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Abstract

Recent advancement of Large Language Mod-
els (LLMs) has remarkably pushed the bound-
aries towards artificial general intelligence
(AGI), with their exceptional generation and
reasoning abilities. Despite this progress, a crit-
ical gap remains in employing LL.Ms to profi-
ciently understand graph data. In this paper, we
propose a new framework, named StructLLM
to enhance the graph capabilities of large lan-
guage models. Our framework first uses a
structure-aware pre-training stage to pre-train a
graph model to capture the structural informa-
tion. Subsequently, we introduce four structure-
aware instruction tasks to train a graph-to-text
projector which bridges the domain gap be-
tween graph and text. Finally, we fine-tune
our system on the AMR-to-text and Kg-to-text
generation tasks. Experimental results that our
model obtains significantly better results com-
pared to fine-tuned LL.Ms, surpassing state-of-
the-art systems. Further analysis shows that our
model can better process complex graphs.

1 Introduction

Graph-to-text generation aims to generate faithful
and fluent natural language description that con-
veys the same meaning as the input graphs (Kon-
stas et al., 2017; Gardent et al., 2017). Sitting at the
intersection between graphs and texts, this task can
further facilitate the applicability of graphs in more
downstream tasks, such as knowledge-grounded
reason (Moon et al., 2019; Lv et al., 2020; Liu et al.,
2021; Sun et al., 2023) and generation tasks (Tuan
et al., 2019; Zhang et al., 2020a; Li et al., 2022;
Gopalakrishnan et al., 2023).

Recently, Large language models (LLMs) have
showcased remarkable performance on a wide ar-
ray of text tasks, including language understand-
ing (Touvron et al., 2023a), reasoning (Zhang et al.,
2022), and text generation (Goyal et al., 2022; Chen
et al., 2023). The primary idea is that LLMs ac-
quire massive world knowledge when pre-trained
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Figure 1: Illustration of two graphs: (a) an AMR mean-
ing “The police hummed to the boy as he walked to
town.”; (b) a knowledge graph meaning “Above the Veil
is an Australian novel and the sequel to Aenir. It was
followed by Into the Battle.".

on large-scale text data so that knowledge can be
transferred to downstream tasks. Despite great suc-
cess with text, LLLMs suffer from salient limitations
when processing graphs, thus are sub-optimal to
graph-to-text generation. As shown in Figure 1,
the given abstract meaning representation (left)
and knowledge graphs (right) exhibit a different
structure from the text sequence, where text units
are organized and connected in a non-linear way.
This fact was also revealed by recent efforts (Wang
et al., 2023; Chai et al., 2023; Ettinger et al., 2023),
showing that LLM’s performances on graph-related
tasks are subpar.

To mitigate this issue, we aim to enhance the
graph capabilities of large language models with-
out compromising their original text knowledge. To
this end, we propose StructL.LLM, a novel learning
framework that allows LLMs to effectively under-
stand and process graph structures. Our framework
first pre-trains a graph encoder using structure-
aware pre-training strategies to capture the struc-
tural information in the graph. Based on that,
we perform structure-aware instruction tuning that
bridges the modality gap between graph represen-
tation and text representation. Specifically, we de-
sign four self-supervised graph question-answering



tasks to equip LLMs with the ability to leverage
the encoded graph features for question answer-
ing. During structure-aware instruction tuning, we
freeze the pre-trained graph model and language
model and tune a graph-to-text projector. In this
parameter-efficient way, we bridge the modality
gap using a small amount of training data while
maintaining the original distributional knowledge
of LLMs. Finally, we fine-tune the resulting model
on the task of graph-to-text generation to verify the
effectiveness of our method.

We conduct experiments on two graph-to-text
generation tasks: AMR-to-text generation and KG-
to-text generation. Experimental results on stan-
dard benchmarks show that our model consistently
achieves significant improvements over vanilla fine-
tuned LLMs on both tasks and surpasses the state-
of-the-art systems by a large margin. In addition,
our method structure-enhanced LLLM has better
data efficiency than vanilla LLMs. Further analysis
shows that our method is more effective for pro-
cessing complex graphs. Our code will be released
at https:github.com/anonomy.

2 Related Work

2.1 Large Language Models

Large language models (LLMs; Brown et al. 2020;
Chowdhery et al. 2022; Touvron et al. 2023a) have
substantially influenced the field of Natural Lan-
guage Processing (NLP). As the pioneering work,
Radford et al. (2019) and Brown et al. (2020)
demonstrate the capability of language models to
solve a task with minimal task supervision. The
following work shows that LLMs are adept at lever-
aging textual instructions to perform various tasks
including commonsense reasoning (Zhang et al.,
2022), text summarization (Goyal et al., 2022;
Chen et al., 2023), and massive multitask language
understanding (Hendrycks et al., 2021). There have
been recent attempts to adapt LLMs for processing
graphs, by linearizing graphs into a sequence (Jiang
et al., 2023), modifying model architecture to pro-
cess graphs (Zhang et al., 2021; Xie et al., 2023), or
continuously training LLMs using structure-aware
training objectives (Sun et al., 2021). Different
from the above work, we enhance the structure-
awareness of LLMs without losing the structure
information of the input graph while keeping the
model architecture and knowledge distribution of
LLMs unchanged.

2.2 Graph-to-text Generation

On a coarse-grained level, we categorize exist-
ing graph-to-text generation approaches into two
main branches: The first branch focuses on graphs,
aiming to better capture structural information in
the input graph. Such as employing graph en-
coders (Beck et al., 2018; Damonte and Cohen,
2019; Zhu et al., 2019; Zhang et al., 2020b) or
training neural networks with structure-aware learn-
ing objective (Song et al., 2020; Bai et al., 2020).
For example, early studies on graph-to-text gen-
eration rely on statistical methods. Flanigan et al.
(2016) convert input graphs to trees by splitting re-
entrances, before translating these trees into target
sentences with a tree-to-string transducer; Pour-
damghani et al. (2016) apply a phrase-based MT
system on linearized AMRs; Song et al. (2017)
design a synchronous node replacement grammar
to parse input graphs while generating target sen-
tences.

The other branch investigates pre-trained lan-
guage models to generate fluent text. For exam-
ple, Mager et al. (2020) finetune a GPT model
based on linearized input graphs. Ribeiro et al.
(2021a) continually train language models using
domain-adaptive training objectives. Bevilacqua
et al. (2021) jointly train AMR parsing and AMR-
to-text tasks using a pre-trained BART. Bai et al.
(2022) train a BART model on graph data using
graph-aware learning tasks. Wang et al. (2021) in-
troduce a two-step structured generation approach
based on pre-trained language models for KG-to-
text generation.

Our method integrates the advantage of both
graph structure encoding and pre-trained lan-
guage models, using a graph-to-text projector and
structure-aware learning tasks. The closest to our
work, Ribeiro et al. (2021b) integrate AMR struc-
tures into pre-trained TS5 (Raffel et al., 2020) us-
ing adapters (Houlsby et al., 2019) for AMR-to-
text generation. However, they do not pre-train
on graphs, and their method can not be used for
decoder-only large language models.

3 Approach

Notation. Formally, denoting a graph as G =
(V,‘€) where V = {v1,v2,...,v)y} represents
the nodes set and £ = {ey, €2, ..., e|g|} represents
the edges set. An edge can further be denoted by
a triple (v;,r;;,v;), showing that node v; and v,
are connected by relation 7;;. The goal of graph-


https:github.com/anonomy

to-text generation is to generate a word sequence
Y = {y1,y2,...,ym} which conveys the same
meaning as the input graph G.

We propose StructLLM, a new graph-language
joint learning framework that improves the graph
awareness of pre-trained large language models.
As shown in Figure 2(a), our model consists of
three modules: a graph encoder, a graph-to-text
projector, and a Language Model (LM). To capture
the implicit structure of graphs, we first pre-train
the graph encoder on a large-scale of unlabeled
graphs using self-supervised learning strategies
(see Section 3.1). Subsequently, we introduce three
structure-aware instruction-tuning tasks to train the
projector, aiming to bridge the gap between the pre-
trained graph encoder and large language models
(see Section 3.2). Finally, we perform a parameter-
efficient fine-tuning of the trained model on the
graph-to-text generation task (see Section 3.3).

3.1 Structure-aware Pre-training

Since there are no suitable pre-trained graph mod-
els for AMR and KG graph representation learn-
ing, we first employ a structure-aware pre-training
step to pre-train a graph encoder. This step is de-
signed to customize the model’s learning behavior
to meet the requirements of different downstream
graph learning tasks. We employ the following two
self-supervised learning tasks to pre-train a graph
encoder on large-scale unlabeled graphs.
Graph De-noising. We train the model to learn
contextualized representations using the graph de-
noising task. Given the input graph, we apply a
noise function on its nodes/edges/subgraphs to con-
struct a noisy graph, then we train the model to
recover the original graph based on the noisy one.
As shown in Figure 2(b), we implement the noise
function by randomly masking, i.e. randomly re-
placing nodes, edges and sub-graphs with special
[MASK] tokens with a probability of 15%.
Formally, given an input graph G, and the noisy
graph is denoted as G, the graph encoder is trained
to minimize the following training objective:

Edenoising = g

gerret'rain

logP(G|G), (1)

where Dpreirain denotes the pre-training dataset.

We follow ROBERTA (Liu et al., 2019) and use
dynamic masking, where we generate the masking
pattern every step instead of performing masking
during data preprocessing.

Graph Contrastive Learning. This task trains the
model to learn the overall representation of a graph
using the contrastive learning mechanism (Hadsell
et al., 2006; Frosst et al., 2019; Gao et al., 2021).
The graph contrastive learning task aims to pull se-
mantically close (or positive) graph pairs and push
apart unpaired (or negative) examples. In partic-
ular, for a given graph G, we define the positive
example as the graph that is obtained by applying
noise on the graph, and the negative examples are
graphs in the same mini-batch during training.

Formally, we take the hidden state of the root
node as the global representation of the graph, let
hY9 denote the representation of the ith graph in
the dataset, the training objective is:

exp(sim(h9, h9)/7)
> jenty exp(sim((hG, (h%) /)’
2)

where sim(-,-) denotes the similarity function',
N (i) collects neighbor index of the ith example in
the mini-batch, and 7 > 0 denotes the temperature
hyper-parameter.

The graph encoder is trained by optimizing the
total loss of the above two tasks:

Leon = —10g

Lpretrain = ﬁdenoismg + aﬁcony (3)

where « is a hyper-parameter that controls the im-
portance of graph contrastive learning loss. Our
pre-training framework is architectures-flexible and
can accommodate various models, including both
Graph Neural Networks (GNN) and Transformers
(See section 4.4 for comparison.).

3.2 Structure-aware Instruction Tuning

The pre-trained graph models and LLMs are inde-
pendently trained in an unimodal setting, making
it challenging to align the graph and text represen-
tation. To this end, the structure-aware instruction
tuning tasks are designed to bridge the modality
gap between the pre-trained graph models and large
language models.

As shown in Figure 2(b), we propose four
structure-aware instruction tuning tasks to learn
the interaction between the graph and text infor-
mation. The first two tasks are node/edge-aware
tasks which focus on local information. The last
two are sub-graph level tasks, thus learning graph-
level information. All tasks are unified as a graph

'We adopt the cosine similarity in experiments.
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(1) what’s the input degree of node “Aenir” ?
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(2) Complete the triplet: <?, country, Above the veil >

Answer: Austrilia

(3) Filing the [mask] tokens in the graph?

Answer: The masked
graph is xxx

(4) What’s depth of the input graph?

(© Answer: 1.

Figure 2: Illustration of the model architecture (a), structure-aware pre-training (b) and structure-aware instruction

following (c).

question-answering format thus facilitating knowl-
edge transfer from graph to text.

Node degree prediction. This task predicts the
input and output degree of a specific node so that
neural networks can capture the local structure of
graphs. For example, the input and output degrees
of node “Aenir” are 1 and 0, respectively.

Triplet completion. This task aims to complete
the given triplet (v;, r;;, 7) according to the input
graph, which guides models to learn the relation-
ships between nodes. For example, node xx has a
xxx relation with node xxx.

Sub-graph infilling. This task aims to fill the
masked sub-graph according to its neighbor graph,
thus helping models to learn sub-graph level struc-
tural information.

Graph depth prediction. This task predicts
the depth of the input graph which refers to the
length of the longest path from the root to that
particular node. This task helps to achieve a deeper
understanding of the graph structure. For example,
the depth of the graph in Figure 2 is 1.

We follow the instruction-prompt scheme to de-
sign the prompt template, containing three parts:
System Message, Task Instruction, Answer.
In addition, we add two special tokens (<Graph>,
</Graph>) to differentiate text representations from
graph representations.

Formally, given a graph G, a task instruction [
and its corresponding answer A, we compute the

probability of the target answers A by:

1]

i=0
where A.; = {a1,aq,...,a;—1} represents gener-
ated answer. The training objective of the model is

to minimize the negative log-likelihood of condi-
tional word probabilities over all training examples:

Lir=— >

<g,I,A>€D1T

logP(A|G,I), (5)

where D7 denotes the instruction tuning dataset.

To reduce computation costs and avoid the issue
of catastrophic forgetting, the pre-trained graph and
language models remain frozen during structure-
aware instruction tuning.

3.3 Task-specific Fine-tuning

After finishing structure-aware instruction tuning,
we fine-tune the resulting model on the graph-to-
text generation task. This step aims to adapt the
model’s generation behavior to meet the task of
graph-to-text generation. Formally, assuming the
input graph is denoted as G, the corresponding text
is denoted as Y, and the task instruction is denoted
as I, the training objective is:

‘Ctask = - Z

<g,f7Y>€Dta5k

logP(Y|G,I), (6)



Datasets AMR2.0 AMR3.0 WebNLG
Train 36521 55635 18102
Valid 1368 1722 872
Test 1371 1898 1862

Table 1: Benchmark graph-to-text generation datasets.

where Dy, denotes the graph-to-text dataset and
logP(Y'|G, 1) is calculated in the same way as
Equation 4.

In this stage, we freeze the backbone model and
use the low-rank adaptation (LoRA; Hu et al. 2022)
for parameter-efficient tuning.

4 [Experiments

4.1 Datasets

Our method is evaluated on two graph-to-text
benchmarks: AMR-to-text generation and KG-to-
text generation.
Pre-training. For AMR graph pre-training, we
collect about 1M silver AMR graphs parsed by
AMRBART (Bai et al., 2022). These data are
randomly selected from the Wikitext corpus. For
KG graph pre-training, we collect about 250k KG
graphs from DBpedia.
Instruction tuning. For AMR instruction tuning,
we randomly sample 50k silver data from the pre-
training corpus to construct the structure-aware in-
struction tuning dataset. For KG instruction tuning,
we randomly sample 50k instances from the pre-
training corpus.
Downstream Task. For AMR-to-text, we
use the AMR2.0 (LDC2017T10)?> and AMR3.0
(LDC2020T02)? corpora for task-aware fine-tuning
and evaluation. For KG-to-text, we use the
WebNLG* which is extracted from DBpedia. The
test set contains two subsets, the seen part, and the
unseen part. The unseen instances are from the five
unseen domains. The UNSEEN part is designed to
evaluate models’ generalizability to out-of-domain
instances.

Table 1 summarizes the statistics of downstream
datasets used in our evaluation.

4.2 Settings

Model Configuration. We explore two types of
architecture for graph encoding: Relational graph

2https://catalog.ldc.upenn.edu/LDC2017T10

3https ://catalog.ldc.upenn.edu/LDC2020T02

4https ://synalp.gitlabpages.inria.fr/
webnlg-challenge/challenge_2017/

attention networks (RGAT; Busbridge et al. 2019)
and Transformers. For RGAT, we use a hidden size
of 512 and set the number of graph layers as 12.
With regard to Transformers, we take the roberta-
large (Liu et al., 2019) as the initial model. We take
the last layer’s hidden states as graph representa-
tions. For the frozen large language model, we ex-
plore the widely-used LLaMA-2-7b (Touvron et al.,
2023b) model and Vicuna-7b-v1.5 (Chiang et al.,
2023). For the graph-to-text projector, we adopt
a two-layer perception with a GLEU (Hendrycks
and Gimpel, 2016) activation function. In the task-
specific fine-tuning stage, we set the LoRA rank as
64 and set the alpha as 16. We train for 1 epoch
in the structure-aware pre-training stage, 5 epochs
in the structure-aware instruction tuning stage, and
5 epochs in the structure-aware instruction tuning
stage We use a batch size of 1024, 128 and 128 for
graph encoder pre-training, structure-aware instruc-
tion tuning, and task-specific fine-tuning, respec-
tively. The learning rates are set as 5e-5, 1e-3, and
le-4 for the pre-training stage, instruction tuning
stage and task-specific fine-tuning stage, respec-
tively. We train models using 8 x A800 (80G)
GPU, our largest model with Vicuna-7b-v1.5 re-
quires less than 1 day for the first stage, less than
10 hours for the second stage, and less than 6 hours
for the third stage.

Evaluation Metrics. Regarding AMR-to-text, we
use three common Natural Language Generation
measures, including BLEU (Papineni et al., 2002),
CHRF++ (Popovié, 2017) and METEOR (Baner-
jee and Lavie, 2005), tokenizing with the script
provided with JAMR (Flanigan et al., 2014). For
KG-to-text, we use the same metrics as AMR-to-
text. We adopt the official WebNLG Challenge’s
script to tokenize the text and evaluation.

4.3 Compared Systems

We compare our method with fine-tuned LLMs as
well as other state-of-the-art methods. We con-
sider two types of fine-tuned LLMs as baselines: 1)
Vicuna-FT, a full-parameter fine-tuned Vicuna-7b-
v1.5 on graph-to-text dataset; 2) Vicuna-LoRA,
a parameter-efficient fine-tuned Vicuna-7b-v1.5
using LoRA. For AMR-to-text generation, the
additional compared models are: 1) Zhu et al.
(2019), a Transformer-based model that enhances
self-attention with graph relations; 2) Zhang et al.
(2020c), a graph-to-sequence model which uses
dynamic graph convolutional networks for better
graph modeling; 3) Bai et al. (2020), a graph en-
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Figure 3: (a) Impact of model backbones; (b) Impact of
the hyper-parameter c.

coder (Zhu et al., 2019) with a structural decoder
that jointly predicts the target text and the input
structure; 4) Mager et al. (2020), a fine-tuned
GPT that predicts text based on a PENMAN lin-
earized AMR graph; 5) Bevilacqua et al. (2021),
a fine-tuned BART that predicts text based on
a DFS linearized AMR graph; 6) Ribeiro et al.
(2021a), a parameter-efficient model that uses a
structural adapter to enhance a pre-trained TS5 lan-
guage model. 7) Bai et al. (2022), a model pre-
trained on AMR data using graph pre-training
strategies based on BART. 8) Cheng et al. (2022), a
fine-tuned BART on AMR data using bidirectional
bayesian learning.

For KG-to-text generation, the compared mod-
els are: 1) Moryossef et al. (2019), an end-to-end
neural system based an LSTM decoder with atten-
tion; 2) Castro Ferreira et al. (2019), a Transformer-
based model using sequences of KG triples as input;
3) Zhao et al. (2020), a dual encoding model that
can narrate the gap between encoding and decod-
ing; 4) Harkous et al. (2020), an end-to-end data-to-
text generation system based on GPT-2 equipped
with a semantic fidelity classifier; 5) Nan et al.
(2021), a fine-tuned BART that trained on an open-
domain structured data-to-text dataset; 6) Ribeiro
et al. (2021a), a fine-tuned BART that represents
the KG as a linear traversal; 7) Li and Liang (2021),
a parameter-efficient tuning method that tunes soft
prefixes based on GPT2-large.

4.4 Development Experiments

To assess the impact of various graph encoders
and language models, we conducted a development
experiment. Specifically, we compare the perfor-
mance of different graph encoders and language
models on the development dataset of AMR2.0 to
evaluate their respective effects on the overall sys-
tem’s performance. As shown in Figure 3(a), the
Transformer-based graph encoder obtains higher

Model BLEU CHRF++ MET.
AMR2.0

Zhu et al. (2019) 31.8 64.1 36.4
Zhang et al. (2020c) 33.6 63.2 37.5
Bai et al. (2020) 342 65.7 38.2
Mager et al. (2020)" 33.0 63.9 37.7
Ribeiro et al. (2021a)' 46.6 72.9 -
Bevilacqua et al. 021t 459 74.2 41.8
Bai et al. (2022)" 49.8 76.2 42.6
Cheng et al. (2022)" 51.5 77.6 452
Vicuna-7b-LoRAT 445 73.8 40.7
Vicuna-7b-FT' 49.6 76.2 423
Ours' 52.7 78.4 46.7
AMR3.0

Zhang et al. (2020c) 34.3 63.7 38.2
Bevilacqua et al. 02t 46.5 73.9 41.7
Bai et al. (2022)" 492 76.1 443
Cheng et al. (2022)" 50.7 76.7 45.0
Vicuna-7b-LoRA 442 73.0 40.1
Vicuna-7b-FTT 493 75.9 44.8
Ours' 52.0 77.7 45.9

Table 2: AMR-to-text results on AMR2.0 and AMR3.0.
MET.=METEOR. Models marked with { are based on
PLMSs. The best result within each row block is shown
in bold.

BLEU scores than the RGAT-based encoder in both
settings. In addition, two LLMs achieve similar re-
sults, and Vicuna obtains slightly better results than
LLaMA?2. We thus chose the Transformer-based
graph encoder and the Vicuna decoder as the back-
bone for the rest of our experiments.

We also study the impact of hyper-parameter o
in graph pre-training. Figure 3(b) shows the perfor-
mance of different values of o on the development
dataset of AMR2.0. It can be observed that there
are improvements when increasing the coefficient
from 0, indicating that the graph contrastive learn-
ing task has a positive influence on graph-to-text
generation. The BLEU score finally reaches the
peak at @=0.8. We thus set a=0.8 for the rest of
our experiments.

4.5 Results on AMR-to-text Generation

Table 2 lists the results of different systems on the
testset of AMR2.0 and AMR3.0, respectively. Al-
though having more parameters, Vicuna-7b-LoRA
and Vicuna-7b-FT obtain lower results than Cheng
et al. (2022) which is based on BART. This verifies
our motivation that LLMs are weak in graph-aware
tasks. Compared with Vicuna-7b-FT, our method
achieves significantly (p < 0.01) better results on
both datasets, improving the baseline model by 3.1
and 2.7 points in terms of BLEU on AMR2.0 and



AMR3.0, respectively. This indicates that our train-
ing framework can effectively improve the graph-
awareness of large language models.

Compared with previous work, our method con-
sistently outperforms the previous state-of-the-art
system of Cheng et al. (2022) on both datasets
in terms of all evaluation metrics, achieving 52.7
and 52.0 BLEU scores on the testset of AMR2.0
and AMR3.0, respectively. To our best knowledge,
these are the best-reported results.

4.6 Results on KG-to-text Generation

Table 3 records the performance of different sys-
tems on the testset of WebNLG. We report re-
sults on all, seen and unseen testsets, respectively.
Similar to AMR-to-text generation, Vicuna-7b-
LoRA gives weaker results than previous systems,
showing that LLMs are sub-optimal for processing
graphs. Compared with Vicuna-7b-FT, our method
gives consistently better results on all testsets re-
garding all metrics, with an average improvement
of 1.3 BLEU on all testsets. In particular, the im-
provement on the unseen testset is larger than the
seen testset, indicating that our method has a strong
generalization capacity.

Compared with other state-of-the-art systems,
the proposed method sees better performance, and
our model obtains a BLEU of 61.1, 66.5, and 54.5
on all, seen and unseen, respectively. This result
shows that the proposed method can effectively
bridge the gap between graph and text, thereby
performing better in translating graph to text.

5 Analysis

To have a deeper understanding of our model, We
further analyze the behavior of the proposed model
on AMR-to-text and KG-to-text datasets.

5.1 Ablation

We first study the effectiveness of individual com-
ponents of our method. Specifically, we com-
pared the full system with the following mod-
els: 1) model without structure-aware pre-training
(w/o Struct_PT): we replace the pre-trained graph
encoder with a randomly initialized encoder. 2)
pre-training graph encoder with graph de-noising
(w/o Graph_De)/graph contrastive learning (w/o
Graph_CL) only; 3) model without structure-aware
instruction tuning (w/o Struct_IT): we replace the
trained graph-to-text projector with a randomly ini-
tialized one. 4) structure-aware instruction tuning

501 —-*— Vicuna-7b-FT
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Figure 4: Performance comparison on AMR3.0 dataset
with different training data.
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without one of the node degree prediction (w/o
NDP)/triplet completion (w/o TC)/sub-graph in-
filling (w/o SI)/graph depth prediction (w/o GDP)
tasks.

Table 4 compares the performance of different
systems on the testset of AMR3.0 and of WebNLG.
First, it can be observed that structure-aware pre-
training has a positive impact on graph-to-text
generation, and removing this task leads to ob-
vious performance reduction. Additionally, the
graph de-noising task is more important than the
graph contrastive learning task. Moreover, remov-
ing the structure-aware instruction tuning task also
results in lower performance, showing that this
task helps improve the structure-awareness of our
model. Finally, all structure-aware instruction tun-
ing tasks have overall positive impacts. Among the
four tasks, triplet completion contributes most to
model performance, and sub-graph infilling helps
the least.

5.2 Data Efficiency in Task Fine-tuning

Our model is pre-trained on graph data and fur-
ther tuned on structure-aware QA tasks, thus is
expected to have high data efficiency when tuning
on graph-to-text generation tasks. To verify this,
we evaluate the performance of our model when
fine-tuned on data of different sizes, and compare
results with Vicuna-7b-FT. We randomly sample
100, 500, 1000, 5000, 10000 data from AMR3.0
for fine-tuning.> The results are shown in Figure 4,
where we report the BLEU score for our model and
Vicuna-7b-FT.

As shown in the Figure, our model gives signifi-
cantly (p<0.001) better results than Vicuna-7b-FT
in all training datasets, especially when there are

>We chose AMR3.0 since AMR-to-text generation is more
challenge than KG-to-text generation.



BLEU CHRF++ METEOR

MODEL All Seen Unseen All Seen Unseen All Seen Unseen
Moryossef et al. (2019) 472 533 34.4 - - - 39.0 44.0 21.0
Castro Ferreira et al. (2019) 517 56.4 38.9 - - - 320 41.0 21.0
Zhao et al. (2020) 52.8 64.4 38.2 - - - 41.0 46.0 37.0
Harkous et al. (2020 529 - - - - - 024 - -
Nan et al. 2021)1 459 529 37.9 - - - 40.0 420 37.0
Ribeiro et al. (2021a)’ 547 63.5 44.0 723 7176 66.5 422 455 38.6
Li and Liang o2t 563 634 47.7 - - - 42.1 450 39.3
Vicuna-7b-LoRAT 556 628 47.0 721 773 66.2 41.6 444 38.5
Vicuna-7b-FT* 59.8 65.9 52.6 74.8 784 70.4 437 46.1 41.2
Ours 61.1 66.5 54.5 75.8 79.5 71.8 44.6 46.9 42.5

Table 3: KG-to-text results on WebNLG. Models marked with } are based on PLMs. The best result within each

row block is shown in bold.

Model AMR3.0 WebNLG (All)
Vicuna-7b-FT 49.3 59.8
Ours (full) 52.0 61.1
w/o Struct_PT 49.6 60.0
w/o Graph_De 51.3 60.3
w/o Graph_CL 51.6 60.9
w/o Struct_IT 50.4 60.3
w/o NDP 51.4 60.7
w/o TC 50.9 60.4
w/o SI 521 60.7
w/o GDP 51.3 60.6

Table 4: BLEU on the testset of AMR3.0 and WebNLG.

Graph Size 1-10 (522) 11-20(556) >20(293)
Vicuna-7b-FT 51.5 48.2 46.9
Ours 53.1 52.4 49.7
Graph Depth  1-3 (422) 4-6 (667) >6 (282)
Vicuna-7b-FT 52.7 47.9 45.7
Ours 54.3 50.4 49.0
Reentrancies 0(622) 1-3(712) >3 (37)
Vicuna-7b-FT 52.6 48.5 43.1
Ours 54.8 51.0 45.3

Table 5: AMR-to-text generation performance on differ-
ent graph groups.

fewer than 5000 training instances. This indicates
that the proposed model has better generalization
abilities compared to Vicuna-7b-FT, thanks to the
structure-aware pre-training and structure-aware
instruction tuning stages. Interestingly, our model
achieves a BLEU-4 score of 2.1 without any train-
ing instances, showing that our method inherently
holds graph-to-text translation ability.

5.3 Impact of Graph Complexity

It is expected that the benefit of our method will
be more evident for structure-complex graphs as
the proposed method is trained to be aware of the
input graph structure. Table 5 shows the effects

of the graph size, graph depth and reentrancies on
the performance. We split the test set of AMR2.0
into different groups and compare the performance
of our method and the baseline model. We first
consider graph size, which records the number of
nodes in an AMR graph. Our model consistently
outperforms the baseline model on both tasks, with
the performance gap growing on larger graphs. In
terms of graph depth, our model consistently out-
performs the baseline model on all graphs, and the
improvements are bigger on deeper graphs.

We further consider reentrancies, which count
the number of node which has multiple parents.
The more reentrancies, the harder the graph is to
be understood. Our method achieves larger im-
provements when the input graphs have reentran-
cies. This means that our system has an overall
better ability to learn reentrancies.

5.4 Case Study

We further provide some cases to help better un-
derstand the effectiveness of the proposed model,
please refer to the appendix A for more details.

6 Conclusion

This work presents a structure-aware training
framework to build a graph large language model,
aiming at improving the graph learning capabilities
of LLMs. The proposed framework, StructLLM,
injects graph-specific structural knowledge into
the LLM through structure-aware pre-training and
structure-aware instruction tuning paradigm. By
leveraging a simple yet effective graph-text align-
ment projector, we enable LLMs to comprehend
and interpret the input graphs as text. Extensive
experiments on two benchmarks demonstrate the
effectiveness of our method.



7 Limitations

One primary drawback of the proposed method
revolves around the necessity of extensive graph
data for pre-training our model. This requirement
poses a significant limitation, particularly in low-
resource settings where the availability of such data
is uncertain or insufficient.
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KG#1: ( <E> Weymouth Sands
<R> preceded By (<E> A Glastonbury Romance ) )

Gold: A Glastonbury Romance preceded Weymouth Sands.

Baseline: A Glastonbury Romance was preceded
Weymouth Sands.

Qurs: Weymouth Sands was preceded by a Glastonbury
Romance.

KG#2:
( <E> Bacon sandwich
<R> dish Variation ( <E> BLT
<R> ingredient ( <E> Lettuce )
<R> dish Variation ( <E> Club sandwich ) ) )

Gold: A variation on the club sandwich, BLT, has lettuce
as an ingredient. A variation of the BLT is a bacon
sandwich.

Baseline:BLT is a variation of the club sandwich and
bacon sandwich. It includes lettuce .

QOurs: lettuce is an ingredient in a blt which is a variation
of a bacon sandwich and a club sandwich .

Table 6: Two KG-to-text generation cases. Given an
AMR graph, we present the gold text and two generated
outputs, given by baseline and our model, respectively.

A Appendix

A.1 Ablation Study

Table 6 lists two KG graphs and model outputs of
our KG-to-text model and the baseline model. As
shown in the first case, The output“was preceded”
generated by the baseline model indicates that it
exhibits deficiencies in its expression of temporal
ordering, demonstrates inadequate control of verb
tense, and ultimately fails to accurately convey the
intended meaning. In the second case,the baseline
model has not correctly captured the intended rela-
tion of the sentence due to the omission of relation,
“ingredient”. Ours model’s output correctly identi-
fies “lettuce” as an “ingredient” in the “BLT”.Our
model exhibits stronger performance in expressing
tense and capturing relationships, as compared to
the baseline model.
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