaling the position indices: Finally, we calculate the scale size S for each dimension group
with the max effective relative distance N: S = {%J = [s1,52,...,5¢]. Given a key dimension

J € &i, we can scale the position matrix p; with the corresponding scale size s;. We also
introduce a small local window value W to capture local relationships. The final position
matrix is defined as:

n—m—w : _
pitmm = { 5] Hwr ifnom>w ©)
n—m, otherwise.

We implement DPE using FlashAttention 2(Dao, 2023) with negligible additional over-
head. In practice, we set C = 8, w = 1k, and select top-48 key dimensions for all the
models. Detailed implementation of DPE is in Appendix C, and Pseudocode of DPE is in
Appendix B.
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4 Main Results of DPE

We evaluate the effectiveness of DPE across two widely used LLMs Llama3-8B-Instruct(8k)
(Grattafiori et al., 2024) and Mistral-7B-Instruct-v0.2(32k) (Jiang et al., 2023). We chose these
two models because DPE focuses on extrapolation, which refers to testing LLMs on sequence
lengths beyond their training lengths. We also use the latest long-context models like Llama-
3.1-8B-Instruct(128k) (Grattafiori et al., 2024), Qwen-2.5-7B(128k)(Qwen et al., 2025) and
Llama-3.1-70B-Instruct(128k) to test DPE’s effectiveness in improving performance within
the training context size. We evaluate these models on three widely recognized long-context
benchmarks: Needle-in-a-Haystack (NIAH) (gkamradt, 2023), RULER (Hsieh et al., 2024),
InfiniteBench(Zhang et al., 2024b) and HELMET (Yen et al., 2025).

Baselines We mainly compare DPE with several effective extrapolation baselines. Specif-
ically, we compare DPE with the following training-free extrapolation methods: NTK-
Dynamic(emozilla, 2023), YaRN(Peng et al., 2023), ReRoPE(Su, 2023), Self-Extend(Jin et al.,
2024), DCA(An et al., 2024a). Dynamic-NTK and YaRN implement extrapolation by in-
creasing the base frequency of RoPE. Dynamic-NTK and YaRN achieve extrapolation by
increasing RoPE'’s base frequency, while ReRoPE, Self-Extend, and DCA adjust the position
matrix to avoid unseen positions. We implement these baselines using their official reposito-
ries. For baselines that adjust the base frequency (Dynamic-NTK and YaRN), we extrapolate
to the target length by searching for the optimal base frequency. For methods that modify
the relative distance matrix, we achieve extrapolation by scaling all position indices within
the pre-trained length. All other configurations remain the same as in their paper. Detailed
implementation can be found in Appendix C.

Table 1: Results of the needle-in-a-haystack (4 needles) evaluation for seven instruct models
across various methods. Li,in refers to the pre-trained length, and Lyegt is the test length
used for evaluation, with 100 test cases in total.

Model | Ltrain/ Ltest | ROPE. NTK-Dyn YaRN ReRoPE Self-Extend DCA DPE
Llama-3-8B-Inst. 8k/128k | 0.00 0.75 0.00  78.00 89.50  53.00 92.50
Mistral-7B-Inst.v0.2 | 32k/128k | 0.50  73.50 7875  87.00 79.50 7425 84.25
Mistral-7B-Inst.v0.3 | 32k/128k | 11.50 9450  88.50  87.00 9375  85.75 96.25

Llama-3.1-8B-Inst. | 128k/128k | 94.25 96.50 92.00 94.50 96.25 92.75 97.25
Llama-3.1-70B-Inst. | 128k/128k | 88.00 95.00 86.50 89.50 90.00 92.50 95.50
Qwen-2.5-7B-Inst. | 128k/128k | 22.25 68.25 68.75  53.50 62.75 22.25 75.75

Average \ -|36.08 7142  69.08 81.58 8529  70.08 90.25

Needle-in-a-Haystack Needle-in-a-Haystack(NIAH)(gkamradt, 2023) involves identify-
ing a specific, relevant piece of information (the "needle") within a large set of irrelevant
data (the "haystack"). This task is widely used to assess the precision and recall of large
language models (LLMs) in situations where crucial information is scarce and embedded in
substantial noise. Since single-needle retrieval is no longer a challenging task for current
LLMs (Hsieh et al., 2024; Yen et al., 2025), and we adopt the multi-needle setting following
Llama 3(Grattafiori et al., 2024). We evaluate DPE on six widely used models, the results
are shown in Table 1. DPE achieves significantly higher average performance across six
models, reaching 90.25%, compared to only 36.08% for the original RoPE.

RULER RULER (Hsieh et al., 2024) enhances the standard NIAH test by incorporating
variations with eight different types and quantities of needles. RULER also introduces new
task categories, such as multi-hop tracing and aggregation, such as word extraction and
question answering (QA). We use 100 test cases for each task and the result are shown in
Table 2. For extrapolation on Llama3-8B and Mistral-v0.2-7B, DPE significantly enhances
the models’ extrapolation capabilities, surpassing all baseline methods. On Llama3-8B, it
achieves 56 point, outperforming the next best method Self-Extend by 8 points. Applying
our method to the latest long-context models yields remarkable improvements: an 8-point
improvement on Llama-3.1-8B and over 40-point improvement on Qwen-2.5-7B. More baseline
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Table 2: We evaluate the performance of various models and methods on RULER using a
tested sequence length of 128K. The RULER benchmark comprises 13 tasks, grouped into
four categories: Needle-in-a-Haystack (NIAH), Variable Tracing (VT), Aggregation, and
Question Answering (QA). We present the average scores for each category across all 13
tasks. Linin represents the pre-trained length, and Liest denotes the length for evaluation.

Models Lirain/ Ltest NIAH VT  Aggregation QA  Avg. (13 tasks)
Llama2-chat 4K / 4K 97.63  61.20 88.52 62.50 88.02
GPT-4-1106-preview 128K / 128K 84.8 99.6 79.7 59.0 81.2
Llama3 (8B) 8K / 128K 0.00 0.00 0.00 0.00 0.00
+ NTK-Dynamic 8K / 128K 15.09 19.60 38.17 0.00 16.67
+ YaRN 8K / 128K 10.00  2.80 21.92 0.00 9.74
+ ReRoPE 8K / 128K 51.84 78.60 38.17 30.50 48.51
+ Self-Extend 8K / 128K 54.69  34.60 44.84 34.50 48.52
+ DCA 8K / 128K 47.03 4340 44.52 34.50 44.44
+ DPE 8K / 128K 64.72  49.60 42.34 38.50 56.08
Mistral-v0.2 (7B) 32K / 128K 9.44 0.00 32.34 10.50 12.40
+ NTK-Dynamic 32K / 128K 58.81 80.20 46.49 44.50 56.36
+ YaRN 32K / 128K 7094 83.80 45.10 34.50 62.35
+ ReRoPE 32K / 128K 69.56  56.20 44.32 27.00 58.10
+ Self-Extend 32K / 128K 76.44  57.00 45.50 43.00 65.04
+ DCA 32K / 128K 64.47  84.20 47.44 45.50 60.45
+ DPE 32K / 128K 77.63  52.00 46.32 53.50 67.13
GradientAl/Llama3 (8B) 1M / 128K 89.22  56.80 36.20 54.50 73.23
Phi3-medium (14B) 128K / 128K 53.75  6.80 45.80 47.50 47.95
Llama3.1 (8B) 128K / 128K  89.47  60.00 36.89 56.50 74.04
+ DPE 128K / 128K 96.97 92.40 38.00 60.50 81.93
Qwen2.5 (7B) 128K / 128K 31.38  29.20 28.07 21.00 29.10
+ DPE 128K / 128K 82.72  80.00 43.22 46.00 70.78
Llama3.1 (70B) 128K / 128K 76.38  58.00 41.14 56.00 66.41
+ DPE 128K / 128K  95.94  98.00 55.77 73.00 86.39

results on Llama-3.1-8B and Qwen-2.5-7B can be found in Appendix D. We also validate its
effectiveness on 70B-scale models. Notably, Llama3.1-70B with DPE surpasses GPT-4-128K
in average performance. The significant performance improvement demonstrates the
importance of precise modifications across different dimensions for model performance.

Table 3: Comparison of DPE with three leading commercial long-context models on In-
finiteBench. Each model is evaluated using a maximum context length of 128K.

Math.find 60.00 32.29 12.57
Avg. 60.82 52.16 47.16 ‘

3029 | 3218 3457 | 3771 3771
3958 | 5131 5571 | 4141 4808

Tasks Commercial Models Llama3 8B Llama3.1 8B Qwen2.5 7B
GPT-4 Claude2 Kimi-chat | RoPEwrign) DPE | RoPEwrigny DPE | RoPEcrgn DPE
En.QA 2222 1197 16.52 0 6.93 1345 1288 919 1007
EnMC 67.25 6288 72.49 0 4716 | 6550 6899 | 4585  68.12
En.Dia 850  46.50 11.50 0 9.50 2050  17.00 | 1800 1350
Retr.PassKey 10000  97.80 98.14 0 100.00 | 100.00  100.00 | 100.00  99.32
RetrNumber 100.00  98.14 94.42 0 99.49 | 9932 100.00 | 9339 9898
RetrKV 89.00  65.40 53.60 0 0.20 5620  85.80 000  29.00
Codedebug  39.59 228 18.02 0 2310 | 2335 2640 | 2716  27.92
0
0

InfiniteBench InfiniteBench (Zhang et al., 2024b) consists of both synthetic and realistic
tasks covering a wide range of domains. It is specifically designed to assess the under-
standing of long-range dependencies in context, making it insufficient to solve these tasks
by merely retrieving a limited number of passages. Table 3 compares DPE (on Llama3
8B, Llama3.1 8B, Qwen2.5 7B) against original RoPE baselines and leading commercial



Published as a conference paper at COLM 2025

Table 4: Results of in-context learning (ICL) and summarization (Summ) tasks on 128k
context length from the HELMET benchmark.

Model Lirain/Levat  ICL  Summ  Avg.
Llama-3-8B 8K / 128K 0.0 7.9 3.9
+ DPE 8K /128K 859 213 53.6
Llama-3.1-8B 128K / 128K 839 243 54.1
+ DPE 128K / 128K  83.6  26.3 54.9
Qwen2.5-7B 128K /128K 720 19.6 45.8
+ DPE 128K / 128K 71.9 22.2 47.0

models (GPT-4, Claude2, Kimi-chat). Results show DPE significantly enhances open-source
model capabilities. Notably, DPE enables Llama3.1 8B and Qwen2.5 7B to achieve scores
comparable to commercial models like Claude2 and Kimi-chat.

HELMET HELMET (Yen et al., 2025) is a comprehensive benchmark encompassing seven
diverse categories of long context tasks. To better demonstrate the effectiveness of DPE in
long-context understanding and reasoning capabilities, we evaluate it on the many-shot
in-context learning (ICL) and summarization tasks (Summ) on 128k context length from the
HELMET benchmark. Results are shown in the table 4.

5 Analysis

5.1 Analysis on DPE’s Dimensions
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Figure 5: Ablation study on the rank of effective length and key dimension selection.

We conduct an ablation study on the Needle-in-a-Haystack (4 needles) task to examine the
impact of two main hyperparameters: effective length and key dimensions in DPE.

Effective Lengths Across Dimensions In Figure 1b, we rank all the detected lengths for
each dimension group. We use the most effective length (rank-1) for each dimension group.
Here, we use rank-n for the ablation study, where n = 1,2,...,8. In Figure 5a, when n > 2,
the model performance begins to decline rapidly. This demonstrates that selecting the most
effective relative distance for all dimensions is crucial for extrapolation.

Key Dimensions for Extrapolation DPE only manipulates the relative position matrix of
the top-k key dimensions for Extrapolation. We gradually increase k from 0 to 64 and scale
the maximum relative distance of all dimensions to their most effective length. We also
conduct a comparison by selecting the last-k key dimensions. In Figure 5b, when selecting
the top-k dimensions, the model performance reaches its peak at k = 40, outperforming
modifications applied to all dimensions. In contrast, when selecting the last-k dimensions,
all models’ performance does not restore until all dimensions are selected.
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5.2 Efficiency Analysis
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We evaluated the efficiency of DPE on Llama3.1-8B on an NVIDIA H800 GPU, comparing
inference time and peak memory usage. As shown in Figure 6, DPE introduces negligible
overhead: inference speed per token remains highly comparable (2.404s vs. 2.346s at 128k),
and peak memory usage is consistently similar (53.60 GB vs. 53.64 GB at 128k).

6 Related Work

Modeling long context has consistently been a challenging task. Recent advancements
in large language models (LLMs) have stimulated researchers to explore various ways to
extend the context window of these models.

Attention Mechanism One way to model long context is to limit the number of attended
tokens during inference. Representative works such as StreamingL.LM(Xiao et al., 2024b)
and LM-Infinite(Han et al., 2023) have shown that LLMs can generate infinite context length.
Lu et al. (2024b); Xiao et al. (2024a); Jiang et al. (2024) divide long sequences into context
chunks and select relevant chunks for inference. Further improvements, such as NSA(Yuan
et al., 2025) and MoBA(Lu et al., 2025), demons trate that the performance and efficiency
of the chunk selective method can be optimized by continual training and self-designed
kernels. However, these methods typically cannot maintain a full KV cache, resulting in
weakened long-context capabilities.

Modify RoPE’s Frequency Researchers have proposed various methods to scale the base
of the frequency basis to mitigate the OOD issue, with representative works including (Chen
et al., 2023; bloc97, 2023a; emozilla, 2023; Chen et al., 2024). NTK-by-parts (bloc97, 2023b),
YaRN (Peng et al., 2023), and LongRope (Ding et al., 2024) apply different interpolation and
extrapolation strategies to different dimensions based on the properties of RoPE. However,
since these methods modify the frequency of RoPE, they generally require additional
training to achieve optimal performance.

Manipulate Position Embeddings An et al. (2024a); Su (2023); Jin et al. (2024); Zhang
et al. (2024a) reuse the original position embeddings and manipulate the relative position
matrix to avoid the presence of unseen relative positions, thereby enhancing extrapolation
capabilities. An et al. (2024b) shifts well-trained positions to overwrite the original ineffective
positions during inference, enhancing performance within their existing training lengths.

7 Conclusion

In this paper, we present DPE as a novel and efficient approach to overcoming the context
length limitations in LLMs. By selectively manipulating the relative position matrix across
RoPE dimensions, DPE ensures that only the most critical dimensions’ relative position
indices are adjusted to the most effective lengths while preserving the integrity of others.
This targeted adjustment enables effective context extension without the need for costly
continual training, significantly enhancing the long-context capabilities of LLMs.
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A Details about Detecting Effective Relative Distance on Different
Dimensions
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Figure 7: NIAH Accuracy ranking(left), NIAH Accuracy(middle) and perplexity value(right)
of different dimension groups and different detecting distance.

We use Llama3-8B-Instruct to detect the effective relative distance. We evaluate the
perplexity using (Rae et al., 2019) and assess the model’s performance on Needle-in-a-
Haystack(NIAH) (gkamradt, 2023) with 100 test samples. We divide head dimensions into 8
groups. For each group, we detect different lengths from 1k to 128k and set W = 1k. For
other groups, we also introduce a local window W = 1k and scale the maximum relative
distance to half of the pre-trained length. In Figure 7(right), we observe that the variation in
perplexity differs significantly across dimensions, with the largest fluctuations occurring in
dimensions 32-56. This also indicates that different dimensions contribute differently to
length extrapolation.

B Pseudocode for DPE

We present the pseudocode for the three main procedures of DPE: Detecting Effective
Relative Distance for Different Dimensions (Algorithm 1), Identifying Key Dimensions
(Algorithm 2), and DPE FlashAttention Forward (Algorithm 3). Algorithms 1 and 2 serve as
preparatory steps for Algorithm 3. Once the effective relative distances for different dimen-
sion groups and the key dimensions for RoPE have been identified, DPE FlashAttention
Forward can be performed accordingly.

Algorithm 1 Detecting Effective Relative Distance for Different Dimensions

# Input: dimension_groups, group_num, target_length, detecting_lengths
# Output: best_scale_factors

s =L / L_pretrain / 2
detect_scale_factor = [s for _ in range(group_num)]
6 best_scale_factors = [s for _ in range(group_num)]

1
2
3
4
5

8 for group_id in range(group_num):

9 for detecting_length in detecting_lengths:

10 detect_scale_factor[group_id] = target_length / detecting_length
11 accuracy = niah_detect(detect_scale_factor)

12 if accuracy > best_accuracy:

13 best_scale_factors[group_id] = detect_scale_factor[group_id]
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Algorithm 2 Identifying Key Dimensions

# Input: Q, K tensors with shape [L, d], topk
2 # Output: topk_dimensions

4 Q_norm norm(Q.reshape(L, d//2, 2), dim=-1)
5 K_norm norm(K.reshape(L, d//2, 2), dim=-1)
6 QK_norm = mean(Q_norm * K_norm, dim=0)

7 topk_dimensions = topk(QK_norm, k=topk)

Algorithm 3 DPE FlashAttention Forward

# Input: Q, K, V [L, d], window size W, scale_factors, topk_dim
# Output: attention_output

1
2
3
4 # <--- Calculating position for dimension groups --->
5 position = [0, 1, 2, ..., L-1]
6 for group_id in range(group_num):
7 s = scale_factors[group_id]
8 Scale_Q_position[group_id] = position // s + W - W // s
9 Scale_K_position[group_id] = position // s
0
# <--- Calculating frequency for dimension groups --->

1

2 Cos, Sin = rotary_emb(V, position)

3 for group_id in range(group_num):

4 Scale_Q_Cos[group_id], Scale_Q_Sin[group_id] = rotary_emb(V, Scale_Q_position[

group_id1)

15 Scale_K_Cos[group_id], Scale_K_Sin[group_id] = rotary_emb(V, Scale_K_position[
group_id])

16

17 # <--- Get final frequency --->

18 Scale_Q_Cos, Scale_Q_Sin, Scale_K_Cos, Scale_K_Sin = Concat_freq_by_dim()
19 Scale_Q_Cos, Scale_Q_Sin, Scale_K_Cos, Scale_K_Sin = Select_topk_dim(topk_dim)

21 # <--- Sliding window attention with normal positions --->
22 Q, K = apply_rotary_pos_emb(Q, K, Cos, Sin)
23 O_sliding, LSE_sliding = flash_attn(Q, K, V, sliding_window=W)

25 # <--- Attention at left-bottom triangle with scaled positions --->

26 N =L - W

27 Q_scale, K_scale = apply_rotary_pos_emb(Q, K, Scale_Q_Cos, Scale_Q_Sin, Scale_K_Cos,
Scale_K_Sin)

28 O_scale, LSE_scale = flash_attn(Q_scale[-N:], K_scale[:N], V[:N1)

30 # <--- Merge the attention outputs --->
31 attention_output = merge_attentions(O_sliding, O_scale, LSE_sliding, LSE_scale)

C Implementation Details

C.1 Implementation of DPE

We divide the head dimension into 8 groups. The final effective length for Llama3-8B-
Instruct was determined based on the ranked NIAH accuracy results shown in Figure 1b.
For each 8-dimension segment, we selected the configuration yielding Rank 1 performance.
In cases where multiple configurations achieved Rank 1, we chose the one corresponding to
the largest relative distance. We set the detected effective length E: 65536 (dimensions 0-7),
16384 (8-15), 65536 (16-23), 16384 (24-31), 4096 (32-39), 4096 (40-47), 8192 (48-55), and 32768
(56-63). After detection, we select top-48 as the key dimension for length extrapolation.

C.2 Implementation of Baselines

We report the hyperparameters of baselines on Llama3-8B-Instruct in our implementation.
For NTK-Dynamic, we set the scale factor s to 16. For YaRN, we set beta fast to 32, beta
slow to 1, scale factor to s 16, and attention factor to log4. For Self-Extend, we set the local
window size w to 1024 and Group size g to 32. For Rerope, we set the trucated length w to

2048. For DCA, we set the chunk size to % of the pre-trained length 8k.
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D More Results on RULER

Supplementary experiments provide RULER benchmark results for Llama3.1-8B and
Qwen2.5-7B, evaluating baselines such as NTK-Dynamic, YaRN, ReRoPE, Self-Extend,
and DCA.

Table 5: We evaluate the performance of various models and methods on RULER using a
tested sequence length of 128K. The RULER benchmark comprises 13 tasks, grouped into
four categories: Needle-in-a-Haystack (NIAH), Variable Tracing (VT), Aggregation, and
Question Answering (QA). We present the average scores for each category, along with
the overall average across all 13 tasks. Li,in represents the pre-trained length, while Liest
denotes the test length used for evaluation.

Models Liyain/ Ltest NIAH VT  Aggregation QA  Avg. (13 tasks)
Llama2-chat 4K / 4K 97.63 61.20 88.52 62.50 88.02
GPT-4-1106-preview 128K / 128K 84.8 99.6 79.7 59.0 81.2
Llama3 (8B) 8K / 128K 0.00 0.00 0.00 0.00 0.00
+ NTK-Dynamic 8K / 128K 15.09 19.60 38.17 0.00 16.67
+ YaRN 8K / 128K 10.00  2.80 21.92 0.00 9.74
+ ReRoPE 8K / 128K 51.84 78.60 38.17 30.50 48.51
+ Self-Extend 8K / 128K 54.69  34.60 44.84 34.50 48.52
+ DCA 8K / 128K 47.03 4340 44.52 34.50 44.44
+ DPE 8K / 128K 64.72  49.60 42.34 38.50 56.08
Mistral-v0.2 (7B) 32K / 128K 9.44 0.00 32.34 10.50 12.40
+ NTK-Dynamic 32K / 128K 58.81 80.20 46.49 44.50 56.36
+ YaRN 32K / 128K 7094 83.80 45.10 34.50 62.35
+ ReRoPE 32K / 128K 69.56  56.20 44.32 27.00 58.10
+ Self-Extend 32K / 128K 76.44  57.00 45.50 43.00 65.04
+ DCA 32K / 128K 6447 84.20 47.44 45.50 60.45
+ DPE 32K / 128K 77.63  52.00 46.32 53.50 67.13
GradientAl/Llama3 (8B) 1M / 128K 89.22  56.80 36.20 54.50 73.23
Phi3-medium (14B) 128K / 128K 53.75  6.80 45.80 47.50 47.95
Llama3.1 (8B) 128K / 128K  89.47  60.00 36.89 56.50 74.04
+ NTK-Dynamic 128K / 128K 9594  77.00 38.34 61.50 80.32
+ YaRN 128K / 128K 83.09 91.80 35.39 54.50 72.02
+ DCA 128K / 128K 90.69  85.40 38.17 61.00 77.63
+ Self-Extend 128K / 128K 97.03 92.80 37.50 62.50 82.23
+ ReRoPE 128K / 128K 89.22  65.20 38.00 55.50 74.30
+ DPE 128K / 128K  96.97 92.40 38.00 60.50 81.93
Qwen2.5 (7B) 128K / 128K 31.38  29.20 28.07 21.00 29.10
+ NTK-Dynamic 128K / 128K 72.75  2.60 38.34 43.00 57.48
+ YaRN 128K / 128K 70.59  83.40 44.27 49.50 64.28
+ DCA 128K / 128K 53.69  21.00 9.40 21.00 39.33
+ Self-Extend 128K / 128K 69.72  86.20 37.49 38.00 61.15
+ ReRoPE 128K / 128K 63.50  28.60 37.82 29.50 51.63
+ DPE 128K / 128K 82.72  80.00 43.22 46.00 70.78
Llama3.1 (70B) 128K / 128K  76.38  58.00 41.14 56.00 66.41
+ DPE 128K / 128K  95.94  98.00 55.77 73.00 86.39
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