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ABSTRACT

In robot learning, Vision Transformers (ViTs) are standard for visual perception,
yet most methods discard valuable information by using only the final layer’s fea-
tures. We argue this provides an insufficient representation and propose the Vision
Action Transformer (VAT), a novel architecture that is extended from ViT and un-
locks the full feature hierarchy of ViT. VAT processes specialized action tokens
with visual features across all transformer layers, enabling a deep and progres-
sive fusion of perception and action generation. On a suite of simulated manip-
ulation tasks, VAT achieves a 98.15% average success rate across four LIBERO
benchmarks, establishing a new state-of-the-art by outperforming prior methods
like OpenVLA-OFT. Our work presents not only a powerful model for imitation
learning but also demonstrates the critical importance of leveraging the complete
”representation trajectory” of vision models to advance robotic policy.

1 INTRODUCTION

Embodied Artificial Intelligence (Embodied AI) represents a frontier research domain that bridges
artificial intelligence with robotics, emphasizing the integration of physical interaction as a core
component of intelligent behavior (Kim et al., 2025; Nvidia et al., 2025). Unlike traditional AI sys-
tems that operate solely in digital spaces (Vaswani et al., 2017; DeepSeek-AI et al., 2025), embodied
agents actively perceive and interact with their environments, enabling them to learn, adapt, and ex-
ecute tasks in dynamic physical or simulated worlds. In Embodied AI, imitation learning has been
widely explored (Zare et al., 2023; Osa et al., 2018). Human-collected robot operation data provides
high-quality demonstration trajectories for deep learning models to learn.

Currently robot imitation learning predominantly adopts two training paradigms. The first paradigm
focuses on training task-specific robotic policies, exemplified by architectures such as Diffusion
Policy (Chi et al., 2023) or Action Chunking with Transformers (ACT) (Zhao et al., 2023). These
models integrate vision encoders with policy networks to decode robotic actions from visual obser-
vations. The second paradigm, termed Vision-Language-Action (VLA) models (Kim et al., 2024;
2025; Black et al., 2024), combines visual perception capabilities with the robust generalization abil-
ities of Large Language Models (LLMs). VLA approaches aim to achieve generalizable robotic ma-
nipulation capabilities when trained on sufficient imitation learning datasets (Padalkar et al., 2023).

Both paradigms rely fundamentally on visual perception for task execution. Leveraging Vision
Transformers(ViT), such as SigLIP (Zhai et al., 2023) and DINOv2 (Oquab et al., 2023), encodes
visual observations into visual features. These features subsequently condition action generation.
However, a critical concern arises: features from such models may inadequately encode fine-grained
visual details (e.g., object geometry or precise spatial attributes), potentially impeding environmental
comprehension and compromising action precision.

This concern originates from the very nature of a ViT’s feature generation process. ViT is composed
of a sequence of stacked Transformer layers. During the computation of ViT, the representation
of the visual input is progressively transformed and enriched at each layer, through which each
layer yields a new representation derived from the previous one, ultimately culminating in a final
output. The representations produced sequentially across layers can be can be conceptualized as a
“representation trajectory” which reflects the model’s evolving interpretation of the visual input.
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During the training of a ViT, the final representation(the visual features given by the last transformer
layer) is explicitly optimized by minimizing a loss function, as it is directly used to generate a pre-
diction that is compared against the ground truth. In contrast, the intermediate representations along
the trajectory are only updated indirectly via backpropagation. For instance, in SigLIP, the final rep-
resentation is optimized to align with the semantic representation of a corresponding text description
via a contrastive loss. This training objective enables SigLIP to achieve excellent performance on
zero-shot image classification tasks when provided with suitable text templates. Similarly, in DI-
NOv2, the final representation is optimized through a knowledge distillation loss, which aligns the
student model’s output with that of a teacher model. This self-supervised methodology allows DI-
NOv2 to produce powerful, general-purpose representations well-suited for dense prediction tasks
such as segmentation and depth estimation.

Despite their effectiveness, the final representations from models like SigLIP and DINOv2 exhibit
critical limitations: SigLIP struggles to preserve pixel-level detail, while DINOv2 can discard local,
low-level information. Conversely, representations from earlier layers often retain these valuable
characteristics. This leads us to posit that relying solely on the final ViT layer provides a static and
impoverished representation, discarding a wealth of information crucial for robotic tasks. Yet, the
conventional paradigm in robot learning is to extract only these final-layer features. This critical
oversight serves as the primary motivation for our work: to enhance robot policy performance by
exploiting the entire representation trajectory of a ViT.

Guided by this motivation, we propose Vision Action Transformer (VAT), a novel robot policy model
that elegantly leverages visual representations in every transformer layer of ViT to elevate the upper
performance bounds of imitation learning.

Notably, to achieve VAT, we introduce a simple structural extension to the ViT architecture. We
introduce additional tokens (termed action tokens) to the sequence of input vision tokens from ViT’s
patch embedding layer, and process the combined sequence through the VAT. During the forward
computation, vision tokens are processed by the vision module, which uses the original ViT pa-
rameters, while action tokens are handled by the action module, which shares the same structure as
the vision modules but is initialized with new parameters, enabling them to attend to vision tokens
via cross-attention. Subsequently, the processed action tokens are projected by a lightweight ac-
tion decoder head to output robot actions. Experimental validation on robot simulation benchmarks
demonstrates that VAT significantly enhances robot policy capacity under limited training iterations.

Our contributions are summarized as follows:

1. We identify and validate the importance of leveraging the full hierarchy of visual representations
throughout the ViT architecture for excellent performance on robot learning tasks.

2. We propose VAT, a novel and simple policy architecture. By achieving state-of-the-art perfor-
mance on the LIBERO benchmark suite, we demonstrate the superior potential of VAT.

2 RELATED WORKS

Imitation learning is a prominent methodology for robot manipulation, enabling models to learn
from expert demonstrations and control robots for specific tasks. Research in this domain has pro-
gressed along several key directions. For instance, Dasari & Gupta (2020); Duan et al. (2017);
James et al. (2018) emphasize multi-task or few-shot learning, while Jang et al. (2022); Brohan
et al. (2022); Shridhar et al. (2021; 2022) leverage multimodal information such as depth maps or
point clouds. Still Pastor et al. (2009); Zeng et al. (2020); Johns (2021); Shridhar et al. (2022) fo-
cus on designing specialized model architectures. A representative work in this area is ACT, which
introduces a simple yet effective framework implemented on the Aloha platform that enables stable
training and inference. A recent trend in robot policy learning involves scaling data, a paradigm
derived from the scaling laws observed in large language models (Padalkar et al., 2023; Brohan
et al., 2022; Walke et al., 2023; Khazatsky et al., 2024; Kalashnikov et al., 2018). For example,
Team et al. (2024) is a generalist policy trained on large-scale data that can control multiple robots
out-of-the-box and supports flexible fine-tuning to new robot setups. Furthermore, many studies
have explored the use of Vision-Language Models (VLMs) for robotics, directly fine-tuning large
pretrained VLMs to predict robot actions (Padalkar et al., 2023; Brohan et al., 2023; AI et al., 2024;
Wayve, 2024; Huang et al., 2023; Li et al., 2023b). Such models are often referred to as Vision-
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Figure 1: VAT architecture within a single layer. A standard ViT block (Vision Module, left) pro-
cesses vision tokens. In parallel, a new Action Module (right) updates action tokens by cross-
attention to vision tokens. Task-specific information is injected via a FiLM layer, and the action
module mirrors the vision module’s structure but with its own trainable parameters.

Language-Action (VLA) models, as they fuse robot control actions directly into VLM backbones.
The use of a generic VLM architecture, rather than one custom-made for robot policy, allows robot
policies to benefit from the rapid improvements in VLM training.

Imitation learning for robotic policies has achieved significant progress in various aspects, including
data and model architecture. However, the fundamental principle remains unchanged: generating
appropriate robotic actions based on visual observations. Consequently, the perception of visual
scenes is a critical component of imitation learning. Current approaches typically employ ViT, such
as SigLIP, or DINO (Caron et al., 2021), to extract visual representations that serve as conditional
inputs for generating robot actions. A common method for acquiring these representations involves
extracting the feature map from the final layer of a ViT (Karamcheti et al., 2024; Liu et al., 2023).
While effective, this approach raises concerns that such a representation may not sufficiently capture
all the information required for downstream robotic tasks (Lan et al., 2024).

The field of Vision-Language Models (VLMs) has recognized the limitations of single-layer features
and has explored several avenues to obtain richer visual representations. One common strategy is to
fuse features from multiple, distinct ViT encoders. For instance, Tong et al. (2024) utilizes a Mixture
of Features to integrate visual features from CLIP-ViT (Radford et al., 2021) and DINOv2, while
Lu et al. (2024) employs a hybrid vision encoder that combines SigLIP-L (Zhai et al., 2023) for
low-resolution inputs and SAM-B (Kirillov et al., 2023) for high-resolution inputs. A more closely
related strategy, however, is to fuse features from multiple layers within a single ViT. This multi-
layer fusion typically follows two main schemes: external and internal (Lin et al., 2025). External
fusion integrates features from different ViT layers before they are passed to the language model.
For example, Yao et al. (2024) directly concatenates features from multiple layers, while Cao et al.
(2024) uses a cross-attention module where final-layer features query shallower ones to extract fine-
grained details. While effective, this approach faces a direct trade-off: richer information from
more layers comes at the cost of increased computational load due to longer vision token sequences.
Internal fusion, in contrast, injects multi-layer visual features at different layers within the LLM
backbone (Meng et al., 2024). This avoids increasing the input sequence length, allowing models
like Qwen3-VL (Qwen Team, 2025) to progressively incorporate hierarchical visual information.
This principle of progressive, multi-layer integration aligns closely with the insight behind our VAT
architecture. However, both external and internal fusion share a fundamental limitation: they require
a heuristic or costly search process to select which layers to fuse. This arbitrary choice risks using
a suboptimal set of features. Our VAT framework elegantly sidesteps this issue entirely. By design,
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VAT integrates visual representations from every layer, systematically leveraging the full feature
hierarchy without the need for manual layer selection or extensive ablation studies.

Another branch of VLM research involves native multi-modal models, which omit a separate ViT
entirely (Diao et al., 2025; Chen et al., 2024; Diao et al., 2024). In these architectures, visual and
textual features are processed jointly within a single, unified transformer, with each layer containing
parameters for both modalities. However, this unified design comes at a significant cost: it forgoes
the powerful representations from pre-trained ViTs, as the vision processing parameters are typi-
cally trained from scratch or shared with the language model (Mo et al., 2025; Li et al., 2023a).
Nevertheless, these models offer an inspiring paradigm: the concurrent, layer-wise refinement of vi-
sual features as they interact with another modality. This contrasts sharply with traditional pipelines
where a static visual representation is fully computed first and only then integrated downstream.
This principle of concurrent interaction is the key insight we adapt in VAT. However, instead of
discarding the ViT, VAT implements this paradigm within the vision backbone itself. It facilitates a
progressive, layer-by-layer interaction between the evolving visual representation and the robot’s ac-
tion modality. In doing so, VAT captures the best of both worlds: the powerful, pre-trained features
of a ViT and the dynamic, interactive processing of layer-wise visual features.

3 METHOD

We introduce VAT, an architectural advancement built upon ViT. As illustrated in Figure 1, VAT
extends the standard ViT framework by integrating a specialized action module for robot learning,
while retaining the original ViT’s core visual representation capabilities. Specifically, within each
layer, the original ViT components are kept as vision modules, and we introduce new action modules
that are identical in structure but have their own randomly initialized parameters. After extension,
VAT processes a concatenated sequence of vision tokens and action tokens as input. In vision mod-
ule, vision token processing within each transformer layer follows this computational paradigm:

xvision
′ = xvision +Attention

(
LayerNorm1(xvision)

)
(1)

xvisionout = xvision
′ +MLP

(
LayerNorm2(xvision

′)
)

(2)

Action tokens are processed by the action module, interacting with vision tokens via cross-attention
mechanisms. Following the final transformer layer, the output action tokens are decoded by an
action prediction head to produce executable robot actions. The decoded value of each action token
corresponds to a specific dimension of an individual action within the action chunk.

VAT is optimized using an L1 loss between the predicted and target action values. The length of
each action token is K × L, where: K denotes the chunk size (number of actions in an action chunk),
L represents the dimensionality of each action. We set K to 8. For the LIBERO dataset L is 7,
where the first six dimensions represent the delta position and rotation of the end effector, and the
last dimension indicates the open / closed gripper state. In experiments, we initialize each action
token as a zero vector and add trainable positional embeddings to each token. To enable the model
to be aware of the task type, we assign a unique task token to each task. Within each layer of the
VAT, we employ Feature-wise Linear Modulation (FiLM) to generate task-specific scaling factors
from the task token. These factors are then used to modulate the action tokens. This mechanism
ensures that the model is explicitly conditioned on the type of task it is currently performing. The
FiLM computation process is as follows:

tembed = TaskEmbeddingLayer (task id) (3)

Θfilm = FilmModulator (tembed) (4)

γ, β = Split (Θfilm, dim = 2) (5)

xaction = xaction ⊙ (γ + 1) + β (6)
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After FiLM, action token processing within each transformer layer follows the computational
paradigm below:

xaction
′ = xaction+

CrossAttention (LayerNorm3(xaction),LayerNorm1(xvision))
(7)

xactionout = xaction
′ +MLPaction (LayerNorm4(xaction

′)) (8)

It is noteworthy that xvision in equation 1 and equation 7 refers to the vision tokens from adjacent
lower layer. This implies that the action tokens at a given layer interact with the vision tokens from
the preceding layer via cross-attention. When VAT employs diffusion loss instead of L1 loss, it
becomes necessary to incorporate diffusion timestep information. In the first layer of the VAT, we
concatenate a diffusion timestep embedding token to the xaction token sequence. This allows the
action tokens to acquire timestep information during cross-attention. However, since xvision in equa-
tion 7 serves as the query and key, the resulting output xaction

′ from the cross-attention operation
does not retain the timestep token. To ensure the diffusion timestep information propagates explic-
itly through all layers, we also concatenate the timestep token to the xaction token sequence in the
first layer. As a result, the timestep token remains present in the xaction after cross-attention. The
same approach is applied for incorporating robot proprioceptive information: we project the propri-
oception data into a token and concatenate it with xaction. These tokens are referred as extra tokens
in Figure 1. Through this approach, we properly integrate essential information required during
training into the computational process of VAT.

4 EXPERIMENTS

To comprehensively evaluate the performance of VAT, we conduct experiments on simulated bench-
marks. We selected LIBERO, which consists of four sub-benchmarks, each comprising 10 distinct
tasks. We first performed a series of experiments to determine the optimal training configurations for
VAT. Subsequently, our results on LIBERO demonstrate that VAT achieves state-of-the-art success
rates, outperforming other VLA models without requiring pre-training on robot data.

4.1 EXPERIMENTAL CONFIGURATION OF VAT

From the numerous transformer-based vision foundation models available, we select SigLIP 2 and
DINOv2 to serve as the backbone for our VAT. We select the LIBERO benchmark to evaluate VAT’s
performance on a suite of robot manipulation tasks. LIBERO is composed of four distinct sub-
benchmarks, each designed to test a specific capability: LIBERO-Spatial assesses the ability to
generalize to new spatial arrangements of objects; LIBERO-Object evaluates the transfer of manip-
ulation skills across visually distinct but functionally similar objects; LIBERO-Goal tests the adap-
tation of behaviors and action sequences to achieve different outcomes; and LIBERO-10 measures
the ability to execute long-horizon tasks.

We adopt the following training configuration as our default setup. Unless stated otherwise, all ex-
periments use these settings. Specifically, we employ a cosine learning rate scheduler with an initial
rate of 2e-5 and a global batch size of 128, distributed across 4 NVIDIA A100 GPUs. All model pa-
rameters are set as trainable. For input, we utilize both the third-person and wrist camera views from
the LIBERO dataset. The L1 loss function is selected for optimization. Ablation studies analyzing
the impact of camera views, loss functions, and other configurations are provided in appendix A.

We follow a rigorous evaluation protocol. For each LIBERO benchmark (Spatial, Goal, Object, and
10), we train VAT for 100 epochs, saving a checkpoint every 10 epochs (yielding 10 checkpoints).
Consistent with the OpenVLA-OFT protocol, we evaluate each checkpoint over 500 episodes and
report the success rate of the best-performing checkpoint. The comparative results of VAT against
other models on the LIBERO benchmark are presented in Table 1.

4.2 MODEL LAYER SKIPPING

The key innovation of our VAT is its ability to leverage visual features from every layer of the ViT to
enhance the robot policy. This allows the policy to perceive visual input through a variety of repre-
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Table 1: Comparison of different models
Spatial Object Goal 10 Average Scores

Diffusion Policy (scratch) 78.3 92.5 68.3 50.5 72.4
Octo (fine-tuned) 78.9 85.7 84.6 51.1 75.1
DiT Policy (fine-tuned) 84.2 96.3 85.4 63.8 82.4
π0 (fine-tuned) 96.8 98.8 95.8 85.2 94.2
OpenVLA-OFT (fine-tuned) 97.6 98.4 97.9 94.5 97.1
VAT (default setup) 98.8 99.4 97.6 96.8 98.15

The scores for models in Table 3 except our VAT are cited directly from Kim et al. (2025).
“Scratch” refers to training the Diffusion Policy solely on the LIBERO dataset. “Fine-
tuned” indicates that the models are initialized with pre-trained weights and then fine-tuned
on LIBERO.

Figure 2: Results of VAT Layer Skipping Experiments

sentations, which capture both fine-grained details and high-level semantics. And a natural question
is: does the policy require holistic visual features from all layers to maximize performance, or could
skipping the features from later layers offer a better balance between efficiency and robustness?

To investigate this, we conduct layer-skipping experiments using SigLIP 2 and DINOv2 as back-
bones. Specifically, for a selected final layer, we extract the action tokens in this layer and feed them
directly into the action decoder head. In this configuration, the policy only benefits from visual fea-
tures up to and including the selected final layer. Figure 1 compares the performance of VAT when
using different final layers, with experiments conducted on LIBERO-10 using SigLIP 2 and DINOv2
as backbones. The results demonstrate that selecting a deeper layer as the final layer tends to yield
better performance for VAT in learning robot policies, which can be attributed to the fact that deeper
layers enable VAT to perceive richer visual features. However, even when very shallow layers are
selected, the model still achieves success rates exceeding 85% while reducing the training time by 5
to 10 times. This remarkable performance indicates that the visual features extracted from shallow
layers of ViT—including the first layer—already provide sufficiently informative representations for
VAT to interpret robot observations and generate actions. Thus, through this layer-skipping exper-
iment, we further confirm that features from different layers of ViT all possess representation that
could enhance robot policy learning.
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Figure 3: Attention heatmap of VAT on LIBERO-Spatial

4.3 ATTENTION HEATMAP VISUALIZATION

We claim that the visual features from different layers of a ViT exhibit distinct properties, all of
which are beneficial for policy learning. To visually illustrate these differences, we visualize the
attention scores of multiple layers as heatmaps. Specifically, we extract the attention scores where
action tokens serve as the query and vision tokens as the key. This process yields an attention
score tensor of shape [H, N, L] for each layer, where H represents the number of attention heads,
N represents the number of action tokens and L denotes the number of vision tokens, with each
vision token corresponding to a patch in the image. To derive a single attention value for each patch,
we average the attention scores from all attention heads and action tokens corresponding to that
patch. These averaged scores are then used to generate a heatmap, where higher values correspond
to lighter colors. For enhanced visual clarity, we apply bicubic interpolation to upscale the heatmap
and overlay to the original image. These heatmaps reveal the underlying mechanisms of token
interaction and information flow during the model’s forward computation, explicitly revealing the
patterns by which it interprets and processes data.

Figure 3 visualizes the attention flow within the SigLIP 2 and DinoV2 based VAT. The heatmap of
SigLIP 2 illustrates a clear “focus-then-disperse” pattern. VAT initially focus distributedly across
the scene, but as information propagates throught the network, its focus sharpens and converges on
the key object, and then disperses to a more global view in final layer. The heatmap of DinoV2
Exhibites a remarkably different focus: VAT demonstrates a tendency for its attention to “sink” into
the background, focusing on task-irrelevant tokens. This highlights the significant representational
discrepancy of DinoV2 and SigLIP 2, which in turn affects how VAT interprets visual information
and process action tokens. More visualizations are presented in Appendix B.

4.4 COMPREHENSIVE ABLATION AND GENERALIZATION ANALYSIS

To rigorously analyze the impact of various architectural design choices and validate the robustness
of our approach, we conduct a comprehensive set of ablation studies in this section. To ensure a fair
and consistent comparison, unless otherwise specified, all following experiments utilize SigLIP 2 as
the visual backbone, employ L1 loss for optimization, and leverage visual observations from both
camera views.

Necessity of Full Hierarchy vs. Last Layer. A core premise of VAT is that intermediate “repre-
sentation trajectories” contain critical information lost in the final layer. To validate this, we train

7
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Table 2: Comparison of VAT and baseline methods

Spatial Object Goal 10 Average
VAT 98.8 99.4 97.6 96.8 98.15
baseline 99.2 94.2 98.2 74.6 91.55

Table 3: Ablation on Task Conditioning Mechanisms (%)

Spatial Object Goal 10 Average
VAT 98.8 99.4 97.6 96.8 98.15
No FiLM (No Task Info) 89.8 99.4 8.4 83.8 70.35
Task embedding 98.2 99.2 97.4 93.4 97.05

a baseline model that uses visual features exclusively from the second-to-last layer of the Vision
Transformer (ViT) backbone—consistent with the approach of Kim et al. (2025)—while keeping
the action module unchanged. As a result, in every layer of VAT, the action tokens perform cross-
attention with visual features drawn from the second-to-last layer of the ViT. As shown in Table 2 ,
the Last-Layer baseline suffers a significant performance drop (98.15% → 91.55%). This degrada-
tion is most pronounced in the long-horizon LIBERO-10 benchmark (96.8% → 74.6%), confirming
that the rich geometric and spatial details preserved in intermediate layers are essential for complex,
multi-stage reasoning.

Role of Task Conditioning (FiLM). We analyze the impact of our task conditioning mechanism in
Table 3. Removing task information entirely (“No FiLM”) leads to catastrophic failure on Goal-
conditioned tasks (8.4%), confirming that task IDs are a prerequisite for disambiguation, not a
shortcut. Furthermore, replacing FiLM with a simple learnable “Task Embedding” (added to ac-
tion tokens) still yields a high success rate of 97.05%. This demonstrates that while FiLM (98.15%)
is the optimal design, VAT’s performance is primarily driven by its hierarchical architecture rather
than the specific conditioning method.

Robustness to Action Token Capacity. We investigate whether the number of action tokens im-
poses an information bottleneck on policy learning. In our default VAT configuration, consistent
with Kim et al. (2025), we define an action chunk size of K = 8. Each action within this chunk
is allocated 7 distinct tokens (representing the 6-DoF end-effector pose and gripper state), result-
ing in a total sequence length of 56 action tokens (8 actions × 7 tokens). To evaluate the model’s
sensitivity to this design, we conduct an ablation where we reduce the allocation to 3 tokens and
finally to 1 token per action, while maintaining the action chunk size unchanged.As shown in Table
6, VAT exhibits remarkable stability despite this aggressive reduction. Even when compressed to
a single token per action (reducing the total sequence from 56 to 8 tokens), the model achieves a
97.50% success rate. The result in Table 4 indicates that our hierarchical cross-attention mechanism
is highly efficient at aggregating necessary visual cues into a compact representation, and the model
is not strictly bottlenecked by the granularity of the action token sequence.

Architecture Variants and Parameter Space Analysis. To better understand the architectural
mechanism of VAT, it is worth noting the structural parallel between our Action Tokens and the
CLS token used in standard ViT training (e.g., CLIP or DINO ). Both serve as designated agents
for global representation aggregation and act as the direct recipients of supervisory signals. In VAT,
action tokens aggregate hierarchical visual information during the forward pass and are directly
supervised by the ground-truth actions. This structural similarity reinforces the rationality of VAT’s
design.

However, a critical distinction lies in the Action Module. Unlike a standard CLS token that shares
parameters with the visual backbone, VAT’s Action Tokens are processed by a parallel Action Mod-
ule—mirrored from the ViT but with independent trainable parameters. This design ensures a ded-
icated parameter space specifically for learning action-relevant feature extraction, preventing inter-
ference with the visual backbone’s primary representation. To investigate the necessity of this dedi-
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Table 4: Ablation on Action Token Number

Spatial Object Goal 10 Average
VAT 98.8 99.4 97.6 96.8 98.15
Token number 3 99.0 99.4 98.2 95.4 98.00
Token number 1 98.8 98.6 98.2 94.6 97.50

Table 5: Model Architecture Variants Ablation

Spatial Object Goal 10 Average
VAT 98.8 99.4 97.6 96.8 98.15
VAT-small 98.2 97.8 97.0 93.8 96.7
VAT-ViT 99 99.6 97.2 92.4 97.05
π0 96.8 98.8 95.8 85.2 94.2
OpenVLA-OFT 97.6 98.4 97.9 94.5 97.1

cated parameter space and the impact of the Action Module’s capacity, we evaluate two architectural
variants:

VAT-Small (490M): VAT has 1.3B parameters. For VAT-Small, We reduce the dimensionality of
the action tokens to one-quarter of the vision tokens. Consequently, the dimensions of the FiLM,
attention, and MLP layers within the Action Module are proportionally reduced.

VAT-ViT (430M): We remove the separate Action Module entirely. In this setup, action tokens are
inserted into the ViT backbone and processed using shared weights (identical to how CLS tokens
are handled), utilizing simple Task Embeddings instead of FiLM.

The results in Table 5 reveal that while the full VAT (with the separate Action Module) achieves the
optimal performance (98.15%), the VAT-ViT variant—which relies entirely on shared weights akin
to a standard CLS token approach—still maintains a remarkably high success rate of 97.05%. This
confirms two key findings:

Validity of Design: The core performance gain stems from the hierarchical access to “representation
trajectories” (as both variants significantly outperform the Last-Layer Baseline in Table 4), rather
than simply increasing parameter count.

Role of Separate Module: While a shared-weight approach (VAT-ViT) is viable, the dedicated pa-
rameter space provided by the separate Action Module yields better performance on complex, long-
horizon tasks (LIBERO-10: 96.8% vs. 92.4%), justifying the additional architectural overhead for
maximizing capability.

Generalization on RoboTwin Benchmark. Finally, to assess generalizability beyond LIBERO,
we evaluated VAT on the RoboTwin Benchmark, which consists of 50 diverse bimanual (dual-arm)
manipulation tasks. As summarized in Table 8, VAT achieves a 40.66% success rate, significantly
outperforming widely used baselines such as ACT (+10.9%) and Diffusion Policy (+12.6%), and
remaining competitive with the state-of-the-art VLA model Pi0 (46.42%), despite utilizing a signif-
icantly smaller backbone (1.3B vs 3B). The detailed results are shown in C.

5 CONCLUSION

In this work, we address a critical limitation in current robot learning paradigms: the underutilization
of rich and hierarchical features from ViT. We argue that relying solely on the final layer’s output
provides an incomplete visual representation, potentially hindering robot policy capabilities. To
overcome this, we introduce the Vision Action Transformer (VAT), a novel and parameter-efficient
architecture that unlocks the full representational power of a ViT. By processing specialized action
tokens alongside vision tokens through every layer of the transformer, VAT facilitates a continuous
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and deep fusion of perception and action generation. This approach allows the policy to leverage
the entire “representation trajectory” from the fine-grained details in early layers to the high-level
semantic information in deeper ones. Our experiments on the LIBERO benchmark suite validate the
effectiveness of our approach. VAT achieves a state-of-the-art success rate of 98.15% on average
across four sub-benchmarks, outperforming strong baselines like OpenVLA-OFT. Furthermore, our
layer-skipping analysis confirms that even shallow-layer features provide highly informative repre-
sentations for policy learning, while attention visualizations offer qualitative insights into how VAT
dynamically shifts its focus throughout the network. Ultimately, this work contributes not only a
powerful new model for imitation learning but also a fundamental insight: fully leveraging the hi-
erarchical features of vision models is crucial for advancing robotic perception and control. We
believe that this principle will inspire future architectures in embodied AI.

6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided the full description to
assist others in reproducing our experiments.

Additionally, robot learning datasets we have used, are publicly available, ensuring consistent and
reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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Table 6: Comparison of task performance with different camera views

View Spatial Object Goal 10 Average Scores
Both views (SigLIP2) 98.8 99.4 97.6 96.8 98.15
Third-person view only (SigLIP2) 95.6 96.6 95 84.4 92.9
Both views (DINOv2) 98.2 99.6 97 94 97.2
Third-person view only (DINOv2) 96.4 97.8 96 84.4 93.65

Table 7: Comparison of L1 and diffusion loss

Loss Spatial Object Goal 10 Average Scores
L1 Loss (SigLIP2) 98.8 99.4 97.6 96.8 98.15
Diffusion Loss (SigLIP2) 99 99.2 97.2 91.4 96.7
L1 Loss (DINOv2) 98.2 99.6 97 94 97.2
Diffusion Loss (DINOv2) 98.8 98.8 96.4 91 96.25
L1 Loss(SigLIP2 cotraining) 99.4 99.6 97.6 96.2 98.2
Diffusion Loss(SigLIP2 cotraining) 98.8 99.4 98 94.4 97.65

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. 2023 IEEE/CVF International Conference on Computer Vision (ICCV),
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A EXPERIMENTS ON TRAINING CONFIGURATIONS

A.1 EXPERIMENTS ON CAMERA VIEWS

As shown in Table 6, the performance between using both camera views (third-person and wrist)
and only the third-person camera view is compared, with using both views demonstrating superior
task performance for VAT. We therefore utilize both camera views in all LIBERO experiments.

A.2 EXPERIMENTS ON LOSS FUNCTION

As shown in Table 7, the performance between L1 loss and diffusion loss is compared, with L1
loss providing sufficient robustness. Accordingly, we select the L1 loss as VAT’s loss function. We
further investigate the efficacy of VAT within a co-training paradigm. By training a single VAT
model on all four LIBERO subtasks, the results presented in Table 7 demonstrate its strong capacity
for learning a broader range of robot policies.

A.3 EXPERIMENTS ON TRAINABLE PARAMETERS

As shown in Table 8, the performance between training all parameters and freezing the ViT pa-
rameters is comparable, with training all parameters showing a slight edge. We therefore keep all
parameters trainable during training.

A.4 COMPARISION ON LEARNING RATE

As shown in Table 9, we try different learning rate for our VAT on LIBERO-10. results show that
setting learning rate to 2e-5 is suitable for training.
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Table 8: Comparison on Trainable Parameters

View Spatial Object Goal 10 Average Scores
Train all parameters 98.8 99.4 97.6 96.8 98.15
Freeze ViT parameters 98.8 98.6 97.8 89.8 96.25

Table 9: Comparison on Learning Rate

Learning rate 2e-5 5e-5 1e-4
LIBERO-10 96.8 94.4 92.4

B VISUALIZATIONS OF ATTENTION HEATMAP

Figure 4 provides comprehensive examples that illustrate the attention flow in both SigLip 2-based
and DinoV2-based VAT. In the early layers of the VAT, the heatmaps outline clear object contours
from the original images. This suggests that the vision tokens in these layers, corresponding to dif-
ferent objects or regions, contain distinctive features. As a result, the attention patterns of action
tokens toward vision tokens exhibit a strong correlation with specific objects. In contrast, in the
deeper layers of VAT, the attention pattern exhibits irregular attention sink phenomena. This sug-
gests a shift in the characteristics of visual representation, where, after extensive computation, visual
information accumulates preferentially on certain background tokens. The heatmaps reveal the at-
tention patterns present in the VAT, providing evidence for how VAT leverages visual representations
from different layers to support robot policy learning.

C RESULTS ON ROBOTWIN BENCHMARK

To further assess the generalizability of VAT on complex, dual-arm manipulation tasks, we extend
our evaluation to the RoboTwin benchmark. For the VAT implementation, we set the action chunk
size to 25 and train the model for 100 epochs on each individual task, maintaining all other hyper-
parameters consistent with our default configuration. RoboTwin provides four camera views, so we
use main camera views and views from left and right arms. For computational efficiency, we report
the performance of the final checkpoint. Following the standard RoboTwin protocol, all policies
are trained on the Aloha-AgileX embodiment utilizing 50 demo clean demonstrations per task. We
report the success rate averaged over 100 evaluation episodes under the demo clean (Easy) setting.
The results of the other models are obtained from Chen et al. (2025). The performances of VAT and
other models are shown in Table 10.

D LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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Table 10: Performance Comparison on RoboTwin

Task RDT Pi0 ACT DP VAT
Adjust Bottle 81% 90% 97% 97% 91%
Beat Block Hammer 77% 43% 56% 42% 16%
Blocks Ranking RGB 3% 19% 1% 0% 0%
Blocks Ranking Size 0% 7% 0% 1% 31%
Click Alarmclock 61% 63% 32% 61% 95%
Click Bell 80% 44% 58% 54% 94%
Dump Bin Bigbin 64% 83% 68% 49% 72%
Grab Roller 74% 96% 94% 98% 96%
Handover Block 45% 45% 42% 10% 0%
Handover Mic 90% 98% 85% 53% 92%
Hanging Mug 23% 11% 7% 8% 16%
Lift Pot 72% 84% 88% 39% 93%
Move Can Pot 25% 58% 22% 39% 57%
Move Pillbottle Pad 8% 21% 0% 1% 10%
Move Playingcard Away 43% 53% 36% 47% 85%
Move Stapler Pad 2% 0% 0% 1% 1%
Open Laptop 59% 85% 56% 49% 84%
Open Microwave 37% 80% 86% 5% 30%
Pick Diverse Bottles 2% 27% 7% 6% 14%
Pick Dual Bottles 42% 57% 31% 24% 25%
Place A2B Left 3% 31% 1% 2% 12%
Place A2B Right 1% 27% 0% 13% 9%
Place Bread Basket 10% 17% 6% 14% 11%
Place Bread Skillet 5% 23% 7% 11% 23%
Place Burger Fries 50% 80% 49% 72% 66%
Place Can Basket 19% 41% 1% 18% 1%
Place Cans Plasticbox 6% 34% 16% 40% 32%
Place Container Plate 78% 88% 72% 41% 82%
Place Dual Shoes 4% 15% 9% 8% 10%
Place Empty Cup 56% 37% 61% 37% 14%
Place Fan 12% 20% 1% 3% 17%
Place Mouse Pad 1% 7% 0% 0% 3%
Place Object Basket 33% 16% 15% 15% 48%
Place Object Scale 1% 10% 0% 1% 5%
Place Object Stand 15% 36% 1% 22% 28%
Place Phone Stand 15% 35% 2% 13% 30%
Place Shoe 35% 28% 5% 23% 49%
Press Stapler 41% 62% 31% 6% 48%
Put Bottles Dustbin 21% 54% 27% 22% 39%
Put Object Cabinet 33% 68% 15% 42% 28%
Rotate QRcode 50% 68% 1% 13% 28%
Scan Object 4% 18% 2% 9% 9%
Shake Bottle Horizontally 84% 99% 63% 59% 89%
Shake Bottle 74% 97% 74% 65% 93%
Stack Blocks Three 2% 17% 0% 0% 0%
Stack Blocks Two 21% 42% 25% 7% 69%
Stack Bowls Three 51% 66% 48% 63% 51%
Stack Bowls Two 76% 91% 82% 61% 59%
Stamp Seal 1% 3% 2% 2% 30%
Turn Switch 35% 27% 5% 36% 48%
Average 34.50% 46.42% 29.74% 28.04% 40.66%
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Figure 4: Attention heatmap of VAT on LIBERO-Object, Goal and 10
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