

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VAT: VISION ACTION TRANSFORMER BY UNLOCKING FULL REPRESENTATION OF ViT

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 In robot learning, Vision Transformers (ViTs) are standard for visual perception,
013 yet most methods discard valuable information by using only the final layer’s fea-
014 tures. We argue this provides an insufficient representation and propose the Vision
015 Action Transformer (VAT), a novel architecture that is extended from ViT and un-
016 locks the full feature hierarchy of ViT. VAT processes specialized action tokens
017 with visual features across all transformer layers, enabling a deep and progres-
018 sive fusion of perception and action generation. On a suite of simulated manip-
019 ulation tasks, VAT achieves a 98.15% average success rate across four LIBERO
020 benchmarks, establishing a new state-of-the-art by outperforming prior methods
021 like OpenVLA-OFT. Our work presents not only a powerful model for imitation
022 learning but also demonstrates the critical importance of leveraging the complete
023 “representation trajectory” of vision models to advance robotic policy.

1 INTRODUCTION

027 Embodied Artificial Intelligence (Embodied AI) represents a frontier research domain that bridges
028 artificial intelligence with robotics, emphasizing the integration of physical interaction as a core
029 component of intelligent behavior (Kim et al., 2025; Nvidia et al., 2025). Unlike traditional AI sys-
030 tems that operate solely in digital spaces (Vaswani et al., 2017; DeepSeek-AI et al., 2025), embodied
031 agents actively perceive and interact with their environments, enabling them to learn, adapt, and ex-
032 ecute tasks in dynamic physical or simulated worlds. In Embodied AI, imitation learning has been
033 widely explored (Zare et al., 2023; Osa et al., 2018). Human-collected robot operation data provides
034 high-quality demonstration trajectories for deep learning models to learn.

035 Currently robot imitation learning predominantly adopts two training paradigms. The first paradigm
036 focuses on training task-specific robotic policies, exemplified by architectures such as Diffusion
037 Policy (Chi et al., 2023) or Action Chunking with Transformers (ACT) (Zhao et al., 2023). These
038 models integrate vision encoders with policy networks to decode robotic actions from visual obser-
039 vations. The second paradigm, termed Vision-Language-Action (VLA) models (Kim et al., 2024;
040 2025; Black et al., 2024), combines visual perception capabilities with the robust generalization abil-
041 ities of Large Language Models (LLMs). VLA approaches aim to achieve generalizable robotic ma-
042 nipulation capabilities when trained on sufficient imitation learning datasets (Padalkar et al., 2023).

043 Both paradigms rely fundamentally on visual perception for task execution. Leveraging Vision
044 Transformers(ViT), such as SigLIP (Zhai et al., 2023) and DINOv2 (Oquab et al., 2023), encodes
045 visual observations into visual features. These features subsequently condition action generation.
046 However, a critical concern arises: features from such models may inadequately encode fine-grained
047 visual details (e.g., object geometry or precise spatial attributes), potentially impeding environmental
048 comprehension and compromising action precision.

049 This concern originates from the very nature of a ViT’s feature generation process. ViT is composed
050 of a sequence of stacked Transformer layers. During the computation of ViT, the representation
051 of the visual input is progressively transformed and enriched at each layer, through which each
052 layer yields a new representation derived from the previous one, ultimately culminating in a final
053 output. The representations produced sequentially across layers can be conceptualized as a
“representation trajectory” which reflects the model’s evolving interpretation of the visual input.

054 During the training of a ViT, the final representation(the visual features given by the last transformer
 055 layer) is explicitly optimized by minimizing a loss function, as it is directly used to generate a pre-
 056 diction that is compared against the ground truth. In contrast, the intermediate representations along
 057 the trajectory are only updated indirectly via backpropagation. For instance, in SigLIP, the final rep-
 058 resentation is optimized to align with the semantic representation of a corresponding text description
 059 via a contrastive loss. This training objective enables SigLIP to achieve excellent performance on
 060 zero-shot image classification tasks when provided with suitable text templates. Similarly, in DI-
 061 NOv2, the final representation is optimized through a knowledge distillation loss, which aligns the
 062 student model’s output with that of a teacher model. This self-supervised methodology allows DI-
 063 NOv2 to produce powerful, general-purpose representations well-suited for dense prediction tasks
 064 such as segmentation and depth estimation.

065 Despite their effectiveness, the final representations from models like SigLIP and DINOv2 exhibit
 066 critical limitations: SigLIP struggles to preserve pixel-level detail, while DINOv2 can discard local,
 067 low-level information. Conversely, representations from earlier layers often retain these valuable
 068 characteristics. This leads us to posit that relying solely on the final ViT layer provides a static and
 069 impoverished representation, discarding a wealth of information crucial for robotic tasks. Yet, the
 070 conventional paradigm in robot learning is to extract only these final-layer features. This critical
 071 oversight serves as the primary motivation for our work: to enhance robot policy performance by
 072 exploiting the entire representation trajectory of a ViT.

073 Guided by this motivation, we propose Vision Action Transformer (VAT), a novel robot policy model
 074 that elegantly leverages visual representations in every transformer layer of ViT to elevate the upper
 075 performance bounds of imitation learning.

076 Notably, to achieve VAT, we introduce a simple structural extension to the ViT architecture. We
 077 introduce additional tokens (termed action tokens) to the sequence of input vision tokens from ViT’s
 078 patch embedding layer, and process the combined sequence through the VAT. During the forward
 079 computation, vision tokens are processed by the vision module, which uses the original ViT
 080 parameters, while action tokens are handled by the action module, which shares the same structure as
 081 the vision modules but is initialized with new parameters, enabling them to attend to vision tokens
 082 via cross-attention. Subsequently, the processed action tokens are projected by a lightweight ac-
 083 tion decoder head to output robot actions. Experimental validation on robot simulation benchmarks
 084 demonstrates that VAT significantly enhances robot policy capacity under limited training iterations.

085 Our contributions are summarized as follows:

- 086 1. We identify and validate the importance of leveraging the full hierarchy of visual representations
 087 throughout the ViT architecture for excellent performance on robot learning tasks.
- 088 2. We propose VAT, a novel and simple policy architecture. By achieving state-of-the-art perfor-
 089 mance on the LIBERO benchmark suite, we demonstrate the superior potential of VAT.

091 2 RELATED WORKS

094 Imitation learning is a prominent methodology for robot manipulation, enabling models to learn
 095 from expert demonstrations and control robots for specific tasks. Research in this domain has pro-
 096 gressed along several key directions. For instance, Dasari & Gupta (2020); Duan et al. (2017);
 097 James et al. (2018) emphasize multi-task or few-shot learning, while Jang et al. (2022); Brohan
 098 et al. (2022); Shridhar et al. (2021; 2022) leverage multimodal information such as depth maps or
 099 point clouds. Still Pastor et al. (2009); Zeng et al. (2020); Johns (2021); Shridhar et al. (2022) fo-
 100 cuses on designing specialized model architectures. A representative work in this area is ACT, which
 101 introduces a simple yet effective framework implemented on the Aloha platform that enables stable
 102 training and inference. A recent trend in robot policy learning involves scaling data, a paradigm
 103 derived from the scaling laws observed in large language models (Padalkar et al., 2023; Brohan
 104 et al., 2022; Walke et al., 2023; Khazatsky et al., 2024; Kalashnikov et al., 2018). For example,
 105 Team et al. (2024) is a generalist policy trained on large-scale data that can control multiple robots
 106 out-of-the-box and supports flexible fine-tuning to new robot setups. Furthermore, many studies
 107 have explored the use of Vision-Language Models (VLMs) for robotics, directly fine-tuning large
 108 pretrained VLMs to predict robot actions (Padalkar et al., 2023; Brohan et al., 2023; AI et al., 2024;
 109 Wayve, 2024; Huang et al., 2023; Li et al., 2023b). Such models are often referred to as Vision-

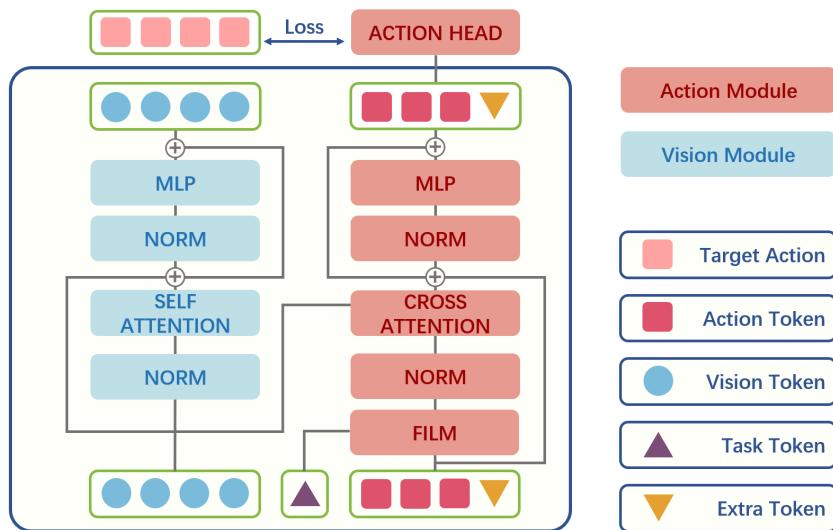


Figure 1: VAT architecture within a single layer. A standard ViT block (Vision Module, left) processes vision tokens. In parallel, a new Action Module (right) updates action tokens by cross-attention to vision tokens. Task-specific information is injected via a FiLM layer, and the action module mirrors the vision module’s structure but with its own trainable parameters.

Language-Action (VLA) models, as they fuse robot control actions directly into VLM backbones. The use of a generic VLM architecture, rather than one custom-made for robot policy, allows robot policies to benefit from the rapid improvements in VLM training.

Imitation learning for robotic policies has achieved significant progress in various aspects, including data and model architecture. However, the fundamental principle remains unchanged: generating appropriate robotic actions based on visual observations. Consequently, the perception of visual scenes is a critical component of imitation learning. Current approaches typically employ ViT, such as SigLIP, or DINO (Caron et al., 2021), to extract visual representations that serve as conditional inputs for generating robot actions. A common method for acquiring these representations involves extracting the feature map from the final layer of a ViT (Karamchetti et al., 2024; Liu et al., 2023). While effective, this approach raises concerns that such a representation may not sufficiently capture all the information required for downstream robotic tasks (Lan et al., 2024).

The field of Vision-Language Models (VLMs) has recognized the limitations of single-layer features and has explored several avenues to obtain richer visual representations. One common strategy is to fuse features from multiple, distinct ViT encoders. For instance, Tong et al. (2024) utilizes a Mixture of Features to integrate visual features from CLIP-ViT (Radford et al., 2021) and DINOv2, while Lu et al. (2024) employs a hybrid vision encoder that combines SigLIP-L (Zhai et al., 2023) for low-resolution inputs and SAM-B (Kirillov et al., 2023) for high-resolution inputs. A more closely related strategy, however, is to fuse features from multiple layers within a single ViT. This multi-layer fusion typically follows two main schemes: external and internal (Lin et al., 2025). External fusion integrates features from different ViT layers before they are passed to the language model. For example, Yao et al. (2024) directly concatenates features from multiple layers, while Cao et al. (2024) uses a cross-attention module where final-layer features query shallower ones to extract fine-grained details. While effective, this approach faces a direct trade-off: richer information from more layers comes at the cost of increased computational load due to longer vision token sequences. Internal fusion, in contrast, injects multi-layer visual features at different layers within the LLM backbone (Meng et al., 2024). This avoids increasing the input sequence length, allowing models like Qwen3-VL (Qwen Team, 2025) to progressively incorporate hierarchical visual information. This principle of progressive, multi-layer integration aligns closely with the insight behind our VAT architecture. However, both external and internal fusion share a fundamental limitation: they require a heuristic or costly search process to select which layers to fuse. This arbitrary choice risks using a suboptimal set of features. Our VAT framework elegantly sidesteps this issue entirely. By design,

162 VAT integrates visual representations from every layer, systematically leveraging the full feature
 163 hierarchy without the need for manual layer selection or extensive ablation studies.
 164

165 Another branch of VLM research involves native multi-modal models, which omit a separate ViT
 166 entirely (Diao et al., 2025; Chen et al., 2024; Diao et al., 2024). In these architectures, visual and
 167 textual features are processed jointly within a single, unified transformer, with each layer containing
 168 parameters for both modalities. However, this unified design comes at a significant cost: it forgoes
 169 the powerful representations from pre-trained ViTs, as the vision processing parameters are typi-
 170 cally trained from scratch or shared with the language model (Mo et al., 2025; Li et al., 2023a).
 171 Nevertheless, these models offer an inspiring paradigm: the concurrent, layer-wise refinement of vi-
 172 sual features as they interact with another modality. This contrasts sharply with traditional pipelines
 173 where a static visual representation is fully computed first and only then integrated downstream.
 174 This principle of concurrent interaction is the key insight we adapt in VAT. However, instead of
 175 discarding the ViT, VAT implements this paradigm within the vision backbone itself. It facilitates a
 176 progressive, layer-by-layer interaction between the evolving visual representation and the robot’s ac-
 177 tion modality. In doing so, VAT captures the best of both worlds: the powerful, pre-trained features
 178 of a ViT and the dynamic, interactive processing of layer-wise visual features.
 179

3 METHOD

181 We introduce VAT, an architectural advancement built upon ViT. As illustrated in Figure 1, VAT
 182 extends the standard ViT framework by integrating a specialized action module for robot learning,
 183 while retaining the original ViT’s core visual representation capabilities. Specifically, within each
 184 layer, the original ViT components are kept as vision modules, and we introduce new action modules
 185 that are identical in structure but have their own randomly initialized parameters. After extension,
 186 VAT processes a concatenated sequence of vision tokens and action tokens as input. In vision mod-
 187 ule, vision token processing within each transformer layer follows this computational paradigm:
 188

$$\mathbf{x}_{\text{vision}}' = \mathbf{x}_{\text{vision}} + \text{Attention}(\text{LayerNorm}_1(\mathbf{x}_{\text{vision}})) \quad (1)$$

$$\mathbf{x}_{\text{vision}_{\text{out}}} = \mathbf{x}_{\text{vision}}' + \text{MLP}(\text{LayerNorm}_2(\mathbf{x}_{\text{vision}}')) \quad (2)$$

191 Action tokens are processed by the action module, interacting with vision tokens via cross-attention
 192 mechanisms. Following the final transformer layer, the output action tokens are decoded by an
 193 action prediction head to produce executable robot actions. The decoded value of each action token
 194 corresponds to a specific dimension of an individual action within the action chunk.
 195

196 VAT is optimized using an L1 loss between the predicted and target action values. The length of
 197 each action token is $K \times L$, where: K denotes the chunk size (number of actions in an action chunk),
 198 L represents the dimensionality of each action. We set K to 8. For the LIBERO dataset L is 7,
 199 where the first six dimensions represent the delta position and rotation of the end effector, and the
 200 last dimension indicates the open / closed gripper state. In experiments, we initialize each action
 201 token as a zero vector and add trainable positional embeddings to each token. To enable the model
 202 to be aware of the task type, we assign a unique task token to each task. Within each layer of the
 203 VAT, we employ Feature-wise Linear Modulation (FiLM) to generate task-specific scaling factors
 204 from the task token. These factors are then used to modulate the action tokens. This mechanism
 205 ensures that the model is explicitly conditioned on the type of task it is currently performing. The
 206 FiLM computation process is as follows:
 207

$$\mathbf{t}_{\text{embed}} = \text{TaskEmbeddingLayer}(\text{task_id}) \quad (3)$$

$$\Theta_{\text{film}} = \text{FilmModulator}(\mathbf{t}_{\text{embed}}) \quad (4)$$

$$\gamma, \beta = \text{Split}(\Theta_{\text{film}}, \text{dim} = 2) \quad (5)$$

$$\mathbf{x}_{\text{action}} = \mathbf{x}_{\text{action}} \odot (\gamma + \mathbf{1}) + \beta \quad (6)$$

216 After FiLM, action token processing within each transformer layer follows the computational
 217 paradigm below:
 218

$$\mathbf{x}_{\text{action}}' = \mathbf{x}_{\text{action}} + \text{CrossAttention}(\text{LayerNorm}_3(\mathbf{x}_{\text{action}}), \text{LayerNorm}_1(\mathbf{x}_{\text{vision}})) \quad (7)$$

$$\mathbf{x}_{\text{action}_{\text{out}}} = \mathbf{x}_{\text{action}}' + \text{MLP}_{\text{action}}(\text{LayerNorm}_4(x_{\text{action}}')) \quad (8)$$

224 It is noteworthy that $\mathbf{x}_{\text{vision}}$ in equation 1 and equation 7 refers to the vision tokens from adjacent
 225 lower layer. This implies that the action tokens at a given layer interact with the vision tokens from
 226 the preceding layer via cross-attention. When VAT employs diffusion loss instead of L1 loss, it
 227 becomes necessary to incorporate diffusion timestep information. In the first layer of the VAT, we
 228 concatenate a diffusion timestep embedding token to the $\mathbf{x}_{\text{action}}$ token sequence. This allows the
 229 action tokens to acquire timestep information during cross-attention. However, since $\mathbf{x}_{\text{vision}}$ in equa-
 230 tion 7 serves as the query and key, the resulting output $\mathbf{x}_{\text{action}}'$ from the cross-attention operation
 231 does not retain the timestep token. To ensure the diffusion timestep information propagates explic-
 232 itly through all layers, we also concatenate the timestep token to the $\mathbf{x}_{\text{action}}$ token sequence in the
 233 first layer. As a result, the timestep token remains present in the $\mathbf{x}_{\text{action}}$ after cross-attention. The
 234 same approach is applied for incorporating robot proprioceptive information: we project the propri-
 235 oception data into a token and concatenate it with $\mathbf{x}_{\text{action}}$. These tokens are referred as extra tokens
 236 in Figure 1. Through this approach, we properly integrate essential information required during
 237 training into the computational process of VAT.

238 4 EXPERIMENTS

240 To comprehensively evaluate the performance of VAT, we conduct experiments on simulated bench-
 241 marks. We selected LIBERO, which consists of four sub-benchmarks, each comprising 10 distinct
 242 tasks. We first performed a series of experiments to determine the optimal training configurations for
 243 VAT. Subsequently, our results on LIBERO demonstrate that VAT achieves state-of-the-art success
 244 rates, outperforming other VLA models without requiring pre-training on robot data.

245 4.1 EXPERIMENTAL CONFIGURATION OF VAT

247 From the numerous transformer-based vision foundation models available, we select SigLIP 2 and
 248 DINOv2 to serve as the backbone for our VAT. We select the LIBERO benchmark to evaluate VAT’s
 249 performance on a suite of robot manipulation tasks. LIBERO is composed of four distinct sub-
 250 benchmarks, each designed to test a specific capability: LIBERO-Spatial assesses the ability to
 251 generalize to new spatial arrangements of objects; LIBERO-Object evaluates the transfer of manip-
 252 ulation skills across visually distinct but functionally similar objects; LIBERO-Goal tests the adap-
 253 tation of behaviors and action sequences to achieve different outcomes; and LIBERO-10 measures
 254 the ability to execute long-horizon tasks.

255 We adopt the following training configuration as our default setup. Unless stated otherwise, all ex-
 256 periments use these settings. Specifically, we employ a cosine learning rate scheduler with an initial
 257 rate of 2e-5 and a global batch size of 128, distributed across 4 NVIDIA A100 GPUs. All model pa-
 258 rameters are set as trainable. For input, we utilize both the third-person and wrist camera views from
 259 the LIBERO dataset. The L1 loss function is selected for optimization. Ablation studies analyzing
 260 the impact of camera views, loss functions, and other configurations are provided in appendix A.

261 We follow a rigorous evaluation protocol. For each LIBERO benchmark (Spatial, Goal, Object, and
 262 10), we train VAT for 100 epochs, saving a checkpoint every 10 epochs (yielding 10 checkpoints).
 263 Consistent with the OpenVLA-OFT protocol, we evaluate each checkpoint over 500 episodes and
 264 report the success rate of the best-performing checkpoint. The comparative results of VAT against
 265 other models on the LIBERO benchmark are presented in Table 1.

266 4.2 MODEL LAYER SKIPPING

267 The key innovation of our VAT is its ability to leverage visual features from every layer of the ViT to
 268 enhance the robot policy. This allows the policy to perceive visual input through a variety of repre-

270

271

Table 1: Comparison of different models

272

273

	Spatial	Object	Goal	10	Average Scores
Diffusion Policy (scratch)	78.3	92.5	68.3	50.5	72.4
Octo (fine-tuned)	78.9	85.7	84.6	51.1	75.1
DiT Policy (fine-tuned)	84.2	96.3	85.4	63.8	82.4
π_0 (fine-tuned)	96.8	98.8	95.8	85.2	94.2
OpenVLA-OFT (fine-tuned)	97.6	98.4	97.9	94.5	97.1
VAT (default setup)	98.8	99.4	97.6	96.8	98.15

274

275

276

277

278

The scores for models in Table 3 except our VAT are cited directly from Kim et al. (2025). “Scratch” refers to training the Diffusion Policy solely on the LIBERO dataset. “Fine-tuned” indicates that the models are initialized with pre-trained weights and then fine-tuned on LIBERO.

279

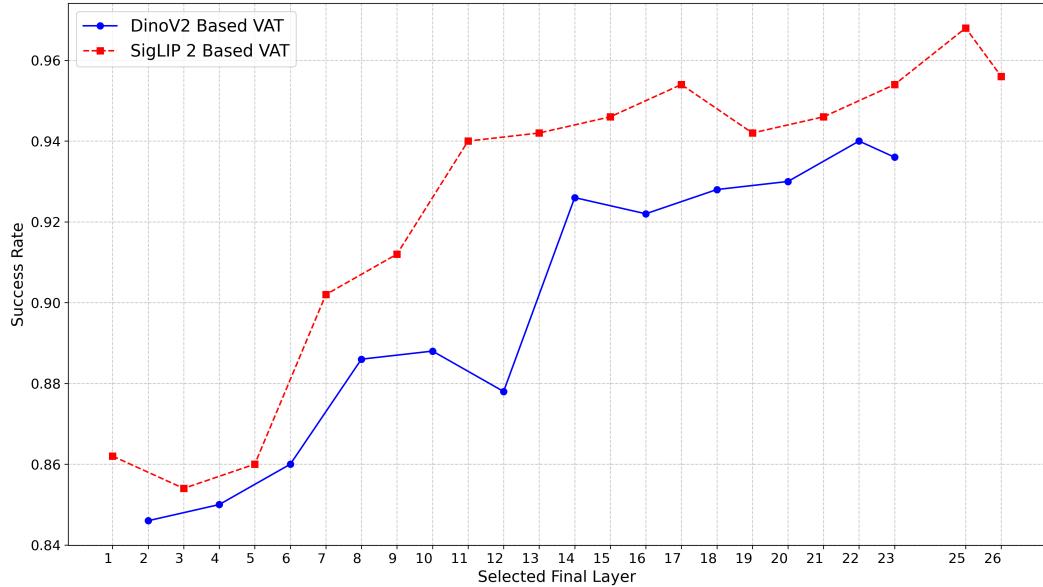
280

281

282

283

284



303

304

305

306

307

308

309

310

311

Figure 2: Results of VAT Layer Skipping Experiments

312

313

314

315

316

317

318

319

320

321

322

323

sentations, which capture both fine-grained details and high-level semantics. And a natural question is: does the policy require holistic visual features from all layers to maximize performance, or could skipping the features from later layers offer a better balance between efficiency and robustness?

To investigate this, we conduct layer-skipping experiments using SigLIP 2 and DINOv2 as backbones. Specifically, for a selected final layer, we extract the action tokens in this layer and feed them directly into the action decoder head. In this configuration, the policy only benefits from visual features up to and including the selected final layer. Figure 1 compares the performance of VAT when using different final layers, with experiments conducted on LIBERO-10 using SigLIP 2 and DINOv2 as backbones. The results demonstrate that selecting a deeper layer as the final layer tends to yield better performance for VAT in learning robot policies, which can be attributed to the fact that deeper layers enable VAT to perceive richer visual features. However, even when very shallow layers are selected, the model still achieves success rates exceeding 85% while reducing the training time by 5 to 10 times. This remarkable performance indicates that the visual features extracted from shallow layers of ViT—including the first layer—already provide sufficiently informative representations for VAT to interpret robot observations and generate actions. Thus, through this layer-skipping experiment, we further confirm that features from different layers of ViT all possess representation that could enhance robot policy learning.

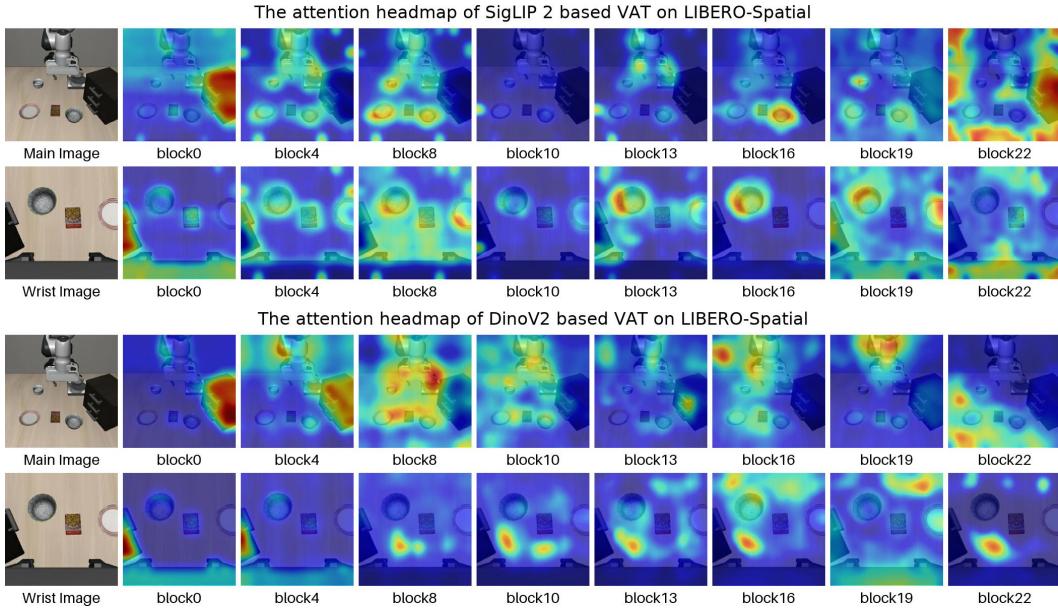


Figure 3: Attention heatmap of VAT on LIBERO-Spatial

4.3 ATTENTION HEATMAP VISUALIZATION

We claim that the visual features from different layers of a ViT exhibit distinct properties, all of which are beneficial for policy learning. To visually illustrate these differences, we visualize the attention scores of multiple layers as heatmaps. Specifically, we extract the attention scores where action tokens serve as the query and vision tokens as the key. This process yields an attention score tensor of shape $[H, N, L]$ for each layer, where H represents the number of attention heads, N represents the number of action tokens and L denotes the number of vision tokens, with each vision token corresponding to a patch in the image. To derive a single attention value for each patch, we average the attention scores from all attention heads and action tokens corresponding to that patch. These averaged scores are then used to generate a heatmap, where higher values correspond to lighter colors. For enhanced visual clarity, we apply bicubic interpolation to upscale the heatmap and overlay to the original image. These heatmaps reveal the underlying mechanisms of token interaction and information flow during the model’s forward computation, explicitly revealing the patterns by which it interprets and processes data.

Figure 3 visualizes the attention flow within the SigLIP 2 and DinoV2 based VAT. The heatmap of SigLIP 2 illustrates a clear “focus-then-disperse” pattern. VAT initially focus distributedly across the scene, but as information propagates through the network, its focus sharpens and converges on the key object, and then disperses to a more global view in final layer. The heatmap of DinoV2 Exhibites a remarkably different focus: VAT demonstrates a tendency for its attention to “sink” into the background, focusing on task-irrelevant tokens. This highlights the significant representational discrepancy of DinoV2 and SigLIP 2, which in turn affects how VAT interprets visual information and process action tokens. More visualizations are presented in Appendix B.

4.4 COMPREHENSIVE ABLATION AND GENERALIZATION ANALYSIS

To rigorously analyze the impact of various architectural design choices and validate the robustness of our approach, we conduct a comprehensive set of ablation studies in this section. To ensure a fair and consistent comparison, unless otherwise specified, all following experiments utilize SigLIP 2 as the visual backbone, employ L1 loss for optimization, and leverage visual observations from both camera views.

Necessity of Full Hierarchy vs. Last Layer. A core premise of VAT is that intermediate “representation trajectories” contain critical information lost in the final layer. To validate this, we train

378

379

380

381

382

383

384

385

386

387

388

Table 2: Comparison of VAT and baseline methods

	Spatial	Object	Goal	10	Average
VAT	98.8	99.4	97.6	96.8	98.15
baseline	99.2	94.2	98.2	74.6	91.55

389

390

391

392

393

394

Table 3: Ablation on Task Conditioning Mechanisms (%)

	Spatial	Object	Goal	10	Average
VAT	98.8	99.4	97.6	96.8	98.15
No FiLM (No Task Info)	89.8	99.4	8.4	83.8	70.35
Task embedding	98.2	99.2	97.4	93.4	97.05

a baseline model that uses visual features exclusively from the second-to-last layer of the Vision Transformer (ViT) backbone—consistent with the approach of Kim et al. (2025)—while keeping the action module unchanged. As a result, in every layer of VAT, the action tokens perform cross-attention with visual features drawn from the second-to-last layer of the ViT. As shown in Table 2 , the Last-Layer baseline suffers a significant performance drop (98.15% \rightarrow 91.55%). This degradation is most pronounced in the long-horizon LIBERO-10 benchmark (96.8% \rightarrow 74.6%), confirming that the rich geometric and spatial details preserved in intermediate layers are essential for complex, multi-stage reasoning.

Role of Task Conditioning (FiLM). We analyze the impact of our task conditioning mechanism in Table 3. Removing task information entirely (“No FiLM”) leads to catastrophic failure on Goal-conditioned tasks (8.4%), confirming that task IDs are a prerequisite for disambiguation, not a shortcut. Furthermore, replacing FiLM with a simple learnable “Task Embedding” (added to action tokens) still yields a high success rate of 97.05%. This demonstrates that while FiLM (98.15%) is the optimal design, VAT’s performance is primarily driven by its hierarchical architecture rather than the specific conditioning method.

Robustness to Action Token Capacity. We investigate whether the number of action tokens imposes an information bottleneck on policy learning. In our default VAT configuration, consistent with Kim et al. (2025), we define an action chunk size of $K = 8$. Each action within this chunk is allocated 7 distinct tokens (representing the 6-DoF end-effector pose and gripper state), resulting in a total sequence length of 56 action tokens (8 actions \times 7 tokens). To evaluate the model’s sensitivity to this design, we conduct an ablation where we reduce the allocation to 3 tokens and finally to 1 token per action, while maintaining the action chunk size unchanged. As shown in Table 6, VAT exhibits remarkable stability despite this aggressive reduction. Even when compressed to a single token per action (reducing the total sequence from 56 to 8 tokens), the model achieves a 97.50% success rate. The result in Table 4 indicates that our hierarchical cross-attention mechanism is highly efficient at aggregating necessary visual cues into a compact representation, and the model is not strictly bottlenecked by the granularity of the action token sequence.

Architecture Variants and Parameter Space Analysis. To better understand the architectural mechanism of VAT, it is worth noting the structural parallel between our Action Tokens and the CLS token used in standard ViT training (e.g., CLIP or DINO). Both serve as designated agents for global representation aggregation and act as the direct recipients of supervisory signals. In VAT, action tokens aggregate hierarchical visual information during the forward pass and are directly supervised by the ground-truth actions. This structural similarity reinforces the rationality of VAT’s design.

However, a critical distinction lies in the Action Module. Unlike a standard CLS token that shares parameters with the visual backbone, VAT’s Action Tokens are processed by a parallel Action Module—mirrored from the ViT but with independent trainable parameters. This design ensures a dedicated parameter space specifically for learning action-relevant feature extraction, preventing interference with the visual backbone’s primary representation. To investigate the necessity of this dedi-

432

433

434

Table 4: Ablation on Action Token Number

435

436

437

438

439

440

441

442

Table 5: Model Architecture Variants Ablation

443

444

445

446

447

448

449

450

451

452

453

cated parameter space and the impact of the Action Module’s capacity, we evaluate two architectural variants:

454

VAT-Small (490M): VAT has 1.3B parameters. For VAT-Small, We reduce the dimensionality of the action tokens to one-quarter of the vision tokens. Consequently, the dimensions of the FiLM, attention, and MLP layers within the Action Module are proportionally reduced.

455

456

457

458

459

460

461

462

463

VAT-ViT (430M): We remove the separate Action Module entirely. In this setup, action tokens are inserted into the ViT backbone and processed using shared weights (identical to how CLS tokens are handled), utilizing simple Task Embeddings instead of FiLM.

464

The results in Table 5 reveal that while the full VAT (with the separate Action Module) achieves the optimal performance (98.15%), the VAT-ViT variant—which relies entirely on shared weights akin to a standard CLS token approach—still maintains a remarkably high success rate of 97.05%. This confirms two key findings:

465

466

467

Validity of Design: The core performance gain stems from the hierarchical access to “representation trajectories” (as both variants significantly outperform the Last-Layer Baseline in Table 4), rather than simply increasing parameter count.

468

469

470

471

Role of Separate Module: While a shared-weight approach (VAT-ViT) is viable, the dedicated parameter space provided by the separate Action Module yields better performance on complex, long-horizon tasks (LIBERO-10: 96.8% vs. 92.4%), justifying the additional architectural overhead for maximizing capability.

472

473

474

475

476

477

Generalization on RoboTwin Benchmark. Finally, to assess generalizability beyond LIBERO,

we evaluated VAT on the RoboTwin Benchmark, which consists of 50 diverse bimanual (dual-arm)

manipulation tasks. As summarized in Table 8, VAT achieves a 40.66% success rate, significantly

outperforming widely used baselines such as ACT (+10.9%) and Diffusion Policy (+12.6%), and

remaining competitive with the state-of-the-art VLA model Pi0 (46.42%), despite utilizing a signif-

icantly smaller backbone (1.3B vs 3B). The detailed results are shown in C.

478

479

5 CONCLUSION

480

481

482

483

484

485

In this work, we address a critical limitation in current robot learning paradigms: the underutilization of rich and hierarchical features from ViT. We argue that relying solely on the final layer’s output provides an incomplete visual representation, potentially hindering robot policy capabilities. To overcome this, we introduce the Vision Action Transformer (VAT), a novel and parameter-efficient architecture that unlocks the full representational power of a ViT. By processing specialized action tokens alongside vision tokens through every layer of the transformer, VAT facilitates a continuous

and deep fusion of perception and action generation. This approach allows the policy to leverage the entire “representation trajectory” from the fine-grained details in early layers to the high-level semantic information in deeper ones. Our experiments on the LIBERO benchmark suite validate the effectiveness of our approach. VAT achieves a state-of-the-art success rate of 98.15% on average across four sub-benchmarks, outperforming strong baselines like OpenVLA-OFT. Furthermore, our layer-skipping analysis confirms that even shallow-layer features provide highly informative representations for policy learning, while attention visualizations offer qualitative insights into how VAT dynamically shifts its focus throughout the network. Ultimately, this work contributes not only a powerful new model for imitation learning but also a fundamental insight: fully leveraging the hierarchical features of vision models is crucial for advancing robotic perception and control. We believe that this principle will inspire future architectures in embodied AI.

6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimentation was involved. All datasets used were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory outcomes in our research process. No personally identifiable information was used, and no experiments were conducted that could raise privacy or security concerns. We are committed to maintaining transparency and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code and datasets have been made publicly available in an anonymous repository to facilitate replication and verification. The experimental setup, including training steps, model configurations, and hardware details, is described in detail in the paper. We have also provided the full description to assist others in reproducing our experiments.

Additionally, robot learning datasets we have used, are publicly available, ensuring consistent and reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance the field.

REFERENCES

Covariant AI, A.S., et al. Introducing RFM-1: Giving robots human-like reasoning capabilities. <https://covariant.ai/blog/introducing-rfm-1-giving-robots-human-like-reasoning-capabilities>, 2024. URL <https://covariant.ai/blog/introducing-rfm-1-giving-robots-human-like-reasoning-capabilities>. Accessed: 2024-05-01.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. $\pi 0$: A vision-language-action flow model for general robot control. *ArXiv*, abs/2410.24164, 2024. URL <https://api.semanticscholar.org/CorpusID:273811174>.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan C. Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael S. Ryoo, Grecia Salazar, Pannag R. Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Anand Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Ho Vuong, F. Xia, Ted Xiao, Peng Xu,

540 Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale. *ArXiv*, abs/2212.06817, 2022. URL <https://api.semanticscholar.org/CorpusID:254591260>.
541

542

543 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Krzysztof Choromanski, Tianli
544 Ding, Danny Driess, Kumar Avinava Dubey, Chelsea Finn, Peter R. Florence, Chuyuan Fu,
545 Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexan-
546 der Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil J. Joshi, Ryan C. Julian, Dmitry
547 Kalashnikov, Yuheng Kuang, Isabel Leal, Sergey Levine, Henryk Michalewski, Igor Mordatch,
548 Karl Pertsch, Kanishka Rao, Krista Reymann, Michael S. Ryoo, Grecia Salazar, Pannag R. San-
549 keti, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricu, Huong Tran, Vincent Van-
550 houcke, Quan Ho Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Ted Xiao, Tianhe Yu,
551 and Brianna Zitkovich. Rt-2: Vision-language-action models transfer web knowledge to robotic
552 control. *ArXiv*, abs/2307.15818, 2023. URL <https://api.semanticscholar.org/CorpusID:260293142>.
553

554

555 Yue Cao, Yangzhou Liu, Zhe Chen, Guangchen Shi, Wenhui Wang, Danhuai Zhao, and Tong
556 Lu. Mmfuser: Multimodal multi-layer feature fuser for fine-grained vision-language under-
557 standing. *ArXiv*, abs/2410.11829, 2024. URL <https://api.semanticscholar.org/CorpusID:273350685>.
558

559

560 Mathilde Caron, Hugo Touvron, Ishan Misra, Herv'e J'egou, Julien Mairal, Piotr Bojanowski, and
561 Armand Joulin. Emerging properties in self-supervised vision transformers. *2021 IEEE/CVF
562 International Conference on Computer Vision (ICCV)*, pp. 9630–9640, 2021. URL <https://api.semanticscholar.org/CorpusID:233444273>.
563

564

565 Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Qiwei Liang, Zixuan Li, Xian-
566 liang Lin, Yiheng Ge, Zhenyu Gu, Weiliang Deng, Yubin Guo, Tian Nian, Xuanbing Xie, Qiangyu
567 Chen, Kailun Su, Tianling Xu, Guodong Liu, Mengkang Hu, Huan ang Gao, Kaixuan Wang,
568 Zhixuan Liang, Yusen Qin, Xiaokang Yang, Ping Luo, and Yao Mu. Robotwin 2.0: A scalable
569 data generator and benchmark with strong domain randomization for robust bimanual robotic
570 manipulation. *ArXiv*, abs/2506.18088, 2025. URL <https://api.semanticscholar.org/CorpusID:279999539>.
571

572

573 Yangyi Chen, Xingyao Wang, Hao Peng, and Heng Ji. A single transformer for scal-
574 able vision-language modeling. *ArXiv*, abs/2407.06438, 2024. URL <https://api.semanticscholar.org/CorpusID:271064540>.
575

576

577 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
578 Song. Diffusion policy: Visuomotor policy learning via action diffusion. *ArXiv*, abs/2303.04137,
579 2023. URL <https://api.semanticscholar.org/CorpusID:257378658>.
580

581 Sudeep Dasari and Abhinav Kumar Gupta. Transformers for one-shot visual imitation. *ArXiv*,
582 abs/2011.05970, 2020. URL <https://api.semanticscholar.org/CorpusID:226299546>.
583

584

585 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, Ruoyu Zhang, Runxin
586 Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
587 Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bing-Li
588 Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
589 Chong Ruan, Damai Dai, Deli Chen, Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
590 Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
591 Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Ji-
592 awei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Jiong Cai, Jiaqi Ni, Jian
593 Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
594 Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
595 Zhang, Minghua Zhang, M. Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan
596 Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang,
597 Ruizhe Pan, Runji Wang, R. J. Chen, Ruiqi Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou,
598 Shanhua Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S.
599 Li, Shuang Zhou, Shao-Kang Wu, Tao Yun, Tian Pei, Tiansu Sun, T. Wang, Wangding Zeng,
600

594 Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wen-Xia Yu, Wentao Zhang, Wangding
 595 Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xi aokang Chen, Xiaotao Nie, Xin Cheng, Xin
 596 Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li,
 597 Xiangyu Jin, Xi-Cheng Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song,
 598 Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yan-
 599 hong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
 600 Yi Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang
 601 Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yu-Jing Zou, Yujia He, Yunfan Xiong, Yu-Wei Luo,
 602 Yu mei You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping Huang, Yao Li, Yi Zheng, Yuchen
 603 Zhu, Yunxiang Ma, Ying Tang, Yukun Zha, Yuting Yan, Zehui Ren, Zehui Ren, Zhangli Sha,
 604 Zhe Fu, Zhean Xu, Zhenda Xie, Zhen guo Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan,
 605 Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An Li, Ziwei Xie, Ziyang Song, Zizheng Pan,
 606 Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing rea-
 607 soning capability in llms via reinforcement learning. *ArXiv*, abs/2501.12948, 2025. URL
 608 <https://api.semanticscholar.org/CorpusID:275789950>.

609 Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang, Huchuan Lu, and Xinlong Wang. Unveiling
 610 encoder-free vision-language models. *ArXiv*, abs/2406.11832, 2024. URL <https://api.semanticscholar.org/CorpusID:270559398>.

611 Haiwen Diao, Xiaotong Li, Yufeng Cui, Yueze Wang, Haoge Deng, Ting Pan, Wenxuan Wang,
 612 Huchuan Lu, and Xinlong Wang. Eeve2: Improved baselines for encoder-free vision-language
 613 models. *ArXiv*, abs/2502.06788, 2025. URL <https://api.semanticscholar.org/CorpusID:276250278>.

614 Yan Duan, Marcin Andrychowicz, Bradly C. Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
 615 P. Abbeel, and Wojciech Zaremba. One-shot imitation learning. In *Neural Information Processing
 616 Systems*, 2017. URL <https://api.semanticscholar.org/CorpusID:8270841>.

617 Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing
 618 Li, Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d
 619 world. *ArXiv*, abs/2311.12871, 2023. URL <https://api.semanticscholar.org/CorpusID:265351495>.

620 Stephen James, Michael Bloesch, and Andrew J. Davison. Task-embedded control networks
 621 for few-shot imitation learning. *ArXiv*, abs/1810.03237, 2018. URL <https://api.semanticscholar.org/CorpusID:52942444>.

622 Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey
 623 Levine, and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learn-
 624 ing. *ArXiv*, abs/2202.02005, 2022. URL <https://api.semanticscholar.org/CorpusID:237257594>.

625 Edward Johns. Coarse-to-fine imitation learning: Robot manipulation from a single demonstra-
 626 tion. In *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 4613–4619, 2021.
 627 URL <https://api.semanticscholar.org/CorpusID:234482766>.

628 Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
 629 Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt: Scal-
 630 able deep reinforcement learning for vision-based robotic manipulation. *ArXiv*, abs/1806.10293,
 631 2018. URL <https://api.semanticscholar.org/CorpusID:49470584>.

632 Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
 633 Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language
 634 models. *ArXiv*, abs/2402.07865, 2024. URL <https://api.semanticscholar.org/CorpusID:267627175>.

635 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 636 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
 637 lis, P Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Ye Ma, Patrick Tree Miller, Jimmy
 638 Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Youngwoon Lee, Mar-
 639 ius Memmel, Sung Yul Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin Black,
 640 641 642 643 644 645 646 647

648 Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean-Pierre Mérat, Abdul Rehman, Pan-
 649 nag R. Sanketi, Archit Sharma, C. Blake Simpson, Quang Uyn Vng, Homer Rich Walke, Blake
 650 Wulfe, Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Zhao, Christopher Agia, Ro-
 651 han Baijal, Mateo Guaman Castro, Da Ling Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake,
 652 Ethan Paul Foster, Jensen Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu,
 653 Muhammad Zubair Irshad, Donovon Jackson, Charlotte Le, Yunshuang Li, Kevin Lin, Roy
 654 Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani, Daniel Morton, Tony Nguyen, Abigail
 655 O'Neill, Rosa Maria Scalise, Derick Seale, Victor Son, Stephen Tian, Emi Tran, Andrew Wang,
 656 Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani, Glen Berseth,
 657 Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek Gupta, Dinesh Jayaraman, Joseph J.
 658 Lim, Jitendra Malik, Roberto Mart'in-Mart'in, Subramanian Ramamoorthy, Dorsa Sadigh, Shu-
 659 ran Song, Jiajun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine, and Chelsea
 660 Finn. Droid: A large-scale in-the-wild robot manipulation dataset. *ArXiv*, abs/2403.12945, 2024.
 661 URL <https://api.semanticscholar.org/CorpusID:268531351>.

662 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 663 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag R. Sanketi, Quan Vuong, Thomas Kollar,
 664 Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
 665 Openvla: An open-source vision-language-action model. *ArXiv*, abs/2406.09246, 2024. URL
 666 <https://api.semanticscholar.org/CorpusID:270440391>.

667 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models:
 668 Optimizing speed and success. *ArXiv*, abs/2502.19645, 2025. URL <https://api.semanticscholar.org/CorpusID:276647709>.

669 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson,
 670 Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B.
 671 Girshick. Segment anything. 2023 IEEE/CVF International Conference on Computer Vi-
 672 sion (ICCV), pp. 3992–4003, 2023. URL <https://api.semanticscholar.org/CorpusID:257952310>.

673 Mengcheng Lan, Chaofeng Chen, Yiping Ke, Xinjiang Wang, Litong Feng, and Wayne Zhang. Prox-
 674 yclip: Proxy attention improves clip for open-vocabulary segmentation. In *European Conference
 675 on Computer Vision*, 2024. URL <https://api.semanticscholar.org/CorpusID:271843307>.

676 Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang, Fanyi Pu, and Ziwei Liu. Otterhd: A
 677 high-resolution multi-modality model. *ArXiv*, abs/2311.04219, 2023a. URL <https://api.semanticscholar.org/CorpusID:265043616>.

678 Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chi-Hou Cheang,
 679 Ya Jing, Weinan Zhang, Huaping Liu, Hang Li, and Tao Kong. Vision-language foundation
 680 models as effective robot imitators. *ArXiv*, abs/2311.01378, 2023b. URL <https://api.semanticscholar.org/CorpusID:264935429>.

681 Junyan Lin, Haoran Chen, Yue Fan, Yingqi Fan, Xin Jin, Hui Su, Jinlan Fu, and Xiaoyu Shen.
 682 Multi-layer visual feature fusion in multimodal llms: Methods, analysis, and best practices. 2025
 683 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4156–4166,
 684 2025. URL <https://api.semanticscholar.org/CorpusID:276903302>.

685 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tun-
 686 ing. *ArXiv*, abs/2304.08485, 2023. URL <https://api.semanticscholar.org/CorpusID:258179774>.

687 Haoyu Lu, Wen Liu, Bo Zhang, Bing-Li Wang, Kai Dong, Bo Liu (Benjamin Liu), Jingx-
 688 iang Sun, Tongzheng Ren, Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei
 689 Xu, Zhenda Xie, and Chong Ruan. Deepseek-vl: Towards real-world vision-language under-
 690 standing. *ArXiv*, abs/2403.05525, 2024. URL <https://api.semanticscholar.org/CorpusID:268297008>.

691 Lingchen Meng, Jianwei Yang, Rui Tian, Xiyang Dai, Zuxuan Wu, Jianfeng Gao, and Yu-
 692 Gang Jiang. Deepstack: Deeply stacking visual tokens is surprisingly simple and effective

702 for lmms. *ArXiv*, abs/2406.04334, 2024. URL <https://api.semanticscholar.org/CorpusID:270285696>.

703

704

705 Sicheng Mo, Thao Nguyen, Xun Huang, Siddharth Srinivasan Iyer, Yijun Li, Yuchen Liu, Abhishek
706 Tandon, Eli Shechtman, Krishna Kumar Singh, Yong Jae Lee, Bolei Zhou, and Yuheng Li. X-
707 fusion: Introducing new modality to frozen large language models. *ArXiv*, abs/2504.20996, 2025.
708 URL <https://api.semanticscholar.org/CorpusID:278171331>.

709 Nvidia, Johan Bjorck, Fernando Castaneda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linx-
710 iJimFan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyuan Jiang,
711 Jan Kautz, Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu,
712 Edith Llontop, Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed,
713 You Liang Tan, Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie,
714 Yinzhen Xu, Zhen-Teng Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao,
715 Ruijie Zheng, and Yuke Zhu. Gr00t n1: An open foundation model for generalist humanoid
716 robots. *ArXiv*, abs/2503.14734, 2025. URL <https://api.semanticscholar.org/CorpusID:277113335>.

717

718 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Q. Vo, Marc Szafraniec, Vasil Khali-
719 dov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Ass-
720 ran, Nicolas Ballas, Wojciech Galuba, Russ Howes, Po-Yao (Bernie) Huang, Shang-Wen Li,
721 Ishan Misra, Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Huijiao Xu, Hervé Jégou,
722 Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning ro-
723 bust visual features without supervision. *ArXiv*, abs/2304.07193, 2023. URL <https://api.semanticscholar.org/CorpusID:258170077>.

724

725 Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, P. Abbeel, and Jan Peters.
726 An algorithmic perspective on imitation learning. *Found. Trends Robotics*, 7:1–179, 2018. URL
727 <https://api.semanticscholar.org/CorpusID:53670210>.

728 Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexan-
729 der Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, Antonin Raffin, Ayzaan Wahid, Ben
730 Burgess-Limerick, Beomjoon Kim, Bernhard Schölkopf, Brian Ichter, Cewu Lu, Charles Xu,
731 Chelsea Finn, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Chuer Pan, Chuyuan
732 Fu, Coline Devin, Danny Driess, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dmitry Kalash-
733 nikov, Dorsa Sadigh, Edward Johns, Federico Ceola, Fei Xia, Freek Stulp, Gaoyue Zhou, Gau-
734 rav S. Sukhatme, Gautam Salhotra, Ge Yan, Giulio Schiavi, Hao Su, Haoshu Fang, Haochen
735 Shi, Heni Ben Amor, Henrik I Christensen, Hiroki Furuta, Homer Rich Walke, Hongjie Fang,
736 Igor Mordatch, Ilija Radosavovic, Isabel Leal, Jacky Liang, Jaehyung Kim, Jan Schneider, Jas-
737 mine Hsu, Jeannette Bohg, Jeff Bingham, Jiajun Wu, Jialin Wu, Jianlan Luo, Jiayuan Gu,
738 Jie Tan, Jihoon Oh, Jitendra Malik, Jonathan Tompson, Jonathan Yang, Joseph J. Lim, João
739 Silvério, Junhyek Han, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana
740 Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin
741 Zhang, Keyvan Majd, Krishan Rana, Krishna Parasuram Srinivasan, Lawrence Yunliang Chen,
742 Lerrel Pinto, Liam Tan, Lionel Ott, Lisa Lee, Masayoshi Tomizuka, Maximilian Du, Michael
743 Ahn, Mingtong Zhang, Mingyu Ding, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim,
744 Muhammad Zubair Irshad, Naoaki Kanazawa, Nicklas Hansen, Nicolas Manfred Otto Heess,
745 Nikhil J. Joshi, Niko Suenderhauf, Norman Di Palo, Nur Muhammad Mahi Shafullah, Oier
746 Mees, Oliver Kroemer, Pannag R. Sanketi, Paul Wohlhart, Peng Xu, Pierre Sermanet, Priya
747 Sundaresan, Quan Ho Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Russell Mendonca, Rutav
748 Shah, Ryan Hoque, Ryan C. Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Sherry
749 Moore, Shikhar Bahl, Shivin Dass, Shuran Song, Sichun Xu, Siddhant Haldar, Simeon Adebola,
750 Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker, Stephen Tian, Sudeep Dasari,
751 Suneel Belkhale, Takayuki Osa, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Tianhe Yu,
752 Tianli Ding, Todor Davchev, Tony Zhao, Travis Armstrong, Trevor Darrell, Vidhi Jain, Vincent
753 Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiaolong Wang, Xinghao
754 Zhu, Xuanlin Li, Yao Lu, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Ying Xu, Yixuan Wang,
755 Yonatan Bisk, Yoonyoung Cho, Youngwoon Lee, Yuchen Cui, Yueh hua Wu, Yujin Tang, Yuke
Zhu, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zhuo Xu, and Zichen Jeff Cui. Open x-
embodiment: Robotic learning datasets and rt-x models. *ArXiv*, abs/2310.08864, 2023. URL
<https://api.semanticscholar.org/CorpusID:263626099>.

756 Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and generalization of
 757 motor skills by learning from demonstration. In *2009 IEEE International Conference on Robotics
 758 and Automation*, pp. 763–768, 2009. doi: 10.1109/ROBOT.2009.5152385.

759

760 Qwen Team. Qwen3-vl: Sharper vision, deeper thought, broader action, 09 2025. URL <https://qwen.com/blog/qwen3-vl>. Accessed: 2025-09-24.

761

762 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 763 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 764 Sutskever. Learning transferable visual models from natural language supervision. In *Inter-
 765 national Conference on Machine Learning*, 2021. URL <https://api.semanticscholar.org/CorpusID:231591445>.

766

767

768 Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic ma-
 769 nipulation. *ArXiv*, abs/2109.12098, 2021. URL <https://api.semanticscholar.org/CorpusID:237396838>.

770

771

772 Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task trans-
 773 former for robotic manipulation. *ArXiv*, abs/2209.05451, 2022. URL <https://api.semanticscholar.org/CorpusID:252199474>.

774

775 Octo Model Team, Dibya Ghosh, Homer Rich Walke, Karl Pertsch, Kevin Black, Oier Mees,
 776 Sudeep Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Pan-
 777 nag R. Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
 778 Octo: An open-source generalist robot policy. *ArXiv*, abs/2405.12213, 2024. URL <https://api.semanticscholar.org/CorpusID:266379116>.

779

780

781 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 782 shut? exploring the visual shortcomings of multimodal llms. *2024 IEEE/CVF Conference on
 783 Computer Vision and Pattern Recognition (CVPR)*, pp. 9568–9578, 2024. URL <https://api.semanticscholar.org/CorpusID:266976992>.

784

785

786 Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 787 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Neural Information Processing
 788 Systems*, 2017. URL <https://api.semanticscholar.org/CorpusID:13756489>.

789

790 Homer Rich Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Maximilian Du, Chongyi Zheng,
 791 Tony Zhao, Philippe Hansen-Estruch, Quan Ho Vuong, Andre Wang He, Vivek Myers, Kuan
 792 Fang, Chelsea Finn, and Sergey Levine. Bridgedata v2: A dataset for robot learning at scale.
 793 In *Conference on Robot Learning*, 2023. URL <https://api.semanticscholar.org/CorpusID:261100981>.

794

795 Wayve. LINGO-2: Driving with natural language. <https://wayve.ai/thinking/lingo-2-driving-with-language/>, 2024. URL <https://wayve.ai/thinking/lingo-2-driving-with-language/>. Accessed: 2024-05-01.

796

797

798 Huanjin Yao, Wenhao Wu, Taojiannan Yang, Yuxin Song, Mengxi Zhang, Haocheng Feng, Yi-
 799 fan Sun, Zhiheng Li, Wanli Ouyang, and Jingdong Wang. Dense connector for mllms. *ArXiv*,
 800 abs/2405.13800, 2024. URL <https://api.semanticscholar.org/CorpusID:269982976>.

801

802

803 Maryam Zare, Parham Mohsenzadeh Kebria, Abbas Khosravi, and Saeid Nahavandi. A sur-
 804 vey of imitation learning: Algorithms, recent developments, and challenges. *IEEE Transac-
 805 tions on Cybernetics*, 54:7173–7186, 2023. URL <https://api.semanticscholar.org/CorpusID:261557281>.

806

807 Andy Zeng, Peter R. Florence, Jonathan Tompson, Stefan Welker, Jonathan M. Chien, Maria Attar-
 808 ian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and Johnny Lee. Transporter
 809 networks: Rearranging the visual world for robotic manipulation. In *Conference on Robot Learn-
 810 ing*, 2020. URL <https://api.semanticscholar.org/CorpusID:225076003>.

810
811
812 Table 6: Comparison of task performance with different camera views
813

View	Spatial	Object	Goal	10	Average Scores
Both views (SigLIP2)	98.8	99.4	97.6	96.8	98.15
Third-person view only (SigLIP2)	95.6	96.6	95	84.4	92.9
Both views (DINOv2)	98.2	99.6	97	94	97.2
Third-person view only (DINOv2)	96.4	97.8	96	84.4	93.65

819
820 Table 7: Comparison of L1 and diffusion loss
821

Loss	Spatial	Object	Goal	10	Average Scores
L1 Loss (SigLIP2)	98.8	99.4	97.6	96.8	98.15
Diffusion Loss (SigLIP2)	99	99.2	97.2	91.4	96.7
L1 Loss (DINOv2)	98.2	99.6	97	94	97.2
Diffusion Loss (DINOv2)	98.8	98.8	96.4	91	96.25
L1 Loss(SigLIP2 cotraining)	99.4	99.6	97.6	96.2	98.2
Diffusion Loss(SigLIP2 cotraining)	98.8	99.4	98	94.4	97.65

830
831 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
832 image pre-training. *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*,
833 pp. 11941–11952, 2023. URL <https://api.semanticscholar.org/CorpusID:257767223>.

834
835 Tony Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
836 manipulation with low-cost hardware. *ArXiv*, abs/2304.13705, 2023. URL <https://api.semanticscholar.org/CorpusID:258331658>.

838
839 A EXPERIMENTS ON TRAINING CONFIGURATIONS

840 A.1 EXPERIMENTS ON CAMERA VIEWS

841
842 As shown in Table 6, the performance between using both camera views (third-person and wrist)
843 and only the third-person camera view is compared, with using both views demonstrating superior
844 task performance for VAT. We therefore utilize both camera views in all LIBERO experiments.

845 A.2 EXPERIMENTS ON LOSS FUNCTION

846
847 As shown in Table 7, the performance between L1 loss and diffusion loss is compared, with L1
848 loss providing sufficient robustness. Accordingly, we select the L1 loss as VAT’s loss function. We
849 further investigate the efficacy of VAT within a co-training paradigm. By training a single VAT
850 model on all four LIBERO subtasks, the results presented in Table 7 demonstrate its strong capacity
851 for learning a broader range of robot policies.

852 A.3 EXPERIMENTS ON TRAINABLE PARAMETERS

853
854 As shown in Table 8, the performance between training all parameters and freezing the ViT pa-
855 rameters is comparable, with training all parameters showing a slight edge. We therefore keep all
856 parameters trainable during training.

857 A.4 COMPARISION ON LEARNING RATE

858
859 As shown in Table 9, we try different learning rate for our VAT on LIBERO-10. results show that
860 setting learning rate to 2e-5 is suitable for training.

864
865
866
867
868
869
870

Table 8: Comparison on Trainable Parameters

View	Spatial	Object	Goal	10	Average Scores
Train all parameters	98.8	99.4	97.6	96.8	98.15
Freeze ViT parameters	98.8	98.6	97.8	89.8	96.25

871
872
873
874
875
876

Table 9: Comparison on Learning Rate

Learning rate	2e-5	5e-5	1e-4
LIBERO-10	96.8	94.4	92.4

B VISUALIZATIONS OF ATTENTION HEATMAP

Figure 4 provides comprehensive examples that illustrate the attention flow in both SigLip 2-based and DinoV2-based VAT. In the early layers of the VAT, the heatmaps outline clear object contours from the original images. This suggests that the vision tokens in these layers, corresponding to different objects or regions, contain distinctive features. As a result, the attention patterns of action tokens toward vision tokens exhibit a strong correlation with specific objects. In contrast, in the deeper layers of VAT, the attention pattern exhibits irregular attention sink phenomena. This suggests a shift in the characteristics of visual representation, where, after extensive computation, visual information accumulates preferentially on certain background tokens. The heatmaps reveal the attention patterns present in the VAT, providing evidence for how VAT leverages visual representations from different layers to support robot policy learning.

C RESULTS ON ROBOTWIN BENCHMARK

To further assess the generalizability of VAT on complex, dual-arm manipulation tasks, we extend our evaluation to the RoboTwin benchmark. For the VAT implementation, we set the action chunk size to 25 and train the model for 100 epochs on each individual task, maintaining all other hyperparameters consistent with our default configuration. RoboTwin provides four camera views, so we use main camera views and views from left and right arms. For computational efficiency, we report the performance of the final checkpoint. Following the standard RoboTwin protocol, all policies are trained on the Aloha-AgileX embodiment utilizing 50 demo clean demonstrations per task. We report the success rate averaged over 100 evaluation episodes under the demo clean (Easy) setting. The results of the other models are obtained from Chen et al. (2025). The performances of VAT and other models are shown in Table 10.

D LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript. Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or experimental design. All research concepts, ideas, and analyses were developed and conducted by the authors. The contributions of the LLM were solely focused on improving the linguistic quality of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.

916
917

918
919
920
921
922

Table 10: Performance Comparison on RoboTwin

Task	RDT	Pi0	ACT	DP	VAT
Adjust Bottle	81%	90%	97%	97%	91%
Beat Block Hammer	77%	43%	56%	42%	16%
Blocks Ranking RGB	3%	19%	1%	0%	0%
Blocks Ranking Size	0%	7%	0%	1%	31%
Click Alarmclock	61%	63%	32%	61%	95%
Click Bell	80%	44%	58%	54%	94%
Dump Bin Bigbin	64%	83%	68%	49%	72%
Grab Roller	74%	96%	94%	98%	96%
Handover Block	45%	45%	42%	10%	0%
Handover Mic	90%	98%	85%	53%	92%
Hanging Mug	23%	11%	7%	8%	16%
Lift Pot	72%	84%	88%	39%	93%
Move Can Pot	25%	58%	22%	39%	57%
Move Pillbottle Pad	8%	21%	0%	1%	10%
Move Playingcard Away	43%	53%	36%	47%	85%
Move Stapler Pad	2%	0%	0%	1%	1%
Open Laptop	59%	85%	56%	49%	84%
Open Microwave	37%	80%	86%	5%	30%
Pick Diverse Bottles	2%	27%	7%	6%	14%
Pick Dual Bottles	42%	57%	31%	24%	25%
Place A2B Left	3%	31%	1%	2%	12%
Place A2B Right	1%	27%	0%	13%	9%
Place Bread Basket	10%	17%	6%	14%	11%
Place Bread Skillet	5%	23%	7%	11%	23%
Place Burger Fries	50%	80%	49%	72%	66%
Place Can Basket	19%	41%	1%	18%	1%
Place Cans Plasticbox	6%	34%	16%	40%	32%
Place Container Plate	78%	88%	72%	41%	82%
Place Dual Shoes	4%	15%	9%	8%	10%
Place Empty Cup	56%	37%	61%	37%	14%
Place Fan	12%	20%	1%	3%	17%
Place Mouse Pad	1%	7%	0%	0%	3%
Place Object Basket	33%	16%	15%	15%	48%
Place Object Scale	1%	10%	0%	1%	5%
Place Object Stand	15%	36%	1%	22%	28%
Place Phone Stand	15%	35%	2%	13%	30%
Place Shoe	35%	28%	5%	23%	49%
Press Stapler	41%	62%	31%	6%	48%
Put Bottles Dustbin	21%	54%	27%	22%	39%
Put Object Cabinet	33%	68%	15%	42%	28%
Rotate QRcode	50%	68%	1%	13%	28%
Scan Object	4%	18%	2%	9%	9%
Shake Bottle Horizontally	84%	99%	63%	59%	89%
Shake Bottle	74%	97%	74%	65%	93%
Stack Blocks Three	2%	17%	0%	0%	0%
Stack Blocks Two	21%	42%	25%	7%	69%
Stack Bowls Three	51%	66%	48%	63%	51%
Stack Bowls Two	76%	91%	82%	61%	59%
Stamp Seal	1%	3%	2%	2%	30%
Turn Switch	35%	27%	5%	36%	48%
Average	34.50%	46.42%	29.74%	28.04%	40.66%

971

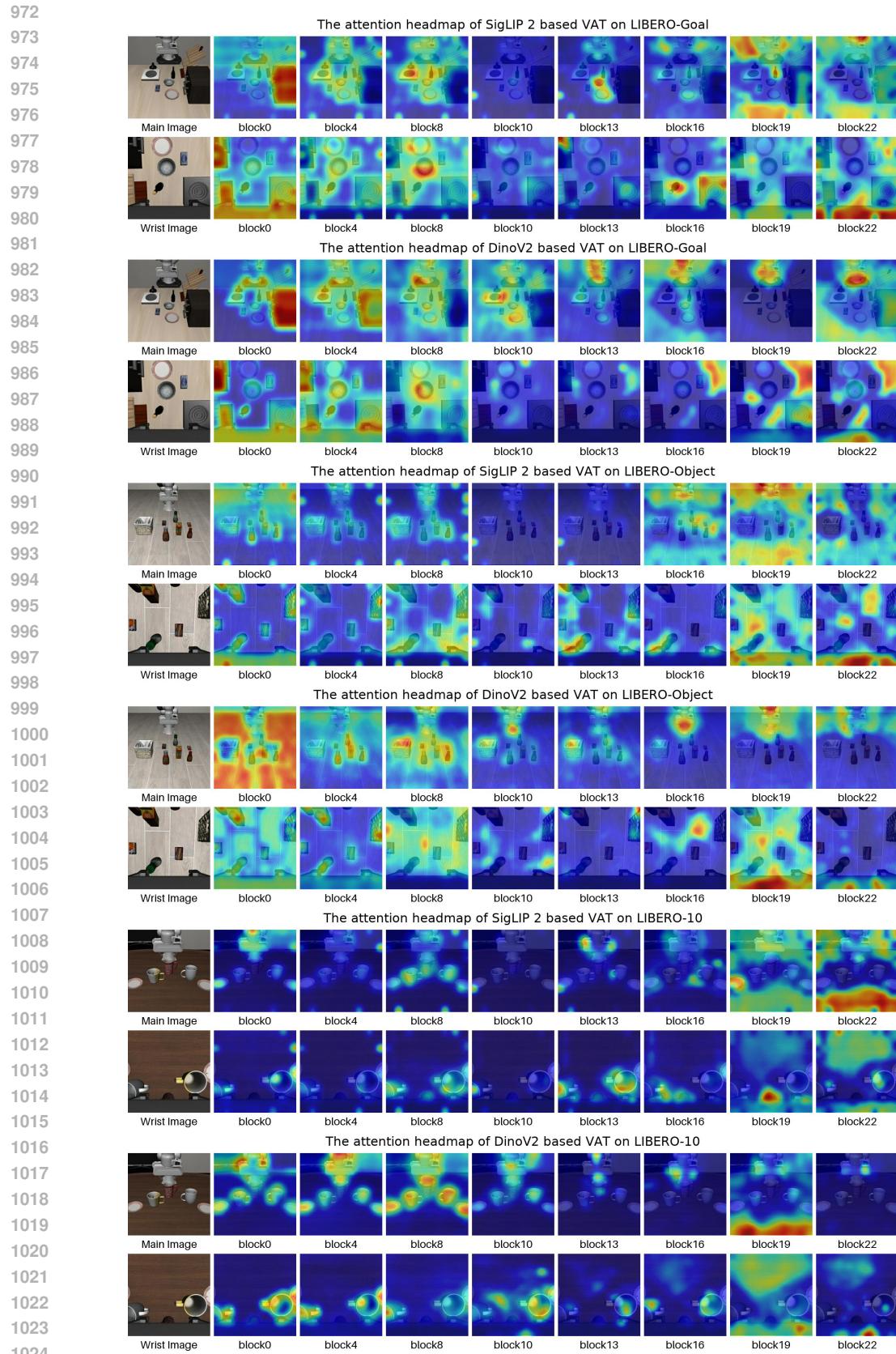


Figure 4: Attention heatmap of VAT on LIBERO-Object, Goal and 10