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Abstract

Deciphering protein folding and unfolding
pathways under tension is essential for deepening
our understanding of fundamental biological
mechanisms. Such insights hold the promise
of developing treatments for a range of debili-
tating and fatal conditions, including muscular
disorders like Duchenne Muscular Dystrophy and
neurodegenerative diseases such as Parkinson’s
disease. Single molecule force spectroscopy
(SMFS) is a powerful technique for investigating
forces involved in protein domains folding and
unfolding. However, SMFS trials often involve
multiple protein molecules, necessitating filtering
to isolate measurements from single-molecule
trials. Currently, manual visual inspection is the
primary method for classifying single-molecule
data; a process that is both time-consuming and
requires significant expertise. Here, we both
apply state-of-the-art machine learning models
and present a novel deep learning model tailored
to SMFS data. The proposed model employs
a dual-branch fusion strategy; one branch
integrates the physics of protein molecules, and
the other operates independently of physical
constraints. This model automates the isolation
of single-molecule measurements, significantly
enhancing data processing efficiency. To train
and validate our approach, we developed a
physics-based Monte Carlo engine to simulate
force spectroscopy datasets, including trials

1Department of Electrical and Computer Engineering, Uni-
versity of Minnesota - Twin Cities, Minneapolis, MN 55455
2Department of Artificial Intelligence and Informatics, Mayo
Clinic, Rochester, MN 55905 3Department of Biochemistry,
Molecular Biology and Biophysics, University of Minnesota -
Twin Cities, Minneapolis, MN 55455. Correspondence to: Cai-
long Hua <hua00023@umn.edu>, Murti V. Salapaka <mur-
tis@umn.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

involving single molecules, multiple molecules,
and no molecules. Our model achieves state-of-
the-art performance, outperforming five baseline
methods on both simulated and experimental
datasets. It attains nearly 100% accuracy across
all simulated datasets and an average accuracy
of 79.6 ± 5.2% on experimental datasets, using
only ∼30 training samples, surpassing baseline
methods by 11.4%. Notably, even without expert
annotations on experimental data, the model
achieves an average accuracy of 72.0 ± 5.9%
when pre-trained on corresponding simulated
datasets. With our deep learning approach, the
time required to extract meaningful statistics
from single-molecule SMFS trials is reduced
from a day to under an hour. This work results in
SMFS experimental datasets from four important
protein molecules crucial to many biological
pathways. To support further research, we have
made our datasets publicly available and provided
a Python-based toolbox (https://github.
com/SalapakaLab-SIMBioSys/
SMFS-Identification).

1. Introduction
Many biological processes depend on controlling mechani-
cal forces achieved via the folding and unfolding of domains
in molecules like titin (Rief et al., 1997; 1998; Oberhauser
et al., 2001), dystrophin and its homologue utrophin (Raja-
ganapathy et al., 2019; Ramirez et al., 2023), neurotoxic pro-
teins (Hervás et al., 2012), and extracellular matrix protein
tenascin (Oberhauser et al., 1998). For example, dystrophin
and utrophin work as molecular shock absorbers that limit
myofiber membrane damage when undergoing reversible
unfolding upon muscle stretching and contraction (Ervasti,
2007). Evidently, studying mechanical properties of single
molecules can provide vital insights into mechanisms of
debilitating diseases. Instruments such as optical tweezers
(Ashkin et al., 1986) and atomic force microscopes (AFMs)
(Binnig et al., 1986) have enabled single molecule force
spectroscopy (SMFS), where molecular forces in the femto
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to nano-Newton range, over sub-nanometer to micrometer
distances, can be measured and studied. In an SMFS ex-
periment, measurements from a force probe are recorded
while it is made to interact with molecules of interest. Since
the size of a typical force probe is orders greater than a
typical bio-molecule, the probe may come in contact with
one or more molecules. Measurements obtained from in-
teractions involving more than one molecule confound the
interpretation of results and are a significant challenge in
characterizing the behavior of single molecules. How to
identify and isolate measurements and data that result from
a single-molecule is an important objective for SMFS.

The use of chemical functionalization of probes, along with
molecular fingerprints has emerged as an approach for iden-
tifying single molecule trials (Yang et al., 2020a). Chemical
functionalization modifies the surface of the force probe and
substrate to enable site-specific attachment of molecules,
where fingerprints are well-characterized molecules that
yield distinct unfolding patterns. Here fingerprints in the
trials can be leveraged to discern single molecule trials from
trials that result from multiple molecules. However, surface
chemical functionalization is time-consuming, often taking
at least 6 hours (Zimmermann et al., 2010), and demands
careful handling and practice. Moreover, advanced filtering
techniques, informed by an understanding of all molecules
involved in the complex, are essential for effectively identi-
fying single molecule trials (Yang et al., 2020a).

In contrast, conducting experiments without functionalizing
probes and introducing fingerprints into the native molecule
has significant advantages. Probes without functionaliza-
tion are easier and less expensive to manufacture, and bio-
molecules without fingerprints engineered into their struc-
ture are easier to synthesize. Moreover, there is greater
confidence that the experimental data characterizes the un-
altered native bio-molecule without any confounding ef-
fects introduced by fingerprints. Despite these advantages,
when there are no fingerprints, distinguishing data that re-
sult from single molecules and multiple molecules is more
challenging. Currently, prevalent accepted method for dis-
tinguishing the data is based on visual inspection, which
is a time-consuming process that demands a high level of
expertise (Bornschlögl & Rief, 2011; Lyubchenko, 2018).
Additionally, trials need to be collected from a large num-
ber of experiments, not only to ensure statistical confidence
but also because the molecule concentration is generally
lowered to minimize the possibility of involving multiple
molecules (Ramirez et al., 2023; Oberhauser et al., 2001).
These factors hinder obtaining precise statistics of single
molecular trials without functionalization and the genera-
tion of a large, annotated dataset suitable for training deep
learning models.

A typical traditional workflow for SMFS experiments in-

volves purifying protein molecules from expression systems
(either bacterial or insect), preparing samples with the target
protein molecules, and setting up the AFM to automatically
perform multiple pulls to obtain numerous SMFS trials. Sub-
sequent to obtaining trial data, an expert manually filters
which curves correspond to single molecules. Each session
typically involves approximately 2,000–5,000 trials, requir-
ing the expert to meticulously sift through the data to filter
out curves that are not from single molecules. This process
can take between 12 and 24 hours. To ensure reliable as-
sessment, the molecule is expected to be expressed at least
thrice, with each expression resulting in multiple sessions,
making the cumulative time investment significant. This
article aims to reduce this time to less than one hour.

In this work, we introduce state-of-art machine learning
models and present a novel deep learning model that aug-
ments the unfolding physics of protein molecules to accu-
rately classify SMFS data into three classes: 1) no molecule,
2) single molecule, and 3) multiple molecules. The model
employs a dual-branch fusion strategy, one branch incor-
porating the physics of protein molecules and the other
operating independently of physical constraints. To train
and validate our approach, we present the first publicly ac-
cessible datasets, both simulated and experimental, obtained
from non-specific pulling of multi-domain molecules: titin,
utrophin, and dystrophin (Hua et al., 2024). The simulated
datasets, comprising of SMFS trials that originate from a
single molecule, multiple molecules, or no molecules, are
created with a novel physics-based Monte Carlo engine. Ex-
tensive evaluations on these datasets, in comparison with
five state-of-the-art baseline models, demonstrate efficacy of
our proposed model. Specifically, our model achieves nearly
100% accuracy on the simulated datasets, outperforming
baselines by 6%. When testing on experimental datasets, our
model achieves average accuracies of 79.6± 5.2%, surpass-
ing baselines by 11.4%, with only approximately 30 training
samples. Even without expert annotations on experimen-
tal data, our model can still achieve average accuracies of
72.0±5.9% when pre-trained with corresponding simulated
datasets. With this deep learning approach, the time required
to extract meaningful statistics from single-molecule SMFS
trials is reduced from a day to under an hour. It is expected
that this pilot effort will stimulate significant activity with
associated impact of ML methods on the understanding of
protein folding and unfolding that emphasize mechanical
properties.

2. Related work
Single molecule classification A 1D convolutional neu-
ral network trained using a triplet loss function (Hoffer &
Ailon, 2015) was utilized to classify force curves into single,
multiple, or no molecule classes, with reported accuracy
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Figure 1. Illustration of AFM based SMFS. (a) Schematic showing the desirable case of a single protein molecule with four folded
domains under tension between the tip of the AFM cantilever and the substrate. The deflection d and the separation between the cantilever
and the substrate z are measured. The tensile force on the protein molecule is computed from the deflection d. (b) Depictions of possible
scenarios, categorized into three classes: (1) no molecule present between the tip and substrate, (2-3) a single molecule or a section of a
single molecule present between the tip and the substrate, and (4-6) multiple molecules or sections of multiple molecules between the tip
and the substrate. (c-e) Show example force curves representative of the three different classes, with blue circles highlighting unfolding
events.

ranging from 65 − 70% (Waite et al., 2023). Moreover, a
machine learning workflow was proposed to iteratively clas-
sify different unfolding pathways of single molecule curves
(Doffini et al., 2023). However, these two datasets were
collected with chemically functionalized probes and finger-
prints. The chemical functionalization process is dependent
on the specific molecule and thus cannot be made agnos-
tic to the molecule under investigation. Moreover, in the
first dataset, each single molecule curve contains only one
unfolding event (Waite et al., 2023), simplifying the classifi-
cation problem; the second dataset comprises images rather
than time series data (Doffini et al., 2023), which introduces
redundancy given that force curves are inherently time series
data. There are currently no time series datasets available,
which are from non-specific pulling of multi-domain pro-
tein molecules; most naturally occurring protein molecules
have multiple domains. Here, we construct such datasets for
classification purposes.

Time series classification (TSC) More than hundreds of

time series classification (TSC) algorithms, including both
non-deep learning methods (Bagnall et al., 2017) and deep
learning methods (Fawaz et al., 2019; Wang et al., 2017),
are present in prior-art. Although more than 80 different
datasets from the University of California, Riverside (UCR)
time series classification repositories (Dau et al., 2019) are
evaluated with these methods, none of these datasets include
SMFS data. Methods that do not use deep learning become
computationally intensive and impractical to execute on
large-scale datasets (Bagnall et al., 2017; Fawaz et al., 2019).
In this article, we focus on deep learning methods to classify
our SMFS datasets.

3. Problem formulation
We first describe an atomic force microscope (AFM) based
SMFS setup. Here, a microcantilever with a sharp tip is
pressed against a substrate on which the protein molecules
under study are deposited. Under applied force, parts of
one or more protein molecules are non-specifically attached
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to the cantilever tip; characterized by a stochastic adhesion
event (Leite et al., 2012). Upon retraction of the cantilever
from the surface, sections of the protein molecules between
the tip of the cantilever and the substrate experience a ten-
sile force. The record of the force F experienced by the
cantilever (and therefore the molecule) versus molecule ex-
tension x is known as a force curve, as depicted in Figure
1c-e. If only one protein molecule is present between the
cantilever tip and substrate, the force curve unveils impor-
tant mechanical properties of the protein molecule. We
illustrate such a scenario in Figure 1a, where a single pro-
tein molecule with four folded domains is attached between
the substrate and the tip of the cantilever. As the cantilever
retracts, the molecule experiences mechanical tension, even-
tually causing a folded domain to unfold. The applied force
drops abruptly when a domain unfolds, as highlighted by
the blue circles in Figure 1d. This process continues until
either all domains are unfolded or the connection between
the cantilever and the substrate is broken (Rief et al., 1997),
producing a saw-tooth pattern of force curves (Figure 1d).

In practice, the force curves can be categorized into one of
three classes - 1) No molecule: where no molecule is present
between the tip and substrate, 2) Single molecule: when
only a single molecule or a section of a single molecule
is present, or 3) Multiple molecules: where multiple
molecules or sections of multiple molecules are present
between the tip and substrate. Example experimental force
curves corresponding to the three classes are depicted in Fig-
ure 1c, 1d, and 1e respectively. The force curves originating
from multiple molecules typically exhibit larger unfolding
forces than those with a single molecule (Figure 1e) and
have a mixture of unfolding events that cannot be traced
back to a specific protein molecule (Fig. 1b (4-6)), con-
founding useful interpretation. Here, excluding force curves
with no molecule and multiple molecules is necessary to
obtain accurate and interpretable data from SMFS. The iden-
tification of the single molecule force curves is challenging
due to a number of reasons: 1) a large number of force
curves (2000-5000) need to be collected in a single experi-
ment since protein molecule capture success rates are kept
at 1-5% (Oberhauser et al., 2001; Ramirez et al., 2023), 2)
the study of a specific protein molecule involves at least
three replications for confidence on results, 3) the force
curves are corrupted from instrument measurement noise
and intrinsic thermal noise of the molecules, and 4) often
the protein molecules under investigation have no prior char-
acterization, which makes the adjudication time consuming
and difficult even for domain experts.

The i-th force curve, of length T (i), consists of force data
F (i) = [F

(i)
1 , F

(i)
2 , . . . F

(i)

T (i) ] and extension data X (i) =

[X
(i)
1 , X

(i)
2 , . . . X

(i)

T (i) ]. Each force curve (F (i),X (i)) is as-
sociated with a class label Yi ∈ {0, 1, 2}, corresponding

to one of the three classes. Given a dataset of n samples,
D = [(F (1),X (1), Y (1)), . . . , (F (n),X (n), Y (n))], the goal
is to design an effective deep learning model capable of ac-
curately predicting the class label of a force curve.

4. Proposed model
We introduce Polymer Elastic Models Neural Networks
(PemNN), a novel deep learning model designed to clas-
sify force curves as originating from no molecule, single
molecule or multiple molecules. PemNN contains two
branches, the force trace branch, which uses the force data
F (i), and the physics-based branch, which incorporates
polymer elastic models (Section 4.1) with both extension
and force data. Features extracted from these branches are
fused using either early fusion (depicted in Figure 2) or late
fusion strategies (see Section 4.2).

Both branches pass through a convolutional block, compris-
ing a 1-Dimensional convolutional layer, batch normaliza-
tion layer (Ioffe & Szegedy, 2015) and a Rectified Linear
Unit (ReLU) (Nair & Hinton, 2010) activation layer. Convo-
lutional layers have demonstrated compelling performance
and efficiency in time series classification (Wang et al., 2017;
Fawaz et al., 2019; Karim et al., 2019; Pham et al., 2022;
Zhang et al., 2020; Zheng et al., 2016; Foumani et al., 2021).
Then features from the first convolutional block of both
branches are fused with one of four methods detailed in
Section 4.2. The fused output undergoes two additional
convolutional blocks, and a Global Average Pooling (GAP)
layer is applied to reduce parameters by averaging across
the time dimension (Wang et al., 2017; Fawaz et al., 2019).

To further enhance temporal encoding, a long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997; Sun-
dermeyer et al., 2012) layer is applied to each branch, fol-
lowed by a dropout layer (Srivastava et al., 2014) to mitigate
overfitting (Karim et al., 2019). Earlier studies have shown
that augmenting convolutional layers with LSTM signifi-
cantly improves performance in time series classification
with only a modest increase in the number of parameters
(Karim et al., 2019; Zhang et al., 2020; Hewamalage et al.,
2021).

The outputs of the GAP and LSTM layers are concatenated
and fed into a fully connected layer with three neurons,
corresponding to the three classes: 1) no molecule, 2) single
molecule, and 3) multiple molecules. A softmax activation
function is used in the final fully connected layer, and the
model is trained with categorical cross-entropy loss:

L(F (i),X (i)) = −
3∑

j=1

Y
(i)
j log(Ŷ

(i)
j ), (1)

where L(F (i),X (i)) represents the loss for classifying the
force curve (F (i),X (i)). Here, Y (i)

j is the label for class j
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Figure 2. The overall architecture of the Polymer Elastic Models Neural Networks (PemNN) comprises a physics-based branch and a
force trace branch, illustrated with the early fusion approach (the late fusion approach is shown in Figure 8 in the Appendix).

of i-th force curve (Y (i)
j ∈ {0, 1}), and Ŷ

(i)
j is predicted

probability for class j of i-th force by the neural network.

4.1. Polymer elastic models

Polymers (proteins included) exhibit entropic elasticity that
is well described by the worm-like chain (WLC) model
(Bustamante et al., 1994) given by:

F =
kBT

Lp

 1

4
(
1− x

Lc

)2 −
1

4
+

x

Lc

 , (2)

where, F and x represent the force and extension respec-
tively, kB is the Boltzmann constant, T is temperature, Lc is
the contour length, and Lp is the persistence length. The con-
tour length Lc represents the maximal length of physically
possible extension and the persistence length Lp quantifies
the bending stiffness of the polymer. Other widely used
polymer elastic models are described in Appendix A.1.

In the physics-based branch, the contour length Lc
(i)
p is

estimated for each force-extension pair
(
F

(i)
p ,X (i)

p

)
using

the WLC model with a fixed persistence length Lp. A
subsequent filtering step selects P samples with Lc

(i)
p ∈

[0,M ], where M is the filter threshold. If the number of
qualified data points is less than P , sampling is performed
with replacement.

4.2. Fusion module

The early fusion approach contains four methods: (i) Early-
Sum: sums convolutional feature maps; (ii) Early-Max:
selects the maximum value at each element from convolu-
tional feature maps, (iii) Early-Wavg: computes a weighted
sum of convolutional feature maps with learnable weights;
and (iv) Early-Conv: concatenates convolutional feature

maps along the filter dimension, followed by a convolution
with a kernel size of 1.

With late fusion method (depicted in Figure 8 in the Ap-
pendix), features from the first convolutional block are inde-
pendently processed through two additional convolutional
blocks for each channel, with shared parameters. GAP lay-
ers are applied to the outputs of both branches, and their
results are fused using one of the following methods (see
Appendix B): (i) Late-Concat: directly concatenates the out-
puts of GAP layers; and (ii) Late-Gating (Liu et al., 2021):
Concatenates GAP layer outputs with learnable weights.

5. Datasets
Datasets from four different protein molecules are employed.
Out of these four protein molecules, only Titin I27O (Athena
Enzyme Systems™) is an engineered protein molecule com-
posed of eight repeats of the Ig 27 domain that serves as a
reference protein for calibrating and validating our meth-
ods. The other three protein molecules come from natural
proteins with considerable variations in their sequence and
structure, dystrophin and utrophin. Dystrophin is a protein
molecule expressed primarily at the muscle cell membrane,
or sarcolemma, in striated muscle tissue. Deficiencies of
this protein molecule lead to severe muscle wasting disorder
like Duchenne muscular dystrophy (DMD), a fatal disease
occurring in 1 out of 4000 male births (Mendell et al., 2012).
Structurally, dystrophin is composed of four major domains:
an amino terminal (NT) actin-binding domain (ABD1), a
large central rod domain with 24 triple helical spectrin-like
repeats (SLRs) interspersed with 4 hinge domains, includ-
ing a second actin-binding domain (ABD2), a cysteine-rich
domain and a carboxy-terminal (CT) domain (Figure 3a).
Utrophin (Figure 3b) is a fetal homologue of dystrophin
and is under active investigation as a dystrophin replace-
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Table 1. Details of experimental datasets

DATASET
NUMBER OF CURVES

PER CLASS
LENGTHS DIFFERENT DAYS

PULLING SPEEDS
[nm/s]

DDRS (WAITE ET AL., 2023) [102,102,136] 400 NA 2000
TITIN I27O [181,164,191] 736-4859 5 500, 1000, 2000

BACT UTRN-R3 (HUA ET AL., 2024) [181,181,178] 957-9974 10 500, 1000, 2000, 5000
INSECT UTRN-R3 (HUA ET AL., 2024) [175,166,200] 1777-8890 11 500, 1000, 2000

DYSN-R3 (HUA ET AL., 2024) [191,185,177] 1659-4814 6 500, 1000, 2000

ment therapy for DMD. We include dystrophin and utrophin
fragments encoding the NT through SLR 3 domains, re-
ferred to as DysN-R3 (Fig. 3c) and UtrN-R3 (Fig. 3d),
respectively. Previous studies have demonstrated that the
mechanical properties of UtrN-R3 are influenced by the
expression system used, such as insect or bacterial cells
(Ramirez et al., 2023; Hua et al., 2024). Consequently, we
further categorize UtrN-R3 into insect UtrN-R3 and bact
UtrN-R3 to reflect these variations. In summary, our four
real protein molecules are: Titin I27O, bact UtrN-R3, insect
UtrN-R3, DysN-R3. Additionally, we include the Discoidin
Domain Receptors (DDRs) dataset (Appendix D.1) (Waite
et al., 2023) to compare the performance of different deep
learning methods.
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Figure 3. Diagrams of dystrophin and utrophin. (a) Full-length
dystrophin. (b) Full-length utrophin. (c) UtrN-R3 construct (d)
DysN-R3 construct. The ovals are spectrin-like repeats (SLRs);
the diamonds are hinge domains; NT is the N terminus; CT is
the C terminus; CR is a cysteine-rich domain; ABD1 & 2 are
actin-binding domains; DgBD is the dystroglycan binding domain.
Figure courtesy of previous study (Ramirez et al., 2023)

For each protein molecule, we have two datasets, one is
simulation dataset generated with our physics-based Monte
Carlo simulation engine described in Appendix A, and one
is experimental dataset that is obtained from physical ex-
periments conducted via AFM on real protein molecule
samples. The simulation dataset, comprising 600 force
curves, is generated for three classes; Class 0 has no protein
molecule between the substrate and cantilever tip, Class
1 has one protein molecule, and Class 2 has two protein
molecules attached. Different protein molecules are dis-
tinguished by different model parameters listed in Table

2. For the experimental data, as previously described in
(Rajaganapathy et al., 2019; Ramirez et al., 2023; Hua et al.,
2024), force curves were collected on different days and at
various pulling speeds, as outlined in Table 1. As a result,
the lengths of the force curves are different, and substantial
variations exist even within the same class. Annotation is
performed through visual inspection of the unfolding force
curves.

6. Results and Discussion
The performance of our proposed model, PemNN, is eval-
uated in this section. We outline the evaluation setup in
Section 6.1, followed by a comparison of PemNN’s clas-
sification performance against baseline models in Section
6.2. Next, we analyze the functionality of the force trace
branch and physics-based branch in Section 6.3. Finally, we
assess performance under limited training data, a scenario
frequently encountered in SMFS applications, in Section
6.4, and apply it to AFM data analysis through a comparison
to non-machine learning methods in Section 6.5.

6.1. Evaluation setup

We evaluate our proposed model, PemNN, against five base-
lines: 1) Triplet network (Triplet) (Waite et al., 2023): The
model designed for analyzing SMFS specific pulling data.
2) Fully convolutional neural networks (FCN) and 3) the
residual networks (ResNet): Two of the highest performing
deep neural networks on the UCR time series classification
archive (Fawaz et al., 2019). 4) InceptionTime: The current
state-of-the-art deep learning model on the UCR archive (Is-
mail Fawaz et al., 2020). 5) LSTMFCN: It outperforms FCN
and ResNet on the UCR time series classification archive
and demonstrates robust performance on multivariate time
series classification (Karim et al., 2018; 2019). Further
details about these baselines are provided in Appendix C.1.

The baselines were implemented using default parameters
from sktime (Löning et al., 2019), which is a python frame-
work for ML with time series data. For PemNN, the default
configuration incorporates the WLC model, LSTM layers
in both branches, and Early-Conv fusion method. An abla-
tion study of PemNN’s architecture is presented in Section
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D.2, and additional implementation details are provided in
Appendix C.2.

For each dataset, 20% of the data was used for training, and
the remaining 80% was reserved for testing, as adjudication
is a time-consuming task that requires significant expertise.
Stratified resampling was applied to maintain class distri-
butions. Each train-test split was seeded for reproducibility.
Identical resamples were applied to all models within a
single run, and performance was evaluated using overall
accuracy of the test data across five runs.

6.2. PemNN classification performance

Per each dataset, we evaluated all models on testing data
and ranked them based on their mean classification accuracy
over five runs, assigning a rank of 1 to the most accurate
model and 6 to the least accurate. The average ranking
is then computed across all datasets, including both simu-
lated and experimental testing sets for all protein molecules.
These average rankings are summarized in the critical dif-
ference diagram (Demšar, 2006), as presented in Figure 4.
PemNN achieves the lowest ranking of 1.4167, indicating
that our model is more accurate than baseline models.

Figure 4. Critical difference diagram of different deep learning
models across the simulated and experimental testing sets of all
protein molecules based on average accuracies. The most accu-
rate model is assigned a rank of 1, with a thick horizontal line
representing a group of classifiers that do not exhibit statistically
significant differences in accuracy.

For statistical analysis, we employed the Wilcoxon signed-
rank test with Holm correction as the post-hoc test following
the Friedman test (Fawaz et al., 2019; Demšar, 2006). In
Figure 4, thick horizontal lines represent groups of models
that are not significantly different in terms of classification
accuracy. Thus we conclude that PemNN is significantly
more accurate than all baseline models. Among the base-
lines, LSTMFCN has the lowest rank, with its performance
statistically similar to ResNet and FCN, but significantly
different from Triplet and InceptionTime.

6.3. Functionality of two branches

This section evaluates the functionality of the force trace and
physics-based branches in PemNN using simulated datasets
with known ground truths.

Physics-based branch functionality The importance of
the physics-based branch, which integrates polymer elastic

cb

a

Figure 5. a) The average accuracy of all models across the four
simulated datasets, with error bars indicating the standard devia-
tions over five runs. b) The average accuracy across four simulated
datasets over five runs as the contour length threshold varies, de-
picted in a radar chart where longer radii indicate higher accuracy.
c) The average accuracy across four simulated datasets over five
runs as the persistence length changes.

models, was evaluated by comparing PemNN (using both
force trace and physics-based branches) to baselines that
only utilized the force trace branch. As shown in Figure
5a, PemNN achieves near perfect accuracy (98.9± 1.9 %)
across four simulated datasets, significantly outperforming
the baseline. The largest performance gap is in the Titin
I27O simulated dataset, where PemNN outperformed base-
lines by 15%; the smallest gap occurs in the insect UtrN-R3
dataset, with PemNN maintaining a 6% higher accuracy.

Force trace branch Functionality Baselines were provided
with the same input data as the physics-based branch to as-
sess the contribution of the force trace branch. This was an-
alyzed under two scenarios: one is changing contour length
threshold in the filter, the other one is varying the persistence
length Lp in the WLC model. Radar charts were employed
to visualize model performance, with models represented
by different transparent colors and higher radii indicating
better accuracy. In Figure 5b, the contour length threshold
is changed from 1,000 to 1,024,000 nm in multiples of four,
with ”inf” denoting no threshold. PemNN maintained near-
perfect accuracy for thresholds between 1,000 and 64,000
nm, a range in which some baselines, such as LSTMFCN
and ResNet, also perform well. However, as the threshold in-
creases, baseline performance dropped sharply. In contrast,
PemNN maintains robust performance, outperforming the
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baselines by at least 7% at a threshold of 1,024,000 nm, with
this margin growing to 25% when no threshold was applied.
In Figure 5c, the persistence length Lp is varied logarithmi-
cally from 0.3 to 30,000 pm. Both PemNN and baselines
achieved near-perfect accuracy for Lp values between 30
and 30,000 pm. However, at Lp = 0.3 pm and Lp = 3
pm, baseline performance dropped significantly, whereas
PemNN maintained at least 3% and 10% higher accuracy,
respectively. A more detailed discussion is provided in
Appendix D.3. In conclusion, the physics-based branch en-
hances performance by incorporating polymer elastic mod-
els; the force trace branch increases robustness, ensuring
reliable classification even when physics models are cor-
rupted by parameter errors. By combining the strengths of
both branches, PemNN consistently outperformed baselines
in SMFS classification tasks, demonstrating its effectiveness
under various conditions.

6.4. Performance with limited data

In this section, we focus on experimental datasets and an-
alyze model performance under limited training data. The
testing data is fixed at 80% of the entire dataset, while
the deep learning models are trained using varying propor-
tions of the training dataset. When the training proportion
ranges from 5% to 20% (approximately 30 to 120 samples),
PemNN consistently outperforms baselines, achieving ac-
curacies of 79.6% and 85.2% at training proportions of 5%
and 20%, respectively (Figure 6). Among the baselines,
LSTMFCN performs the best but remains 11.4% and 2.9%
less accuracy than PemNN at training proportions of 5%
and 20%, respectively.

Figure 6. The performance of models trained with different pro-
portions of experimental datasets (training proportion), with error
bars indicating standard deviations across all experimental datasets
over five runs.

At a training proportion of 0%, no experimental data is used
during the training. Instead, a physics-guided pretraining
strategy (see Appendix E) is used to eliminate the need
for experimental labeling and mitigate human bias. In this
approach, deep learning models are pre-trained on simu-

lated datasets generated using physics-based models and
subsequently evaluating them on corresponding experimen-
tal datasets. The pretraining strategy achieves comparable
performance to models directly trained on experimental data,
with an average accuracy of 72.0%, despite not utilizing any
experimental data during its training. In our physics-based
protein molecule unfolding model, we assume every pro-
tein domain behaves identically. However, many protein
molecules, including utrophin and dystrophin have folded
domains that are significantly different from each other. De-
spite being trained on simulation data using a single double-
well potential model for the domains, PemNN demonstrates
the capability to classify the number of protein molecules
involved in experiments with protein molecules exhibiting
heterogeneous domains (See Appendix E for details).

6.5. Application to SMFS data analysis

Here, we apply both machine learning and non-machine
learning methods to Titin I27O data collected from a one-
day experiment (∼ 3000 curves) (See Appendix D.5 for
utrophin and dystrophin). Titin I27O is a well-calibrated
protein molecule with a most probable unfolding force of
204± 26 pN. In Figure 7, RawData includes all unfolding
events. The Heuristic method, a non-machine learning ap-
proach, filters data with the WLC model (Rajaganapathy
et al., 2019; Ramirez et al., 2023) that requires manual ad-
justments by experts to fine-tune parameters. PemNN was
trained on our Titin I27O dataset and subsequently tested
on the raw data to extract curves originating from single
molecule. Notably, PemNN takes less than an hour to com-
pute statistics, while the Heuristic method takes several
hours, and RawData can take up to a full day.

Figure 7. Application to SMFS data analysis of Titin I27O: Raw-
Data as the Baseline Method, Heuristic as non-machine learning
method, and PemNN as the our proposed model.

PemNN achieves a most probable unfolding force of 206.68
pN, closely aligning with the expected value (204± 26 pN).
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In contrast, the Heuristic and RawData yield most probable
unfolding forces of 217.41 pN and 192.21 pN, respectively
(Table 5). Furthermore, the inclusion of data not originating
from single-molecule events resulted in broader force distri-
butions. We quantified the sharpness of these distributions
using the interquartile range (IQR), as listed in Table 5. Our
method, PemNN, achieved an IQR of 52.63, which is only a
quarter of the IQR observed from the Heuristic or the Raw-
Data, effectively filtering out confounding factors. These
results highlight that PemNN effectively analyzes AFM data
by accurately capturing key statistical features while ef-
fectively filtering out confounding factors from multiple
molecules.

7. Conclusions
Single-molecule force spectroscopy (SMFS) data of pro-
tein molecules are time and resource intensive to collect.
Currently, manual visual inspection remains the primary
method for classifying force curves resulting from single
molecules. This process typically requires a full day per
experimental iteration of a specific molecule, with multiple
iterations being standard practice in the field. These fac-
tors make it challenging to obtain precise statistics of single
molecular force curves and to generate a large, annotated
dataset appropriate for training deep learning models.

We developed a novel deep learning model that fuses a
physics model based branch with another that does not em-
ploy physics to efficiently classify SMFS data as originating
from no molecules, single molecules, or multiple molecules.
We also applied state-of-the-art machine learning models
(including ResNet, FCN, InceptionTime, and LSTMFCN)
to SMFS data. Experimental datasets, obtained from four
molecules (Titin I27O, bact UtrN-R3, insect UtrN-R3, and
DysN-R3) are used to test and train the deep learning model.
A Monte-Carlo engine, based on the physics of proteins, is
developed and employed to provide simulated data. The pre-
sented approach achieves superior performance compared
to state-of-the-art baseline methods on all simulated or ex-
perimental datasets. Remarkably, strong performance on
experimental data even when trained solely on simulated
data is corroborated. Furthermore, the model surpasses
non-machine learning approaches in SMFS data analysis,
demonstrating its effectiveness and reliability, while reduc-
ing processing time from a day to under an hour.
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Bornschlögl, T. and Rief, M. Single-Molecule Protein Un-
folding and Refolding Using Atomic Force Microscopy.
In Peterman, E. J. G. and Wuite, G. J. L. (eds.), Single
Molecule Analysis, volume 783, pp. 233–250. Springer,
2011.

Bustamante, C., Marko, J. F., Siggia, E. D., and Smith, S.
Entropic Elasticity of -Phage DNA. Science, 265(5178):
1599–1600, 1994.

Chen, Y., Xie, H., and Shin, H. Multi-layer fusion tech-
niques using a CNN for multispectral pedestrian detec-
tion. IET Computer Vision, 12(8):1179–1187, 2018.

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu,
Y., Gharghabi, S., Ratanamahatana, C. A., and Keogh,
E. The UCR time series archive. IEEE/CAA Journal of
Automatica Sinica, 6(6):1293–1305, 2019.
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A. Simulating protein unfolding
Monte Carlo Simulation based methods are used widely in the SMFS studies, yielding results that closely align with
experimental data (Liu et al., 2020; King et al., 2010). However, prior simulation frameworks are restricted to the idealized
case of force curves arising from single molecule. To build a comprehensive training dataset, we incorporate the real cases
of force curves generated by no molecule and multiple molecules. Additionally, we model the cases where only partial
sections of molecules are present as well as the stochastic adhesion and detachment events, of the cantilever to the protein,
to better approximate experimental data.

Algorithm 1 Monte Carlo Simulation

Require: v, L(i)
c , L(i)

p , ∆L
(i)
c , ∆L

(i)
p , k0, ∆x‡, ∆G‡, N , D(i)

Initialization: z ← 0, U (i) ← 0
1: for t← 0 : ∆t : T do
2: z ← z + v∆t
3: Solve (3) for extension x
4: for i← 1 : 1 : N do
5: Calculate F

(i)
WLC using (4)

6: Compute koff (F
(i)
WLC) using (13)

7: Compute P
(i)
u (F

(i)
WLC) using (5)

8: Draw η(i) ∼ U[0,1]
9: if η(i) < P

(i)
u (F

(i)
WLC) then

10: L
(i)
c ← L

(i)
c +∆Lc, L(i)

p ← L
(i)
p +∆Lp

11: U (i) ← U (i) + 1
12: end if
13: Draw η

(i)
d ∼ U[0,1]

14: if U (i) == D(i) and η
(i)
d < Pd(F

(i)
WLC) then

15: L
(i)
c ← L

(i)
c + CLc, L(i)

p ← L
(i)
p + CLp

16: end if
17: end for
18: end for

For the simulations, N proteins are considered with i-th protein having D(i) folded domains attached between the substrate
and the force probe. The base of the cantilever probe is moved away at a constant speed v; here the position of the base of
the cantilever z is initialized at zero and is updated every ∆t seconds. The protein extension x is determined by solving the
equation,

kcd =

N∑
i=1

F
(i)
WLC(x, L

(i)
c , L(i)

p ), (3)

where kc is the spring constant of the cantilever, and d is the deflection (Fig 1a). Here, F (i)
WLC(x, L

(i)
c , L

(i)
p ) is the worm-like

chain (WLC) model that relates the force applied to the extension of i-th protein (See Appendix A.1), given by (Rief et al.,
1999),

F
(i)
WLC(x, L

(i)
c , L(i)

p ) :=
kBT

L
(i)
p

 1

4
(
1− x

L
(i)
c

)2 −
1

4
+

x

L
(i)
c

 , (4)

where kB is the Boltzmann constant, T is temperature, and L
(i)
c and L

(i)
p are the contour length and the persistence length of

the i-th protein, respectively. For the i-th protein, the probability of a domain unfolding during the time interval ∆t is found
by

P (i)
u (F

(i)
WLC) = (D(i) − U (i))(1− e−koff (F

(i)
WLC)∆t), (5)

where U (i) is the number of unfolded domains which is initially set to zero, and koff (F
(i)
WLC) is the transition rate that can

be determined with the Dudko-Hummer-Szabo model (Dudko et al., 2008) (See Appendix A.2).
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For determining unfolding events of i-th protein, a random number η(i) is generated uniformly from 0 to 1 and is compared
to the unfolding probability P

(i)
u (F

(i)
WLC). No unfolding event is triggered if the random number is larger than P

(i)
u (F

(i)
WLC);

the simulation will continue to the next time slot by adding time interval ∆t. Otherwise, one of the domains is unfolded,
leading to a increase in the number of unfolded domains, U (i), by 1, and the simulation continues to the next unfolding
event if folded domains still exist after updating contour length and persistence length via adding increments ∆L

(i)
c , ∆L

(i)
p

respectively.

Once all domains in i-th protein unfold, the protein detaches from either the cantilever tip or substrate based on the
detachment probability,

Pd(F ) =

{
Cd F ≥ Ftd

0 F < Ftd

, (6)

where Cd is a constant and Ftd is a random number sampled from the Gaussian distribution, denoting the threshold at which
the detection of detachment begins. Upon detachment of the i-th protein, its WLC force is reduced to zero by adding large
constants (CLc and CLp) to contour length L

(i)
c and persistence length L

(i)
p respectively. To better replicate experimental

force curves, we introduce Gaussian noise to the WLC force immediately after its calculation at line 5 of Algorithm 1. The
adhesion force (see Appendix A.3) is added at the end of the simulation process.

A.1. Polymer elastic models

Various polymer elasticity models have been developed to model the force-extension (F − x) behavior. The widely used
models are the worm-like chain (WLC) model (Bustamante et al., 1994), the freely jointed chain (FJC) model (Ortiz &
Hadziioannou, 1999), and the freely rotating chain (FRC) model (Livadaru et al., 2003).

The force-extension relationship for each model is given by the following equations:

• The WLC model:

F =
kBT

Lp

 1

4
(
1− x

Lc

)2 −
1

4
+

x

Lc

 , (7)

where kB is the Boltzmann constant, T is temperature, Lc is the contour length, and Lp is the persistence length.

• The FJC model:
x

Lc
= coth(

FLk

kBT
)− kBT

FLk
, (8)

where Lk is the Kuhn length.

• The FRC model:
x

Lc
= 1− kBT

2FLb
. (9)

where Lb is the bond length.

In these models, the contour length Lc is a robust statistical parameter representing the maximal length of physically possible
extension in a given folding state. (Puchner et al., 2008) first proposed solving for contour length Lc using each data point,
rather than fitting each loading region with a polymer model. This approach has been widely adopted in SMFS studies
(Liu et al., 2020; Yang et al., 2020b; Jobst et al., 2013; Otten et al., 2014; Zhang et al., 2019; Schoeler et al., 2014). Given
the physically relevant constraints (Lc > 0, x > 0, F > 0, x < Lc) and fixed values for the persistence length Lp, Kuhn
length Lk, and the bond length Lb, the contour length Lc can be calculated using the following equations for three polymer
elasticity models:

• The WLC model (Jobst et al., 2013):

LWLC
c =

x

6u

(
3 + 4u+

9− 3u+ 4u2

g(u)
+ g(u)

)
, (10)

where u =
FLp

kBT and g(u) =
(
27− 27

2 u+ 36u2 − 8u3 + 3
√
3

2

√
−u2 [(4u− 3)3 − 108]

)1/3

.
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• The FJC model:

LcFJC =
x

coth(FLk

kBT )−
kBT
FLk

. (11)

• The FRC model, assuming bonds are connected by a fixed angle γ (Livadaru et al., 2003; Liu et al., 2020):

LFRC
c =


3xkBT

Fa for FLb

kBT < Lb

p
x

1−
(

4Fp
kBT

)−1/2 for Lb

p < FLb

kBT < p
Lb

,

x

1−
(

2FLb
kBT

)−1 for p
Lb

< FLb

kBT

(12)

where a = Lb
1+cosγ

(1−cosγ)cos(γ/2) is the Kuhn length and p = Lb
cos(γ/2)
|ln(cosγ)| is the persistence length.

A.2. The Dudko-Hummer-Szabo model

The Dudko-Hummer-Szabo (DHS) model (Dudko et al., 2008) provided an expression to find the force-dependent transition
rate koff (F ) by,

koff (F ) = k0

(
1− νF∆x‡

∆G‡

) 1
ν −1

e
β∆G‡

[
1−

(
1− νF∆x‡

∆G‡

)1/ν
]
, (13)

where k0 is the intrinsic transition rate, ∆x‡ is the distance to energy barrier, ∆G‡ is the energy barrier height, and β = 1
kBT ,

and ν = 1/2 or 2/3, representing the cusp-like or linear-cubic energy landscape. Here k0, ∆x‡, and ∆G‡ are defined in the
absence of external force. The parameters for Titin I27O are reported by (Dudko et al., 2006), while those for UtrN-R3 and
DysN-R3 are reported by (Hua et al., 2024).

Table 2. The DHS model parameters

MOLECULES
DHS ν = 1/2

ln(k0) ∆x‡ [nm] ∆G‡ [kBT ]

TITIN I27O (DUDKO ET AL., 2006) −9.21 0.40 20.00
BACT UTRN-R3 (HUA ET AL., 2024) −6.50 0.85 14.50
BACT DYSN-R3 (HUA ET AL., 2024) −4.50 0.60 11.50

INSECT UTRN-R3 (HUA ET AL., 2024) −2.50 0.41 9.80

A.3. Adhesion force model

The adhesive force can be composed of various components like van der Waals force, capillary force, and chemical
forces, which depend on environmental conditions such as roughness, interacting angles, and wetness (Leite et al., 2012;
Israelachvili, 2011). However, quantifying these environmental conditions is challenging, and they can vary significantly
between experiments. Consequently, we adopt a straightforward yet versatile method to model adhesive force rather than a
more intricate approach,

Fa(t) =


t
t1
Fad 0 < t < t1

t−t2
t2−t1

Fad t1 < t < t2

0 else

, (14)

where the adhesive force increases linearly in the interval [0, t1], reaching the adhesive force threshold Fad at t1, then
adhesion between the cantilever tip and the substrate begins to disconnect at t1 and vanishes at t2. The vanishing phase
[t1, t2] should be much faster than the adhesive phase [0, t1], with a common choice being to set t2 close to t1, for example,
t2 = 1.1t1. To introduce stochasticity and enhance generality, we assume both Fad and t1 to be Gaussian distributed random
variables with user-specified mean and standard deviation.
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Figure 8. Overall architecture of the PemNN model with late fusion strategy. The data augmentation block is not enabled by default but is
utilized through the physics-guided pretraining strategy described in Appendix E.

B. PemNN fusion methods
PemNN contains two branches: the force trace branch T and the physics-based branch P . To uniquely identify a
block, we use the notation (C, pos), where C ∈ {P, T ,PT } specifies the channel with PT representing the fusion of
two branches, and pos ∈ {pre−module, CNN1, BN1, RELU1, CNN2, fusion,GAP, . . . } indicates the name. For
example, (T , CNN1) identifies the first convolutional layer in the force trace branch. We use fC,pos denotes the output of a
block. PemNN supports two fusion strategies—late fusion and early fusion—which differ based on the dimensionality of
the features being fused.

early fusion module is applied to fuse outputs of layers (T , RELU1) and (P, RELU1) (Figure 2). We discuss four
different methods as follows:

• Early-Sum:
fEarly−fusion(F (i),X (i)) = fT ,RELU1(F (i)) + fP,RELU1(F (i),X (i)) (15)

which sums convolutional feature maps across branches.

• Early-Max:
fEarly−fusion(F (i),X (i)) = max

{
fT ,RELU1(F (i)), fP,RELU1(F (i),X (i))

}
(16)

where the maximum value at each element is selected.

• Early-Wavg:

fEarly−fusion(F (i),X (i)) = αT fT ,RELU1(F (i)) + αPfP,RELU2(F (i),X (i)) s.t.αT + αP = 1, (17)

which computes a weighted sum of feature maps with coefficients αT , αP learned during optimization.

• Early-Conv: The three methods described above require consistent output shapes for the layers (T , RELU1) and
(P, RELU1). The (i, j) element of fEarly−fusion(F (i),X (i)) is derived from the corresponding (i, j) elements of
fT ,RELU1(F (i)) and fP,RELU2(F (i),X (i)), without any information exchange across different branches. To exchange
information across branches, we propose using convolution with a set of filters ωEarly−conv of length of 1:

fEarly−fusion(F (i),X (i)) =
(
fT ,RELU1(F (i))∥fP,RELU1(F (i),X (i))

)
⊛ ωEarly−conv

where ⊛ is the convolution operator, and the vertical concatenating operator ∥ is defined as vi ∥ vj =
(vi0, vi1, . . . , vin, vj0, . . . vjn)

T given vi = (vi0, vi1, . . . , vin)
T and vj = (vj0, vj1, . . . , vjn)

T .
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Late-fusion strategy, where the fusion module is applied after the GAP layers, as depicted in Figure 8. Two methods are
considered:

• Late-Concat:
fLate−fusion(F (i),X (i)) = fT ,GAP (F (i))∥fP,GAP (F (i),X (i))

where GAP layers are concatenated directly.

• Late-Gating:
fLate−fusion(F (i),X (i)) =

(
gT fT ,GAP (F (i))

)
∥
(
gPfP,GAP (F (i)),X (i))

)
where GAP layers are concatenated with learnable weights. The gating weights gT ,gP are calculated as

(gT , gP) = σ
(
W ·

(
fT ,GAP (F (i))∥fP,GAP (F (i),X (i))

)
+ b

)
,

where W and b are the weights and bias of a fully connected layer and σ(·) is softmax activation function.

In multivariate time series classification, the widely used approach is late fusion, which directly concatenates features
extracted from Global Average Pooling (GAP) layers. For example, (Karim et al., 2019) concatenated the GAP layer of a
convolutional block with output of an LSTM layer, (Zheng et al., 2016) concatenated GAP layers of convolutional blocks
originated from different input branches, (Zhang et al., 2020) integrated both LSTM and GAP features from different
branches, and (Liu et al., 2021) not only concatenated features from two transformer encoders but also introduced a gating
mechanism to assign weights to these features. Unlike late fusion, early fusion focuses on combining convolutional feature
maps from multiple branches. Examples includes (Wang et al., 2021), which employed an element-level maximum operator
for feature fusion in image classification; (Chen et al., 2018), which summed feature maps for image detection; and (Pham
et al., 2022), which concatenated feature maps extracted with different kernel sizes for anomaly detection.

C. Baselines and implementation
C.1. Baselines

Triplet The triplet network (Hoffer & Ailon, 2015) takes three samples: the anchor x, the positive sample x+, and
the negative sample x−. Here, x is the sample under classification, x+ comes from the same class as x, and x− is of
different class. All three samples are passed through the same network architecture, where the weights are shared, to learn
representations in the embedding space. The triplet loss is employed,

Ltriplet = max{0, ||Net(x+)−Net(x)||22 − ||Net(x−)−Net(x)||22 +m}, (18)

where || · || denotes the L2 norm, and m represents the margin parameter that controls the separation between positive and
negative samples in the embedding space. The objective is to minimize the distance between the anchor and the positive
sample while maximizing the distance between the anchor and the negative sample in the embedding space. Subsequently,
the resulting embeddings are fed into the MLP described earlier to learn classification. The embedding network adopts the
ResNet structure, which will be elaborated on below.

FCN Fully convolutional neural networks (FCN) (Wang et al., 2017) is composed of three convolutional blocks followed
by a Global Average Pooling (GAP) layer and a softmax layer. Each convolutional block includes a 1D convolutional layer,
batch normalization, and a Rectified Linear Unit (RELU) activation layer. The output of the final convolutional block is
passed through a GAP layer, followed by a fully connected softmax layer. A stride of 1 with zero padding is used to preserve
the length of time series data. The filter sizes and kernel sizes of the three convolutional layers are {128, 256, 128} and
{8, 5, 3}, respectively.

ResNet The ResNet (He et al., 2016) extends neural networks to very deep structures by incorporating shortcut connections.
These connections enable the gradient flow directly through the network, easing the training of deeper models. Our Residual
Network (ResNet) comprises three residual blocks followed by a GAP layer and a softmax layer. Each residual block
contains three convolutional blocks similar to those in the FCN architecture. The output of the last convolutional block
is added to the input of the residual block before proceeding to the next layer. The kernel size for the three convolutional
layers in each residual block remains consistent with FCN architecture, set as {8, 5, 3}. The number of filters is the same
within the same residual block, with filter sizes specified as {64, 128, 128} for three residual blocks, respectively.
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InceptionTime InceptionTime (Ismail Fawaz et al., 2020) ensembles the predictions of several InceptionNet models, each
with different initializations, to overcome the high variance across different runs. The InceptionNet model consists of two
residual blocks, followed by a global average pooling (GAP) layer and a softmax layer. Within each residual block are three
Inception modules. Each Inception module begins with a bottleneck layer that reduces dimensionality while preserving the
original sequence length through a kernel size and stride of 1. Subsequently, 1D convolutions with varying kernel sizes are
applied to the bottleneck output, capturing patterns across different scales. Additionally, a max pooling layer, followed by
another bottleneck layer, is applied to the original time series.

LSTMFCN LSTMFCN (Karim et al., 2019) employs the augmentation an LSTM layer and CNN layers along with a
squeeze-and-excitation block to generate feature maps, followed by a softmax layer for time series classification. The
three convolutional layers in LSTMFCN are configured with filter sizes of {128, 256, 128} and kernel sizes of {8, 5, 3},
respectively. The LSTM layer has a hidden dimension of 8, followed by a dropout layer with a rate of 0.8.

C.2. Implementation details

In PemNN, the CNN blocks contains {128, 256, 128} filters with kernel sizes of {8, 5, 3}, respectively; the LSTM layers
are configured with a hidden dimension of 8, followed by a dropout layer with a rate of 0.8 to mitigate overfitting. The
contour length threshold is set to 1000 nm, the persistence length Lp = 300 pm, Kuhn length Lk = 300 pm, and bond
length Lb = 150 pm by default. The batch size is 16 for all models except for InceptionTime with 64, and the number of
training epochs are kept at 200 epochs for all models. All models are trained with Adam (Kingma, 2014) with the learning
rate 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 1e− 8. The best-performing model, determined by achieving the lowest training
loss, is then selected and evaluated on the testing data. These models are trained with Apple M1 Pro, which has 10-core
CPU and 16-core GPU.

C.3. Data preprocessing

In both single molecule and multiple molecule cases, the force curve typically consists of two parts, separated by the
detachment of the event. Our interest lies in the region before detachment, where unfolding events occur. Here, the force
curves are trimmed to retain the region before detachment by identifying the detachment point. This trimming process is
illustrated in the transition from Figure 9a to Figure 9b. In the force trace branch, data is resampled using linear interpolation
to a default of 400 points, followed by min-max normalization, xscaled = x−xmin

xmax−xmin
, where xmin and xmax are minimum

and maximum values of the data x. This ensures the models focus on learning shapes rather than magnitudes, as shown in
the transition from Figure 9b to Figure 9c. In the physics-based branch, 400 samples are extracted from the trimmed force
curve by default, and the countour length Lc is calculated using polymer elastic models, illustrated in Figure 9d. We utilize
tools from the publicly available time series library Tslearn (Tavenard et al., 2020) to implement the two preprocessing
steps: resampling and normalization.

dba c

Figure 9. Data preprocessing example. (a) The original force curve. (b) The force curve after trimming. (c) The force data after
normalization and resampling in the force trace branch. (d) The force curve with calculated Lc in the physics-based branch.
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D. More Results
D.1. Results of the Discoidin Domain Receptors (DDRs) dataset

The DDRs dataset contains unfolding curves of interaction forces between DDRs and its ligand, collagen, measured by
AFM at the single molecule level (Waite et al., 2023). The dataset contains three classes: 1) no molecule, 2) single molecule,
and 3)multiple molecules. However, force curve collection was conducted at a single pulling speed, and the dataset is
standardized to have equal lengths for each sample. However, our method, PemNN, is not applicable as extension data is not
provided. Instead, we compare the performance of the remaining deep learning methods.

All deep learning models, except the Triplet model, were trained using 80% of the total dataset as the training dataset
and tested on the remaining dataset. Their performance is compared to that of the triplet model reported in (Waite et al.,
2023), as presented in Table 3. The dataset was pre-processed as proposed in (Waite et al., 2023), which involves applying
a numerical first-order derivative, followed by a moving average filter with a window size of 13, and finally min-max
normalization. Among the models, InceptionTime demonstrated the best performance, achieving approximately 20% higher
overall accuracy and F1 score compared to the Triplet model.

Table 3. Overall accuracy, class accuracy, and F1-score of DDRs dataset for Triplet, MLP, FCN, ResNet, and InceptionTime are presented
in the format of average (standard deviation) from 5 runs. Among these models, InceptionTime demonstrates superior performance
compared to the others.

MODELS OVERALL ACCURACY (%) CLASS ACCURACY (%) F1-SCORE(%)CLASS 0 CLASS 1 CLASS 2

TRIPLET
(WAITE ET AL., 2023) 66.70 73.30 63.30 63.30 66.70

FCN 77.10(5.15) 81.22(4.96) 77.49(13.59) 73.48(10.06) 77.30(5.32)
RESNET 79.03(4.84) 81.90(10.52) 83.97(4.74) 70.92(7.44) 79.02(4.88)

LSTMFCN 75.81(3.42) 70.91(2.49) 88.24(4.16) 71.30(9.02) 76.17(3.32)
INCEPTIONTIME 85.48(1.14) 97.14(2.61) 84.00(8.94) 72.50(12.96) 85.26(1.02)

D.2. Ablation study of model architecture

In this section, we explore the architectures of our model, PemNN, in greater detail to provide insights into optimizing
model designs for SMFS classification. We examine 1) different fusion strategies, 2) the inclusion or exclusion of LSTM
layers, and 3) different polymer elastic models.

b

d

c

a

Figure 10. Ablation study of PemNN architecture. a) Critical diagram comparing various fusion strategies, where ’E-’ and ’L-’ denote
early fusion and late fusion strategies, respectively. b) Critical diagram evaluating the incorporation of LSTM layers, with ’F1P1’
indicating LSTM layers included in both the force trace and physics-based branches. c) Critical diagram of different polymer elastic
models. d) Performance of PemNN across datasets with three distinct polymer elastic models.
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Fusion Strategies Figure 10a presents results of various fusion strategies. Our model, PemNN, consistently outperforms
the baselines regardless of the fusion strategy used. Moreover, all early fusion methods exhibit superior performance
compared to late fusion methods. For late fusion methods, the GAP layers from the last convolutional blocks are concatenated,
leading to significant information loss since each element in the GAP layer represents a single channel from the convolutional
block. In contrast, early fusion methods directly integrate branches from first convolutional blocks, preserving more
information. Among the early fusion strategies, the Early-Conv strategy stands out, likely due to its use of filters to
effectively process information across branches.

LSTM Layers Figure 10b shows the impact of incorporating LSTM layers into the two branches of PemNN. Regardless
of the specific use of LSTM layers, PemNN consistently outperforms the baselines, with all models showing statistically
significant improvements over the baselines, except for LSTMFCN. Including LSTM layers in both the trace and physics-
based branches achieves the best overall performance, with the average ranking of 2.4167.

Different polymer elastic models Regardless of the chosen polymer elastic model, PemNN consistently outperforms the
baselines, as shown in Figure 10c. Furthermore, employing the FRC and FJC models improves performance compared to the
WLC model. Figure 10d presents the performance of the three polymer elastic models across simulated and experimental
datasets using a radar chart. Even though the WLC model is used to generate the simulated datasets, PemNN with the FRC
and FJC models performs comparably, with differences in averaged accuracy remaining within 3%. For real experimental
datasets, PemNN maintains this robustness, with accuracy differences across the three models limited to within 3% for all
four protein molecules.

These results highlight the consistent performance of PemNN in classification tasks, regardless of fusion methods, the
incorporation of LSTM layers, or the choice of Polymer elastic models, and its ability to consistently outperform baselines.

D.3. Closer look at force trace branch functionality

In Section 6.3, we demonstrate that our model, PemNN, is robust to variations in physical parameters, specifically the
contour length threshold and persistence length. Here we provide a detailed discussion.

Figure 11. Contour length calculations using the WLC model with varying persistence lengths (Lp), visualized with a simulated force
curve of Titin I27O.

Contour length threshold Contour lengths typically span the micrometer scale. However, factors such as signal noise or
deviations from the polymer elastic models can lead to exaggerated contour length values, potentially degrading model
performance. Despite these challenges, PemNN exhibits robust performance even when datasets include such extreme
values.
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Persistence length The persistence length Lp quantifies the bending stiffness of a polymer. When Lp is underestimated,
the polymer appears excessively flexible, causing the contour length Lc to be overestimated. Conversely, when Lp is
overestimated, the polymer appears stiffer, and Lc approaches the extension x. Figure 11 illustrates the relationship between
Lp and Lc using the WLC model applied to a force curve from the Titin I27O dataset. At Lp = 300, contour length Lc

remains consistent within unfolding events, indicating a correctly chosen Lp. Underestimated Lp (0.3-30) results in large
and inconsistent Lc, leading to performance degradation. When Lp is overestimated (3000, 30000), Lc becomes linear with
x, converging toward an identity function (red line in the inset of Figure 11).

D.4. Performance under varying train/test splits

We evaluated our model and baseline methods using a range of train/test split ratios on experimental datasets. Table 4 reports
the mean accuracy (with standard deviation in parentheses) across all experimental datasets over five independent runs. Our
model consistently outperforms baseline methods, particularly under low-data conditions, achieving at least 11.4% higher
average accuracy when trained on only 5% of the data. As the training data increases, our approach maintains superior
accuracy while exhibiting smaller standard deviations.

Table 4. Model performance on experimental datasets with varying train/test split ratios. Values represent mean accuracy (%) with
standard deviations over five runs in parentheses.

TRAIN/TEST RATIO 5/80 40/60 60/40 80/20

PEMNN 79.61(5.24) 86.82(4.86) 88.50(5.09) 88.54(5.68)
LSTMFCN 68.26(12.12) 85.12(7.49) 85.51(6.87) 87.66(7.66)

RESNET 37.47(6.33) 81.01(9.13) 84.62(7.13) 84.47(9.26)
FCN 35.88(7.37) 75.50(8.92) 75.48(13.15) 79.43(10.18)

TRIPLET 55.58(10.17) 66.78(12.06) 69.15(12.26) 66.92(11.45)
INCEPTIONTIME 35.32(3.97) 80.78(12.78) 81.35(9.07) 84.76(11.58)

D.5. Application to SMFS data analysis

In Section 6.5, we examined the unfolding force distributions of Titin I27O using three methods: RawData as the baseline,
Heuristic as a non-machine learning approach, and PemNN, our proposed model. Expanding on this analysis, we provide
additional details for utrophin and dystrophin molecules, as illustrated in Figure 12.

Unfolding force distributions are visualized using violin plots, where black stars indicate the values with the highest
probability. The violins depict data distributions with kernel density estimation (shown as black lines on either side),
and the width of each curve represents the relative frequency of data points. For each protein molecule, Titin I27O,
bact UtrN-R3, insect UtrN-R3, and DysN-R3, the unfolding distributions generated by PemNN are significantly more
concentrated compared to those from RawData and Heuristic, as quantified by the interquartile range (IQR) listed in Table 5.
Furthermore, the most probable forces obtained with PemNN differ from those achieved by the Heuristic method by no
more than 10 pN. These results highlight that PemNN effectively analyzes AFM data by accurately capturing key statistical
features while effectively filtering out confounding factors from multiple molecules.

Table 5. The most probable forces (in pN), along with the interquartile range (IQR) in parentheses, for all four protein molecules analyzed
using different methods during AFM data analysis.

TITIN I27O BACT UTRN-R3
RAWDATA HEURISTIC PEMNN RAWDATA HEURISTIC PEMNN

192.21(234.52) 217.41(270.46) 206.68(52.63) 60.50(63.22) 72.84(66.55) 70.40(36.97)

INSECT UTRN-R3 DYSN-R3
RAWDATA HEURISTIC PEMNN RAWDATA HEURISTIC PEMNN

81.41(85.29) 90.58(80.57) 84.66(39.98) 63.76(53.18) 74.38(53.10) 72.54(26.79)
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Figure 12. Application of PemNN to AFM Data Analysis: RawData as the Baseline Method, Heuristic as non machine learning method,
and PemNN as the our proposed model. Unfolding force distributions are depicted using violin plots, where black stars signify the
positions of values with the highest probability, with values detailed in Table 5. The violins illustrate data distributions using kernel
density estimation as black lines on each side, with the width of each curve indicating the relative frequency of data points.

E. Physics-guided pretraining strategy
Given the challenge of constructing a large, well-annotated dataset using SMFS experimental data and to eliminate
experimental labeling and human bias, we employed a physics-guided pretraining strategy. In this approach, deep learning
models are pre-trained on simulated datasets generated using physics-based models and subsequently evaluating them on
corresponding experimental datasets.

E.1. Pretraining deep learning models with the physics of protein unfolding

By utilizing simulation data, we effectively incorporate the underlying physics of protein unfolding into our analysis. Our
simulation (Appendix A) is carried out using the WLC model. The WLC model encapsulates the physics of the protein
unfolding, accurately describing the entropic spring like behavior of the protein between two unfolding events of the protein,
which is also corroborated by experimental data. Subsequently, we test the performance of these pre-trained deep learning
models using experimental data.

Data augmentation via linear combinations of examples from different classes is shown to be effective in image classification
(Summers & Dinneen, 2019; Tokozume et al., 2018; Huang et al., 2020) and sound recognition (Tokozume et al., 2017). Here,
we incorporate M ∈ N reference data into the force trace branch of PemNN to augment the force data under classification
(Figure 8). The reference data are randomly sampled simulated force data from the training dataset. Each reference data
F (i)

j is augmented with the force data F (i) via the difference (F (i) − F (i)
j ) as additional channels, resulting in a total of

M + 1 channels. The force data F (i) can be either a simulated or experimental force curve undergoing classification. This

augmented input
[
F (i),F (i) −F (i)

1 , · · · ,F (i) −F (i)
M

]T
, comprising the force data and the reference data, is then passed

through the force trace branch.

E.2. Physics-guided pretraining strategy performance

We first evaluate the data augmentation block discussed in Appendix E.1 by empirically testing three methods for selecting
reference data:

• random balanced: Reference data are randomly selected while maintaining an equal number of samples from each
class for every input data.

• random unbalanced: Reference data are randomly selected without class balance for every input data.
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Figure 13. Pretraining strategy results with PemNN. a)Critical difference diagram comparing different data augmentation methods. b)The
physics-guided pretraining strategy (train size = 0%) slightly underperforms compared to direct training with experimental data (train
sizes = 5% to 20%).

• prefixed balanced: Reference data are fixed for all input data and are selected equally from each class.

Figure 13a presents the critical diagram comparing these selection criteria for different numbers of reference data M . Both
the random balanced and random unbalanced criteria achieve higher rankings compared to the prefixed balanced criterion
and the case where no reference data is used. Among these, the random balanced approach with M = 6 achieves the highest
ranking and and is adopted for subsequent evaluations.

The physics-guided pretraining strategy demonstrates performance comparable to cases where the model is directly trained
using experimental data, despite not utilizing any experimental data during its training. Specifically, the physics-guided
pretraining strategy with PemNN achieves an average accuracy of 72.0% and an average ROC-AUC of 0.88 without
invovling any experimental data (Figure 13). These metrics are only 13% and 0.07 lower, respectively, compared to when
20% of the experimental data is incorporated during training.

E.3. Similarities between simulated and experimental data

We compared unfolding forces from experimental and simulated data based on their most probable values and interquartile
ranges (IQR) (see Table 6). Most probable values closely match, with differences from 1 pN (Titin I27O) to ∼10 pN
(10%) (Bact UtrN-R3, Insect UtrN-R3, DysN-R3), indicating reasonable simulation accuracy. The IQR discrepancy likely
arises from using a single double-well potential for domains in simulations. We note a key insight from our study; neural
networks pre-trained on simulated data with homogeneous domains can effectively classify the number of proteins involved
in experiments with heterogeneous protein domains.

Table 6. The most probable forces (in pN), along with the interquartile range (IQR) in parentheses, for both experimental and simulated
data across all four protein.

TITIN I27O BACT UTRN-R3 INSECT UTRN-R3 DYSN-R3

EXPERIMENTAL 216.35(50.17) 81.58(64.07) 89.45(70.86) 91.25(65.64)
SIMULATED 217.75(36.17) 85.38(22.28) 96.65(40.20) 79.75(25.09)

E.4. Non-homogeneity introduces more challenges

The ROC curves (Figure 14) for PemNN were generated using the One-vs-Rest strategy, where a given class is regarded as
the positive class and the remaining classes are regarded as the negative class as a bulk. For Titin I27O, the ROC-AUC
remains consistently high, above 0.85 in all cases, regardless of whether the training data is experimental or simulated (Figure
14a, Table 7). For both utrophin and dystrophin, the no-molecule class consistently performs well whether experimental data
is used for training or not. However, significant improvements are observed for the single-molecule and multiple-molecule
classes when experimental data is used for training instead of simulation data, with ROC-AUC of single-molecule class
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increasing by at least 0.2 for insect UtrN-R3, bact UtrN-R3, and DysN-RR3 (Figure 14b-d, Table 7). This suggests notable
differences between simulation and experimental data for both utrophin and dystrophin.

cba

Trained with experimental data:

Trained with simulation data:

Titin I27O dInsect UtrN-R3 DysN-R3Bact UtrN-R3

Figure 14. ROC curves from a single run for four datasets, (a) Titin I27O, (b) Insect UtrN-R3, (c) Bact UtrN-R3 and (d) DysN-R3 using
PemNN. ROC curves are plotted using One-vs-Rest strategy, with no molecule, single molecule and multiple molecules classes depicted
in yellow, red and blue, respectively. Solid lines represent results trained with simulation data, while dashed lines indicate results trained
with experimental data. These ROC curves are generated using 80% of experimental data, with the corresponding ROC-AUC in Table 7.

The ROC curves allow us to adjust the optimal probability threshold. We can achieve high precision but accept low sensitivity
to ensure the reliability of single molecule data statistics. The probability threshold can be chosen to tune for a minimum
sensitivity or for a minimum specificity. For example, we have selected the thresholds to achieve an average of 93% of the
positive identifications of single molecule are correct across four experimental datasets. Thus the method can effectively
filter data such that inferences can be drawn from true single molecule experiments. Alternatively, we can aim for high
sensitivity but accept low precision to avoid losing data, given the scarcity and high cost of producing SMFS data (Appendix
E.5).

We further investigated the possible reasons for the superior performances of Titin I27O compared to insect UtrN-R3, bact
UtrN-R3, and DysN-R3. Titin I27O has identical domains whereas utrophin and dystrophin have heterogeneous domains.
The simulation model we use assumes identical folded domains in a protein. A model that can simulate a molecule with
heterogeneous domains requires the model parameters for each domain. These parameters are not available for insect
UtrN-R3, bact UtrN-R3, and DysN-R3. Thus, we hypothesize that when information about the molecular domains is missing
in the simulation model, the usage of experimental data in training provides substantial improvements in performance. This
is the case with molecules with heterogeneous domains.

Table 7. ROC-AUC of ROC curves in Figure 14.

TRAINED WITH SIMULATION DATA TRAINED WITH EXPERIMENTAL DATA
NO

MOLECULE
SINGLE

MOLECULE
MULTIPLE

MOLECULES
NO

MOLECULE
SINGLE

MOLECULE
MULTIPLE

MOLECULES
TITIN I27O 0.98 0.86 0.90 1.00 0.95 0.96

INSECT UTRN-R3 0.92 0.61 0.75 0.99 0.81 0.84
BACT UTRN-R3 0.97 0.67 0.82 1.00 0.92 0.93

DYSN-R3 0.97 0.61 0.77 1.00 0.88 0.90

E.5. Adjusting probability thresholds

The primary goal is to identify single molecule force curves, so we simplify the problem from multi-class to binary
classification, focusing on distinguishing force curves from single molecules versus those from no molecule and multiple
molecules. By leveraging the ROC curve, which illustrates the true positive rates (TPR) against the false positive rates (FPR)
by varying the probability threshold tp, we can choose the optimal probability thresholds top to classify these binary classes.
The optimal probability threshold top is determined by maximizing the difference between TPR and FPR with a weight
α ∈ R on FPR,

top = argmaxtp(TPR− α · FPR). (19)
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Subsequently, optimal thresholds with varying α are applied to the binary classification task. The results, compared to the
original threshold, are presented in Figure 15 for ResNet. The models are trained on simulation data and then evaluated on
experimental data.

Figure 15. Performance of PemNN with varying probability thresholds for all four experimental datasets. The x-axis represents values of
α, with ’w/o Threshold’ indicating no threshold is used.

A larger weight α places greater emphasis on false positive, thereby increasing precision. For example, the precision of
single molecule class improves to 0.93 when α = 10. However, this improvement comes with a trade-off in recall. This
adjustment enhances the reliability of single molecule data statistics, as we can be more confident that no-molecule and
multiple-molecules force curves are not misclassified as single-molecule class. Conversely, if the preference is to accept
some false positives rather than exclude any true positives as the data are expensive and scarce, α = 0.2 would be the choice
to achieve high recall, albeit with lower precision.

E.6. Discussion and limitations

A significant insight of the study is that we can perform the task of classification of data under no molecule, single molecule,
and multiple molecules (for proteins with heterogenous domains) being pulled where the training is done based on simulation
data, where a single double-well potential model of the domains is employed. This implies that there is enough other
information on the force-curves that allows discrimination between no, single, and multiple proteins-based force-curves.
We emphasize that neural networks trained on simulated data using homogeneous domains have the capability to classify
between the number of proteins being involved in the experiments of protein molecules with heterogeneous domains.

We identify the following limitations for the physics-guided pretraining strategy. First, the simulation algorithm relies
on energy landscape parameters, which are not straightforward to obtain and typically necessitate experiments involving
multiple pulling speeds or constant forces. Transforming our physics-guided pretraining strategy to be agnostic to the energy
landscape parameters is beyond the scope of this study. Second, in our physics-based protein unfolding model, we assume
every protein domain behaves identically. However, many proteins, including utrophin and dystrophin have folded domains
that are significantly different from each other. Developing methods that can extract the individual energy landscapes of the
different dissimilar domains in a protein is likely to aid in identifying single molecule force curves arising from proteins
with dissimilar domains. The development of techniques to extract distinct energy landscapes from a small amount of
experimental data should be investigated in the future.
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