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Abstract
Recent advancement of Large Language Mod-001
els (LLMs) has remarkably pushed the bound-002
aries towards artificial general intelligence003
(AGI), with their exceptional generation and004
reasoning abilities. Despite this progress, a crit-005
ical gap remains in employing LLMs to profi-006
ciently understand graph data. In this paper, we007
propose a new framework, named StructLLM008
to enhance the graph capabilities of large lan-009
guage models. Our framework first uses a010
structure-aware pre-training stage to pre-train a011
graph model to capture the structural informa-012
tion. Subsequently, we introduce four structure-013
aware instruction tasks to train a graph-to-text014
projector which bridges the domain gap be-015
tween graph and text. Finally, we fine-tune016
our system on the AMR-to-text and Kg-to-text017
generation tasks. Experimental results that our018
model obtains significantly better results com-019
pared to fine-tuned LLMs, surpassing state-of-020
the-art systems. Further analysis shows that our021
model can better process complex graphs.022

1 Introduction023

Graph-to-text generation aims to generate faithful024

and fluent natural language description that con-025

veys the same meaning as the input graphs (Kon-026

stas et al., 2017; Gardent et al., 2017). Sitting at the027

intersection between graphs and texts, this task can028

further facilitate the applicability of graphs in more029

downstream tasks, such as knowledge-grounded030

reason (Moon et al., 2019; Lv et al., 2020; Liu et al.,031

2021; Sun et al., 2023) and generation tasks (Tuan032

et al., 2019; Zhang et al., 2020a; Li et al., 2022;033

Gopalakrishnan et al., 2023).034

Recently, Large language models (LLMs) have035

showcased remarkable performance on a wide ar-036

ray of text tasks, including language understand-037

ing (Touvron et al., 2023a), reasoning (Zhang et al.,038

2022), and text generation (Goyal et al., 2022; Chen039

et al., 2023). The primary idea is that LLMs ac-040

quire massive world knowledge when pre-trained041
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Figure 1: Illustration of two graphs: (a) an AMR mean-
ing “The police hummed to the boy as he walked to
town.”; (b) a knowledge graph meaning “Above the Veil
is an Australian novel and the sequel to Aenir. It was
followed by Into the Battle.".

on large-scale text data so that knowledge can be 042

transferred to downstream tasks. Despite great suc- 043

cess with text, LLMs suffer from salient limitations 044

when processing graphs, thus are sub-optimal to 045

graph-to-text generation. As shown in Figure 1, 046

the given abstract meaning representation (left) 047

and knowledge graphs (right) exhibit a different 048

structure from the text sequence, where text units 049

are organized and connected in a non-linear way. 050

This fact was also revealed by recent efforts (Wang 051

et al., 2023; Chai et al., 2023; Ettinger et al., 2023), 052

showing that LLM’s performances on graph-related 053

tasks are subpar. 054

To mitigate this issue, we aim to enhance the 055

graph capabilities of large language models with- 056

out compromising their original text knowledge. To 057

this end, we propose StructLLM, a novel learning 058

framework that allows LLMs to effectively under- 059

stand and process graph structures. Our framework 060

first pre-trains a graph encoder using structure- 061

aware pre-training strategies to capture the struc- 062

tural information in the graph. Based on that, 063

we perform structure-aware instruction tuning that 064

bridges the modality gap between graph represen- 065

tation and text representation. Specifically, we de- 066

sign four self-supervised graph question-answering 067
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tasks to equip LLMs with the ability to leverage068

the encoded graph features for question answer-069

ing. During structure-aware instruction tuning, we070

freeze the pre-trained graph model and language071

model and tune a graph-to-text projector. In this072

parameter-efficient way, we bridge the modality073

gap using a small amount of training data while074

maintaining the original distributional knowledge075

of LLMs. Finally, we fine-tune the resulting model076

on the task of graph-to-text generation to verify the077

effectiveness of our method.078

We conduct experiments on two graph-to-text079

generation tasks: AMR-to-text generation and KG-080

to-text generation. Experimental results on stan-081

dard benchmarks show that our model consistently082

achieves significant improvements over vanilla fine-083

tuned LLMs on both tasks and surpasses the state-084

of-the-art systems by a large margin. In addition,085

our method structure-enhanced LLM has better086

data efficiency than vanilla LLMs. Further analysis087

shows that our method is more effective for pro-088

cessing complex graphs. Our code will be released089

at https:github.com/anonomy.090

2 Related Work091

2.1 Large Language Models092

Large language models (LLMs; Brown et al. 2020;093

Chowdhery et al. 2022; Touvron et al. 2023a) have094

substantially influenced the field of Natural Lan-095

guage Processing (NLP). As the pioneering work,096

Radford et al. (2019) and Brown et al. (2020)097

demonstrate the capability of language models to098

solve a task with minimal task supervision. The099

following work shows that LLMs are adept at lever-100

aging textual instructions to perform various tasks101

including commonsense reasoning (Zhang et al.,102

2022), text summarization (Goyal et al., 2022;103

Chen et al., 2023), and massive multitask language104

understanding (Hendrycks et al., 2021). There have105

been recent attempts to adapt LLMs for processing106

graphs, by linearizing graphs into a sequence (Jiang107

et al., 2023), modifying model architecture to pro-108

cess graphs (Zhang et al., 2021; Xie et al., 2023), or109

continuously training LLMs using structure-aware110

training objectives (Sun et al., 2021). Different111

from the above work, we enhance the structure-112

awareness of LLMs without losing the structure113

information of the input graph while keeping the114

model architecture and knowledge distribution of115

LLMs unchanged.116

2.2 Graph-to-text Generation 117

On a coarse-grained level, we categorize exist- 118

ing graph-to-text generation approaches into two 119

main branches: The first branch focuses on graphs, 120

aiming to better capture structural information in 121

the input graph. Such as employing graph en- 122

coders (Beck et al., 2018; Damonte and Cohen, 123

2019; Zhu et al., 2019; Zhang et al., 2020b) or 124

training neural networks with structure-aware learn- 125

ing objective (Song et al., 2020; Bai et al., 2020). 126

For example, early studies on graph-to-text gen- 127

eration rely on statistical methods. Flanigan et al. 128

(2016) convert input graphs to trees by splitting re- 129

entrances, before translating these trees into target 130

sentences with a tree-to-string transducer; Pour- 131

damghani et al. (2016) apply a phrase-based MT 132

system on linearized AMRs; Song et al. (2017) 133

design a synchronous node replacement grammar 134

to parse input graphs while generating target sen- 135

tences. 136

The other branch investigates pre-trained lan- 137

guage models to generate fluent text. For exam- 138

ple, Mager et al. (2020) finetune a GPT model 139

based on linearized input graphs. Ribeiro et al. 140

(2021a) continually train language models using 141

domain-adaptive training objectives. Bevilacqua 142

et al. (2021) jointly train AMR parsing and AMR- 143

to-text tasks using a pre-trained BART. Bai et al. 144

(2022) train a BART model on graph data using 145

graph-aware learning tasks. Wang et al. (2021) in- 146

troduce a two-step structured generation approach 147

based on pre-trained language models for KG-to- 148

text generation. 149

Our method integrates the advantage of both 150

graph structure encoding and pre-trained lan- 151

guage models, using a graph-to-text projector and 152

structure-aware learning tasks. The closest to our 153

work, Ribeiro et al. (2021b) integrate AMR struc- 154

tures into pre-trained T5 (Raffel et al., 2020) us- 155

ing adapters (Houlsby et al., 2019) for AMR-to- 156

text generation. However, they do not pre-train 157

on graphs, and their method can not be used for 158

decoder-only large language models. 159

3 Approach 160

Notation. Formally, denoting a graph as G = 161

(V, ‘E) where V = {v1, v2, . . . , v|V|} represents 162

the nodes set and E = {e1, e2, . . . , e|E|} represents 163

the edges set. An edge can further be denoted by 164

a triple ⟨vi, rij , vj⟩, showing that node vi and vj 165

are connected by relation rij . The goal of graph- 166
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to-text generation is to generate a word sequence167

Y = {y1, y2, . . . , yM} which conveys the same168

meaning as the input graph G.169

We propose StructLLM, a new graph-language170

joint learning framework that improves the graph171

awareness of pre-trained large language models.172

As shown in Figure 2(a), our model consists of173

three modules: a graph encoder, a graph-to-text174

projector, and a Language Model (LM). To capture175

the implicit structure of graphs, we first pre-train176

the graph encoder on a large-scale of unlabeled177

graphs using self-supervised learning strategies178

(see Section 3.1). Subsequently, we introduce three179

structure-aware instruction-tuning tasks to train the180

projector, aiming to bridge the gap between the pre-181

trained graph encoder and large language models182

(see Section 3.2). Finally, we perform a parameter-183

efficient fine-tuning of the trained model on the184

graph-to-text generation task (see Section 3.3).185

3.1 Structure-aware Pre-training186

Since there are no suitable pre-trained graph mod-187

els for AMR and KG graph representation learn-188

ing, we first employ a structure-aware pre-training189

step to pre-train a graph encoder. This step is de-190

signed to customize the model’s learning behavior191

to meet the requirements of different downstream192

graph learning tasks. We employ the following two193

self-supervised learning tasks to pre-train a graph194

encoder on large-scale unlabeled graphs.195

Graph De-noising. We train the model to learn196

contextualized representations using the graph de-197

noising task. Given the input graph, we apply a198

noise function on its nodes/edges/subgraphs to con-199

struct a noisy graph, then we train the model to200

recover the original graph based on the noisy one.201

As shown in Figure 2(b), we implement the noise202

function by randomly masking, i.e. randomly re-203

placing nodes, edges and sub-graphs with special204

[MASK] tokens with a probability of 15%.205

Formally, given an input graph G, and the noisy206

graph is denoted as Ĝ, the graph encoder is trained207

to minimize the following training objective:208

Ldenoising = −
∑

G∈Dpretrain

logP (G|Ĝ), (1)209

where Dpretrain denotes the pre-training dataset.210

We follow ROBERTA (Liu et al., 2019) and use211

dynamic masking, where we generate the masking212

pattern every step instead of performing masking213

during data preprocessing.214

Graph Contrastive Learning. This task trains the 215

model to learn the overall representation of a graph 216

using the contrastive learning mechanism (Hadsell 217

et al., 2006; Frosst et al., 2019; Gao et al., 2021). 218

The graph contrastive learning task aims to pull se- 219

mantically close (or positive) graph pairs and push 220

apart unpaired (or negative) examples. In partic- 221

ular, for a given graph G, we define the positive 222

example as the graph that is obtained by applying 223

noise on the graph, and the negative examples are 224

graphs in the same mini-batch during training. 225

Formally, we take the hidden state of the root 226

node as the global representation of the graph, let 227

hGi denote the representation of the ith graph in 228

the dataset, the training objective is: 229

Lcon = −log
exp(sim(hGi , hĜi)/τ)∑

j∈N (i) exp(sim((hGi , (hGj )/τ)
,

(2) 230

where sim(·, ·) denotes the similarity function1, 231

N (i) collects neighbor index of the ith example in 232

the mini-batch, and τ > 0 denotes the temperature 233

hyper-parameter. 234

The graph encoder is trained by optimizing the 235

total loss of the above two tasks: 236

Lpretrain = Ldenoising + αLcon, (3) 237

where α is a hyper-parameter that controls the im- 238

portance of graph contrastive learning loss. Our 239

pre-training framework is architectures-flexible and 240

can accommodate various models, including both 241

Graph Neural Networks (GNN) and Transformers 242

(See section 4.4 for comparison.). 243

3.2 Structure-aware Instruction Tuning 244

The pre-trained graph models and LLMs are inde- 245

pendently trained in an unimodal setting, making 246

it challenging to align the graph and text represen- 247

tation. To this end, the structure-aware instruction 248

tuning tasks are designed to bridge the modality 249

gap between the pre-trained graph models and large 250

language models. 251

As shown in Figure 2(b), we propose four 252

structure-aware instruction tuning tasks to learn 253

the interaction between the graph and text infor- 254

mation. The first two tasks are node/edge-aware 255

tasks which focus on local information. The last 256

two are sub-graph level tasks, thus learning graph- 257

level information. All tasks are unified as a graph 258

1We adopt the cosine similarity in experiments.
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Figure 2: Illustration of the model architecture (a), structure-aware pre-training (b) and structure-aware instruction
following (c).

question-answering format thus facilitating knowl-259

edge transfer from graph to text.260

Node degree prediction. This task predicts the261

input and output degree of a specific node so that262

neural networks can capture the local structure of263

graphs. For example, the input and output degrees264

of node “Aenir” are 1 and 0, respectively.265

Triplet completion. This task aims to complete266

the given triplet ⟨vi, rij , ?⟩ according to the input267

graph, which guides models to learn the relation-268

ships between nodes. For example, node xx has a269

xxx relation with node xxx.270

Sub-graph infilling. This task aims to fill the271

masked sub-graph according to its neighbor graph,272

thus helping models to learn sub-graph level struc-273

tural information.274

Graph depth prediction. This task predicts275

the depth of the input graph which refers to the276

length of the longest path from the root to that277

particular node. This task helps to achieve a deeper278

understanding of the graph structure. For example,279

the depth of the graph in Figure 2 is 1.280

We follow the instruction-prompt scheme to de-281

sign the prompt template, containing three parts:282

System Message, Task Instruction, Answer.283

In addition, we add two special tokens (<Graph>,284

</Graph>) to differentiate text representations from285

graph representations.286

Formally, given a graph G, a task instruction I287

and its corresponding answer A, we compute the288

probability of the target answers A by: 289

P (A|G, I) =
|A|∏
i=0

P (XAi |G, I, A<i), (4) 290

where A<i = {a1, a2, ..., ai−1} represents gener- 291

ated answer. The training objective of the model is 292

to minimize the negative log-likelihood of condi- 293

tional word probabilities over all training examples: 294

LIT = −
∑

<G,I,A>∈DIT

logP (A|G, I), (5) 295

where DIT denotes the instruction tuning dataset. 296

To reduce computation costs and avoid the issue 297

of catastrophic forgetting, the pre-trained graph and 298

language models remain frozen during structure- 299

aware instruction tuning. 300

3.3 Task-specific Fine-tuning 301

After finishing structure-aware instruction tuning, 302

we fine-tune the resulting model on the graph-to- 303

text generation task. This step aims to adapt the 304

model’s generation behavior to meet the task of 305

graph-to-text generation. Formally, assuming the 306

input graph is denoted as G, the corresponding text 307

is denoted as Y , and the task instruction is denoted 308

as Î , the training objective is: 309

Ltask = −
∑

<G,Î,Y >∈Dtask

logP (Y |G, Î), (6) 310
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Datasets AMR2.0 AMR3.0 WebNLG

Train 36521 55635 18102
Valid 1368 1722 872
Test 1371 1898 1862

Table 1: Benchmark graph-to-text generation datasets.

where Dtask denotes the graph-to-text dataset and311

logP (Y |G, Î) is calculated in the same way as312

Equation 4.313

In this stage, we freeze the backbone model and314

use the low-rank adaptation (LoRA; Hu et al. 2022)315

for parameter-efficient tuning.316

4 Experiments317

4.1 Datasets318

Our method is evaluated on two graph-to-text319

benchmarks: AMR-to-text generation and KG-to-320

text generation.321

Pre-training. For AMR graph pre-training, we322

collect about 1M silver AMR graphs parsed by323

AMRBART (Bai et al., 2022). These data are324

randomly selected from the Wikitext corpus. For325

KG graph pre-training, we collect about 250k KG326

graphs from DBpedia.327

Instruction tuning. For AMR instruction tuning,328

we randomly sample 50k silver data from the pre-329

training corpus to construct the structure-aware in-330

struction tuning dataset. For KG instruction tuning,331

we randomly sample 50k instances from the pre-332

training corpus.333

Downstream Task. For AMR-to-text, we334

use the AMR2.0 (LDC2017T10)2 and AMR3.0335

(LDC2020T02)3 corpora for task-aware fine-tuning336

and evaluation. For KG-to-text, we use the337

WebNLG4 which is extracted from DBpedia. The338

test set contains two subsets, the seen part, and the339

unseen part. The unseen instances are from the five340

unseen domains. The UNSEEN part is designed to341

evaluate models’ generalizability to out-of-domain342

instances.343

Table 1 summarizes the statistics of downstream344

datasets used in our evaluation.345

4.2 Settings346

Model Configuration. We explore two types of347

architecture for graph encoding: Relational graph348

2https://catalog.ldc.upenn.edu/LDC2017T10
3https://catalog.ldc.upenn.edu/LDC2020T02
4https://synalp.gitlabpages.inria.fr/

webnlg-challenge/challenge_2017/

attention networks (RGAT; Busbridge et al. 2019) 349

and Transformers. For RGAT, we use a hidden size 350

of 512 and set the number of graph layers as 12. 351

With regard to Transformers, we take the roberta- 352

large (Liu et al., 2019) as the initial model. We take 353

the last layer’s hidden states as graph representa- 354

tions. For the frozen large language model, we ex- 355

plore the widely-used LLaMA-2-7b (Touvron et al., 356

2023b) model and Vicuna-7b-v1.5 (Chiang et al., 357

2023). For the graph-to-text projector, we adopt 358

a two-layer perception with a GLEU (Hendrycks 359

and Gimpel, 2016) activation function. In the task- 360

specific fine-tuning stage, we set the LoRA rank as 361

64 and set the alpha as 16. We train for 1 epoch 362

in the structure-aware pre-training stage, 5 epochs 363

in the structure-aware instruction tuning stage, and 364

5 epochs in the structure-aware instruction tuning 365

stage We use a batch size of 1024, 128 and 128 for 366

graph encoder pre-training, structure-aware instruc- 367

tion tuning, and task-specific fine-tuning, respec- 368

tively. The learning rates are set as 5e-5, 1e-3, and 369

1e-4 for the pre-training stage, instruction tuning 370

stage and task-specific fine-tuning stage, respec- 371

tively. We train models using 8 × A800 (80G) 372

GPU, our largest model with Vicuna-7b-v1.5 re- 373

quires less than 1 day for the first stage, less than 374

10 hours for the second stage, and less than 6 hours 375

for the third stage. 376

Evaluation Metrics. Regarding AMR-to-text, we 377

use three common Natural Language Generation 378

measures, including BLEU (Papineni et al., 2002), 379

CHRF++ (Popović, 2017) and METEOR (Baner- 380

jee and Lavie, 2005), tokenizing with the script 381

provided with JAMR (Flanigan et al., 2014). For 382

KG-to-text, we use the same metrics as AMR-to- 383

text. We adopt the official WebNLG Challenge’s 384

script to tokenize the text and evaluation. 385

4.3 Compared Systems 386

We compare our method with fine-tuned LLMs as 387

well as other state-of-the-art methods. We con- 388

sider two types of fine-tuned LLMs as baselines: 1) 389

Vicuna-FT, a full-parameter fine-tuned Vicuna-7b- 390

v1.5 on graph-to-text dataset; 2) Vicuna-LoRA, 391

a parameter-efficient fine-tuned Vicuna-7b-v1.5 392

using LoRA. For AMR-to-text generation, the 393

additional compared models are: 1) Zhu et al. 394

(2019), a Transformer-based model that enhances 395

self-attention with graph relations; 2) Zhang et al. 396

(2020c), a graph-to-sequence model which uses 397

dynamic graph convolutional networks for better 398

graph modeling; 3) Bai et al. (2020), a graph en- 399
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Figure 3: (a) Impact of model backbones; (b) Impact of
the hyper-parameter α.

coder (Zhu et al., 2019) with a structural decoder400

that jointly predicts the target text and the input401

structure; 4) Mager et al. (2020), a fine-tuned402

GPT that predicts text based on a PENMAN lin-403

earized AMR graph; 5) Bevilacqua et al. (2021),404

a fine-tuned BART that predicts text based on405

a DFS linearized AMR graph; 6) Ribeiro et al.406

(2021a), a parameter-efficient model that uses a407

structural adapter to enhance a pre-trained T5 lan-408

guage model. 7) Bai et al. (2022), a model pre-409

trained on AMR data using graph pre-training410

strategies based on BART. 8) Cheng et al. (2022), a411

fine-tuned BART on AMR data using bidirectional412

bayesian learning.413

For KG-to-text generation, the compared mod-414

els are: 1) Moryossef et al. (2019), an end-to-end415

neural system based an LSTM decoder with atten-416

tion; 2) Castro Ferreira et al. (2019), a Transformer-417

based model using sequences of KG triples as input;418

3) Zhao et al. (2020), a dual encoding model that419

can narrate the gap between encoding and decod-420

ing; 4) Harkous et al. (2020), an end-to-end data-to-421

text generation system based on GPT-2 equipped422

with a semantic fidelity classifier; 5) Nan et al.423

(2021), a fine-tuned BART that trained on an open-424

domain structured data-to-text dataset; 6) Ribeiro425

et al. (2021a), a fine-tuned BART that represents426

the KG as a linear traversal; 7) Li and Liang (2021),427

a parameter-efficient tuning method that tunes soft428

prefixes based on GPT2-large.429

4.4 Development Experiments430

To assess the impact of various graph encoders431

and language models, we conducted a development432

experiment. Specifically, we compare the perfor-433

mance of different graph encoders and language434

models on the development dataset of AMR2.0 to435

evaluate their respective effects on the overall sys-436

tem’s performance. As shown in Figure 3(a), the437

Transformer-based graph encoder obtains higher438

Model BLEU CHRF++ MET.

AMR2.0
Zhu et al. (2019) 31.8 64.1 36.4
Zhang et al. (2020c) 33.6 63.2 37.5
Bai et al. (2020) 34.2 65.7 38.2
Mager et al. (2020)† 33.0 63.9 37.7
Ribeiro et al. (2021a)† 46.6 72.9 -
Bevilacqua et al. (2021)† 45.9 74.2 41.8
Bai et al. (2022)† 49.8 76.2 42.6
Cheng et al. (2022)† 51.5 77.6 45.2
Vicuna-7b-LoRA† 44.5 73.8 40.7
Vicuna-7b-FT† 49.6 76.2 42.3
Ours† 52.7 78.4 46.7

AMR3.0
Zhang et al. (2020c) 34.3 63.7 38.2
Bevilacqua et al. (2021)† 46.5 73.9 41.7
Bai et al. (2022)† 49.2 76.1 44.3
Cheng et al. (2022)† 50.7 76.7 45.0
Vicuna-7b-LoRA† 44.2 73.0 40.1
Vicuna-7b-FT† 49.3 75.9 44.8
Ours† 52.0 77.7 45.9

Table 2: AMR-to-text results on AMR2.0 and AMR3.0.
MET.=METEOR. Models marked with † are based on
PLMs. The best result within each row block is shown
in bold.

BLEU scores than the RGAT-based encoder in both 439

settings. In addition, two LLMs achieve similar re- 440

sults, and Vicuna obtains slightly better results than 441

LLaMA2. We thus chose the Transformer-based 442

graph encoder and the Vicuna decoder as the back- 443

bone for the rest of our experiments. 444

We also study the impact of hyper-parameter α 445

in graph pre-training. Figure 3(b) shows the perfor- 446

mance of different values of α on the development 447

dataset of AMR2.0. It can be observed that there 448

are improvements when increasing the coefficient 449

from 0, indicating that the graph contrastive learn- 450

ing task has a positive influence on graph-to-text 451

generation. The BLEU score finally reaches the 452

peak at α=0.8. We thus set α=0.8 for the rest of 453

our experiments. 454

4.5 Results on AMR-to-text Generation 455

Table 2 lists the results of different systems on the 456

testset of AMR2.0 and AMR3.0, respectively. Al- 457

though having more parameters, Vicuna-7b-LoRA 458

and Vicuna-7b-FT obtain lower results than Cheng 459

et al. (2022) which is based on BART. This verifies 460

our motivation that LLMs are weak in graph-aware 461

tasks. Compared with Vicuna-7b-FT, our method 462

achieves significantly (p < 0.01) better results on 463

both datasets, improving the baseline model by 3.1 464

and 2.7 points in terms of BLEU on AMR2.0 and 465
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AMR3.0, respectively. This indicates that our train-466

ing framework can effectively improve the graph-467

awareness of large language models.468

Compared with previous work, our method con-469

sistently outperforms the previous state-of-the-art470

system of Cheng et al. (2022) on both datasets471

in terms of all evaluation metrics, achieving 52.7472

and 52.0 BLEU scores on the testset of AMR2.0473

and AMR3.0, respectively. To our best knowledge,474

these are the best-reported results.475

4.6 Results on KG-to-text Generation476

Table 3 records the performance of different sys-477

tems on the testset of WebNLG. We report re-478

sults on all, seen and unseen testsets, respectively.479

Similar to AMR-to-text generation, Vicuna-7b-480

LoRA gives weaker results than previous systems,481

showing that LLMs are sub-optimal for processing482

graphs. Compared with Vicuna-7b-FT, our method483

gives consistently better results on all testsets re-484

garding all metrics, with an average improvement485

of 1.3 BLEU on all testsets. In particular, the im-486

provement on the unseen testset is larger than the487

seen testset, indicating that our method has a strong488

generalization capacity.489

Compared with other state-of-the-art systems,490

the proposed method sees better performance, and491

our model obtains a BLEU of 61.1, 66.5, and 54.5492

on all, seen and unseen, respectively. This result493

shows that the proposed method can effectively494

bridge the gap between graph and text, thereby495

performing better in translating graph to text.496

5 Analysis497

To have a deeper understanding of our model, We498

further analyze the behavior of the proposed model499

on AMR-to-text and KG-to-text datasets.500

5.1 Ablation501

We first study the effectiveness of individual com-502

ponents of our method. Specifically, we com-503

pared the full system with the following mod-504

els: 1) model without structure-aware pre-training505

(w/o Struct_PT): we replace the pre-trained graph506

encoder with a randomly initialized encoder. 2)507

pre-training graph encoder with graph de-noising508

(w/o Graph_De)/graph contrastive learning (w/o509

Graph_CL) only; 3) model without structure-aware510

instruction tuning (w/o Struct_IT): we replace the511

trained graph-to-text projector with a randomly ini-512

tialized one. 4) structure-aware instruction tuning513

0 500 1000 5000 10000 ALL
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Figure 4: Performance comparison on AMR3.0 dataset
with different training data.

without one of the node degree prediction (w/o 514

NDP)/triplet completion (w/o TC)/sub-graph in- 515

filling (w/o SI)/graph depth prediction (w/o GDP) 516

tasks. 517

Table 4 compares the performance of different 518

systems on the testset of AMR3.0 and of WebNLG. 519

First, it can be observed that structure-aware pre- 520

training has a positive impact on graph-to-text 521

generation, and removing this task leads to ob- 522

vious performance reduction. Additionally, the 523

graph de-noising task is more important than the 524

graph contrastive learning task. Moreover, remov- 525

ing the structure-aware instruction tuning task also 526

results in lower performance, showing that this 527

task helps improve the structure-awareness of our 528

model. Finally, all structure-aware instruction tun- 529

ing tasks have overall positive impacts. Among the 530

four tasks, triplet completion contributes most to 531

model performance, and sub-graph infilling helps 532

the least. 533

5.2 Data Efficiency in Task Fine-tuning 534

Our model is pre-trained on graph data and fur- 535

ther tuned on structure-aware QA tasks, thus is 536

expected to have high data efficiency when tuning 537

on graph-to-text generation tasks. To verify this, 538

we evaluate the performance of our model when 539

fine-tuned on data of different sizes, and compare 540

results with Vicuna-7b-FT. We randomly sample 541

100, 500, 1000, 5000, 10000 data from AMR3.0 542

for fine-tuning.5 The results are shown in Figure 4, 543

where we report the BLEU score for our model and 544

Vicuna-7b-FT. 545

As shown in the Figure, our model gives signifi- 546

cantly (p<0.001) better results than Vicuna-7b-FT 547

in all training datasets, especially when there are 548

5We chose AMR3.0 since AMR-to-text generation is more
challenge than KG-to-text generation.
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BLEU CHRF++ METEOR

MODEL All Seen Unseen All Seen Unseen All Seen Unseen

Moryossef et al. (2019) 47.2 53.3 34.4 - - - 39.0 44.0 21.0
Castro Ferreira et al. (2019) 51.7 56.4 38.9 - - - 32.0 41.0 21.0
Zhao et al. (2020) 52.8 64.4 38.2 - - - 41.0 46.0 37.0
Harkous et al. (2020)† 52.9 - - - - - 42.4 - -
Nan et al. (2021)† 45.9 52.9 37.9 - - - 40.0 42.0 37.0
Ribeiro et al. (2021a)† 54.7 63.5 44.0 72.3 77.6 66.5 42.2 45.5 38.6
Li and Liang (2021)† 56.3 63.4 47.7 - - - 42.1 45.0 39.3
Vicuna-7b-LoRA† 55.6 62.8 47.0 72.1 77.3 66.2 41.6 44.4 38.5
Vicuna-7b-FT† 59.8 65.9 52.6 74.8 78.4 70.4 43.7 46.1 41.2
Ours † 61.1 66.5 54.5 75.8 79.5 71.8 44.6 46.9 42.5

Table 3: KG-to-text results on WebNLG. Models marked with † are based on PLMs. The best result within each
row block is shown in bold.

Model AMR3.0 WebNLG (All)

Vicuna-7b-FT 49.3 59.8
Ours (full) 52.0 61.1

w/o Struct_PT 49.6 60.0
w/o Graph_De 51.3 60.3
w/o Graph_CL 51.6 60.9

w/o Struct_IT 50.4 60.3
w/o NDP 51.4 60.7
w/o TC 50.9 60.4
w/o SI 52.1 60.7
w/o GDP 51.3 60.6

Table 4: BLEU on the testset of AMR3.0 and WebNLG.

Graph Size 1-10 (522) 11-20 (556) >20 (293)
Vicuna-7b-FT 51.5 48.2 46.9
Ours 53.1 52.4 49.7

Graph Depth 1-3 (422) 4-6 (667) >6 (282)
Vicuna-7b-FT 52.7 47.9 45.7
Ours 54.3 50.4 49.0

Reentrancies 0 (622) 1-3 (712) >3 (37)
Vicuna-7b-FT 52.6 48.5 43.1
Ours 54.8 51.0 45.3

Table 5: AMR-to-text generation performance on differ-
ent graph groups.

fewer than 5000 training instances. This indicates549

that the proposed model has better generalization550

abilities compared to Vicuna-7b-FT, thanks to the551

structure-aware pre-training and structure-aware552

instruction tuning stages. Interestingly, our model553

achieves a BLEU-4 score of 2.1 without any train-554

ing instances, showing that our method inherently555

holds graph-to-text translation ability.556

5.3 Impact of Graph Complexity557

It is expected that the benefit of our method will558

be more evident for structure-complex graphs as559

the proposed method is trained to be aware of the560

input graph structure. Table 5 shows the effects561

of the graph size, graph depth and reentrancies on 562

the performance. We split the test set of AMR2.0 563

into different groups and compare the performance 564

of our method and the baseline model. We first 565

consider graph size, which records the number of 566

nodes in an AMR graph. Our model consistently 567

outperforms the baseline model on both tasks, with 568

the performance gap growing on larger graphs. In 569

terms of graph depth, our model consistently out- 570

performs the baseline model on all graphs, and the 571

improvements are bigger on deeper graphs. 572

We further consider reentrancies, which count 573

the number of node which has multiple parents. 574

The more reentrancies, the harder the graph is to 575

be understood. Our method achieves larger im- 576

provements when the input graphs have reentran- 577

cies. This means that our system has an overall 578

better ability to learn reentrancies. 579

5.4 Case Study 580

We further provide some cases to help better un- 581

derstand the effectiveness of the proposed model, 582

please refer to the appendix A for more details. 583

6 Conclusion 584

This work presents a structure-aware training 585

framework to build a graph large language model, 586

aiming at improving the graph learning capabilities 587

of LLMs. The proposed framework, StructLLM, 588

injects graph-specific structural knowledge into 589

the LLM through structure-aware pre-training and 590

structure-aware instruction tuning paradigm. By 591

leveraging a simple yet effective graph-text align- 592

ment projector, we enable LLMs to comprehend 593

and interpret the input graphs as text. Extensive 594

experiments on two benchmarks demonstrate the 595

effectiveness of our method. 596
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7 Limitations597

One primary drawback of the proposed method598

revolves around the necessity of extensive graph599

data for pre-training our model. This requirement600

poses a significant limitation, particularly in low-601

resource settings where the availability of such data602

is uncertain or insufficient.603
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KG#1: ( <E> Weymouth Sands
<R> preceded By (<E> A Glastonbury Romance ) )

Gold: A Glastonbury Romance preceded Weymouth Sands.
Baseline: A Glastonbury Romance was preceded

Weymouth Sands.
Ours: Weymouth Sands was preceded by a Glastonbury

Romance.

KG#2:
( <E> Bacon sandwich
<R> dish Variation ( <E> BLT

<R> ingredient ( <E> Lettuce )
<R> dish Variation ( <E> Club sandwich ) ) )

Gold: A variation on the club sandwich, BLT, has lettuce
as an ingredient. A variation of the BLT is a bacon
sandwich.

Baseline:BLT is a variation of the club sandwich and
bacon sandwich. It includes lettuce .

Ours: lettuce is an ingredient in a blt which is a variation
of a bacon sandwich and a club sandwich .

Table 6: Two KG-to-text generation cases. Given an
AMR graph, we present the gold text and two generated
outputs, given by baseline and our model, respectively.

A Appendix1019

A.1 Ablation Study1020

Table 6 lists two KG graphs and model outputs of1021

our KG-to-text model and the baseline model. As1022

shown in the first case, The output“was preceded”1023

generated by the baseline model indicates that it1024

exhibits deficiencies in its expression of temporal1025

ordering, demonstrates inadequate control of verb1026

tense, and ultimately fails to accurately convey the1027

intended meaning. In the second case,the baseline1028

model has not correctly captured the intended rela-1029

tion of the sentence due to the omission of relation,1030

“ingredient”. Ours model’s output correctly identi-1031

fies “lettuce” as an “ingredient” in the “BLT”.Our1032

model exhibits stronger performance in expressing1033

tense and capturing relationships, as compared to1034

the baseline model.1035

13


	Introduction
	Related Work
	Large Language Models
	Graph-to-text Generation

	Approach
	Structure-aware Pre-training
	Structure-aware Instruction Tuning
	Task-specific Fine-tuning

	Experiments
	Datasets
	Settings
	Compared Systems
	Development Experiments
	Results on AMR-to-text Generation
	Results on KG-to-text Generation

	Analysis
	Ablation
	Data Efficiency in Task Fine-tuning
	Impact of Graph Complexity
	Case Study

	Conclusion
	Limitations
	Appendix
	Ablation Study


